ViennaCL - The Vienna Computing Library  1.6.1
Free open-source GPU-accelerated linear algebra and solver library.
Bibliography
[1]

ATI Knowledge Base - Double Support.

[2]

ATI Stream SDK.

[3]

ATI Stream SDK - Documentation.

[4]

Boost C++ Libraries.

[5]

CMake.

[6]

E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the 1969 24th National Conference, ACM '69, pages 157–172. ACM, 1969.

[7]

DarwinPorts.

[8]

Eigen Library.

[9]

Fink.

[10]

G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press, 1996.

[11]

M. J. Grote and T. Huckle. Parallel Preconditioning with Sparse Approximate Inverses. SIAM J. Sci. Comp., pages 838–853, 1997.

[12]

T. Huckle. Factorized Sparse Approximate Inverses for Preconditioning. J. Supercomput., pages 109–117, 2003.

[13]

Khronos OpenCL.

[14]

D. D. Lee and S. H. Seung. Algorithms for Non-negative Matrix Factorization. In Advances in Neural Information Processing Systems 13, page 556–562, 2000.

[15]

J. G. Lewis. Algorithm 582: The gibbs-poole-stockmeyer and gibbs-king algorithms for reordering sparse matrices. ACM Trans. Math. Softw., 8:190–194, 1982.

[16]

MacPorts.

[17]

MTL 4 Library.

[18]

NVIDIA CUDA.

[19]

NVIDIA OpenCL.

[20]

OpenMP.

[21]

Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. Society for Industrial and Applied Mathematics, April 2003.

[22]

Horst D. Simon. The lanczos algorithm with partial reorthogonalization. Mathematics of Computation, 42:115–142, 1984.

[23]

U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2001.

[24]

Xcode Developer Tools.

[25]

U. M. Yang. Numerical Solutions of Partial Differential Equations on Parallel Computers, chapter Parallel Algebraic Multigrid Methods - High Performance Preconditioners, pages 209–236. Lecture Notes in Computational Science and Engineering. Springer, 2006.