
PDFBox - User Guide

Table of contents

1 Introduction..2

2 PDF File Format Overview..2

3 PD Model... 3

Copyright © 2002-2005 pdfbox.org All rights reserved.

1. Introduction

This page will discuss the internals of PDF documents and those internal map to PDFBox
classes. Users should reference the javadoc to see what classes and methods are available.
The Adobe PDF Reference
(http://partners.adobe.com/public/developer/pdf/index_reference.html) can be used to
determine detailed information about fields and their meanings.

2. PDF File Format Overview

A PDF document is a stream of basic object types. The low level objects are represented in
PDFBox in the org.pdfbox.cos package. The basic types in a PDF are:

PDF Type Description Example PDFBox class

Array An ordered list of items [1 2 3] org.pdfbox.cos.COSArray

Boolean Standard True/False
values

true org.pdfbox.cos.COSBoolean

Dictionary A map of name value
pairs

<<
/Type /XObject
/Name (Name)
/Size 1
>>

org.pdfbox.cos.COSDictionary

Number Integer and Floating
point numbers

1 2.3 org.pdfbox.cos.COSFloat
org.pdfbox.cos.COSInteger

Name A predefined value in a
PDF document,
typically used as a key
in a dictionary

/Type org.pdfbox.cos.COSName

Object A wrapper to any of the
other objects, this can
be used to reference
an object multiple
times. An object is
referenced by using
two numbers, an object
number an a
generation number.
Initially the generation
number will be zero
unless the object get
replaced later in the

12 0 obj << /Type
/XObject >> endobj

org.pdfbox.cos.COSObject

PDFBox - User Guide

Page 2
Copyright © 2002-2005 pdfbox.org All rights reserved.

http://partners.adobe.com/public/developer/pdf/index_reference.html

stream.

Stream A stream of data,
typically compressed.
This is used for page
contents, images and
embedded font
streams.

12 0 obj << /Type
/XObject >> stream
030004040404040404
endstream

org.pdfbox.cos.COSStream

String A sequence of
characters

(This is a string) org.pdfbox.cos.COSString

A page in a pdf document is represented with a COSDictionary. The entries that are available
for a page can be seen in the PDF Reference and an example of a page looks like this:

<< /Type /Page /MediaBox [0 0 612 915] /Contents 56 0 R >>

Some Java code to access fields

COSDictionary page = ...; COSArray mediaBox = (COSArray)page.getDictionaryObject(
"MediaBox"); System.out.println("Width:" + mediaBox.get(3));

3. PD Model

The COS Model allows access to all aspects of a PDF document. This type of programming
is tedious and error prone though because the user must know all of the names of the
parameters and no helper methods are available. The PD Model was created to help alleviate
this problem. Each type of object(page, font, image) has a set of defined attributes that can be
available in the dictionary. A PD Model class is available for each of these so that strongly
typed methods are available to access the attributes. The same code from above to get the
page width can be rewritten to use PD Model classes.

PDPage page = ...; PDRectangle mediaBox = page.getMediaBox(); System.out.println("Width:" +
mediaBox.getWidth());

PD Model objects sit on top of COS model. Typically, the classes in the PD Model will only
store a COS object and all setter/getter methods will modify data that is stored in the COS
object. For example, when you call PDPage.getLastModified() the method will do a lookup
in the COSDictionary with the key "LastModified", if it is found the value is then converter
to a java.util.Calendar. When PDPage.setLastModified(Calendar) is called then the
Calendar is converted to a string in the COSDictionary.

Here is a visual depiction of the COS Model and PD Model design.

This design presents many advantages and disadvantages.
Advantages:

PDFBox - User Guide

Page 3
Copyright © 2002-2005 pdfbox.org All rights reserved.

• Simple, easy to use API.
• Underlying document automatically gets updated when you update the PD Model
• Ability to easily access the COS Model from any PD Model object
• Easily add to and update existing PDF documents

Disadvantages:

• Object caching is not done in the PD Model classes

Note:
For example, each call to PDPage.getMediaBox() will return a new PDRectangle object, but will contain the same underlying
COSArray.

PDFBox - User Guide

Page 4
Copyright © 2002-2005 pdfbox.org All rights reserved.

	1 Introduction
	2 PDF File Format Overview
	3 PD Model

