
Gaol 4.2.0
NOT Just Another
Interval Arithmetic Library

Edition 4.4
Last updated 21 May 2015

Frédéric Goualard
Laboratoire d’Informatique de Nantes-Atlantique, France

Copyright © 2001 Swiss Federal Institute of Technology, Switzerland
Copyright © 2002-2015 LINA UMR CNRS 6241, France

gdtoa() and strtord() are Copyright © 1998 by Lucent Technologies

All Trademarks, Copyrights and Trade Names are the property of their re-
spective owners even if they are not specified below.
Part of the work was done while Frédéric Goualard was a postdoctorate at the
Swiss Federal Institute of Technology, Lausanne, Switzerland supported by the
European Research Consortium for Informatics and Mathematics fellowship
programme.
This is edition 4.4 of the gaol documentation. It is consistent with version
4.2.0 of the gaol library.
Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.
GAOL IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THIS SOFTWARE IS WITH YOU.
SHOULD THIS SOFTWARE PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Recipriversexcluson. n. A number
whose existence can only be defined as
being anything other than itself.

Douglas Adams, 
Life, the Universe and Everything

Contents

Copyright vii

1 Introduction 1

2 Installation 3
2.1 Getting the software . 3
2.2 Installing gaol from the source tarball on Unix and Linux . . . 3

2.2.1 Prerequisites . 3
2.2.2 Configuration . 5
2.2.3 Building . 7
2.2.4 Installation . 7

3 An overview of gaol 9
3.1 The trust rounding mode . 10
3.2 Common errors . 10

3.2.1 Floating-point arithmetic and rounding 11

4 Initialization and cleanup 13

5 Interval creation and assignment 15
5.1 Constructors . 15
5.2 Straight assignment . 17
5.3 Assignment combined with an operation 17

6 Interval constants 19

7 Interval relations 21
7.1 Set relations . 21
7.2 Certainly relations . 23
7.3 Possibly relations . 25
7.4 Relational Symbols . 26
7.5 Interval-specific relations . 27

8 Interval Arithmetic 31
8.1 Functional Arithmetic . 31

8.1.1 Trigonometric functions 33
8.1.2 Hyperbolic functions . 33

8.2 Relational Arithmetic . 34
8.2.1 (n+ 1)-ary relational functions 34

9 Interval functions 37
9.1 Splitting methods . 40
9.2 Union and intersection . 41

v

10 Input/output 43
10.1 Reading intervals . 43

10.1.1 Input format . 43
10.2 Writing intervals . 45

10.2.1 Converting intervals to strings 45
10.2.2 Output format . 46
10.2.3 Choosing the number of digits to display 47
10.2.4 Example . 48

11 Floating-point numbers 49
11.1 Floating-point constants . 49
11.2 Floating-point functions . 49

12 Manipulating the FPU 51
12.1 Rounding functions . 51
12.2 Manipulating the FPU flags . 52

13 Version information 53

14 Additional functions 55

15 Error handling 57
15.1 Exceptions . 58

15.1.1 The gaol_exception exception 58
15.1.2 The input_format_error exception 59
15.1.3 The unavailable_feature_error exception 59
15.1.4 The invalid_action_error exception 59

15.2 Warnings . 60

16 Debugging facilities 61

17 Profiling 63
17.1 The timepiece class . 64

17.1.1 Methods of the timepiece class 64

18 Additional Documentation 67
18.1 Documentation on gaol . 67
18.2 References . 67

19 Reporting bugs 69

20 Contributors 71

Library Copying 73

vi

Copyright

Gaol is distributed under the GNU Lesser General Public License (see Sec-
tion 20, page 73). The copyright for the initial version—named cell—(year
2001) is owned by the Swiss Federal Institute of Technology, Lausanne, Switzer-
land. The copyright for the following versions (from 2002 onward) is owned
by the Laboratoire d’Informatique de Nantes-Atlantique, France.

For the input of floating-point numbers, gaol uses the strtord() function
written by David M. Gay, whose copyright notice follows:

* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this
* software for any purpose without fee is hereby granted,
* provided that this entire notice is included in all
* copies of any software which is or includes a copy or
* modification of this software and in all copies of the
* supporting documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY
* EXPRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER
* THE AUTHOR NOR LUCENT MAKES ANY REPRESENTATION OR
* WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.

Gaol relies either on IBM APMathlib or CRlibm mathematical libraries
for most floating-point operators. Both libraries are released under the GNU
Lesser General Public License (see Section 20, page 73).

vii

1
Introduction

Gaol† is a C++ library to perform arithmetic with floating-point intervals. † For those readers who are not na-
tive English speakers, “gaol” should be
pronounced jāl, like the word “jail”, of
which it is a, chiefly British, variant.

The development of gaol was initiated at the Swiss Federal Institute of Tech-
nology, Lausanne, Switzerland, while F. Goualard was a post-doctorate fellow
supported by the Swiss National Science Foundation. It started as a limited
version of Jail (now halloween), a templated C++ interval library developed
during Goualard’s PhD.

To our knowledge, a unique feature of gaol among all C++ interval arith-
metic libraries available is the implementation of relational arithmetic op-
erators required by interval constraint arithmetic software (see Section 8.2,
page 34). Hence, the game of the name: gaol is not JAIL (Just Another
Interval Library). That situation should change in the near future, as rela-
tional arithmetic operators are required by the future IEEE 1788 standard for
interval arithmetic.

This document is both a manual and a reference to use gaol. It assumes
a prior knowledge of interval arithmetic. Refer to the books and papers by
Goldberg, Neumaier, and others [2 ,4 ,5 ,1 ,6] for a basic presentation of floating- [2] David Marc Goldberg. What every com-

puter scientist should know about floating-
point arithmetic. ACM Computing Surveys,
23(1):5–48, March 1991.

[4] IEEE. IEEE standard for binary floating-
point arithmetic. Technical Report IEEE Std
754-1985, Institute of Electrical and Electron-
ics Engineers, 1985. Reaffirmed 1990.
[5] Ramon Edgar Moore. Interval Analysis.
Prentice-Hall, Englewood Cliffs, N. J., 1966.
[1] Götz Alefeld and Jürgen Herzberger. Intro-
duction to Interval Computations. Academic
Press Inc., New York, USA, 1983. Traduit par
Jon Rokne de l’original Allemand ‘Einführung
In Die Intervallrechnung’.
[6] Arnold Neumaier. Interval methods for
systems of equations, volume 37 of Encyclo-
pedia of Mathematics and its Applications.
Cambridge University Press, 1990.

point arithmetic, interval arithmetic and the use thereof.
The main entry point for interval arithmetic on the Web is Vladik Kreino-

vich’s Interval Computation site (http://www.cs.utep.edu/interval-comp/).

Classes, methods, functions, macros, constants and variables available in
the library but not described in this document are likely to change or to be
removed. Consequently, they should be used with caution, if at all.

1

http://www.cs.utep.edu/interval-comp/

2
Installation

The installation procedure differs depending on your platform. The current
release of gaol is supported on the following platforms:

• ix86-based computers and compatibles under Linux with GNU gcc/g++.
Both 32 bits and 64 bits operating systems are supported;

• ix86_64-based computers under Mac OS X (gaol has been successfully
tested on Darwin).

Gaol used to be available on UltraSparc-based computers under SUN Solaris
2.[5–8] with GNU gcc/g++. With no such architecture at hand anymore, it is
no longer actively developed on it, though its support should not require too
much work.

2.1 Getting the software
The official web page for gaol is http://sourceforge.net/projects/gaol/.

The latest versions of gaol come as a source-code tarball only, which should
be compiled and installed specifically for the computer you intend to use.
There are no precompiled versions.

2.2 Installing gaol from the source tarball on
Unix and Linux

Installing gaol from the source archive is done in three steps, in accordance with
the spirit of all GNU softwares: configuration, building, installation. These
steps are described hereunder. In the following, the base directory of the gaol
distribution as created by decompressing the archive will be referred as the
root directory of the distribution (or simply, the root directory).

2.2.1 Prerequisites
In order to build and install gaol, you will need the following tools. Some of
them are mandatory, some are only required if you intend to modify the code,
and others are only optional (their absence will not prevent you from using
gaol though some features might be unavailable).

3

http://sourceforge.net/projects/gaol/

Mandatory tools and programs

Gaol uses many features provided by the ANSI-standard ISO/IEC FDIS 14882
for the C++ language. As a consequence, you will need a recent C++ compiler
in order to compile gaol—e.g. gcc 3.0 or above.

Gaol relies either on IBM APMathlib or CRlibm floating-point arithmetic
libraries. They must be properly installed on your system prior to configuring
gaol. For your convenience, an archive of APMathlib is available on the gaol
web site (http://sourceforge.net/projects/gaol). The CRlibm library is
available on LIPForge (http://lipforge.ens-lyon.fr/projects/crlibm/).

Important note. Some assumptions are made concerning the accuracy of
some functions provided by the standard mathematical library (libm). In par-
ticular, depending on the library chosen (apmathlib or crlibm), the following
functions are considered to be computed to at most one ulp of accuracy:

Functions APmathlib CRlibm
cosh •
sinh •
tanh • •
acosh • •
asinh • •
atanh • •

Tools for maintainers

Gaol uses code produced by GNU Flex and GNU Bison for parsing the ex-
pression used to initialize an interval.

Any modification of the files

gaol_interval_lexer.lpp

or

gaol_interval_parser.ypp

requires the availability of these tools.

Optional tools

• dot. This program is used by doxygen (see below) to draw dependency
graphs in the HTML documentation. It is part of the GraphViz package
(http://www.research.att.com/sw/tools/graphviz/);

• doxygen. Tool similar to SUN Javadoc for the C++ language. It is
available at http://www.stack.nl/~dimitri/doxygen/index.html. If
you do not have it, you will not be able to regenerate the HTML docu-
mentation;

• CppUnit. This library for unit testing is available on SourceForge (http:
//sourceforge.net/projects/cppunit). It is required to test the proper
compilation of gaol.

4

http://gcc.gnu.org
http://sourceforge.net/projects/gaol
http://lipforge.ens-lyon.fr/projects/crlibm/
http://www.research.att.com/sw/tools/graphviz/
http://www.stack.nl/~dimitri/doxygen/index.html
http://sourceforge.net/projects/cppunit
http://sourceforge.net/projects/cppunit

2.2.2 Configuration
Before actually compiling the library, you have to configure it for your platform
by using the configure program located at the root of the gaol distribution.
It accepts the following options:

• --help. Displays a list of all options. Note that only those described
hereunder are supported;

• --prefix=prefix-dir . The root directory where the library will be
installed. It defaults to /usr/local;

• --libdir=lib-dir . The directory where to put the libraries. It defaults
to prefix-dir/lib;

• --includedir=include-dir . The directory where to put the header
files. It defaults to prefix-dir/include;

• --infodir=info-dir . The directory where to put the documentation
in info format. It defaults to prefix-dir/info;

• --enable-shared[=yes/no]. Creates or not a shared library. This
option defaults to yes whenever shared libraries are supported by the
current platform;

• --with-mathlib=(apmathlib|crlibm) . Specifies which mathematical
library to use. The following libraries are currently supported.

apmathlib. The IBM APMathlib library. This library must be installed
and available before configuring gaol ;

crlibm. The Correcty Rounded Mathematical library available at http:
//lipforge.ens-lyon.fr/www/crlibm/. This library should be
installed and available before configuring gaol.

This option defaults to “apmathlib.”

• --with-mathlib-include=PATH. Set the path where are the headers for
the mathematical library to PATH;

• --with-mathlib-lib=PATH. Set the path where is the library file for the
mathematical library to PATH;

• --with-cppunit-include=PATH. Set the path where are the headers for
cppunit to PATH;

• --with-cppunit-lib=PATH. Set the path where is the library file for
cppunit to PATH;

• --enable-debug[=yes/no]. Adds or not debugging information to the
library. Enable the use of debugging macros (see Section 16, page 61).
This option defaults to no.

• --enable-preserve-rounding[=yes/no]. The library assumes that
the rounding direction is never modified outside of gaol, which allows
to set it once and for all to "upward" at initialization (see Section 3.1,
page 10). This option defaults to no. You should define this option to
yes if you use gaol together with libraries or programs that manipulate
the rounding direction, or that require the rounding direction to be to
the nearest;

5

http://lipforge.ens-lyon.fr/www/crlibm/
http://lipforge.ens-lyon.fr/www/crlibm/

• --enable-optimize[=yes/no]. Compiles gaol with full optimization
turned on. This option defaults to yes;

• --enable-fast-math[=yes/no]. Compiles gaol with fast but less accu-
rate transcendental and power operators. This option defaults to yes;

• --enable-exceptions[=yes/no]. If enabled, errors should be reported
by throwing an exception (see Section 15.1, page 58). If disabled, errors
are reported by calling gaol_error(), which prints a message to the
standard error channel. This option defaults to yes;

• --enable-asm[=yes/no]. Allows the use of assembler code in some
parts of gaol. For most platforms, assembler code is used only to switch
thr rounding direction of the FPU. On ix86, assembler code is also used
for many primitives. This option defaults to yes. On ix86, disabling
the assembler support should be done with caution, depending on the
propensity of of your compiler to wrongly optimize code using floating-
point instructions (which is high for versions of gcc prior to 4.1);

• --enable-relations=kind . Defines the kind of relation to use for re-
lational symbols (=,6, . . .) to be kind. Possible values for kind are
certainly, set, and possibly (see Section 7, page 21). The default is
certainly;

• --verbose-mode[=yes/no]. Allows information messages to be sent to
the standard output (such as messages to report automatic initialization
and cleanup). The default is yes.

•

Note that, as usual, --disable-xxx is equivalent to --enable-xxx=no.
Moreover, --enable-xxx is equivalent to --enable-xxx=yes.

Configuration examples

First, go to the root directory. If you simply type

% ./configure

you will create a shared library with full optimization, which will be installed
in /usr/local.
By issuing

% ./configure --enable-debug \
--prefix=/usr1/local --infodir=/export/info

you will create a library including debugging information that will be in-
stalled in the root directory /usr1/local except for the info files, which will
be installed in the /export/info directory.

Missing optional tools are reported during the configuration process, though
they do not prevent you from building the library. The configuration is aborted
if some important tool or library is missing.

6

2.2.3 Building
After having configured gaol, you can now type

% make

in the root directory to build the library and its documentation (pdf and html
files).

The targets for the Makefile in the root directory are:

• all. Similar to calling make without any argument;

• doc. Create the manual in both pdf and html formats;

• html Create only the html reference;

• check. Test the library by compiling some benchmarks and checking
their output against the expected one;

• clean, distclean, maintainer-clean. These are standard options for
a GNU standard compliant Makefile. The clean option erases all files
created during the building process; the distclean erases also the files
created during the configuration process; maintainer-clean is meant
to be used by maintainers only since it might erase files needing special
tools to be re-created as well;

• install. Install the library in the directories specified at configuration
time.

2.2.4 Installation
To install gaol on your system, just type

% make install

Remember that the directories you have chosen to install the libraries into,
must be accessible to your compiler, i.e. they must appear in the paths con-
tained in the relevant environment variables:

• LIBRARY_PATH for static libraries,

• LD_LIBRARY_PATH for dynamic libraries,

• . . .

to be able to use the library once installed.

7

3
An overview of gaol

In this chapter, we will assume that gaol has already been properly installed,
and that the libraries and header files are accessible to your compiler.

Let us consider the following program to compute the range of the function

f(x, y) =
(
1 + (x+ y)2(19− 14x+ 3x2 − 14y + 6xy + 3y2)

)(
30 + (2x− 3y)2(18− 32x+ 12x2 + 48y − 36xy + 27y2)

)
for x ∈ [−2, 2] and y ∈ [−2, 2].

Example
1 #include <iostream>
2 #include <gaol/gaol.h>
3

4 int main(void)
5 {
6 gaol::init();
7

8 interval
9 x(-2,2),

10 y(-2,2), z;
11

12 z=(1+sqr(x+y)*(19-14*x+3*sqr(x)-14*y+6*x*y+3*sqr(y)))*
13 (30+sqr(2*x-3*y)*(18-32*x+12*sqr(x)+
14 48*y-36*x*y+27*sqr(y)));
15

16 std::cout << "z = " << z << std::endl;
17

18 gaol::cleanup();
19 return 0;
20 }

First, note that we have to include the gaol/gaol.h header file in or-
der to use all the facilities provided by gaol. All the functions, classes, con-
stants and types defined in gaol are embedded into the gaol namespace. The
gaol/gaol.h header imports the whole namespace such that it is not neces-
sary to use the gaol prefix. Alternatively, you may include the gaol/gaol
header instead of gaol/gaol.h and add using directives to only import what
you actually need.

9

The call to gaol::init() on Line 6 is related to the use of the so-called
trust rounding mode (see next section): it switches the rounding mode of the
floating-point unit towards+∞ (if the library was compiled with --preserve-rounding=no)
and calls some initialization code.

The sqr(x) function stands for square of x and is equivalent to pow(x,2).
Let f.cpp be the name of the file containing the program above. To compile

it with g++, we have to type the following command:

% g++ -o f f.cpp -lm -lultim -lgaol

were ultim corresponds to the APMathlib library.
We thus create the executable file f, using the gaol and APMathlib libraries—

APMathlib is the Accurate Portable Mathematical library developed by IBM;
it provides us with correctly rounded mathematical functions if they are not
directly available on the given platform.

Executing f, we obtain:
Output

z = [−56254330, 94177270]

We then know that f(x, y) ranges over [−56254330, 94177270] when x and
y range over [−2, 2] independently.

3.1 The trust rounding mode
Floating-point interval arithmetic requires outward rounding in order to fulfill
the containment property : for example, to add intervals [a, b] and [c, d], we
compute [↓ a+ c ↓, ↑ b+ d ↑], where ↓ r ↓ and ↑ r ↑ return the greatest (resp.
smallest) floating-point number smaller (resp. greater) than the real result of
r. These two operations are performed by switching the rounding direction of
the FPU towards, respectively, −∞ and +∞.

Definition 1 (Rounding down/up)
Given R the set of real numbers and
F the set of floating-point numbers
(double), we have:

∀x ∈ R :

{
↓ x ↓= max{y ∈ F | y 6 x}
↑ x ↑= min{y ∈ F | y > x}

On most platforms, switching the rounding direction is costly. However,
it is possible to cut down the number of switches by relying on the property
that ↓ −r ↓= − ↑ r ↑. Consequently, one can replace nearly all downward
rounding operations by upward rounding ones by negating appropriately twice
the operations performed. The next step is then to only switch once and for all
the rounding direction towards +∞ at the beginning of a computation. This
strategy reduces drastically the number of rounding direction switches at the
cost of putting on the user the burden to ensure that the rounding direction
be always set towards +∞ before any computation involving intervals. This
mode is called the trust rounding mode since we trust the user for ensuring
that the rounding direction is always properly set.

Basically, all the user has to do when using the trust rounding mode is to
switch the rounding direction towards +∞ at the beginning of his program
(this is performed automatically by gaol::init()), and then ensuring that it
always remains set to that direction before performing any interval operation.
This condition is never violated by any function or method of the library itself.

When gaol is used in a larger application that also relies on libraries that
assume the rounding direction to be to the nearest, it is easier and safer to!
configure it with the trust rounding mode disabled (see Section 2.2.2, page 5).

3.2 Common errors
In this section, we will review common errors made when using gaol in the—
forlorn?—hope that it will help prevent users from making them.

10

http://oss.software.ibm.com/mathlib/

3.2.1 Floating-point arithmetic and rounding
Programming with floating-point numbers is one of the few activities where
one must always consider ones compiler defiantly. For example, let us consider
the following piece of code:

Example
1 #include <gaol/gaol> // We do not import the gaol namespace
2

3 using gaol::interval;
4

5 int main(void) {
6 gaol::init();
7 interval one_tenth(0.1); BEWARE: wrong !
8

9 [some code using one_tenth]
10 gaol::cleanup();
11 }

Definition 2 (Rounding to the nearest)
Given R the set of real numbers and
F the set of floating-point numbers
(double), we have:

∀x ∈ R : l x l= y ∈ F s.t.
x−y = min{|δ| ∈ R | δ = x−z,∀z ∈ F}

Though a rational perfectly representable in decimal, 0.1 is not repre-
sentable in binary (at least, not with a finite number of bits) and thus requires
rounding. Obviously, the purpose of the user was to define an interval contain-
ing this value. However, 0.1 will be rounded at compile time, most certainly
to the nearest representable floating-point number l 0.1 l. As a consequence,
one_tenth will be a degenerate interval containing only l 0.1 l, and the con-
tainment property will be violated.

The right way to deal with rational constants that might not be perfectly
representable as floating-point numbers is to stringigy them, such that they
can be correctly rounded downward and upward at runtime:

Example
1 #include <gaol/gaol>
2

3 using gaol::interval;
4

5 int main(void)
6 {
7 gaol::init();
8 interval one_tenth("0.1"), // OK: this is the right way
9 one_tenth2("1/10"); // Another possible way

10

11 [some code using one_tenth]
12 gaol::cleanup();
13 return 0;
14 }

Definition 3 (canonical interval)
A non-empty interval I = [a, b] is
canonical if and only if a > b−.

Now, one_tenth will be the smallest floating-point interval enclosing 0.1.
An interval like this one, containing at most two consecutive floating-point
numbers, is called a canonical interval.

11

4
Initialization and cleanup

The following functions have to be called before using any functionality of the
library and just after having used it for the last time.

Since Release 1.0 of gaol, there is an automatic initialization/cleanup fea-
ture that ensures that no problem will arise if the user forgets to explicitly call
these functions.

bool init (int dbg_lvl = 0)

Initializes the variable debug_level (see Section 16, page 61) to the value
of dbg_lvl.
If the library was not compiled with the --enable-preserve-rounding
option, it sets the FPU control word according to the requirements of the
APMathlib library and enforces rounding towards +∞. In addition, it
sets the number of digits to display for interval bounds to 16.
Returns true if the library was not already initialized and false otherwise.
After its first call, the only effect of this function is to—possibly—set the
debugging level to a new value.

bool cleanup (void)

Restores the state of the FPU to its value prior to the initialization of the
gaol library.
In the current version, returns true the first time it is called and false
afterwards.

Example
1 #include <gaol/gaol>
2

3 int main(void)
4 {
5 init(1); // First level of debugging requested
6

7 [Some code using interval arithmetic]
8

9 cleanup();
10 return 0;
11 }

13

5
Interval creation and

assignment

The methods for creating an interval and assigning a new value to an already
existing one are described in the following.

5.1 Constructors
One can create an interval in five different ways:

• by providing its left and right bounds:

Example
1 interval x(l,r);

where l and r are doubles or of a type that is castable into a double;

• by providing only one bound, for degenerate point intervals:

Example
1 interval x(v);

This is equivalent to: interval x(v,v);

• without providing any bound:

Example
1 interval x;

This is equivalent to:

Example
1 interval x(-GAOL_INFINITY,+GAOL_INFINITY);

where GAOL_INFINITY represents the infinity value of the double format
(see Section 11.1, page 49);

• by copying an already existing interval (copy constructor):

Example
1 interval x(-12,12), y=x, z(x);

15

• by using a string representing an interval in the same format as the one
used for input (see Section 10.1.1, page 43)

Example
1 interval x("[-23, inf]"),
2 y("[5*0.1+dmin, 89*sinh(2.1)]");

If the input string does not comply with the expected format, an empty
interval is returned. The exception gaol::input_format_error is raised
if the library was compiled with exception support; in the absence of ex-
ception support, the gaol_error() function is called to print an error
message, and the errno variable is set to -1 (errno is not modified when
no error occurs).

• by using a string representing an interval in the same format as the one
used for input (see Section 10.1.1, page 43) for each bound:

Example
1 // constructs x=[-4,2]
2 interval x("[-5,4]+1","[4,6]-[3,2]");

Caution. you have to be very careful when creating an interval from floating-
point constants. Remember that a rational number that is perfectly repre-
sentable in the decimal base may require rounding in the binary base. For
example, if you write the following statement:

Example
1 interval x(0.1);

you will not have created an interval containing 0.1 since this number has
an infinite expansion in the binary base (i.e. it is impossible to represent it
perfectly whatever the size of the mantissa may be). As a consequence, the
constant 0.1 has very likely been rounded to the nearest floating-point number
at compile-time. In such a case, you have to use a string instead:

Example
1 interval x("0.1");

Note. For performance reasons, interval constructors do not forbid to create
intervals whose bounds are infinities of the same sign:

Example
1 interval I(GAOL_INFINITY,GAOL_INFINITY);
2 cout << I << endl;
3 Ò <inf, inf>

However, such intervals are neither allowed nor supported in interval compu-
tation. They are not considered empty intervals and their use with interval
operators leads to inconsistent results.

As an exception, creating an interval from the inf string constant leads to
a legitimate interval:

Example
1 interval I("[-inf, -inf]");
2 interval J("<-inf, -inf>");
3 interval K("inf");
4 cout << I << endl;

16

5 cout << J << endl;
6 cout << K << endl;
7 Ò [-inf, -1.797693134862316e+308]
8 Ò [-inf, -1.797693134862316e+308]
9 Ò [1.797693134862316e+308, inf]

5.2 Straight assignment
It is possible to assign a new value to an already existing interval in three
different ways:

• by copying another interval:

Example
1 interval x(-12,12),
2 y; // Here, y is [−∞+∞,]
3 y = x; // Now, y is [−12, 12]

• by using a string whose format follows the one expected for input (see
Section 10.1, page 43).

Example
1 interval x;
2 x = "[-inf, 123]";

• by using a double:

Example
1 interval x;
2 x = 1234.5; // Now, x is [1234.5, 1234.5]

Note that there is no method for modifying a bound of an interval since
intervals must be considered as an atomic concept.

5.3 Assignment combined with an operation
The following assignment operators combine the value of the interval pointed
to by self and the value of the right-hand side interval. In this manual, we note self the object

to which this is a pointer in C++.interval& interval::operator&= (const interval& I)
� self← self ∩ I
Assigns to self the interval resulting from the intersection of self and
I.

Example
1 interval x(-12,12);
2 x &= interval(-6,23); // Now, x is [−6, 12]

interval& interval::operator|= (const interval& I)
� self← self ∪ I
Assigns to self the interval resulting from the union of self and I.

Example
1 interval x(-12,12);
2 x |= interval(-6,23); // Now, x is [−12, 23]

17

interval& interval::operator+= (const interval& I)
interval& interval::operator+= (double d)

� self← self+ I
� self← self+ d

Assigns to self the interval resulting from adding self and I (resp. d).

Example
1 interval x(-12,12);
2 x += interval(-6,23); // Now, x is [−18, 35]

interval& interval::operator-= (const interval& I)
interval& interval::operator-= (double d)

� self← self− I
� self← self− d
Assigns to self the interval resulting from subtracting I (resp. d) from
self.

Example
1 interval x(-12,12);
2 x -= interval(-6,23); // Now, x is [−35, 18]

interval& interval::operator*= (const interval& I)
interval& interval::operator*= (double d)

� self← self× I
� self← self× d
Assigns to self the interval resulting from multiplying self and I (resp.
d).

Example
1 interval x(-12,12);
2 x *= interval(-6,23); // Now, x is [−276, 276]

interval& interval::operator/= (const interval& I)
interval& interval::operator/= (double d)

� self← self/I
� self← self/d
Assigns to self the interval resulting from dividing self by I (resp. d).

Example
1 interval x(-12,12);
2 x /= interval(-6,23); // Now, x is [−∞, +∞]
3 x /= interval::zero; // Now, x is ∅

interval& interval::operator%= (const interval& I)
interval& interval::operator%= (double d)

Assigns to self the interval resulting from dividing self by I (resp. d),
using a relational division (see Section 8.2, page 34).

Example
1 interval x(-12,12);
2 x %= interval(-6,23); // Now, x is [−∞, +∞]
3 x %= interval::zero; // Now, x is [−∞, +∞]

18

6
Interval constants

For convenience, some useful intervals and some canonical intervals enclosing
real constants are defined as static functions of the interval class:

Function Value
interval::emptyset() ∅
interval::half_pi() [↓ π2 ↓, ↑ π2 ↑]
interval::minus_one_plus_one() [−1, 1]
interval::negative() [−∞, 0]
interval::one() 1

interval::one_plus_infinity() [1, +∞]

interval::pi() [↓ π ↓, ↑ π ↑]
interval::positive() [0, +∞]

interval::two_pi() [↓ 2π ↓, ↑ 2π ↑]
interval::universe() [−∞, +∞]

interval::zero() 0

Example
1 cout << interval::emptyset;
2 Ò [empty]

19

7
Interval relations

Interval relations may be divided into three groups. Given I and J two inter-
vals, we have:

1. set relations: intervals I and J are considered as sets of reals. For
example:

I = J ⇔ (∀x ∈ I, ∃y ∈ J : x = y) ∧ (∀y ∈ J, ∃x ∈ I : x = y)

Basically, two intervals are equal in that mode if they have the same
bounds;

2. certainly relations: the relations must be true for any tuple of values in
the intervals. For example:

I = J ⇔ (∀x ∈ I, ∀y ∈ J : x = y)

Then, two intervals are equal in that mode if they are both reduced to
the same value;

3. possibly relations: the relations are true if it exists at least one tuple
verifying the corresponding real relation. For example:

I = J ⇔ (∃x ∈ I, ∃y ∈ J : x = y)

Then, two intervals are equal in that mode whenever their intersection
is not empty.

The kind of relation to associate to relation symbols such as == and 6
is chosen when configuring the library (see Section 2.2.2, page 5). The other
possible definitions are always available through the methods described here-
under.

7.1 Set relations

bool interval::set_contains (const interval& I) const
bool interval::set_contains (double d) const

21

� I ⊆ self
� d ∈ self

Returns true if I (resp. {d}) is included in self.

Example
1 interval x(-12,34), y(-12,5);
2

3 cout << x.set_contains(y) << endl;
4 cout << x.set_contains(interval::emptyset) << ’ ’
5 << y.set_contains(x) << ’ ’
6 << interval::emptyset.set_contains(x) << ’ ’
7 << interval::emptyset.set_contains(interval::emptyset)
8 << endl;
9 Ò true true false false true

bool interval::set_strictly_contains (const interval I) const
bool interval::set_strictly_contains (double d) const

� I ⊂ self
� d ∈ self

Returns true if I (resp. {d}) is strictly included in self

Example
1 interval x(-10,12), y(-10, 11), z, t, u(10.5);
2

3 cout << boolalpha
4 << x.set_strictly_contains(y) << ’ ’
5 << z.strictly_contains(t)
6 << ’ ’ << x.set_strictly_contains(u) << ’ ’
7 << interval::emptyset.set_strictly_contains(
8 interval::emptyset)
9 << ’ ’ << u.set_strictly_contains(

10 interval::emptyset) << endl;
11 Ò false false true true true

bool interval::set_disjoint (const interval& I) const
� ∗this ∩ I = ∅
Returns true if the intersection of self and I is empty.

Example
1 interval a(2,4), b(6,dmax);
2 cout << a.set_disjoint(b) << " "
3 << interval::emptyset.set_disjoint(interval::emptyset);
4 Ò true true

bool interval::set_eq (const interval& I) const
� ∀x ∈ self∃y ∈ I : x = y ∧ ∀y ∈ I, ∃x ∈ self : y = x

Returns true if intervals self and I are equal when considered as sets of
reals.

Example
1 cout << interval(4,dmax).set_eq(interval(4,dmax)) << " "
2 << interval::emptyset.set_eq(interval::empty_set) << endl;
3 Ò true true

bool interval::set_neq (const interval& I) const

22

� ∃x ∈ self∀y ∈ I : x 6= y ∨ ∃y ∈ I∀x ∈ self : y 6= x

Returns true if self and I are not equal when considered as sets of reals.

Example
1 cout << interval::universe.set_neq(interval::emptyset);
2 Ò true

bool interval::set_le (const interval& I) const

� ∀x ∈ self,∃y ∈ I : x < y ∧ ∀y ∈ I, ∃x ∈ self : y > x

Returns true if the real set defined by self is strictly included in I.

Example
1 cout << interval(-4.5,3).set_le(interval(-10,10))
2 << interval::emptyset.set_le(interval(5,6))
3 << interval::emptyset.set_le(interval::emptyset);
4 Ò true false

bool interval::set_leq (const interval& I) const

� ∀x ∈ self,∃y ∈ I : x 6 y ∧ ∀y ∈ I, ∃x ∈ self : y > x

Returns true if the real set defined by self is included in I.

Example
1 cout << interval(4.5,6).set_leq(interval(4.5,6))
2 << interval(3.5,9).set_leq(interval(2,6))
3 << interval::emptyset.set_leq(interval::emptyset);
4 Ò true false true

bool interval::set_ge (const interval& I) const

� ∀x ∈ self,∃y ∈ I : x > y ∧ ∀y ∈ I, ∃x ∈ self : y < x

Returns true if the real set defined by self strictly contains I.

bool interval::set_geq (const interval& I) const

� ∀x ∈ self,∃y ∈ I : x > y ∧ ∀y ∈ I, ∃x ∈ self : y 6 x

Returns true if the real set defined by self contains I.

7.2 Certainly relations

bool interval::certainly_eq (const interval& I) const

� ∀x ∈ self,∀y ∈ I : x = y

Returns true if self is certainly equal to I, which is true only when both
intervals are degenerate and contain the same floating-point number.

Example
1 cout << interval(3,4).certainly_eq(interval(3,4))
2 << interval(-6).certainly_eq(interval(-6,-6))
3 << interval::universe.certainly_eq(interval::universe)
4 << interval::emptyset.certainly_eq(interval::emptyset)
5 Ò false true false true

23

bool interval::certainly_neq (const interval& I) const
� ∀x ∈ self,∀y ∈ I : x 6= y

Returns true if self is certainly not equal to I.

bool interval::certainly_le (const interval& I) const
� ∀x ∈ self,∀y ∈ I : x < y

Returns true if self is certainly strictly less than I.

Example
1 cout << interval(4,5).certainly_le(interval(6,9))
2 << interval(4,5).certainly_le(interval(5,9))
3 << interval::emptyset.certainly_le(interval(4,6));
4 Ò true false true

bool interval::certainly_leq (const interval& I) const
� ∀x ∈ self,∀y ∈ I : x 6 y
Returns true if self is certainly less or equal to I

Example
1 cout << interval(4,5).certainly_leq(interval(6,9))
2 << interval(4,5).certainly_leq(interval(5,9))
3 << interval(5,9).certainly_leq(interval(4,5))
4 << interval(4,8).certainly_leq(interval(5,9))
5 << interval::emptyset.certainly_leq(interval(4,6));
6 Ò true true false false true

bool interval::certainly_ge (const interval& I) const
� ∀x ∈ self,∀y ∈ I : x > y

Returns true if self is certainly strictly greater than I

Example
1 cout << interval(8,10).certainly_ge(interval(4,8))
2 << interval::emptyset.certainly_ge(interval::emptyset);
3 Ò false true

bool interval::certainly_geq (const interval& I) const
� ∀x ∈ self,∀y ∈ I : x > y
Returns true if self is certainly greater or equal to I.

Example
1 cout << interval(8,10).certainly_geq(interval(4,8))
2 << interval::emptyset.certainly_geq(interval::emptyset);
3 Ò true true

bool interval::certainly_positive (void) const
� self ⊆ [0, +∞]

Returns true if self lower bound is greater or equal to zero.

Example
1 cout << interval::emptyset.certainly_positive()
2 << interval(4,5).certainly_positive()
3 << interval(-0.0,6).certainly_positive()
4 << interval(-6,0).certainly_positive();
5 Ò true true true false

24

bool interval::certainly_strictly_positive (void) const
� self ⊂ [0, +∞]

Returns true if self lower bound is strictly greater than zero.

Example
1 cout << interval::emptyset.certainly_strictly_positive()
2 << interval(4,5).certainly_strictly_positive()
3 << interval(-0.0,6).certainly_strictly_positive()
4 << interval(-6,0).certainly_strictly_positive();
5 Ò true true false false

bool interval::certainly_negative (void) const
� self ⊆ [−∞, 0]
Returns true if self lower bound is lower or equal to zero.

Example
1 cout << interval::emptyset.certainly_negative()
2 << interval(4,5).certainly_negative()
3 << interval(-6,0).certainly_negative()
4 << interval(-6,-5).certainly_negative();
5 Ò true false true true

bool interval::certainly_strictly_negative (void) const
� self ⊂ [−∞, 0]
Returns true if self lower bound is strictly lower than zero.

Example
1 cout << interval::emptyset.certainly_strictly_negative()
2 << interval(4,5).certainly_strictly_negative()
3 << interval(-6,0).certainly_strictly_negative()
4 << interval(-6,-5).certainly_strictly_negative();
5 Ò true false false true

7.3 Possibly relations

bool interval::possibly_eq (const interval& I) const
� ∃x ∈ self,∃y ∈ I : x = y

Returns true if self is possibly equal to I.

Example
1 cout << interval(5,10).possibly_eq(interval(6,100))
2 << interval::emptyset.possibly_eq(interval::emptyset);
3 Ò true false

bool interval::possibly_neq (const interval& I) const
� ∃x ∈ self,∃y ∈ I : x 6= y

Returns true if self is possibly not equal to I

Example
1 cout << interval(4,5).possibly_neq(interval(4,5))
2 << interval(4,4).possibly_eq(interval(4,4))
3 << interval::emptyset.possibly_eq(interval::emptyset);
4 Ò true false false

25

bool interval::possibly_le (const interval& I) const

� ∃x ∈ self,∃y ∈ I : x < y

Returns true if self is possibly strictly less than I.

Example
1 cout << interval(4,5).possibly_le(interval(3,7))
2 << interval(4,5).possibly_le(interval(2,4))
3 << ;interval(4,5).possibly_le(interval::emptyset)
4 Ò true false false

bool interval::possibly_leq (const interval& I) const

� ∃x ∈ self,∃y ∈ I : x 6 y
Returns true if self is possibly less or equal to I.

Example
1 cout << interval(4,5).possibly_leq(interval(3,7))
2 << interval(4,5).possibly_leq(interval(2,4))
3 << ;interval(4,5).possibly_leq(interval::emptyset)
4 Ò true true false

bool interval::possibly_ge (const interval& I) const

� ∃x ∈ self,∃y ∈ I : x > y

Returns true if self is possibly strictly greater than I

Example
1 cout << interval(4,5).possibly_ge(interval(3,6))
2 << interval(4,5).possibly_ge(interval(5,6))
3 << interval(4,5).possibly_ge(interval(6,7))
4 << interval(4,5).possibly_ge(interval::emptyset);
5 Ò true false false false false

bool interval::possibly_geq (const interval& I) const

� ∃x ∈ self,∃y ∈ I : x > y
Returns true if self is possibly greater or equal to I.

Example
1 cout << interval(4,5).possibly_geq(interval(3,6))
2 << interval(4,5).possibly_geq(interval(5,6))
3 << interval(4,5).possibly_geq(interval(6,7))
4 << interval(4,5).possibly_geq(interval::emptyset);
5 Ò true true false false false

7.4 Relational Symbols

bool operator== (const interval& I1, const interval& I2)

Returns I1.set_eq(I2), I1.certainly_eq(I2), or
I1.possibly_eq(I2) depending on the default kind of relation
chosen when configuring gaol (see Section 2.2.2, page 5).

bool operator!= (const interval& I1, const interval& I2)

26

Returns I1.set_neq(I2), I1.certainly_neq(I2), or
I1.possibly_neq(I2) depending on the default kind of relation
chosen when configuring gaol (see Section 2.2.2, page 5).

bool operator< (const interval& I1, const interval& I2)

Returns I1.set_le(I2), I1.certainly_le(I2), or
I1.possibly_le(I2) depending on the default kind of relation
chosen when configuring gaol (see Section 2.2.2, page 5).

bool operator<= (const interval& I1, const interval& I2)

Returns I1.set_leq(I2), I1.certainly_leq(I2), or
I1.possibly_leq(I2) depending on the default kind of relation
chosen when configuring gaol (see Section 2.2.2, page 5).

bool operator> (const interval& I1, const interval& I2)

Returns I1.set_ge(I2), I1.certainly_ge(I2), or
I1.possibly_ge(I2) depending on the default kind of relation
chosen when configuring gaol (see Section 2.2.2, page 5).

bool operator>= (const interval& I1, const interval& I2)

Returns I1.set_geq(I2), I1.certainly_geq(I2), or
I1.possibly_geq(I2) depending on the default kind of relation
chosen when configuring gaol (see Section 2.2.2, page 5).

7.5 Interval-specific relations

bool interval::straddles_zero (void) const

� 0 ∈ self

Returns true if self contains zero.
Example

1 interval x(0,4), y, z(-12,-5);
2

3 cout << boolalpha << x.straddles_zero() << ’ ’
4 << y.straddles_zero() << ’ ’
5 << z.straddles_zero() << endl;
6 Ò true true false

Note. I.straddles_zero() ≡ I.set_contains(interval::Real(0))

bool interval::strictly_straddles_zero (void) const

27

� {0} ⊂ self

Returns true if zero is included in the interior of self.
Example

1 interval x(0,4), y, z(-12,-5);
2

3 cout << boolalpha << x.strictly_straddles_zero() << ’ ’
4 << y.strictly_straddles_zero() << ’ ’
5 << z.strictly_straddles_zero() << endl;
6 Ò false true false

Note. The method call to I.strictly_straddles_zero() is equivalent
to I.set_strictly_contains(interval::Real(0))

bool interval::is_a_double (void) const

Returns true whenever the left and right bounds of the interval are equal.

Example
1 interval x(-12.5), y;
2

3 cout << boolalpha << x.is_a_double() << ’ ’
4 << y.is_a_double()
5 << interval::emptyset.is_a_double() << endl;
6 Ò true false false

bool interval::is_an_int (void) const

Returns true whenever the left and right bounds of the interval are equal
and castable into an integer (type int).

Example
1 interval x(-12.0), y;
2

3 cout << boolalpha << x.is_an_int() << ’ ’ << y.is_an_int()
4 << interval::emptyset.is_an_int() << endl;
5 Ò true false false

bool interval::is_canonical (void) const

Returns true if self contains at most two floating-point numbers.

Example
1 interval x(0), y(-14,9);
2

3 cout << boolalpha << x.is_canonical() << ’ ’ <<
4 y.is_canonical() << ’ ’ <<
5 interval::emptyset << ’ ’ <<
6 interval::pi;
7 Ò true false false true

bool interval::is_empty (void) const

28

� self = ∅
Returns true if self is an empty interval.

Example
1 cout << interval(4,5).is_empty()
2 << interval(5,4).is_empty()
3 << interval::emptyset.is_empty();
4 Ò false true true

bool interval::is_zero (void) const

� self = [0, 0]

Returns true if self is equal to the interval containing only 0.

Example
1 cout << interval::zero.is_zero()
2 << interval(0.0,0.0).is_zero()
3 << interval(-0.0,+0.0).is_zero()
4 << interval(0,5).is_zero()
5 << interval::emptyset.is_zero();
6 Ò true true true false false

bool interval::is_symmetric (void) const

Returns true if the left bound of self is the opposite of the right bound.
An empty interval is not symmetric.

Example
1 cout << interval(-5,5).is_symmetric()
2 << interval::emptyset.is_symmetric() << endl;
3 Ò true false

bool interval::is_finite (void) const

Returns true if both bounds are finite.

Example
1 cout << interval("[4,inf]").is_finite()
2 << interval::emptyset.is_finite()
3 << interval(5,80).is_finite()
4 Ò false true true

29

8
Interval Arithmetic

The containment principle of (floating-point) interval arithmetic imposes that
for any operation “◦”, and any intervals I and J, the following does hold:

I ◦ J = �{i ◦ j | i ∈ I, j ∈ J}
where � is a function mapping any real set to the smallest floating-point
interval containing it.

For example, if we consider the interval square root, we have:
√

I = �{
√
i | x ∈ I}

Frommonotonicity considerations, the square root of [1, 2] is then
√
[1, 2] =

[1,
√
2]. Now, another interpretation of the square root function is as follows:√

rI = �{j ∈ R | ∃i ∈ I : j2 = i}
This last definition stands for the relational square root and permits ob-

taining both negative and positive values. Hence, we have:√
r[1, 2] = [−

√
2,
√
2]

This operator arises when we consider the relation

x2 = y

which can alternatively be written

x =
√
ry

Here, the functional square root is not suitable since it would induce the in-
tersection of the domain of y with [0, +∞].

Some applications (mainly in the area of constraint programming) require
the availability of such operators. As a consequence, gaol offers both functional
and relational versions of the main arithmetic operators.

8.1 Functional Arithmetic

interval interval::operator+ (void) const
interval operator+ (const interval& I, double d)
interval operator+ (double d, const interval& I)
interval operator+ (const interval& I1, const interval& I2)

31

Addition of two intervals, or of one interval and a double.

interval interval::operator- (void) const
interval operator- (const interval& I, double d)
interval operator- (double d, const interval& I)
interval operator- (const interval& I1, const interval& I2)

Negation, or subtraction of two intervals, or of one interval and a double.

interval operator* (const interval& I, double d)
interval operator* (double d, const interval& I)
interval operator* (const interval& I1, const interval& I2)

Multiplication of two intervals, or of one interval and a double.

interval operator/ (const interval& I, double d)
interval operator/ (double d, const interval& I)
interval operator/ (const interval& I1, const interval& I2)

Functional division of two intervals, or of one interval and a double.

interval operator% (const interval& I, double d)
interval operator% (double d, const interval& I)
interval operator% (const interval& I1, const interval& I2)

Relational division of two intervals, or of one interval and a double.

interval sqrt (const interval& I)

�
√
I

Functional square root of I.

interval sqr (const interval& I)

� I2

Square of I

interval pow (const interval& I, int b)
interval pow (const interval& I1, const interval& I2)

� Ib

� II21
Power function. The former computes I to the integral power b, while
the latter raises I1 to the interval power I2. If I2 is an int in disguise,
the first function is used to improve accuracy.
The power function for interval exponents is not yet fully tested and
should be used with care.

interval nth_root (const interval& I, int b)

� b
√
I

Computes the bth functional root of I.

32

interval exp (const interval& I)

Exponential of I.

interval log (const interval& I)

Natural logarithm of I.

8.1.1 Trigonometric functions

interval cos (const interval& I)

Returns the cosine of I.

interval acos (const interval& I)

Returns the arccosine of I.

interval sin (const interval& I)

Returns the sine of I.

interval asin (const interval& I)

Returns the arcsine of I.

interval tan (const interval& I)

Returns the tangent of I.

interval atan (const interval& I)

Returns the arctangent of I.

8.1.2 Hyperbolic functions

interval cosh (const interval& I)

Returns the hyperbolic cosine of I.

interval acosh (const interval& I)

Returns the hyperbolic arccosine of I.

interval sinh (const interval& I)

Returns the hyperbolic sine of I.

interval asinh (const interval& I)

Returns the hyperbolic arcsine of I.

interval tanh (const interval& I)

Returns the hyperbolic tangent of I.

interval atanh (const interval& I)

Returns the hyperbolic arctangent of I.

33

8.2 Relational Arithmetic

interval interval::operator% (double d) const
interval interval::operator% (const interval& I) const
interval operator% (double d, const interval& I)

� ∗this/I = {z ∈ R | ∃x ∈ ∗this,∃y ∈ I : x = yz}
Relational division.

8.2.1 (n+ 1)-ary relational functions
Consider the relation y = cosx where x and y are interval variables. One
would like to be able to express this relation in the equivalent way: x = acos y.
However, one cannot use the acos function because its result is always included
into the interval [0, π]. What we need here is a relational version of the acos
function. But, since for any value x there are infinitely many values y verifying
x = acos y, we have to take into account the domain of y. As a consequence,
we define a new binary operator acos_rel whose definition is as follows:

acos_rel(Y,X) = �{x ∈ X | ∃y ∈ Y : y = cosx}
This is to be contrasted with the previous definition of the acos function:

acos(Y) = �{x ∈ R | ∃y ∈ Y : x = acos y}
Figure 8.1 presents the different results obtained when computing either acos(J)
or acos_rel(J, I).

J

I

f : y = cos(x)

acos(J)acos_rel(J, I)

−2π − 3π
2 −π −π

2
π
2 π

Figure 8.1: Relational cosine

interval acos_rel (const interval& J, const interval& I)

� acos_rel(J, I) = �{x ∈ I | ∃y ∈ J : y = cosx}
Returns the relational arccosine of J w.r.t. I.

interval asin_rel (const interval& J, const interval& I)

� asin_rel(J, I) = �{x ∈ I | ∃y ∈ J : y = sinx}
Returns the relational arcsine of J w.r.t. I.

interval atan_rel (const interval& J, const interval& I)

� atan_rel(J, I) = �{x ∈ I | ∃y ∈ J : y = tanx}
Returns the relational arctangent of J w.r.t. I.

interval acosh_rel (const interval& J, const interval& I)

� acosh_rel(J, I) = �{x ∈ I | ∃y ∈ J : y = coshx}
Returns the relational hyperbolic arccosine of J w.r.t. I.

interval sqrt_rel (const interval& J, const interval& I)

� sqrt_rel(J, I) = �{x ∈ I | ∃y ∈ J : y = x2}
Returns the relational square root of J w.r.t. I.

interval nth_root_rel (const interval& J, unsigned int n,
const interval& I)

34

� nth_root_rel(J, n, I) = �{x ∈ I | ∃y ∈ J : y = xn}
Returns the relational inverse b-th root of J w.r.t. I.

interval invabs_rel (const interval& J, const interval& I)

� invabs_rel(J, I) = �{x ∈ I | |x| ∈ J}
Returns the relational inverse absolute value of J w.r.t. I.

interval div_rel (const interval& K, const interval& J, const interval& I)

� div_rel(K,J, I) = �{x ∈ I | ∃z ∈ K, ∃y ∈ J : z = xy}
Returns the ternary relational division of K by J w.r.t. I.

Relational function that do not appear here are identical to their inverse
function (e.g., the relational hyperbolic arcsine is identical to the hyperbolic
arcsine, which should be used instead).

35

9
Interval functions

double interval::width (void) const

� width([a, b]) =↑ b− a ↑
Returns the width of self. Returns -1.0 whenever the interval is empty.

Example
1 cout << interval(4,6).width()
2 << (interval(1,next_float(1)).width()
3 == std::numeric_limits<double>::epsilon())
4 << interval::emptyset.width();
5 Ò 2 true -1

[3] Eldon Robert Hansen. Global Optimization
Using Interval Analysis. Pure and Applied
Mathematics. Marcel Dekker Inc., 1992.double interval::mig (void) const

Returns the mignitude of self. See the book by Hansen [3, chap. 3]. The
mignitude of an interval [a, b] is the smallest absolute value of the numbers
in the interval, that is: 0 if the interval straddles 0, a if the interval is
strictly positive, and −b otherwise.

Note. The mignitude of the empty interval is a NaN.

Example
1 cout << interval(4,5).mig()
2 << interval(-6,-3).mig()
3 << interval(-3,8).mig();
4 Ò 4 3 0

[8] Volker Stahl. Interval Methods for Bound-
ing the Range of Polynomials and Solving Sys-
tems of Nonlinear Equations. Phd. thesis,
Johannes Kepler Universität, Linz, September
1995.

double interval::smig (void) const

37

Returns the signed mignitude of self. See Stahl’s thesis [8, def. 1.3.28].
The signed mignitude of an interval [a, b] is 0 if the interval straddles 0,
a if the interval is strictly positive, and b otherwise.

Note. The signed mignitude of the empty interval is an NaN.

Example
1 cout << interval(4,5).mig()
2 << interval(-6,-3).mig()
3 << interval(-3,8).mig();
4 Ò 4 -3 0

double interval::mag (void) const

Returns the magnitude of self. the magnitude of an interval [a, b] is the
greatest absolute value of the numbers in the interval.

Note. The magnitude of the empty interval is a NaN.

Example
1 cout << interval(4,5).mag()
2 << interval(-6,-3).mag()
3 << interval(-10,5).mag();
4 Ò 5 6 10

double hausdorff (const interval& I1, const interval& I2)

Returns the Hausdorff distance between the two sets defined by intervals
I1 and I2, that is:

hausdorff(I1, I2) = max(|I1 − I2|, |I1 − I2|)

Example
1 cout << hausdorff(interval(4,8),interval(5,10))
2 Ò 2

double interval::midpoint (void) const

Returns the midpoint of self. Given a and b two finite floating-point
numbers and std::numeric_limits<double>::max() the largest posi-
tive floating-point number of type double, we have the following cases:

midpoint(∅) = NaN
midpoint([−∞, +∞]) = 0
midpoint([−∞, b]) = −std::numeric_limits<double>::max()
midpoint([a, +∞]) = std::numeric_limits<double>::max()
midpoint([a, b]) =l (a+ b)/2 l

interval interval::mid (void) const

38

Returns an interval enclosing the midpoint of self. The result is not
guaranteed to be canonical though it is always included in self. With
the same notations as for midpoint(), we have the cases:

mid(∅) = ∅
mid([−∞, +∞]) = [0, 0]
mid([−∞, b]) = [−std::numeric_limits<double>::max()]
mid([a, +∞]) = [std::numeric_limits<double>::max()]
mid([a, b]) = [↓ (a+ b)/2 ↓, ↑ (a+ b)/2 ↑]

double interval::left (void) const

� left([x, y]) = x

Returns the left bound of self. Note that this method may return a finite
floating-point number (i.e. neither a NaN, nor an infinity) even when the
interval itself is empty.

double interval::right (void) const

� right([x, y]) = y

Returns the right bound of self. Note that this method may return a
finite floating-point number (i.e. neither a NaN, nor an infinity) even
when the interval itself is empty.

interval abs (const interval& I)

� abs(I) = {|x| ∈ R+ | x ∈ I}
Returns the absolute value of I.

Example
1 cout << abs(interval(-5,6))
2 << abs(interval(-4,-2));
3 Ò [0, 6] [2, 4]

[7] Helmut Ratschek and Jon Rokne. Interval
methods. In Handbook of Global Optimiza-
tion, pages 751–828. Kluwer Academic, 1995.double chi (const interval &I)

This function, introduced by Ratscheck and Rokne [7], characterizes the
degree of symmetry of intervals. Its definition is as follows:

ForI = [a, b], chi(I) =

 −1 if I = 0
a/b if |a| 6 |b|
b/a otherwise

Example
1 cout << chi(interval(3,6))
2 << chi(interval(-6,3))
3 << chi(interval::emptyset)
4 << chi(interval::universe)
5 << chi(interval("[-5,inf]"));
6 Ò 0.5 -0.5 NaN 1 0

interval min (const interval &I, const interval &J)

39

� min([a, b], [c, d]) = [min(a, c), min(b, d)]

Returns the minimum of two intervals.
Example

1 cout << min(interval(5,6),interval(3,9))
2 << min(interval::emptyset,interval(3,8));
3 Ò [3, 6] [empty]

interval max (const interval &I, const interval &J)

� max([a, b], [c, d]) = [max(a, c), max(b, d)]

Returns the maximum of two intervals.
Example

1 cout << max(interval(5,6),interval(3,9))
2 << max(interval::emptyset,interval(3,8));
3 Ò [5, 9] [empty]

interval floor (const interval &I)

� [floor(I.left()), floor(I.right())]

Example
1 cout << floor(interval(4.5,6.5))
2 << floor(interval("[-10.4,3.5]"));
3 Ò [4, 6] [−11, 3]

interval ceil (const interval &I)

� [ceil(I.left()), ceil(I.right())]

Example
1 cout << ceil(interval(4.5,6.5))
2 << ceil(interval("[-10.4,3.5]"));
3 Ò [5, 7] [−10, 4]

interval integer (const interval &I)

� [ceil(I.left()), floor(I.right())]

Narrows down the bounds to the closest integers. Note that the resulting
bounds are still double numbers, and may therefore not be representable
with integral types.

Example
1 cout << integer(interval(4.5,6.5));
2 Ò [5, 6]

9.1 Splitting methods

void interval::split (interval& I1, interval& I2) const

40

Splits self into two parts using midpoint(); returns the left part in I1
and the right part in I2.
I1 or I2 may be equal to self.

Example
1 interval I1a, I2a,
2 I3(1.0,next_float(1.0)),
3 I1b, I2b;
4 interval(4,5).split(I1a,I2a);
5 I3.split(I1b,I2b);
6 cout << I1a << " " << I2a << " "
7 << (I1b==1.0) << " " << (I2b==I3) << endl;
8 Ò [4, 4.5] [4.5, 5] true true

interval interval::split_left (void) const

� split_left([a, b]) = [a, ↑ (a+ b)/2 ↑]
Splits self into two parts using midpoint() and returns the left part.

Example
1 cout << interval(4,5).split_left();
2 Ò [4, 4.5]

interval interval::split_right (void) const

� split_right([a, b]) = [↑ (a+ b)/2 ↑, b]
Splits self into two parts using midpoint() and returns the right part.

Note. The left bound of the result is rounded up such that there is the
least overlap possible with the interval returned by split_left().

Example
1 cout << interval(4,5).split_left();
2 Ò [4.5, 5]

9.2 Union and intersection

interval operator& (const interval& I1, const interval& I2)
� I1 ∩ I2
Returns the interval resulting from the intersection of I1 and I2.

Example
1 cout << interval(4,6) & interval(5,9);
2 Ò [5, 6]

interval operator| (const interval& I1, const interval& I2)
� I1 ∪ I2
Returns the interval resulting from the union of I1 and I2.

Example
1 cout << interval(3,6) | interval(9,12);
2 Ò [3, 12]

41

10
Input/output

10.1 Reading intervals

istream& operator>> (ostream& in, interval& I)

Reads an interval from the input stream in and assigns it to I. If the
string read is syntactically ill-formed, an input_format_error exception
is thrown (see Section 15.1, page 58) if the library was compiled with
exceptions enabled (see Section 2.2.2, page 5); alternatively, it prints an
error message to cerr and aborts if exceptions were disabled.

10.1.1 Input format
A string to be translated into an interval must have the following syntax (with
terminals in lower case and non-terminals in slanted upper case):

ITV_EXPR
: PARSED_INTERVAL
| ITV_EXPR + ITV_EXPR
| ITV_EXPR - ITV_EXPR
| ITV_EXPR * ITV_EXPR
| ITV_EXPR / ITV_EXPR
| - ITV_EXPR
| + ITV_EXPR
| ITV_FUNCTION_CALL
| (ITV_EXPR)
;

ITV_FUNCTION_CALL
: cos (ITV_EXPR)
| sin (ITV_EXPRT)
| tan (ITV_EXPR)
| atan2 (ITV_EXPR , ITV_EXPR)
| acos (ITV_EXPR)
| asin (ITV_EXPR)
| atan (ITV_EXPR)
| cosh (ITV_EXPR)

43

| sinh (ITV_EXPR)
| tanh (ITV_EXPR)
| acosh (ITV_EXPR)
| asinh (ITV_EXPR)
| atanh (ITV_EXPR)
| exp (ITV_EXPR)
| log (ITV_EXPR)
| pow (ITV_EXPR , ITV_EXPR)
| sqrt (ITV_EXPR)
| nth_root (ITV_EXPR , ITV_EXPR)
;

PARSED_INTERVAL
: EXPRESSION
| empty // Empty interval
| [EXPRESSION]
| [EXPRESSION , EXPRESSION]
| < EXPRESSION , EXPRESSION >
| [empty] // Empty interval
;

EXPRESSION
: NUMBER
| dmin // Smallest positive floating-point number
| dmax // Largest positive floating-point number
| pi
| inf // Floating-point positive ‘‘infinity’’
| EXPRESSION + EXPRESSION
| EXPRESSION - EXPRESSION
| EXPRESSION * EXPRESSION
| EXPRESSION / EXPRESSION
| - EXPRESSION
| + EXPRESSION
| FUNCTION_CALL
| (EXPRESSION)
;

FUNCTION_CALL
: cos (EXPRESSION)
| sin (EXPRESSION)
| tan (EXPRESSION)
| atan2 (EXPRESSION , EXPRESSION)
| acos (EXPRESSION)
| asin (EXPRESSION)
| atan (EXPRESSION)
| cosh (EXPRESSION)
| sinh (EXPRESSION)
| tanh (EXPRESSION)
| acosh (EXPRESSION)
| asinh (EXPRESSION)
| atanh (EXPRESSION)
| exp (EXPRESSION)
| log (EXPRESSION)
| pow (EXPRESSION , EXPRESSION)

44

| sqrt (EXPRESSION)
| nth_root (EXPRESSION , EXPRESSION)
;

Spaces are not significant except in numbers. The “+” sign before numbers
and inf is optional. Note that the second argument of nth_root shall be a
point interval that can be evaluated as an integer. Otherwise, an invalid_action_error
exception is thrown (or an error is reported, depending on whether exceptions
were enabled or not at configuration time—see Section 2.2.2, page 5).

If a rational number is not representable in the floating-point format, it is
replaced by the smallest floating-point interval containing it. The notations
"n" and "[n]" are equivalent.

The two bounds in the string “<a, b>” must be expressions that evaluate to
the same value even for different rounding directions. An input_format_error
exception is raised otherwise.

Example
1 interval x("[4, 6*7]");
2 interval y("[-inf, dmax]");
3 interval z("[3.14,3.15]/8", "[3.14,3.15]/7");
4 interval t("[3.14,3.15]/[7,8]");

Caution 1: Case is significant for all the operators.

Caution 2: Numbers appearing in the string shall not have more than 15
digits, otherwise their translation to floating-point numbers is not guaranteed
to be correct.

Expressions in bounds are evaluated using interval arithmetic; the left
(resp. right) bound is then used, depending on the side it appeared in.

Note that, as of version 4.2.0, the atan2 operator is not yet implemented
for interval expressions.

Contrary to constructors that take numeric constants as parameters, ex-
pressions such as "inf" or "<-inf, -inf>" lead to legitimate intervals (see
the note Page 16).

10.2 Writing intervals
Intervals may be printed into a stream like any other C++ primitive type by
using the “<<” operator.

ostream& operator<< (ostream& out, const interval& I)

Prints the interval I to the output stream out. The way the intervals
are actually displayed depends on the active format (see next section).
However, whatever the format, an empty interval is always displayed as
[empty]

10.2.1 Converting intervals to strings
For convenience, the interval class provides a conversion operator into the
standard C++ type string.

Example
1 interval I(3,4);
2 string s = "test line embedding " + string(I) + " as a string";
3 // Now, s is "test line embedding [3, 4] as a string"

45

10.2.2 Output format
Intervals may be displayed following four different formats:

agreeing. By printing all the digits that are the same in the left and right
bounds followed by an interval containing the remaining digits:

“3.141~[5926, 6001]” stands for “ [3.1415926, 3.1416001]”

Note that if the bounds do not have any agreeing digit, there will still
be a tilde before the bracketed part:

Example
1 interval::format(interval_format::agreeing);
2 std::cout << interval(4,6) << std::endl;
3 Ò ~[4., 6.]

bounds. By printing the bounds between square brackets. Degenerate inter-
vals whose left and right bound are equal are printed with angles:

Example
1 interval::format(interval_format::bounds);
2 std::cout << interval(3,5) << std::endl;
3 Ò [3, 5]
4 std::cout << interval(4) << std::endl;
5 Ò <4, 4>

width. by printing their midpoint and their width:

Example
1 interval::format(interval_format::width);
2 std::cout << interval(4,5) << std::endl;
3 Ò 4.5 (+/- 0.5)

hexa. by printing the hexadecimal representation of their left and right bounds
(useful when one wants to know the precise value of the bound without
being affected by the round-off error due to binary-to-decimal conver-
sion):

Example
1 interval::format(interval_format::hexa);
2 std::cout << interval("0.1") << std::endl;
3 Ò [3fb9999999999999, 3fb999999999999a]

Note that the bounds format is the only one recognized at present as an
input (see previous section).

The choice of the format to use is made through the following static meth-
ods:

void interval::format (interval_format::format_t f) static
interval_format::format_t interval::format (void) static

The first form of the method allows modifying the format to use in subse-
quent printing of intervals. The second form reports what is the current
form in use. It returns a value of type interval_format::format_t (see
below and 10.2.4 for an example of use).

interval_format struct

46

Structure type used to choose the ouput format for intervals. It has four
possible values of type interval_format::format_t:

• interval_format::agreeing.

• interval_format::bounds.

• interval_format::width.

• interval_format::center.

• interval_format::hexa.

Example
1 interval I(interval::pi);
2

3 interval::format(interval_format::agreeing);
4 cout << I << "\n";
5 // Prints 3.14159265358979~[3, 4]
6 // The ~[] part is dropped if the bounds agree on all digits
7

8 interval::format(interval_format::bounds);
9 cout << I << "\n";

10 // Prints [3.141592653589793, 3.141592653589794]
11

12 interval::format(interval_format::width);
13 cout << I << "\n";
14 // Prints 3.141592653589793 (+/- 2.220446049250313e-16)
15

16 interval::format(interval_format::center);
17 cout << I << "\n";
18 // Prints 3.141592653589793
19

20 interval::format(interval_format::hexa);
21 cout << I << "\n";
22 // Prints [400921fb54442d18, 400921fb54442d19]

10.2.3 Choosing the number of digits to display
You can manipulate the number of digits to print by using the precision()
static methods of the interval class:

std::streamsize interval::precision (void)

Returns the current number of digits used for printing bounds of intervals.
See example below.

std::streamsize interval::precision (std::streamsize n)

Set the number of digits to use for printing bounds to n. In addition,
returns the number of digits previously used.
See example below.

47

10.2.4 Example
Example

1 #include <iostream>
2 #include <gaol/gaol.h>
3

4 using std::cout;
5 using std::endl;
6

7 int main(void)
8 {
9 gaol::init();

10 interval::precision(4);
11 interval::format(interval_format::bounds);
12 cout << interval::pi << endl;
13

14 if (interval::format() != interval_format::bounds) {
15 cout << interval::pi << endl;
16 } else {
17 int old_prec = interval::precision(16);
18 interval::format(interval_format::width);
19 cout << interval::pi << endl;
20 }
21 gaol::cleanup();
22 }

On a Pentium-based PC, the previous program has the following output:
Output

[3.142, 3.142]
3.141592653589793 (+/- 2.220446049250313e-16)

The first call to interval::format() is unnecessary since the default for-
mat is interval_format::bounds.

Note. Translating an interval into a string and then reading it back as an
interval is likely to produce an inaccurate or plain wrong result if you choose a
precision different from 17. It is however useless to specify a precision greater
than 17 for the double format since the extra digits would be garbage.

The interval::pi constant is a predefined canonical interval containing
π (see Section 6, page 19). Here, the width of the interval is equal to the ε of
the format.

The interval_format::width format may be useful whenever the number
of digits displayed is insufficient to know whether the result is a single floating-
point number or an interval whose size is very small (consider for example the
first result above), because we have the guarantee that if the actual width of an
interval is greater than zero, the width displayed will also be different from zero.
Another indication is that a degenerate interval is displayed as a floating-point
number.

48

11
Floating-point numbers

11.1 Floating-point constants
In addition to the constants available through numeric_limits<double>, gaol
defines the following double constants:

Constant (double) Value
two_pi l 2π l
pi l π l
half_pi l π2 l
pi_dn ↓ π ↓
pi_up ↑ π ↑
half_pi_dn ↓ π2 ↓
half_pi_up ↑ π2 ↑
ln2_dn ↓ ln 2 ↓
ln2_up ↑ ln 2 ↑
two_power_53 253

GAOL_NAN NaN (quiet)
GAOL_INFINITY +∞

11.2 Floating-point functions

bool feven (const double& x)

Returns true whenever x is even.
This function should not be used with infinity and NaN arguments.

Example
1 assert(feven(3.0)); // false
2 assert(feven(3.5)); // false
3 assert(feven(4.0)); // true
4 assert(feven(4.5)); // false
5 assert(feven(GAOL_INFINITY)); // always true
6 assert(feven(GAOL_NAN)); // always false

double next_float (double x)

49

Returns the smallest double greater than x.

double previous_float (double x)

Returns the greatest double smaller than x.

bool is_signed (double x)

Returns true whenever x is signed. No provision is made concerning the
fact that x is a NaN. If you only want to test for negative numbers (and
−0), you will have to test also whether x is a NaN by using the isnan()
predicate in math.h.

double minimum (double x, double y)

Returns the minimum double value of x and y. This function is commu-
tative and returns −0 when comparing −0 and +0, i.e.: min(x, y) = min(y, x), ∀x 6= NaN,∀y 6= NaN

min(x,NaN) = min(NaN, x) = NaN, ∀x
min(−0, 0) = min(0,−0) = −0

double maximum (double x,double y)

Returns the maximum double value of x and y. This function is commu-
tative and returns +0 when comparing −0 and +0, i.e.: max(x, y) = max(y, x), ∀x 6= NaN,∀y 6= NaN

max(x,NaN) = max(NaN, x) = NaN, ∀x
max(−0, 0) = max(0,−0) = 0

ULONGLONGINT macro

Macro standing for an unsigned integral data type with a size equal to 8
bytes (usually unsigned long long int).

ULONGLONGINT nb_fp_numbers (double a, double b)

Returns the number of floating-point numbers in the interval [a, b]. In
particular, we have:

• nb_fp_numbers(a,next_float(a)) == 2

• nb_fp_numbers(a,a) == 1

Note. As a precondition, a shall be lower or equal to b.
Returns numeric_limits<ULONGLONGINT>::max() if either a or b is a
NaN or an infinity. In addition, raises an invalid_action_error excep-
tion (see Section 15.1, page 58) or calls gaol_error depending on the way
the library was configured.

50

12
Manipulating the FPU

The gaol library provides functions to manipulate the FPU and its flags. The
main functions are the one described in the next section for modifying the
rounding direction. As for now, gaol provides these facilities for the following
platforms:

• ix86 and compatibles under Linux

• SPARC under Solaris

• ISO C99-compliant platforms

Whenever possible, inline assembler versions are used.

12.1 Rounding functions

void round_downward (void)

Sets the rounding direction mode towards −∞.

void round_nearest (void)

Sets the rounding direction mode to the nearest/even.

void round_zero (void)

Sets the rounding direction mode to zero.

void round_upward (void)

Sets the rounding direction mode to +∞.

51

12.2 Manipulating the FPU flags
The following functions allow to manipulate the FPU flags. See the documen-
tation of the FPU for your machine for a description of these flags.

void clear_inexact (void)

Clears the inexact flag of the FPU.

Warning: This function is currently unavailable on some platforms. For
these platforms, a warning is issued when the function is called.

int get_inexact (void)

Returns a non-zero value whenever the last floating-point operation was
performed with rounding. The associated FPU flag is a persistent one.
As a consequence, you should always clear it by calling clear_inexact()
before performing the operation you want to test.

unsigned short get_fpu_cw (void)

Returns the value of the FPU control word.

Warning: This function is currently unavailable on some platforms. For
these platforms, a warning is issued when the function is called.

unsigned short get_fpu_sw (void)

Returns the value of the FPU status word.

Warning: This function is currently unavailable on some platforms. For
these platforms, a warning is issued when the function is called.

52

13
Version information

The library provides four constants to allow programs to determine at runtime
with which version they are dynamically linked with. The versioning scheme
adopted is the one used by the Apache Software Foundation described at
http://apr.apache.org/versioning.html.

unsigned int version_major const

Major version of the library.

unsigned int version_minor const

Minor version of the library.

unsigned int version_patch const

Patch version of the library.

const char *const version const

Version of the library as a string.

Example
1 const char *const version = "1.0.3";

53

http://apr.apache.org/versioning.html

14
Additional functions

The following functions are utility functions not necessarily related to intervals
or floating-point numbers.

template <typename T>
bool odd (const T& x)

Returns true if x is odd and false otherwise. The T type may be any
type providing the & (“bitwise and”) operator with the same semantics as
the one for ints.

template <typename T>
bool even (const T& x)

Returns true if x is even and false otherwise. The T type may be any
type providing the & (“bitwise and”) operator with the same semantics as
the one for ints.

55

15
Error handling

A program that uses gaol may report errors in two different ways:

• by throwing an exception;

• or by setting the errno variable.

The mecanism in use depends on the way the library is configured. If you
use the option --enable-exceptions=yes, all errors are reported through ex-
ception throwing; otherwise, the errno variable is used. Relying on exceptions
is more in the C++ spirit, though it may incur some overhead.

It is up to the user to comply with this mecanism when adding error re-
porting code to ones program. Gaol defines the following macro to be used
whenever one wants to report an error.

gaol_ERROR (excep,msg) macro

The behavior of the macro depends on the value chosen for the op-
tion --enable-exceptions: if exceptions are enabled, exception excep
is raised with the message msg ; otherwise, the program aborts with mes-
sage msg.

Example
1 interval x;
2

3 [Code manipulating x]
4

5 if (x.is_empty()) {
6 gaol_ERROR(failure_error,"Emptyness of one interval");
7 }

The gaol_error() function is defined as follows:

void gaol_error (const char *const err)
void gaol_error (const char *file, int line, const char *err)

Displays a message on the standard error output. The ternary version
should be called with the GAOL_FILE_POS macro for the first two param-
eters.

The GAOL_FILE_POS macro is described in the next section.

57

15.1 Exceptions
The library defines gaol_exception as a class to be used as a base class for all
gaol exceptions. All of them provide at least the name of the file and the line
number from where the exception has been thrown. As a facility, gaol defines
the following macro:

GAOL_FILE_POS macro

Expands itself into the first two arguments of any constructor for
gaol_exception or one of its derived classes:

Example
1 if ([some condition]) {
2 throw gaol_exception(GAOL_FILE_POS,
3 "No additional information");
4 }

All gaol exceptions can be sent to an output stream through the “<<”
operator.

15.1.1 The gaol_exception exception
The gaol_exception class is the base class from which derive all gaol excep-
tions. It inherits from the C++ standard class exception.

Every exception class deriving from it must at least provide the name of
the file and the line where the corresponding exception was thrown. As a
consequence, the constructors for gaol_exception are as follows:

gaol_exception::gaol_exception (const char* f, unsigned l)
gaol_exception::gaol_exception (const char* f, unsigned l,

const char* e)

Constructs a gaol_exception being thrown from file f at line l. The
second form permits adding some explanatory string e.

The class offers the following accessors:

const char* gaol_exception::file (void) const

Return the name of the file from where the exception was thrown.

unsigned int gaol_exception::line (void) const

Returns the line number in the file from where the exception was thrown.

const char* const gaol_exception::explanation (void) const

Returns a string explaining why the exception was thrown. Returns an
empty string if no additional information was provided.

58

15.1.2 The input_format_error exception
The input_format_error exception is thrown whenever one attempts to cre-
ate an interval from an invalid string. This situation may occur when reading
an interval from a stream with the >> operator, or when creating an interval
from a string.

This class, as all gaol exceptions, derives from gaol_exception (see Sec-
tion 15.1.1, page 58). Its constructors have the same format than the ones for
gaol_exception, namely:

input_format_error::input_format_error (const char* f, unsigned l)
input_format_error::input_format_error (const char* f, unsigned l, const char*
e)

Constructs an input_format_error being thrown from file f at line l.
The second form permits adding some explanatory string e.

The methods of the class are inherited from gaol_exception (see Section 15.1.1,
page 58).

15.1.3 The unavailable_feature_error exception
This exception is thrown whenever an unavailable feature is requested.

This class, as all gaol exceptions, derives from gaol_exception. (see Sec-
tion 15.1.1, page 58). Its constructors have the same format than the ones for
gaol_exception, namely:

unavailable_feature_error::unavailable_feature_error
(const char* f, unsigned l)

unavailable_feature_error::unavailable_feature_error
(const char* f, unsigned l, const char* e)

Constructs an unavailable_feature_error being thrown from file f at
line l. The second form permits adding some explanatory string e.

The methods of the class are inherited from gaol_exception (see Sec-
tion 15.1.1, page 58).

15.1.4 The invalid_action_error exception
This exception is thrown whenever a function is called with invalid arguments
(e.g. calling nb_fp_numbers() with NaNs as parameters).

This class, as all gaol exceptions, derives from gaol_exception (see Sec-
tion 15.1.1, page 58). Its constructors have the same format than the ones for
gaol_exception, namely:

invalid_action_error::invalid_action_error (const char* f,
unsigned l)

invalid_action_error::invalid_action_error (const char* f,
unsigned l, const char* e)

Constructs an invalid_action_error being thrown from file f at line l.
The second form permits adding some explanatory string e.

The methods of the class are inherited from gaol_exception (see Sec-
tion 15.1.1, page 58).

59

15.2 Warnings

void gaol_warning (const char *warn)
void gaol_warning (const char *file, int line, const char *warn)

Prints the message warn on the standard error output. The second form
should be called with the GAOL_FILE_POS macro for the first two param-
eters.

60

16
Debugging facilities

The debugging facilities described hereunder are available only if gaol has
been configured with the debugging facilities enabled (see the --enable-debug
option, Section 2.2.2, p. 5).

int debug_level

Global variable used to remember the current value of the debugging level.
This variable is set when initializing the library. The variable is declared
in the gaol namespace.

GAOL_DEBUG (lvl,cmd) macro

Executes cmd if lvl is lower or equal to the current debugging level (see
the variable debug_level above).
This macro defaults to nothing if the library was not configured with the
--enable-debug option.

A possible use for this macro is as follows:

Example
1 interval x(-10,10);
2

3 [Some code]
4

5 GAOL_DEBUG(1,cout << "The value of x is " << x);
6 x += double_interval(3.5,4.5);
7 GAOL_DEBUG(2,cout << "Now the value of x is " << x);

The first message will be displayed whenever gaol has been configured with
debugging facilities enabled (see the --enable-debug option). The second
message will be displayed only if the debugging level is greater or equal to 2.

GAOL_ASSERT macro

(cond) Tests whether cond holds. Aborts with an error message if it is
not the case.
This macro defaults to nothing if the library was not configured with the
--enable-debug option.

61

A possible use for this macro is as follows:

Example
1 int x;
2 cout << "Give an integer no greater than 5: ";
3 cin >> x;
4 GAOL_ASSERT(x <= 5);

62

17
Profiling

The following functions permit computing the time used for a computation.
The returned times are user times, meaning that delays induced by input/out-
put operations and freezing during CPU switches in multi-programming envi-
ronments are not taken into account.

If you need to keep track of several events, consider using an object of
the timepiece class (see Section 17.1, page 64) instead of calling directly the
functions below.

Warning. The precision of the timing functions depends on the platform
used. For example, the precision on ix86-based machines is usually no better
than 10 ms. What is more, despite the fact that the reported times are user
times, they may vary from an execution to another, and can get larger on
heavily loaded machines.

long get_time (void)

Returns the time in milliseconds since a certain unspecified moment.
This function should only be used to compute differences between two
calls since the starting point may vary depending on the availability of
clock() or getrusage() on the system.

Warning. if the function in use is the standard clock(), the time re-
turned will wrap approximately every 72 minutes. Consequently, it is not
safe to use get_time() in that case for processes requiring more than 72
minutes to execute.

void reset_time (void)

Resets the time counter. To be called just before executing some code to
be profiled.

long elapsed_time (void)

Returns the time in milliseconds elapsed between now and the last call to
reset_time().

long intermediate_elapsed_time (void)

63

Returns the time in milliseconds elapsed between now and the last call to
reset_time() or to intermediate_elapsed_time().

Here is a typical example of use of the timing functions:

Example
1 int main(void)
2 {
3 reset_time();
4 for (unsigned int i=0;i<1000;++i) {
5 [Some time consuming operations]
6 }
7 cout << "Elapsed time: " << elapsed_time() << " ms." << endl;
8 return 0;
9 }

17.1 The timepiece class
A timepiece object allows to keep track of the time spent to perform a par-
ticular task. Since the counter used is local to the object, it is possible to
monitor more than one such process.

17.1.1 Methods of the timepiece class

void timepiece::start (void)

Starts the timepiece.

void timepiece::stop (void)

Stops the timepiece and accumulates the time spent since the last call to
start().

void timepiece::reset (void)

Resets to zero the counter keeping track of the total time the timepiece
was running.

long timepiece::get_total_time (void) const

Returns the total amount of time the timepiece was running (time between
calls to start() and stops. The timepiece shall have been stopped by
calling the stop() method before calling this one.

long timepiece::get_intermediate_time (void) const

Returns the amount of time spent since the last call to start().

64

Example
1 int main(void)
2 {
3 timepiece t;
4 t.start();
5 for (unsigned int i=0;i<1000;++i) {
6 [Some time consuming operations]
7 cout << "Intermediate time: "
8 << t.get_intermediate_time() << " ms." << endl;
9 }

10 t.stop();
11 cout << "Elapsed time: " << t.get_total_time() << " ms." << endl;
12 return 0;
13 }

65

18
Additional Documentation

18.1 Documentation on gaol
The primary reference is this manual. There is also an html reference for the
code itself, which might be of interest only to developers seeking to under-
stand/modify gaol.

18.2 References
The following articles and books have inspired in some way or another the
devising of the gaol library and/or the writing of this manual.

• Interval Arithmetic Specification. Dmitri Chiriaev and G. William Wal-
ster. Draft revised May 1998.

• The Extended Real Interval System. G. William Walster. April 1998.

• C++ Interval Arithmetic Programming Reference. Sun Microsystems,
Inc. October 2000, revision A.

• Interval Arithmetic: From Principles to Implementation. T. Hickey, Q.
Ju, and M. H. van Emden. Tech. Rep. CS-99-202, CS Dept. Brandeis
U, July 1999.

67

19
Reporting bugs

All bugs and suggestions for improvement shall be submitted through the
appropriate form available on the web site:

http://sourceforge.net/projects/gaol/

69

http://sourceforge.net/projects/gaol/

20
Contributors

The main implementor and lead designer for the gaol library is Frédéric Goualard
(goualard@users.sourceforge.net).

The interval pow(const interval&, const interval&) function was
designed by Marc Christie (christie@users.sourceforge.net).

The code for the multiplication and the division is largely inspired from
the one presented by Tim Hickey, Qun Ju and Maarten Van Emden in In-
terval Arithmetic: from Principles to Implementation Journal of the ACM
48(5):1038–1068, september 2001.

71

mailto:goualard@users.sourceforge.net
mailto:christie@users.sourceforge.net

Library Copying

GNU LIBRARY GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright © 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge,
MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2
because it goes with version 2 of the ordinary GPL.]

Preamble
The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licenses are intended to
guarantee your freedom to share and change free software–to make sure the
software is free for all its users.

This license, the Library General Public License, applies to some specially
designated Free Software Foundation software, and to any other libraries whose
authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These restric-
tions translate to certain responsibilities for you if you distribute copies of the
library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a
fee, you must give the recipients all the rights that we gave you. You must make
sure that they, too, receive or can get the source code. If you link a program
with the library, you must provide complete object files to the recipients so
that they can relink them with the library, after making changes to the library
and recompiling it. And you must show them these terms so they know their
rights.

Our method of protecting your rights has two steps: (1) copyright the
library, and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that every-
one understands that there is no warranty for this free library. If the library is
modified by someone else and passed on, we want its recipients to know that

73

what they have is not the original version, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that companies distributing free software will
individually obtain patent licenses, thus in effect transforming the program
into proprietary software. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary
GNU General Public License, which was designed for utility programs. This
license, the GNU Library General Public License, applies to certain designated
libraries. This license is quite different from the ordinary one; be sure to read
it in full, and don’t assume that anything in it is the same as in the ordinary
license.

The reason we have a separate public license for some libraries is that they
blur the distinction we usually make between modifying or adding to a program
and simply using it. Linking a program with a library, without changing the
library, is in some sense simply using the library, and is analogous to running a
utility program or application program. However, in a textual and legal sense,
the linked executable is a combined work, a derivative of the original library,
and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public Li-
cense for libraries did not effectively promote software sharing, because most
developers did not use the libraries. We concluded that weaker conditions
might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users
of those programs of all benefit from the free status of the libraries themselves.
This Library General Public License is intended to permit developers of non-
free programs to use free libraries, while preserving your freedom as a user
of such programs to change the free libraries that are incorporated in them.
(We have not seen how to achieve this as regards changes in header files, but
we have achieved it as regards changes in the actual functions of the Library.)
The hope is that this will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and modification
follow. Pay close attention to the difference between a “work based on the
library” and a “work that uses the library”. The former contains code derived
from the library, while the latter only works together with the library.

Note that it is possible for a library to be covered by the ordinary General
Public License rather than by this special one.

Terms and Conditions for Copying, Distribution
and Modification

0. This License Agreement applies to any software library which contains
a notice placed by the copyright holder or other authorized party saying
it may be distributed under the terms of this Library General Public
License (also called “this License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared
so as to be conveniently linked with application programs (which use
some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which
has been distributed under these terms. A “work based on the Library”
means either the Library or any derivative work under copyright law:
that is to say, a work containing the Library or a portion of it, either

74

verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limita-
tion in the term “modification”.)

“Source code” for a work means the preferred form of the work for mak-
ing modifications to it. For a library, complete source code means all the
source code for all modules it contains, plus any associated interface def-
inition files, plus the scripts used to control compilation and installation
of the library.

Activities other than copying, distribution and modification are not cov-
ered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a
program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete
source code as you receive it, in any medium, provided that you conspic-
uously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer
to this License and to the absence of any warranty; and distribute a copy
of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it,
thus forming a work based on the Library, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating
that you changed the files and the date of any change.

c. You must cause the whole of the work to be licensed at no charge
to all third parties under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of
data to be supplied by an application program that uses the facility,
other than as an argument passed when the facility is invoked, then
you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility
still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the appli-
cation. Therefore, Subsection 2d requires that any application-
supplied function or table used by this function must be optional:
if the application does not supply it, the square root function must
still compute square roots.)

These requirements apply to the modified work as a whole. If identi-
fiable sections of that work are not derived from the Library, and can
be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you

75

distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Library, the
distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based
on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do this,
you must alter all the notices that refer to this License, so that they
refer to the ordinary GNU General Public License, version 2, instead of
to this License. (If a newer version than version 2 of the ordinary GNU
General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy,
so the ordinary GNU General Public License applies to all subsequent
copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the
Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of
it, under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you accompany it with the complete
corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange.

If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code
from the same place satisfies the requirement to distribute the source
code, even though third parties are not compelled to copy the source
along with the object code.

5. A program that contains no derivative of any portion of the Library, but
is designed to work with the Library by being compiled or linked with it,
is called a “work that uses the Library”. Such a work, in isolation, is not
a derivative work of the Library, and therefore falls outside the scope of
this License.

However, linking a “work that uses the Library” with the Library creates
an executable that is a derivative of the Library (because it contains
portions of the Library), rather than a “work that uses the library”. The
executable is therefore covered by this License. Section 6 states terms
for distribution of such executables.

When a “work that uses the Library” uses material from a header file that
is part of the Library, the object code for the work may be a derivative
work of the Library even though the source code is not. Whether this
is true is especially significant if the work can be linked without the

76

Library, or if the work is itself a library. The threshold for this to be
true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure lay-
outs and accessors, and small macros and small inline functions (ten lines
or less in length), then the use of the object file is unrestricted, regardless
of whether it is legally a derivative work. (Executables containing this
object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute
the object code for the work under the terms of Section 6. Any executa-
bles containing that work also fall under Section 6, whether or not they
are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a
“work that uses the Library” with the Library to produce a work con-
taining portions of the Library, and distribute that work under terms
of your choice, provided that the terms permit modification of the work
for the customer’s own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during exe-
cution displays copyright notices, you must include the copyright notice
for the Library among them, as well as a reference directing the user to
the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-
readable source code for the Library including whatever changes
were used in the work (which must be distributed under Sections
1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable "work that uses the
Library", as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable
containing the modified Library. (It is understood that the user
who changes the contents of definitions files in the Library will not
necessarily be able to recompile the application to use the modified
definitions.)

b. Accompany the work with a written offer, valid for at least three
years, to give the same user the materials specified in Subsection
6a, above, for a charge no more than the cost of performing this
distribution.

c. If distribution of the work is made by offering access to copy from a
designated place, offer equivalent access to copy the above specified
materials from the same place.

d. Verify that the user has already received a copy of these materials
or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the Library"
must include any data and utility programs needed for reproducing the
executable from it. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, ker-
nel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

77

It may happen that this requirement contradicts the license restrictions
of other proprietary libraries that do not normally accompany the op-
erating system. Such a contradiction means you cannot use both them
and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library
side-by-side in a single library together with other library facilities not
covered by this License, and distribute such a combined library, provided
that the separate distribution of the work based on the Library and of
the other library facilities is otherwise permitted, and provided that you
do these two things:

a. Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that
part of it is a work based on the Library, and explaining where to
find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library
except as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense, link with, or distribute the Library is void,
and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties
remain in full compliance.

9. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Library or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the
Library (or any work based on the Library), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Li-
brary), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restric-
tions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the
Library at all. For example, if a patent license would not permit royalty-
free redistribution of the Library by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it
and this License would be to refrain entirely from distribution of the
Library.

78

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system which is implemented by public license prac-
tices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent ap-
plication of that system; it is up to the author/donor to decide if he
or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be
a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright
holder who places the Library under this License may add an explicit
geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded.
In such case, this License incorporates the limitation as if written in the
body of this License.

13. The Free Software Foundation may publish revised and/or new versions
of the Library General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and condi-
tions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software
Foundation.

14. If you wish to incorporate parts of the Library into other free programs
whose distribution conditions are incompatible with these, write to the
author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE

IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED INWRITING THE COPYRIGHT HOLDERS AND/OROTHER
PARTIES PROVIDE THE LIBRARY "AS IS"WITHOUTWARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE

79

OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANYOTHER PARTYWHOMAYMODIFY AND/OR REDISTRIBUTE
THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest possible
use to the public, we recommend making it free software that everyone can
redistribute and change. You can do so by permitting redistribution under
these terms (or, alternatively, under the terms of the ordinary General Public
License).

To apply these terms, attach the following notices to the library. It is safest
to attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the “copyright” line
and a pointer to where the full notice is found.

one line to give the library’s name and a brief idea of what it does.
Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied war-
ranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Library General Public License for
more details.
You should have received a copy of the GNU Library General Pub-
lic License along with this library; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your

school, if any, to sign a “copyright disclaimer” for the library, if necessary. Here
is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the li-
brary ‘Frob’ (a library for tweaking knobs) written by James Ran-
dom Hacker.
signature of Ty Coon, 1 April 1990
Ty Coon, President of Vice

80

That’s all there is to it!

81

Index

↓ ↓, see downward rounding
↑ ↑, see upward rounding
abs, 39
accuracy

of floating-point functions, 4
acos, 33
acos_rel, 34
acosh, 33
acosh_rel, 34
APMathlib, vii, 4, 10
asin, 33
asin_rel, 34
asinh, 33
assembler, 6
atan, 33
atan_rel, 34
atanh, 33

bison, 4

c++
standard, 4

canonical interval, 11, 11
ceil, 40
cell, vii
certainly_eq, 23
certainly_ge, 24
certainly_geq, 24
certainly_le, 24
certainly_leq, 24
certainly_negative, 25
certainly_neq, 24
certainly_positive, 24
certainly_strictly_negative, 25
certainly_strictly_positive, 25
chi, 39
cleanup, 13
clear_inexact, 52
compiling

a file using gaol, 10
configure, 5

containement property, 10
cos, 33
cosh, 33
CppUnit, 4
cppunit

include path, 5
library path, 5

CRlibm, vii, 4

debug_level, 61
debugging

option, 5
div_rel, 35
downward rounding (↓ ↓), 10
doxygen, 4

elapsed_time, 63
empty

interval: printing, 45
[empty], 45
error

raising an exception, 6
even, 55
exp, 33
explanation, 58

F, 10
feven, 49
file, 58
flex, 4
floor, 40
format, 46
function

undocumented, 1

gaol
namespace, 9
pronunciation, 1
web page, 3

GAOL_ASSERT, 61
GAOL_DEBUG, 61

82

gaol_ERROR, 57
gaol_error, 57
gaol_exception, 58
GAOL_FILE_POS, 58
gaol_warning, 60
get_fpu_cw, 52
get_fpu_sw, 52
get_inexact, 52
get_intermediate_time, 64
get_time, 63
get_total_time, 64
Graphviz, 4

hausdorff, 38
header

and namespace, see namespace
help

on configuration, 5

init, 10, 13
input_format_error, 59
integer, 40
intermediate_elapsed_time, 63
interval

canonical, see canonical inter-
val

computation site (web), 1
conversion to string, 45
disallowed, 16
with infinite bounds

forbidden, 16
interval_format, 46
invabs_rel, 35
invalid_action_error, 59
is_a_double, 28
is_an_int, 28
is_canonical, 28
is_empty, 28
is_finite, 29
is_signed, 50
is_symmetric, 29
is_zero, 29

LD_LIBRARY_PATH, 7
left, 39
library

mathematical, 5
shared, 6

LIBRARY_PATH, 7
line, 58
log, 33

mag, 38
mathematical library, 5
mathlib

include path, 5
library path, 5

max, 40
maximum, 50
messages

avoiding printing of, 6
mid, 38
midpoint, 38
mig, 37
min, 39
minimum, 50

namespace
gaol, 9

nb_fp_numbers, 50
next_float, 49
nth_root, 32
nth_root_rel, 34

odd, 55
operator

operator
=, 26

relational, 1
operator*, 32
operator*=, 18
operator+, 31
operator+=, 18
operator-, 32
operator-=, 18
operator/, 32
operator/=, 18
operator<, 27
operator<=, 27
operator<<, 45
operator==, 26
operator>, 27
operator>=, 27
operator>>, 43
operator%, 32, 34
operator% , 34
operator%=, 18
operator%= , 18
operator&, 41
operator&=, 17
optimization

configuration option, 6
outward rounding, 10

possibly_eq, 25
possibly_ge, 26
possibly_geq, 26
possibly_le, 26
possibly_leq, 26
possibly_neq, 25

83

pow, 32
precision, 47
previous_float, 50

R, 10
references

on interval arithmetic, 1
relation, 6
relational operator, 1
requirements

accuracy, 4
reset, 64
reset_time, 63
right, 39
round_downward, 51
round_nearest, 51
round_upward, 51
round_zero, 51
Rounding

to nearest, 11
rounding

downward, 10
outward, see outward round-

ing
preserving, 10
preserving (gcc), 5
upward, 10

self, 17
set_contains, 21
set_disjoint, 22
set_eq , 22
set_ge, 23
set_geq, 23
set_le, 23
set_leq, 23
set_neq, 22
set_strictly_contains, 22
shared, see library
sin, 33
sinh, 33
smig, 37
solaris

installing gaol on, 3
sparc

installing gaol on, 3
split, 40
split_left, 41
split_right, 41
sqr, 32
sqrt, 32
sqrt_rel, 34
start, 64
stop, 64
straddles_zero, 27

strictly_straddles_zero, 27
string

converting interval to, see in-
terval

strtord
strtord
extern, vii

tan, 33
tanh, 33
this, 17
tool

mandatory ˜ to compile gaol,
4

ULONGLONGINT, 50
unavailable_feature_error, 59
undocumented

use of ˜ functions, 1
upward rounding (↑ ↑), 10

verbose mode, 6
version, 53
version_major, 53
version_minor, 53
version_patch, 53

width, 37

84

	Copyright
	Introduction
	Installation
	Getting the software
	Installing gaol from the source tarball on Unix and Linux
	Prerequisites
	Configuration
	Building
	Installation

	An overview of gaol
	The trust rounding mode
	Common errors
	Floating-point arithmetic and rounding

	Initialization and cleanup
	Interval creation and assignment
	Constructors
	Straight assignment
	Assignment combined with an operation

	Interval constants
	Interval relations
	Set relations
	Certainly relations
	Possibly relations
	Relational Symbols
	Interval-specific relations

	Interval Arithmetic
	Functional Arithmetic
	Trigonometric functions
	Hyperbolic functions

	Relational Arithmetic
	(n+1)-ary relational functions

	Interval functions
	Splitting methods
	Union and intersection

	Input/output
	Reading intervals
	Input format

	Writing intervals
	Converting intervals to strings
	Output format
	Choosing the number of digits to display
	Example

	Floating-point numbers
	Floating-point constants
	Floating-point functions

	Manipulating the FPU
	Rounding functions
	Manipulating the FPU flags

	Version information
	Additional functions
	Error handling
	Exceptions
	The gaol_exception exception
	The input_format_error exception
	The unavailable_feature_error exception
	The invalid_action_error exception

	Warnings

	Debugging facilities
	Profiling
	The timepiece class
	Methods of the timepiece class

	Additional Documentation
	Documentation on gaol
	References

	Reporting bugs
	Contributors
	Library Copying

