
The RS Compiler for ALGOL 68
Published 1978

Defence Research Agency, Malvern, UK

1

1 Introduction

The RS compiler differs from most others in producing output which bears very little resemblance
to machine code. The structure of the output is close to that of Algol 68 in many respects, and
yet the work done by the compiler is not insubstantial. It checks the correctness of the source
text, as far as this is possible by syntax and mode analysis. If an error is found, it outputs
the diagnosis; otherwise the information in the source program is recast in a form suitable
for translation. Complicated operations are broken down into sequences of the simpler steps
adjudged primitive for the purpose of code generation. For example, as the modes of all objects
in the source program have been determined by the compiler, it can specify every coercion
explicitly. The coercions will in fact make their appearance to the translator at the precise
moments required, even though the compiler may have had to see much farther ahead in the
program to determine the destination mode. This is one of the fruits of the technique of using
the output from the compiler as a buffer for the re-ordering of information. The compiler puts
its output on one or another of several parallel streams, and arranges that the item immediately
required by the translator is always at the reading point on one of the streams. This technique,
reported by Currie to be widely used by compiler writers at the University of Grenoble, explains
why we use the term stream language for the compiler’s output.

^

|

1st pass | 2nd pass

|________________|________| |___________|

| faults | | streams | |

| | | | | object

|______|_________| output |>->->->->->| | code

source | | | |>->->->->->| translate |--------->

text | | compile | |>->->->->->| |

------->|input | | | | |

| |__________________| | |

| | specifications | | |

| | | | |

______________^____________ ____^___^____

| | |

| | |

| | |

|______________________| | |

| library of |<----updates ---’ |

| compiled modules |<--- assembly ------’

| |

In any Algol 68 system based on the RS compiler, the first pass compiles source text into
stream language and the second pass - which must be a genuinely distinct pass - translates stream
language into machine code. Although the compiler is machine independent, this attribute
cannot extend to the whole of the first pass, whose input and output arrangements will depend
on hardware. For each new implementation, therefore, it is necessary not only to write a
translator, but also to write a new interfacing shell for the compiler. The Figure shows the
whole system diagramatically, including the library of compiled modules which will provide for
the Algol 68 standard prelude and for users’ own collections (“albums” in Algol 68-R). To give
it the necessary interfaces, the compiler is written as a procedure, with parameters for the shell.

2 The RS Compiler for ALGOL 68

1.1 The Source Language

The language accepted by the compiler is Algol 68 as defined in the Revised Report with some
deviations, principally that modes and identifiers must be declared before they are used. There
are restrictions on the use of LONG and SHORT (see Appendix 2). Arrays are not copied in
identity declarations and in the corresponding parameter situations. The handling of flexible
arrays differs from the report in that flexibility propagates through a mode to the right (ie
inwards). The use of transient references is not checked. These are the main deviations. There
are also some significant extensions to Algol 68 which influence the design of a translator. Two
new types of data structure have been added to the language, mainly to increase efficiency
in critical applications such as data processing and compiler writing. Other extensions have
been introduced in the light of experience to provide flexibility in system programming work.
Most extensions can be concealed from the ordinary user by restricting the generally available
documentation. But they cannot be concealed from the translator writer, who may wish to
exploit them and must, in any case, be able to translate their stream language images into
machine code. The various extensions are described in Appendix 4.

3

2 Stream Language Output

Stream language consists of a sequence of commands ("imperatives") which are generated by
the compiler one at a time. One of the parameters supplied to the compile procedure is a
procedure used for the output of stream language. It has a parameter of mode OUTPUT; this is
a union which decomposes into one of a number of more specialised modes, each corresponding
to one class of imperative, such as the class of all declarations. There is one special imperative,
in a class by itself, which can be disposed of immediately. This tells the translator when to
switch its reader from one stream to another. After the stream collation has taken place, the
translator sees stream language as one single unbranching series of imperatives, and throughout
the remainder of Part A, this is exactly how we shall look at it.

2.1 The Structure Of Stream Language

Stream language defines objects and operations to produce further objects. The operations
arise from the operators of Algol 68, from coercions and from operations such as assignment.
Operands are loaded on to a conceptual reverse Polish stack before the operator is specified. The
other facet of stream language is control structure, which is shaped in terms of phrases, serial
clauses and closed clauses, like Algol 68 itself. Clauses always deliver objects, which may possibly
be void, and serial clauses determine localities in the usual technical sense. However, in spite of
the resemblance to Algol 68, if the source text and compiled versions of a particular program are
compared, the various structural units will not be found in exact one-to-one correspondence. In
its conversion of formulae to reverse Polish form, the compiler will have removed binding brackets
(though not when the enclosure is a serial clause with semi-colons), and it may have introduced
extra phrases as a consequence of breaking down complicated operations into successions of more
primitive ones.

The actual imperatives which impart to stream language its phrase structure reflect familiar
symbols of Algol 68. These imperatives all belong to the mode OUTPUT(XCONTROL). (Here we
are using the notation X(Y) to serve as a reminder that Y, the mode under consideration, is a
constituent of a union X.) The Mode XCONTROL is a structure whose function is indicated in its
principal field by one of the following mnemonic integer values.

xbegin, xsemi, xexit, xend, xroutinend, xcoll, xcollcomma, xendcoll, xif,

xthen, xelse, xfi, xcase, xin, xcomma, xout, xesac, xcaseu, xinu, xuchoice,

xcommau, xoutu, xesacu, xfor, xforall, xwhile, xdo, xod, xfinish

The meanings should for the most part be obvious. Note that xroutinend has no counterpart
in Algol 68; it occurs immediately after the end of a routine text. Note also that the com-
piler always distinguishes between different types of closed clause by supplying the appropriate
bracket, eg xcoll to open a collateral but xbegin for an ordinary closed clause, xcaseu for a
conformity clause but xcase for an ordinary case clause. Other fields of an XCONTROL contain
various items of supplementary information. Whenever the XCONTROL initiates a serial clause or
a closed clause, the mode of the result to be delivered is given. At the start of a serial clause,
a property word in the XCONTROL contains bits which show whether the serial clause contains a
semi-colon, an EXIT, a label setting, variable declaration etc. Special bits are also present in all
relevant imperatives to assist the translator with dynamic storage control.

We have described XCONTROL first because it is where a top-down examination of stream
language should begin. It is also where the structure of Algol 68 shows through most clearly.
The OUTPUT union does in fact include quite a large number of modes, of which the five most
important are

XCONTROL control indication

XDEC declaration of identifier or label

4 The RS Compiler for ALGOL 68

XLOAD load of operand

XOPER operation

XROUTINE routine text

The mode XDEC is itself a union of XIDDEC and XLABDEC. An imperative of the latter mode is
a label declaration, introduced by the compiler at the beginning of the serial clause containing
the actual label setting - which is indicated by another form of XLABDEC imperative. Thus, in
stream language, labels are always declared before they are used. The mode XDEC(XIDDEC) cor-
responds to those Algol 68 declarations which define identifiers, except that the shortened forms
of procedure and operator declarations are handled by XROUTINE imperatives. Any occurrence
of a routine text in the source program gives rise to an XROUTINE imperative, which can be
thought of as a declaration in stream language, whether or not it came from a declaration in the
source-text. A full identity declaration in the source program, whether for a procedure or any
other object, always becomes an XDEC(XIDDEC) imperative. So also does a variable declaration
or any operator declaration of the unshortened variety. Priority declarations are absorbed by
the compiler and used when converting expressions into reverse Polish.

There are no mode declarations in stream language to correspond with those in the source
text of a program, though in a sense every mode used in a program is declared in stream
language. At the outset of the collated stream, one imperative supplies the translator with a
vector containing information about all the modes used in the program. Thereafter, any one of
these can be represented as an index to the vector.

For compactness and simplicity, all cross-referencing in stream language is done by integers.
Declarations are all numbered. Source text names are passed across by the compiler in stream
language declarations only to enable a translator to use them in run-time diagnostic messages.
The real stream language identifiers are the declaration numbers, of which there are three
separate sets - one for XLABDEC, one for XIDDEC and one for XROUTINE declarations. The XIDDEC
numbers are re-used for declarations whose ranges do not overlap. This keeps to a minimum
the amount of information the translator holds about identifiers, assuming that it organises its
information in the obvious manner.

There is a special imperative at the beginning of a stream language program which tells the
translator the sizes required for its various vectors.

2.2 The Reverse Polish Stack

In the present account of stream language, the reverse Polish stack is a purely conceptual device
for remembering operands, and at this conceptual level, the loading of an operand does not
imply action of any other kind. In reality, most translators will find it convenient to maintain
a real stack in some form or other, to act as a kind of work-bench for the generation of code.
However, the way in which operands would be represented on an actual translator stack lies
wholly within the province of the translator designer, and is not discussed in this section.

Operands appear on the reverse Polish stack in two ways. They may have been placed there as
a result of a previous operation, or they may be introduced by an OUTPUT(XLOAD) Imperative.
The mode XLOAD is a union whose various constituent modes describe the different forms of
object which can be loaded. For example, XLOAD(INT) loads a declaration number standing for
some object which has previously been declared. Other modes in XLOAD introduce undeclared
objects, such as those expressed in the Algol 68 program as denotations.

Almost every kind of object in stream language is described by its Algol 68 mode represented
as an integer item of data - not to be confused with the mode of the imperative which handles
it. To the compiler, the mode of an object is important as a means of checking program
consistency and selecting operator definitions correctly; to the translator its main importance is
in determining the size of an object in the running machine. This is of course impossible for an

Chapter 2: Stream Language Output 5

Algol 68 array or vector, as the number of elements is unknown at compile time. However, in
addition to elements, every array has a descriptor of fixed size, and in stream language it is the
descriptor which is taken as the object to which an array mode applies. This is not to deny that
array elements exist! Certain XOPER imperatives call for production of code to find space for
array elements in the object machine, and to copy them from one place to another, and yet a set
of array elements is never a reverse Polish operand. This is because the translator can obtain all
the information it needs about an array from the descriptor. We may therefore conclude that
stream language only operates directly on objects of known size. As we shall show, this is the
very feature of its design which enables it to break down complicated declarations, generators
and assignments into the rudimentary steps which a translator can handle easily.

2.3 The Creation Of New Objects

The work entailed in creating a new object is split between compiler and translator, the compiler
doing as much as it can without knowing anything about the final object machine. It cannot
do very much with source text denotations, as the translator must deal with machine repre-
sentations. Denotations are therefore passed into stream language almost literally, in XLOAD

imperatives, though number denotations are tidied up into standard formats. Routine texts
are compiled like any other pieces of Algol 68, with formal parameters expressed by XIDDEC

imperatives of type XFDEC the whole routine being preceded by an XROUTINE imperative which
gives it a declaration number in every case.

Jumps are treated as objects in stream language, and loaded by their label declaration
numbers. No action is taken until specified by a subsequent coercion (an XOPER).

In Algol 68, a reference is created by a generator or a variable declaration; its purpose is
allocation of storage space for an object of given mode. The object can be described as ‘simple’
if the generator or declaration contains no array bounds, for then the total amount of space is
known from the mode, and stream language does no more than reflect the Algol 68 constructions.
A generator becomes an XLOAD(XGEN) imperative, which puts a new local or heap reference on
the reverse Polish stack, and a variable declaration becomes an XDEC(XIDDEC) of type XVARDEC,
or Xivardec if the declaration is combined with an initial assignment. Either type creates a
new reference and gives it a declaration number. In addition, XIVARDEC will find the object for
initial assignment on the reverse Polish stack, and remove it. Being a declaration and not an
operator, it leaves no result behind.

When the Algol 68 generator contains array bounds, space for elements has to be generated
dynamically. As these may introduce further arrays, the task can be a protracted one. The
compiler breaks it down so that the translator is never called upon to deal with more than one
array at a time. As an example at one level only, consider the declaration

[1 : n] REAL r;

which requires the translator to

• generate space dynamically for n reals,

• create the associated fixed size object (ie the descriptor) of mode [] REAL,

• create an object of mode REF [] REAL and assign the descriptor to it (a ‘static’ assignment).

In outline (for the compiler actually does a little more), this maps into stream language as

XLOAD the lower bound 1
XLOAD the upper bound n
XOPER xbdpack

packs the bounds into a single object

6 The RS Compiler for ALGOL 68

XLOAD a boolean for local/heap, here local
XOPER dyngrab

takes the boundpack and boolean operands, generates space for array elements and
delivers the descriptor

XDEC(XIDDEC) xivardec

creates the variable, gives it a declaration number, takes the descriptor from the
reverse Polish stack as operand and assigns it statically to the array variable

It is particularly to be noticed that an xivardec initialisation is always a static assignment,
ie assignment of a fixed size stream language object only, with no regard for any array elements.
Normally, xivardecs are used when there are initial assignments in the source text (eg REAL X

:= 0.0), but not if the object declared is an array variable. Initial assignment of array elements
is carried out separately as a standard assignment operation, described in A2.4. An array
generator gives the same sequence as that shown for an array declaration, except that the
XIDDEC xivardec is replaced by the XOPER statgrab. Instead of creating a reference and then
declaring it as a variable, statgrab creates the reference but puts it on the reverse Polish stack
after statically assigning the descriptor.

In actuality, all but the final step shown above is wrapped up in a stream language routine
invented by the compiler for the given mode. In the example, the routine would deliver the []

REAL as operand for the xivardec. In a more general case, eg from the source declaration

STRUCT (BOOL b, [1 : n] REAL r) s;

the routine would deliver the fixed-size object of mode

STRUCT (BOOL b, [] REAL r)

as operand for the ivardec.

For declarations involving array space at more than one ‘depth’, the routine for the whole
array mode calls similar routines for any contained array modes. For example, consider the
source declaration

[1 : m] STRUCT (BOOL b, [1 : n] REAL r) t;

The mode already considered is now contained in an array, and the inner routine (nr, say)
will deliver the STRUCT (BOOL b, [] REAL r) inside the routine (mr, say) for the whole mode,
where it will be assigned to each of the m array elements - as m fixed size objects. The routine
mr will finally deliver the fixed size object

[] STRUCT (BOOL b, [] REAL r)

for assignment to t in the ivardec.

2.4 Assignment

The XOPER xassign takes two operands, a destination and a source. It leaves the first operand
on the reverse Polish stack at the conclusion of the assignment, clearly imaging the Algol 68
construction. But the stream language operation gives the translator less work than would an
Algol 68 assignment in its full generality. As with complicated declarations, the compiler invents
and calls specially tailored routines to break down complicated assignments.

The mode of the destination determines what xassign is called upon to do. If it is a ref vector
or ref array (non flexible), the actual elements are to be copied and the associated descriptors
left untouched. This is ‘dynamic assignment’. For every other destination mode, including ref
flex array and ref flex vector, xassign means static assignment. The object to be copied is the
stream language source operand, which may be a descriptor but cannot be a set of elements.
From a stream language point of view, dynamic assignment is the oddity, as the operands are
not the objects directly involved in the copying process. The translator’s generation of code to
copy array elements is a kind of side-effect to an otherwise inert stream language operation. At

7

this point, it is worth recalling the initialised variable declaration of A2.3, as the assignment
embodied in the xivardec is always of the static type, irrespective of mode. It is not an absorbed
xassign operation.

In a dynamic assignment, the elements to be copied will always be objects of known size.
The translator is never asked, all in one go, to copy elements which themselves contain elements
to be copied. The invented assignment routines see to that; by the use of "forall" constructions,
all the loops are given explicitly.

One further operation is required to complete the subject of assignment. An Algol 68 assign-
ment to a flexible array or vector variable implies the making of a new set of elements and a new
descriptor, and the xassign in this case deals only with the descriptor. A special operation xcopy

always precedes the static assignment to a flex variable. This operation takes the descriptor from
the right-hand side of the Algol 68 assignment as its one operand, generates the required amount
of space (on the heap) for a new copy of the elements, copies the elements, constructs a new
descriptor and delivers this as the result of the operation. The xassign operation then picks up
this new descriptor and statically assigns it to the flex variable as already described.

9

3 Implementation

To harness the RS compiler for use on a new machine, the obvious need is the translator to
convert stream language into machine code, but one must never lose sight of the fact that the
final product is a system and not just a collection of programs. The importance of the shell
for the compiler is obvious from the Figure in section A1, a major part of which is concerned
with the updating and retrieval scheme for library modules. Not least in importance here is the
actual content of the system library, including transput. Finally, proper provision must be made
for run-time diagnostics, not shown in the Figure but clearly a crucial part of the system.

The development of a system initially depends of the process known as bootstrapping, and
we conclude with an outline of its three stages.

Stage 1 begins with getting the compiler running on some machine, which will normally be
different from the target machine. Since the RS compiler is written in its own language, the
simplest method is to use an existing RS implementation, although there is nothing to prevent
the use of some other machine for bootstrapping provided that the compiler is suitably adapted.
With a temporary first pass actually running, the next phase of stage 1 is to produce a matching
translator which generates code for the final object machine. It may be convenient to write this
translator in the bootstrapping machine using the same language as the compiler. Alternatively,
it can be written for the new machine from the start, provided that the new machine supports a
suitable high-level language. Either way we are now equipped with a means of producing code
for the new machine from Algol 68 source text.

Stage 2 uses the result of stage 1 to compile and translate a final version of the compiler and
a shell suitable for the new machine. The translator is also compiled and translated when the
first of the two plans is adopted. The result of stage 2 is a compiler, shell and translator which
can be loaded in the new machine.

Stage 3 consists of tidying up. The translator probably requires enhancement, for up to
this point it has only had to deal with the system itself, which is almost certainly in a subset of
stream language. The RS compiler produces a subset, and the other parts of the system can with
advantage do the same. Now the compiler and translator should be compiled and translated in
the new machine to check that the whole system is self-supporting. This may entail rewriting
the translator, for if the second plan was adopted, it will probably not have been written in
Algol 68.

11

4 The Compiler Shell

The “compile” procedure is specified as follows:

PROC compile =

(PROC (REF VECTOR [] CHAR, REF INT) BOOL input,

PROC (OUTPUT, INT) VOID output,

PROC (VECTOR [] CHAR, INT) VOID fault,

PROC (INT) REF VECTOR [] CHAR message,

PROC (ID, INT, BOOL) YMODINFO give module details,

PROC (ID, ID, YM) YSPEC give spec,

PROC (REF VECTOR [] CHAR, BOOL) INT lookup,

REF [] STRUCT(INT type, value) charset

) BOOL:

This procedure must be called in pass 1 with actual parameters written to suit the translator
and the hardware in which the system is to run. These actual parameters constitute the ‘shell’
of pass 1 (see Figure in A1).

The procedures give module details and give spec are concerned with inter-module check-
ing and are described in Part C. The remaining parameters are dealt with in this present chapter.

Most one-dimensional arrays in the RS compiler have lower bound 1, so they have been
written as vectors, which are normally more efficient than arrays. Since the same will be true
of most translators, vectors are used in the interface wherever possible. One-dimensional arrays
may be used throughout if desired.

4.1 Input Of Source Text

Source text is input by the procedure

PROC input = (REF VECTOR [] CHAR source, REF INT size) BOOL:

which is called by the compiler. In source, the compiler provides space for linesize char-
acters of text (see Appendix 5). The input procedure must put a line of text into this space
and give the actual number of characters in size. Blank lines are allowed. The procedure must
ordinarily deliver TRUE, but must deliver FALSE if nothing has been supplied in source because
there were no more lines of text for the compilation. A suitable amount of source text must be
retained by the input procedure for output by the fault procedure (B1.5) when required.

The compiler’s first task is to assemble characters into the larger entities, such as identifiers,
required for syntax analysis. It has no knowledge of the character set or representations of
symbols, and all such information has to be made available through its parameters charset and
lookup. These are described in sections B1.2 and B1.4.

4.2 The charset Parameter

The charset parameter is an array such that charset[i] describes the properties of the char-
acter whose ABS value is i. Each element of the array has a type field and a value field, which
must be filled in according to certain fixed conventions. For the compiler to assemble identi-
fiers, it needs to know which characters are the letters, which the digits and which the space
character. This is because identifiers must start with a letter and continue with letters or digits,
with spaces ignored; the identifier is thus terminated by the first non-letter non-digit character
encountered. The letters a to z must all be given type 3 and values 10 to 35 respectively. The
digits 0-9 are given type 4 and values 0-9. The space character is given type 2 and value 37. If
there are any further alphabetic characters besides a to z needed in identifiers, such as accented
letters, they must be given type 3 and value 36, and cannot be used other than in identifiers.

12 The RS Compiler for ALGOL 68

Bold symbols are assembled by the compiler in one of two ways. If the character set contains
only one alphabet, a ‘stropping’ scheme must be adopted, and this can take two forms. In
‘single’ stropping, the bold symbol is simply prefixed by a strop character, whilst in "matched"
stropping it is enclosed in a pair of identical strop characters. Aside from the strop characters,
the form of a bold symbol is exactly similar to that of an identifier, except that spaces are not
allowed. When single stropping is used, the strop character is specified as type 7 and the bold
symbol terminates in front of a character, such as space, which cannot be a legal continuation of
the symbol. When matched stropping is used, the strop character if specified as type 8, and the
bold symbol terminates in the same way except that the compiler checks that the terminator is
the strop character and moves past it. (If it is not, the fault procedure is called.) The value field
for the strop character can be set to 100 if the character is not to be used for any other purpose.
Provided that reasonable discretion is used, the strop character can be made to do double duty
and serve as a symbol in its own right, such as the decimal point symbol. The value field would
then be filled in to indicate the required meaning as described in B1.3.

If a second alphabet is available in the character set, it can be defined to be the bold alphabet,
and there will be no need to define a strop character. Bold letters must be given type 6 and
the value field set to the negative number -(n + 1), where n is the ABS either of the bold letter
itself, which we shall describe as a ‘direct value’ or of the corresponding ordinary letter (‘indirect
value’). The choice, which must be the same throughout the alphabet, is governed by the way
the lookup table for bold symbols is to be organised, as discussed later.

The character used as the quote symbol must be given type 5 and value 100, which debars it
for any other purpose except inside comment or, doubled, inside string or character denotations.
If there are any characters whose use is to be restricted solely to the insides of strings or comment,
these must be given type 1 and value 100 (‘illegal representation’).

Once the characters of types 1 to 8 have been dealt with as described above, all the remaining
characters are available, singly or in combination, to represent symbols. A character which never
combines is given type 20, while a character which can occur as part of a compound symbol is
given type 21, 22 or 23 according to the positions it is allowed to occupy. These are shown in
the table set out below. Characters which can be used in compound symbols may be used singly
as well (for consider ‘:’, ‘=’ and ‘:=)’. The value field in charset is normally used to specify
the meaning of the character when it is used as a single-character symbol (but see B1.3 for a
possible exception to this rule).

When the compiler encounters a character which may be the start of a compound symbol, it
always tries to complete the symbol and terminates only when further continuation is impossible.
It is therefore advisable that all monadic operators be represented by characters of types 20 or 21,
as this enables consecutive monadic operators to be used in a program without space separation.
To see this, consider a pair of monadic operators such as ‘+-’. If the minus can only occur alone
or at the very beginning of a compound symbol, it cannot be the second character of a compound
symbol starting ‘+-’. A space between the plus and minus is therefore unnecessary.

In the assembly of identifiers, bold symbols, string denotations, numbers and compound
symbols, the end of a line will always terminate an item. If a string denotation is to extend
over more than one line, a quote symbol must be given at the end of each line and the next line
introduced by a further quote.

If an implementation is to accept both upper/lower case programs and programs written
using a stropping convention, the shell must convert one representation to the other.

The field settings for charset are as follows (a value of 100 means ‘invalid
representation’).

type meaning of type (value)

1 character which can only be used inside strings or comment (100)

Chapter 4: The Compiler Shell 13

2 space (37)

3 letter, for use in identifiers, labels and field selectors (a to z (10-35), any others (36))

4 digit (0-9)

5 string quote (100)

6 bold letter (see B1.2)

7 single stropping character (see B1.2)

8 matched stropping character (see B1.2)

20 non-combining character (see B1.3)

21 character which, when used in combination, can only be the first character of the
compound symbol (see B1.3)

22 character which can be used anywhere in a compound symbol (see B1.3)

23 character which, when used in combination, can only be the last character of the
compound symbol (see B1.3)

4.3 Values Of Symbols

The compiler assumes nothing about the way modes, operators or any other language symbols
are to be represented in programs; it understands the meanings of symbols in terms of its own
fixed integer values. From the ‘type’ information given in charset, it can assemble single and
multiple character symbols, but cannot convert them into values by itself. The shell writer
must therefore decide on the desired character representations for all the symbols listed in
Appendix 1, and make arrangements for supplying the corresponding integer values to the
compiler. (Appendix 1 includes symbols for all of the operators of the standard prelude, which
are handled by the compiler rather than the library system.) The representations for symbols
can be single characters, bold symbols or compound symbols. The value fields for characters with
types less than 20 have already been laid down in B1.2. The values for all compound symbols
or bold symbols - some of which might consist of a single bold letter - must be embodied in a
special lookup table as described in B1.4.

The values for the single character symbols of types 20-23 are normally put into the value
fields of the charset array. The reason for this is simply to optimise by reducing the number
of calls of the lookup procedure - in principle all symbols could have been treated alike and
included in one table. The optimisation may be overridden by giving such characters the value
99; this causes the lookup procedure to be called as for compound and bold symbols.

The input system as a whole has great flexibility. The shell writer can choose whatever
representations for symbols seem desirable, although he is expected to include those given in
Appendix 1, which are taken from the Algol 68 report. He may supplement the suggested
representations with alternative forms for the same symbol (for instance, & as alternative for
AND). And he can effectively subset the language giving any unwanted symbol (eg #) the value
100 (‘illegal representation’).

4.4 The Lookup Procedure

When the compiler has assembled a bold or compound symbol, it calls the shell procedure

PROC lookup = (REF VECTOR [] CHAR symbol, BOOL bold) INT:

The parameter symbol will provide the actual characters of the symbol, and incidentally
must not be assigned to in the body of lookup. The parameter bold will be TRUE for bold and
FALSE for compound symbols. The procedure must look up the symbol in its lookup table, and

14 The RS Compiler for ALGOL 68

deliver the integer value which can be found from Appendix 1. Depending on how the lookup
table is organised, the information as to whether the symbol is bold or compound may help in
minimising search time.

Bold symbols represented in source text by single or matched stropping are served up in
the symbol parameter without the strop characters, and will look just like unspaced identifiers.
Where a bold alphabet is in use, the symbol parameter will use bold letters if their values in
charset were chosen to be "direct" (as defined in B1.2), but will use ordinary letters if they were
"indirect". The choice of direct versus indirect depends on the environment in which the RS
system is to be implemented. Where some users’ programs can use a bold alphabet and others
must use stropping, the indirect system has advantages in ensuring a uniform way of keeping
symbols in a library. However, in an environment where stropping need never be used at all,
the direct system has the advantage that it does not transform the alphabet unnecessarily.

4.5 Output Of Fault Messages

The fault procedure deals with output of compile-time error messages. The VECTOR [] CHAR

parameter contains the diagnostic message and the INT is the character position in the input
text. The purpose of "fault" is to output the message in a presentable form, preferably with an
extract of the source text indicating the location of the error.

Since the compiler generally avoids the use of strings in its source-text, names and messages
have to be introduced by means of its message parameter. This is a procedure that delivers a
reference to a particular string when given an integer parameter. The strings must be supplied by
the shell writer as defined at the front of the compiler. The character ‘%’ means that the following
word should appear in upper case, while ‘.’ followed by an integer specifies a "parameter" of
the fault message. The combination ‘%.’ means that the parameter is the name of a mode or
operator. If "indirect" values are being used for the bold alphabet, the fault procedure will need
to convert letters in the following identifier.

The purpose of the message parameter is to allow translation of error messages into languages
other than English without modifying the text of the compiler. Except for the removal of ‘%’, it
should not be altered for any other reason.

4.6 Output Of Stream Language

Output of stream language from the compiler is effected by its repeated calls of the pass 1 shell
procedure output,

PROC output = (OUTPUT imperative, INT stream) VOID:

BEGIN

The procedure encodes the information in the imperative

and outputs it on the specified stream

END

The job of this procedure is to output the imperative in whatever form is most suitable for
input to the translator in pass 2. As this will depend strongly on the design of the particular
translator, the task of designing the output procedure is best undertaken by the translator writer
himself.

The mode OUTPUT is a union whose constituent modes represent different types of imperative,
and the first task of the output procedure is to decompose the union. The type of the imperative
and the data held within it must now be encoded by the procedure as an implementation- depen-
dent representation of stream language. The present document cannot make any assumptions
about such encoding, and will therefore describe stream language in Algol 68 terms, starting
from the mode OUTPUT. But it is essential to realise that the output procedure gives the im-
plementor complete control over the format and content of the information which is actually

15

output from pass 1. Some portion of the data provided is superfluous, being present in the
OUTPUT imperative only for the compiler’s own convenience, and this can be omitted from the
stream language representation altogether. Other information is ‘gratuitous’, either because it is
not strictly necessary or because it is duplicated. However, much of this gratuitous information
is likely to be useful to the translator, and the output procedure should select what is needed
in any particular implementation.

17

5 Stream Language In Outline

An Algol 68 program is concerned with objects and operations on objects to produce new objects.
For the purpose of code generation, a translator must construct suitable representations of these
objects. Such a representation will be termed a "translator value", or simply a value. It will
normally include the location and size of the item in the running machine. In the case of an
array or vector - whose total size is unknown — a translator value can only describe explicitly
the part which has a fixed size, ie the descriptor or "static part". However, translator values do
form a sufficient basis for generating code to handle all objects, whether static or dynamic.

5.1 The Imperatives

Each imperative in stream language belongs to a constituent mode of the compiler’s OUTPUT

mode, which is a union. At the first level of decomposition, these constituents are

XEDIT used for stream control

XDEC a declaration, which provides data for a new translator value and gives it a declara-
tion number

XROUTINE initiates the declaration of a routine text and gives it a declaration number in a
different series

XLOAD requires the translator to construct a new value, or take a given declared value, and
stack it as a reverse Polish operand

XCHARS in conjunction with XLOAD, provides a quotation from the source-text for denotations

XOPER specifies an operation to be performed on the reverse Polish stack

XWARN supplements XOPER by providing advance warning of certain dyadic operations

XPRAG copies the start of source-text pragmats

XCHARPOS indicates character positions in the source-text

XCONTROL indicates the structure of the Algol 68 program

REF VECTOR [] MDE

a vector of the modes required for the program

XSIZES giving advance notice of sizes of vectors needed by the translator, such as the above
vector of modes

XMODINFO etc

concerning modules - see section 3 of Part C.

We now present the above in more detail.

5.1.1 XEDIT

The input section of the translator must read in the parallel streams of imperatives as encoded
by the pass 1 output procedure, taking imperatives variously from one stream and another
to form a single unbranching sequence. The process of stream collation is performed by the
translator in response to imperatives of mode XEDIT, which it will encounter on every stream.
An XEDIT is a STRUCT(BOOL up) which tells the translator to switch to an adjacent stream, one
up or one down from that currently being read, according as up is TRUE or FALSE. Reading starts
on stream 0 (which contains module information only), and the next streams down are 1, 2 etc.
After switching to a new stream, reading always continues from the place where that stream
was last left (or from its beginning if not yet read at all) until an XEDIT is met. Throughout the
remainder of the present account, this collation will be assumed to have been done.

18 The RS Compiler for ALGOL 68

5.1.2 REF VECTOR [] MDE

A vector of modes is passed to the translator in a preliminary REF VECTOR [] MDE imperative,
enabling the translator to represent any mode as an integer index.

5.1.3 XDEC

An imperative of mode XDEC is a stream language declaration which requires the translator to
construct a new value, and be able to refer to it by means of a declaration number supplied in the
XDEC. The mode XDEC is itself a union of XIDDEC and XLABDEC. When the source-text declares
an identifier, the stream language will generally produce an XIDDEC containing its source mode
and a declaration number decno. (The exception is the Algol 68 routine text declaration, which
is handled separately — see XROUTINE.) At the beginning of a serial clause in which a label
setting occurs, the stream language will produce an XLABDEC which provides the label with a
labno (in a series distinct from the decno series).

5.1.4 XROUTINE

Every routine text in the source, whether or not it is part of an Algol 68 declaration, is given
an rdenno by an XROUTINE imperative, which represents the start of the routine. For certain
purposes the compiler invents its own routines; these synthetic routines are also declared and
numbered in the rdenno series.

5.1.5 XSIZES

Declaration numbers enable the translator to keep declared values in vectors for future use.
Numbers in the decno series are issued and re-issued by the compiler in a stack-like fashion
which corresponds to the nesting of source-text ranges - so a given decno may correspond to
different identifiers in different non-overlapping ranges. This does not, however, apply to labnos
or rdennos. The required vector sizes in the translator are given in an initial XSIZES imperative
of the form

STRUCT (INT norden, nomodes, nolabs, nodecnos,

nomodules, nolibinds)

The fields give the vector sizes for rdennos, VECTOR [] MDE, labnos, decnos and two vectors
concerned with modules (see Part C).

5.1.6 XLOAD

Stream language differs from Algol 68 in that it breaks down all of the source text into operations
which are judged to be primitive for the production of code. It adopts the principle that all of
the operands necessary for any operation must be present on a stack before the operation can
be carried out; the operation is thought of as replacing its operand(s) by a single result which is
kept as an operand for some future operation. The imperative which produces a new operand
on the stack in XLOAD. Any value which has been declared in an XDEC or XROUTINE can be the
object of an XLOAD imperative. So also can values corresponding to source-text denotations (see
XCHARS), generators, and the results of alien or code insertions.

5.1.7 XCHARS

Imperatives of mode XCHARS always amplify an XLOAD for a source-text string or format denota-
tion, or alien or code insertion. The XCHARS imperatives provide quotations from the source-text.

5.1.8 XOPER

The actual operations which can be carried out on loaded values are described by imperatives
of mode XOPER, which are ultimately defined by the object code they must produce. They fall
into the following categories

Chapter 5: Stream Language In Outline 19

monadic and dyadic operators
From the Algol 68 standard prelude.

coercions and similar operations
Stream language specifies these explicitly wherever they are required.

field selection and array indexing
For example, given the operands a, i and j, one operation produces a value for a[i,
j].

procedure calls
Which produce, for example, a value for the result of f(x, y) from the operands
f, x and y. This is not a primitive operation, as it needs one XOPER to set up the
actual parameters and another to do the procedure call.

assignment
The primitive stream language operation assigns an object of known size, or a vector
or one-dimensional array of such objects. More complicated assignments are reduced
to this primitive level by the compiler. An Algol 68 assignment to a flex variable
is broken down into two separate stream language operations. One finds new space
for the elements, copies them into it and makes up the descriptor. The other assigns
the descriptor to the flex variable.

space finding
An XOPER generates space for elements of vectors or arrays whenever required as a
result of a source-text declaration or or generator, or an assignment to a flex variable.
"Static" space is found in various ways. The static space required for a named object
is found by means of its XIDDEC. Unnamed objects, ie generated objects, obviously
cannot be dealt with in this way. If they are of fixed size, the space is found by an
XLOAD which puts the reference on the reverse Polish stack. Otherwise, the fixed
part of the total space requirement is found by an XOPER. This particular XOPER is
only used when some part of the static space is needed for descriptors.

straightening
Two operators provide coercion of a row, vector, struct, i-struct or union to a
"straight" — a language extension described in Appendix 4. A third operation
provides indexing of the straight to pick out one member.

5.1.9 XWARN

For the convenience of certain translator designs, the XWARN imperative defines certain dyadic
operations after the loading of the first operand. This is additional to the XOPER which occurs
in the normal reverse Polish position.

5.1.10 XPRAG

The compiler normally passes the first line of a source-text pragmat to stream language.

5.1.11 XCHARPOS

The character positions of significant symbols in the source-text (eg controls) is output so that
the translator will read the imperative at the appropriate time.

5.1.12 XCONTROL

Overall structure of Algol 68 source-text is mirrored in stream language down to the phrase
level. The source text symbols which delimit phrases appear in stream language as imperatives
of mode XCONTROL, which is a structure with a fn field for the particular delimiter (xif, xsemi,
etc). The opening round bracket for an ordinary closed clause and that for a collateral are

20 The RS Compiler for ALGOL 68

distinguished by the compiler and given different fn fields. This is a typical example of advance
information from the compiler. Every XCONTROL at the start of a serial clause gives advance
information about the properties of that clause, such as the presence of declarations and the
mode of the result delivered.

5.2 Syntax Analysis Of Stream Language

An abridged syntax of stream language is shown below. In this syntax, the imperatives XLOAD,
XOPER, XIDDEC And XLABDEC are all grouped together, as they do not contribute to syntactic
structure in any significant way. Structure is imposed on stream language by the XCONTROL

imperatives, whose fn fields enable the various different types of closed clause to be recognised
and their component clauses to be picked out.

The task of a translator is to read and act on stream language, and it can use procedures
which mirror the syntax. To read in a closed clause, it can use a procedure cclause which calls
another procedure, sc, to read the component serial clauses, as shown in the lower half of the
skeleton translator. The variable currentxc holds the latest XCONTROL Imperative. Similarly,
the sc and cclause procedures can call on a phrase procedure to read the constituent phrases.
After a call of phrase, the current XCONTROL will obviously be one which terminated a phrase,
and all but two of these also terminate a serial clause. These two are xsemi and xexit, which
correspond to ‘;’ and EXIT between phrases in the Algol 68 source-text.

The phrase procedure does the actual reading of the imperatives, calling cclause when it
reads an XCONTROL which is a ‘cclause starter’, ie one of xbegin, xif, xcase, xcaseu, xcoll,

xdo (when not preceded by xwhile), xwhile in the abridged grammar we are using. Exit
from the phrase procedure occurs when an XCONTROL which is a ‘phrase terminator’ is read, ie
one of the following:

xend xcollcomma

xthen xendcoll

xelse xroutinend

xfi xinu

xod xdo (when preceded by xwhile)

xin xcommau

xcomma xoutu

xout

xesac xsemi) these phrase terminators do

xesacu xexit) not terminate serial clauses

5.2.1 Abridged Syntax Of Stream Language

5.2.1.1 Notation

Class names are placed on the left, with their alternative expansions on separate lines on the
right.

Square brackets enclose an optional item, which, if starred, can be repeated any number of
times.

cclause stands for closed clause, sc for serial clause, enq for enquiry clause. A stream
language primary is not to be confused with a primary in Algol 68.

xbegin, xend etc are imperatives of mode XCONTROL, whose fn fields are the integers xbegin,
xend etc.

5.2.1.2 Syntax rules

cclause = xbegin sc xend

xif enq xthen sc [xelse sc] xfi

Chapter 5: Stream Language In Outline 21

xcase enq xin phrase [xcomma phrase]* [xout sc] xesac

xcoll phrase [xcollcomma phrase]* xendcoll

xcaseu enq xinu phrase [xcommau phrase]* [xoutu sc] xesacu

[phrase] [phrase] [phrase] xfor [xiddec] loop

[phrase]* xforall [xiddec]* loop

loop = [xwhile sc] xdo sc xod

sc = phrase [separator phrase]*

enq = phrase [xsemi phrase]*

phrase = primary [primary]*

primary = XLOAD

XOPER

XIDDEC

XLABDEC

XROUTINE phrase xroutinend

cclause

separator = xsemi

xexit

5.2.1.3 Skeleton translator — stage 1

XCONTROL currentxc;

PROC read = OUTPUT: "deliver next imperative";

PROC phrase = VOID:

BEGIN

DO CASE read

IN (XLOAD):

----,

(XOPER):

----,

(XIDDEC):

----,

(XLABDEC):

-----,

(XROUTINE):

phrase,

(XCONTROL xc):

(currentxc := xc;

IF fn OF xc = "cclause starter"

THEN cclause

ELIF fn OF xc = "phrase terminator"

THEN GOTO out

FI

)

22 The RS Compiler for ALGOL 68

ESAC

OD;

out: SKIP

END;

PROC sc = VOID:

WHILE phrase;

fn OF currentxc = xsemi OREL fn OF currentxc = xexit

DO SKIP OD;

PROC cclause = VOID:

IF fn OF currentxc = xbegin

THEN sc

ELIF fn OF currentxc = xif

THEN sc;

sc;

IF fn OF currentxc = xelse THEN sc FI

ELIF fn OF currentxc = xcase

THEN sc;

phrase

WHILE fn OF currentxc = xcomma DO phrase OD;

IF fn OF currentxc = xout THEN phrase FI

ELIF fn OF currentxc = xcoll

THEN phrase;

WHILE fn OF currentxc = xcollcomma DO phrase OD

ELSE "see stage 2 for other controls"

FI;

5.3 The Reverse Polish Stack

In a reverse Polish language, operands "lie dormant" until an operation on them is specified, but
it does not necessarily follow that the translator must maintain a reverse Polish stack. For certain
types of machine it would be feasible to generate object code from each XLOAD immediately it
appeared, and keep no record in the translator. For most types of machine, however, it will
be desirable to be able to delay the production of code for operand settings at least until all
the operands are present and an actual operation has been specified. This delay is a simple
technique for optimisation; decisions about the best form of code cannot always be made when
a value is first placed on the reverse Polish stack. Even after an XOPER has appeared, it may
be desirable to hold up the production of code. For example, when translating for a single
address machine, it has been found best to delay the operations of dereferencing, field selection
and array indexing. When this is done, the resulting value on the reverse Polish stack has to
embody enough information to enable the required address calculations and code production to
be carried out later.

In Algol 68, a reverse Polish stack can be implemented very simply. Stage 2 of the skeleton
translator given below includes the declaration of a stack reference variable vss local to the
phrase procedure. More will be said about this localisation at a later stage, but as the translator
is highly recursive, it implies that local sections of the overall reverse Polish stack are distributed
in the procedural stack of the translator. A new value must be constructed and put on the local
stack at each XLOAD imperative and for the result of each closed clause. In Algol 68, a closed
clause always delivers its result to the phrase which contains it, and the translator’s value for this

Chapter 5: Stream Language In Outline 23

result must therefore be loaded on the stack local to the phrase. In fact, the value is constructed
(at least in part) as soon as the XCONTROL announces the start of a closed clause. Part of the value
will be the mode of the result of the closed clause, which is given in the XCONTROL imperative.
Another part will be the location used for the result in the object machine. This may or may
not be allocated immediately, but in any case the procedure cclause will require access to is for
code generation purposes. The value is therefore passed from phrase to cclause as a parameter,
and we have made it a REF VALUE parameter to permit communication in either direction. In
the skeleton, this happens after the condition m OF xc > 0, which should be assumed for the
time being to be TRUE. The REF VALUE is passed from cclause to every subservient procedure,
including recursive calls of phrase.

A phrase delivers a result, possibly void, but always leaving a single value on its reverse
Polish stack. If ths phrase is terminated by a semicolon, the result is written off (by the rules of
Algol 68) and this is mirrored in the translator by the disappearance of the stack on exit from
the procedure. However, if the phrase is the last in a serial clause - or is terminated by an EXIT

in the source text — the result must be preserved by the object code for future use. A value
already exists for it on the stack in an outer phrase and is accessible as the answer parameter of
the inner phrase under discussion. The last act before exit from phrase is therefore to generate
code, as necessary, to ensure that the location of the result agrees with that in answer. The
local stack then serves no further purpose and can safely be allowed to pass out of scope.

The test m OF xc > 0 is an optimising device to deal with a closed clause whose result is
known (by the compiler) to be the result also of an outer serial clause — described in the
answer parameter of the current phrase. Thus at the arrow in

(a; (b; c))

^

a value for the result of (b; c) has already been constructed at the beginning of the outer
serial clause, and can simply be passed on. To indicate this optimisation, which also has im-
plications for code generation, the compiler sets the m field of the opening XCONTROL at the
arrow negative. When this is detected in the translator, it calls cclause(answer) instead of
cclause("newly constructed value"). After the first closing bracket in the above example,
the stack local to the phrase (b; c) will be NIL, because nothing will have been loaded. No
action must then be taken at the point in the skeleton labelled result, for it will already have
been taken on exit from the phrase c.

In expanding stage 1 of the skeleton to make stage 2, we have expressed the action for an
XROUTINE as a call of the procedure routine. Although the body of this procedure is trivial
in the skeleton, it will of course be much larger in an actual translator. The call of routine
in the translator corresponds to a routine-text in the program, not a routine call. The body of
the routine-text is not being obeyed, and the answer parameter for its phrase is therefore NIL.
Inside That phrase, the NIL should be detected at the label result.

5.3.0.1 Skeleton translator — stage 2

XCONTROL currentxc;

PROC read = OUTPUT: "deliver next imperative";

MODE VALUELIST = STRUCT (VALUE v, REF VALUELIST rest);

PROC phrase = (REF VALUE answer) VOID:

BEGIN

REF VALUELIST vss := NIL;

DO CASE read

24 The RS Compiler for ALGOL 68

IN (XLOAD):

vss := LOC VALUELIST := ("given value", vss),

(XOPER):

----,

(XIDDEC):

----,

(XLABDEC):

----,

(XROUTINE):

routine,

(XCONTROL xc):

(currentxc := xc;

IF fn OF xc = xwhile

OREL fn OF xc = xdo ANDTH "no xwhile"

THEN vss := LOC VALUELIST

:= ("value for void result", vss);

cclause(v OF vss)

ELIF fn OF xc = "cclause starter"

THEN IF m OF xc > 0

THEN vss := LOC VALUELIST

:= ("value for result", vss);

cclause(v OF vss)

ELSE cclause(answer)

FI

ELIF fn OF xc = xsemi

THEN GOTO out

ELIF fn OF xc = xfor OREL fn OF xc = xforall

THEN "read and unstack information as far

as xwhile or xdo"

ELIF fn OF xc = "any other phrase terminator"

THEN GOTO result

FI

)

ESAC

OD;

result: "ensure that, if vss isn’t NIL, the object described by

v OF vss is properly described by answer";

out: SKIP

END;

PROC routine = VOID: phrase(NIL);

PROC sc = (REF VALUE answer) VOID:

WHILE phrase(answer);

fn OF currentxc = xsemi OREL fn OF currentxc = xexit

DO SKIP OD;

PROC cclause = (REF VALUE answer) VOID:

IF fn OF currentxc = xbegin

25

THEN sc(answer)

ELIF fn OF currentxc = xif

THEN sc("value for boolean");

sc(answer);

IF fn OF currentxc = xelse THEN sc(answer) FI

ELIF fn OF currentxc = xcase

THEN sc("value for integer");

phrase(answer);

WHILE fn OF currentxc = xcomma

DO phrase(answer) OD;

IF fn OF currentxc = xout THEN sc(answer) FI

ELIF fn OF currentxc = xcaseu

THEN sc("value for union");

phrase(answer);

WHILE fn OF currentxc = xcommau

DO phrase(answer) OD;

IF fn OF currentxc = xoutu THEN sc(answer) FI

ELIF fn OF currentxc = xcoll

THEN phrase("value for first field of answer");

FOR i FROM 2

WHILE fn OF currentxc = collcomma

DO phrase("value for ith field of answer") OD

ELSE CO xwhile or xdo CO

IF fn OF currentxc = xwhile

THEN sc("value for boolean")

FI;

sc(answer)

FI

27

6 Stream language in detail

This chapter completes the account of stream language by supplying all the detailed factual
information. The hierarchy of imperatives is organised in two ways, partly by the use of unions
(as XIDDEC, XROUTINE and XLABDEC are united under the mode XDEC), and partly by character-
istic integers (as for example the fn field of an XCONTROL imperative). In this text, mnemonics
are used in place of actual integer values, which can be discovered from the listing of the RS
compiler.

The word "mode" frequently occurs as the selector of an integer field in an imperative. The
integer should always be understood as an index to the vector of modes given in the REF VECTOR

[] MDE imperative.

Certain fields of the imperative are present for the convenience of the compiler itself. Such
fields will be enclosed in curly brackets; their significance for a translator is nil, and they should
not be output by the compiler shell.

Some features of stream language may vary slightly between different implementations of the
RS compiling system. See Appendix 5 for the list of implementation-dependent declarations in
the text of the compiler.

6.1 The Vector Of Modes — REF VECTOR [] MDE modes

Each different mode used in a program is represented in stream language by a mode number.
This is the sum of an integer, m say, representing a non-ref mode, and an offset (refmark) for
each REF at its front. The actual source mode represented by m is held in the element modes[m]
which yields a MDE. This is a union of constituent modes representing structures, procedures
etc, as given in the table below. These constituent modes contain further mode numbers which
can be similarly decomposed until PRIMITIVE constituents are reached. The mode number for
all the PRIMITIVE modes are given in Appendix 2, and are fixed for all programs. Once these
mode numbers have been reached, the mode is completely known. However, PRIMITIVE (defined
to be INT) gives "type" information on the primitive mode, defined as the mode number for the
primitive mode stripped of any SHORT or LONG prefixes.

6.1.1 Constituent Modes Of MDE

The mode MODELIST, defined as

MODE MODELIST = STRUCT (INT mode, REF MODELIST rest)

is used in the following table, although it is not itself a constituent of MDE.

6.1.2 REF STRCT

MODE STRCT = STRUCT (INT {rdenno}, {deflex}, REF SELIST sels),

in which the mode SELIST is defined as

MODE SELIST = STRUCT (INT mode, fieldno, ID name, REF SELIST rest).

This gives the mode and field number, starting with field 1, for each of the fields of a structure.
The name field gives the field selector name, truncated or space-filled to maxid characters (see
Appendix 5), internal spaces having been removed.

6.1.3 REF ISTRUCT

MODE ISTRUCT = STRUCT (INT {rdenno}, imode, length, {deflex}).

This describes an indexable structure having length elements of mode imode.

28 The RS Compiler for ALGOL 68

6.1.4 REF VCTOR

MODE VCTOR = STRUCT (INT {rdenno}, vecmode, deflex)

This mode describes a vector or flex vector with elements of mode vecmode. The deflex

field is negative for a flex vector and positive or zero for a non-flex vector.

6.1.5 REF ARRAY

MODE ARRAY = STRUCT (INT {rdenno}, mode, nods, deflex).

This describes an array or flex array of nods dimensions; mode is the mode of the array with
the front row removed (ie the mode of the elements for a 1-dimensional array). The deflex field
is negative for a flex array and positive or zero for a non-flex array.

For example

• [] REAL is represented in mode field as REAL

• [,] REAL is represented in mode field as []REAL

• FLEX [,] REAL is represented in mode field as [] REAL

6.1.6 REF UNN

MODE UNN = STRUCT (INT {rdenno}, REF MODELIST modelist)

This describes a union mode, where modelist is a list of all the constituents (any unions
within the union having been decomposed).

6.1.7 REF PROCP

MODE PROCP = STRUCT (INT deproc, REF MODELIST pars)

Describes a procedure with parameters; deproc is the mode of the result and pars gives the
modes of the parameters.

6.1.8 REF PRC

MODE PRC = STRUCT (INT deproc)

Describes a procedure with no parameters and result of mode deproc.

6.1.9 REF STEN

MODE STEN = STRUCT (INT mode, REF STENLIST {stenlist})

Describes a straight of objects of mode mode.

6.1.10 REF AMODE

No reference to this mode will occur in stream language.

6.1.11 SAMEAS

Except in the table of modes, no reference to this mode will occur in stream language.

6.1.12 PRIMITIVE

MODE PRIMITIVE = INT;

The MDE vector contains elements for all the primitive modes, which always occupy fixed places
at the bottom of the vector, as given in Appendix 2. The index, ie the mode number, therefore
determines the primitive mode uniquely. When a MDE element decomposes to PRIMITIVE, the
integer value specifies the type of the mode, defined as the primitive mode with any SHORTs
or LONGs removed. For example, the MDE element modes[20] (LONG REAL) will decompose to
PRIMITIVE and have value 19 (REAL).

Chapter 6: Stream language in detail 29

6.2 Identifier Declarations (XIDDEC from XDEC)

These imperatives introduce declaration numbers in the decno series and also imply storage
allocation for the object machine. The definition of an identifier in the source text gives rise to
an XIDDEC (except in the case of routine identity declarations covered by XROUTINE In B3.3).
The mode XIDDEC is given by

MODE XIDDEC = STRUCT (INT type, REF IDDEC iddec)

The iddec field refers to information in the following structure

MODE IDDEC = STRUCT (ID name, INT decno, {level}, mode,

INT {scope}, REF IDDEC {rest})

The name field gives the source text identifier or operator symbol (truncated or space-filled
to maxid characters, internal spaces having been removed), and mode gives its mode. The
declaration number decno is used to index a vector in which the translator can keep a record of
values constructed in response to the XIDDEC. The decnos start at 4.

The type field of an XIDDEC is one of the following

xiddec Identity declaration. When this imperative occurs, the top item on the reverse
Polish stack (which must be removed) will be the value for a static object or the
static part of a dynamic object. Code must be generated, if necessary, to preserve
this object, and a value constructed to describe it.

xvardec Reference declaration for a static object. Space must be found for the object and a
value constructed to describe the reference to it.

xivardec Initialised reference declaration. The top item on the reverse Polish stack (which
must be removed) will be the initial value for a static object or the static part of a
dynamic object. Space must be found for this, and a value constructed to describe
the reference.

xfdec Specifies a formal parameter of a procedure.

xccdec Introduces the formal identifier in a conformity.

xfordec Introduces the identifier after FOR in a loop clause.

xforalldec

Introduces an identifier defined in a FORALL statement.

xdummydec

A pseudo declaration introduced by the compiler in order to indicate the scopes of
some routines.

6.3 Routine Text Declarations, XROUTINE

Every occurrence of a routine text (which may appear at any point in stream language) gives
rise to an opening XROUTINE imperative, as also do routines invented by the compiler for certain
tasks. A routine text is terminated by the XCONTROL with function xroutinend. The mode
XROUTINE is given by

MODE XROUTINE = REF RDEN,

where

MODE RDEN = STRUCT (ID name, BITS props, INT mode, rdenno,

INT maxname, {level}, REF RDEN {rest})

The name field contains one of the following

the identifier
from a brief declaration of a procedure or operator, as shown below

PROC p = routine text

30 The RS Compiler for ALGOL 68

OP P = routine text

Such declarations do not give rise to XIDDEC imperatives. The identifier is truncated
or space-filled to maxid characters, internal spaces having been removed.

" anonymous "

when the Algol 68 routine text was not the subject of a brief declaration. The
routine may have been declared fully, as in

PROC (INT) INT p = (INT n) INT: ... ,

in which case an XIDDEC imperative is produced for p.

" generator "

for a synthetic space generation routine (ie invented by the compiler).

" assignment "

for a synthetic assignment routine.

" straight "

for a synthetic routine for indexing a straight.

" format "

for a synthetic routine containing the bodies of n, f and g patterns from a format.

The props field is made up as a conjunction of bits values of the form 2**n. These are
denoted mnemonically (eg ccbit) and represent attributes of a particular routine-text.

The bits values are

ccbit routine has a body consisting of a closed clause

operatorbit

routine is part of a brief operator declaration

valbit routine is to be loaded onto the translator stack, despite the absence of an XLOAD

imperative

holebit routine contains a HERE clause (see Part C)

globscopebit

routine is a straightening or assignment procedure with no non-locals

genprocbit

routine is a synthetic generation routine

The mode field is the mode of the routine and its declaration number is rdenno. Declaration
numbers for routines are in a separate series which starts at startrd + 1 (see Appendix 5).

The field maxname is less than 3 for a routine text of unlimited lifetime and 3 if its only external
identifiers are declared in modules compiled at CONTEXT VOID (See C2.10). Otherwise, maxname
is the decno of an identifier of smallest lifetime used within the routine but not declared in it.
This, in combination with information given in any XLABDECs at the beginning of the routine,
can be used to determine the lifetime of the routine. However, XLABDEC imperatives are not
given at the start of synthetic routines.

6.4 Label Declarations (XLABDEC from XDEC)

In Algol 68, label identifiers can be re-used for different label settings, but in stream language
each different label setting has a different label number (Labno). XLABDEC imperatives occur at
positions where labels must be set and also at the beginnings of serial clauses and routines.

The mode XLABDEC is given by

MODE XLABDEC = STRUCT (REF LABEL lab, BOOL notsetting),

Chapter 6: Stream language in detail 31

where

MODE LABEL = STRUCT (ID name, INT labno, status, REF LABEL {rest})

At an actual label setting, notsetting is FALSE and status is undefined. All other oc-
currences of an XLABDEC are at the beginnings of serial clauses or routines, and notsetting is
TRUE. The purpose of the imperative then depends on the value of Status. If status is 0, the
XLABDEC is at the start of a serial clause and gives the labno of a label which will be set in
it. If status is s, where s > 1, the labno is to be taken as a new label number for the label
previously numbered s. If status is 1, the XLABDEC is at the start of a user-written routine, and
gives the labno of an external label in a GOTO label occurring in the body of the routine. This
information is required for defining the scope of the routine.

The field name is the source-text identifier, truncated or space-filled to maxid characters,
internal spaces having been removed.

6.5 The Loading Imperative, XLOAD, And XCHARS

An XLOAD imperative requires a value to be loaded on the reverse Polish stack. The mode
XLOAD is a union of the following modes.

6.5.1 BOOL

This derives from a boolean denotation in the source-text, and the value will be TRUE for TRUE
and FALSE for FALSE.

6.5.2 INT

The integer is the decno or rdenno of a previously declared value to be loaded.

6.5.3 REF LABEL

This is the lab field of an XLABDEC imperative. The value corresponding to the labno must be
loaded.

6.5.4 STRUCT (INT Nse)

A value for NIL, SKIP or EMPTY, according as Nse is nilmode, skipmode or voidmode.

6.5.5 XGEN = STRUCT (INT mode, BOOL loc)

The mode field will be a ref to the mode of a static object. Space must be dynamically generated
for the object, locally or on the heap according as loc is TRUE or FALSE. A value must be loaded
to describe the reference.

6.5.6 XNUMBER = STRUCT (INT mode, REF VECTOR [] CHAR nu)

This imperative represents a number denotation in the source-text. The mode field will be
bits, int or real (possibly with LONG or SHORT prefixes) and the nu field refers to the actual
denotation in a standard format as follows.

For a value of mode BITS, the format is:

radix digits

where radix is the character ‘2’, ‘4’, ‘8’ or ‘g’ (for sixteen)1 and digits is a digit sequence
using the letters ‘a’ to ‘f’ for the digits ten to fifteen as required in hexadecimal numbers.

1 The characters dchar, nchar and pchar are implementation dependent (see Appendix 5). These, together with
the characters used at the start of denotations, originate from literals in the compiler. By contrast, other
digits, together with the letters a to f used in hexadecimals, belong to the user’s source-text character set
as specified by the compiler’s charset parameter. Care should be taken that, during bootstrapping, the two
character sets are the same.

32 The RS Compiler for ALGOL 68

For an integer, the format is:

a digits (where the character "a" means radix 10)*

For a real, the format is:

r [digits] [dchar digits] [signletter digits]

The square brackets (not part of the denotation) indicate parts which may be absent, though
at least one will be present. The character r indicates "real", dchar denotes decimal point, and
signletter is the character pchar for plus or nchar for minus*. The digits after this are the
exponent.

There are no space characters in the above number representations.

The following imperatives are each followed by one or more OUTPUT(XCHARS) imperatives
giving the relevant source-text quotations (see XCHARS).

6.5.7 XSTRING = STRUCT (INT strmode)

For a string denotation containing one character only, strmode is char. For a denotation
containing n characters (n /= 1), strmode is STRUCT n CHAR (including when n is zero).

6.5.8 XFORMAT = STRUCT (INT nochars, nocases, w)

The text of a format denotation is introduced by an XLOAD(XFORMAT) imperative, after which
there are one or mode XCHARS imperatives, each corresponding to a line of the source-text. If
there are any n, f or g(uc) patterns in the format, The XFORMAT is preceded by the loading of a
routine text, whose body consists of a case-clause. The cases are the enclosed clauses from the
n and f patterns, together with any unitary clauses used in g patterns. The order is identical
to that of the source-text.

nochars is the number of chars in the succeeding XCHARS imperatives. nocases is the number
of n, f or g(uc) patterns in the format. w is the maximum nesting depth of collection lists in
formats.

For example, w = 2 for $ 2 (G, 3 ("LINE" A L)) $, w = 0 for $ d $

6.5.9 XALIEN = STRUCT (INT almode)

Describes the source-text construction

ALIEN "insertion"

which occurs on the right of an identity declaration. The field almode gives the mode, and
succeeding XCHARS imperatives contain the insertion.

6.5.10 XCODE = STRUCT (INT mode, nopars)

A source-text code insertion has the form

mode CODE (unc, unc, ...) "code"

where mode is optional, absence implying VOID. Stream language for the unitary clauses
(uncs) comes first, and their results will be on the stack when the XLOAD(XCODE) imperative is
given. The mode field gives the mode and nopars the number of uncs. The succeeding XCHARS

imperatives give the code.

6.5.11 XCHARS = STRUCT (INT nochars, base, REF VECTOR [] CHAR chars)

This imperative is not a constituent of the mode XLOAD, but is included in this section because
it always follows an XLOAD or a previous XCHARS of which it is a continuation.

Successive XCHARS imperatives represent the successive instalments of one source-text string
or format denotation, which may have been broken, for instance by new lines. In the case of
a format, these are the only source of breaks. In the case of strings, a new instalment occurs

Chapter 6: Stream language in detail 33

when, in the source-text, a closing quote character is followed, after spaces or new lines or a
new radix, by an opening quote character. However, any instalments containing no characters
are skipped over, unless final.

nochars For the final instalment, this is UPB chars (and may of course be 0). For all preceding
instalments, it is - UPB chars (/= 0).

base f the chars field contains a "radix string", the base field gives the base, which will
be 2, 4, 8, 10 or 16. Otherwise, the base is 0. In particular, it is 0 for a format
denotation.

chars n string denotations (following XSTRING, XALIEN or XCODE), the enclosing quote
characters in the source-text are excluded. Any doubled quote within the source-text
denotation appears as a single quote character in chars. However, these remarks
do not apply to string denotations inside formats, which are reproduced literally.

In format denotations, the opening $ is replaced by a space but the closing $ is
included. Otherwise, spaces are removed except where meaningful. Thus if two
successive string denotations within a format are separated in the source-text by
one or more spaces, one space is retained. Similarly, if the strings are separated by
a new line in the source-text, the break will introduce a space as the final character
in the chars field of the XCHARS which finishes at the new line. The format will
then continue in a new XCHARS. Thus, when the format interpreter concatenates the
"chars" fields of successive XCHARS imperatives, quote characters will not be brought
into contact and be misinterpreted as a quote character within a string.

Comments within formats are also removed. The body of an n or f pattern is
replaced by an integer giving its position in the format, eg the second pattern would
become n(2) or f(2). This applies to clauses in g patterns, which are also replaced
by n(x), where x is an integer giving its position in the format. All three types are
numbered from 1 in the same series.

6.6 Operations, XOPER

The mode XOPER is defined as

MODE XOPER = STRUCT (INT fn, m, param)

The fn field specifies an operation for which code must usually be generated. The operation
applies to one or more objects (operands) for which translator values will exist on the reverse
Polish stack. These values must be removed from the stack and replaced by a value for the
result of the operation (except for xparampack which gives no result).

The m field gives the mode of the result, unless otherwise stated.

The param field is used for additional information, but if not mentioned in the tables below,
it can be assumed undefined.

6.6.1 Standard prelude operators

xmonop 1 operand. param = 16 * opnumber + version number. The operators and corre-
sponding opnumbers are listed in Appendix 3 (monadic operators). A given operator
has different versions for different modes of operand.

xdyop 2 operands. param = 16 * opnumber + version number. The opnumbers and version
numbers are given in Appendix 3 (dyadic operators). The mode given at the head
of the table applies to one operand and is sufficient to identify what is required for
a particular version. Versions for arithmetic and relational operators between ints,
reals and complexes need only deal with operands of like mode, as the compiler will
supply a widening coercion for one operand where necessary.

34 The RS Compiler for ALGOL 68

6.6.2 Coercions and similar operations

xderef 1 operand, an object to be dereferenced.

xunite 1 operand, an object to be united. The mode of the object will not itself be a union;
it will be the paramth mode (starting at 1) of the union m.

xuniteu 1 operand, an object having a union mode, to be united in mode m.

xdeunite 1 operand, a ref union to become a ref to its current constituent mode, but flexed
as given by m.

xwrc* 1 operand, a real to be widened to complex.

xwir* 1 operand, an int to be widened to real.

xwbvb* 1 operand, a bits to be widened to vector of bool.

xarr 1 operand, a (ref) M to become a (ref) array of M.

xarrarr 1 operand, a (ref) array to become a (ref) array with an extra dimension.

xvecarr 1 operand, a (ref) vector to become a one-dimensional (ref) array.

xisarr 1 operand, an object of mode

(REF) STRUCT i STRUCT j STRUCT k ... M

where param is the number of i-structs before the mode M. The object is to be
coerced to a param-dimensional (ref) array.

xvec 1 operand, a (ref) m to become a (ref) vector of m.

xisvec 1 operand, a (ref) i-struct to become a (ref) vector.

xis 1 operand, an object to become a STRUCT 1 X or a REF STRUCT 1 X as given by m.
The mode of the operand is X in the former case and REF X in the latter.

xniltom 1 operand, a NIL to be coerced to mode m.

xvac 1 operand, an EMPTY to be coerced to a vector or array.

xmtoxtype

1 operand, a (ref) m to be coerced to (ref) xtype.

xytypetom

1 operand, a (ref) ytype to be coerced to mode m.

xskiptom 1 operand, a SKIP to be coerced to mode m (m /= voidmode).

xgotoproc

1 operand, a jump to be procedured to mode m.

xgotom 1 operand, a jump to be coerced to mode m.

xvoid 1 operand to be coerced to voidmode.

* The mode of the operand may be preceded by SHORT or LONG prefixes, in which case the
mode of the result also starts in this way.

6.6.3 Field selection and array indexing

xselect 1 operand, a structure or array of structures from which the paramth field must be
selected (starting from 1).

xsimpleindex

1 + param operands comprising an array or vector and param subscripts (1 for a
vector) to produce a single array or vector element.

Chapter 6: Stream language in detail 35

xtrimindex

1 + param operands comprising an array or vector and param trimscripts (1 for a
vector) to produce a subset of the array or vector. If the operands are a vector and
a trimmer containing AT, The result is an array.

xtrim param operands comprising none, some or all of a, b and c in a:b AT c to produce
(a value for) the trimmer. m = 1 if a is present + 2 if b is present + 4 if AT c is
present + 8 if lower bound needs setting (to 1 or c)

Note: when selection or indexing operations are applied to a (single) reference, the result is
a reference.

6.6.4 Procedure calls

xparampack

param operands comprising the actual parameters of a procedure which is about to
be called (if already on the stack) or loaded and then called (with no intervening
imperative). The values for the parameters must be removed from the stack, and
there is no resulting value to be put on.

m = the mode of the procedure for which the operands are the actual parameters.

xcall 1 operand, a procedure. The procedure must be called and a value for its result
(mode m) put on the stack.

param =

0 when the procedure to be called is not a generator routine or an operator

1 for a call of an invented routine which generates dynamic local space

2 for a call of an invented routine which generates dynamic space on the
heap

3 for a call of an invented generator routine occurring within another such
generator routine

4 for a call of a user-defined (or library) operator

6.6.5 Assignment

xassign 2 operands, the destination and source for a simple assignment operation, which
must be carried out leaving the value for the destination on the stack. For assign-
ments of fixed-size objects, param is 1. For vector or array assignments (restricted
to one dimension), the source will be a descriptor. If the destination mode is a ref
flex array or ref flex vector, param will be 1 and code must be generated to assign
the descriptor only. If the destination mode is a non-flex ref vector or ref array,
param will be 2, and code must be generated to assign the elements, which will be
objects of fixed size.

6.6.6 Space finding

xbdpack param operands, which, if even in number, comprise the lower and upper bounds
for each dimension of an array; if param is 1, the operand is the upper bound of a
vector (for which the lower bound is always 1). The operands on the stack are to be
replaced by a value for the bound pack, used by xdyngrab Below. For the operation
xbdpack, m is undefined.

xdyngrab [always following xbdpack and load of a bool value inside an invented routine] 2
operands, a bound pack and a value for a bool. Code must be produced to generate

36 The RS Compiler for ALGOL 68

the space for the elements of an array or vector, locally or on the heap according
as the boolean at run time is true or false. The operation xdyngrab delivers the
descriptor of the array or vector, and m is its mode.

xstatgrab

1 operand, the static part of a generated dynamic object of mode X, where M = REF

X. Code must be produced to create the space (if necessary) for the static part of
the object, assign the operand to it and deliver the reference. param = ABS TRUE or
ABS FALSE for local or heap generation respectively.

xcopy [preparatory to xassign for a flex vector or flex array] 1 operand, the descriptor of
an array of any dimensions, or the descriptor of a vector. Code must be produced
to generate heap space and copy the elements of the array or vector into it. The
operation delivers the descriptor; m is the corresponding mode and param = ABS

FALSE.

xdefaultbd

No operand. The operation is to tuck, under the top item on the stack, a value for a
default lower bound of 1, arising from constructions like [n] INT in the source text.
m is undefined.

6.6.7 Straightening

xprestraight

[preparatory to xstraight whenever necessary] 1 operand, an object to be adjusted
to have mode m in readiness for straightening, which is carried out by the operation
xstraight described below. The mode adjustment will entail provision of an initial
ref, if the original object was not a reference, and will introduce FLEX as given in m,
if not already present. The resulting object, for which a value must be put on the
stack, need exist only within the current scope.

xstraight

2 operands, the composite and index fields for the STRUCT displayed below. A
straight of mode m must be constructed and a value for it put on the reverse Polish
stack. The param field gives information about the object to be straightened and is
used as follows

1 union

number of elements
struct or i-struct

-1 vector

-1-n array of n dimensions

xstrindex

2 operands, a straight, s, and an integer, i (say). The operation gives rise to the
procedure call

(index OF s)(i, composite OF s)

The result of this procedure is the ith member of the straight s, having mode m,
and a value for it must be put on the reverse Polish stack.

A straight, of mode STRAIGHT X (say), is a descriptor — distinct from an array descriptor —
containing a reference to the original composite object. It also contains a procedure which is
provided by the compiler for indexing, and an integer for the number of members of the straight.
Thus a straight descriptor is likely to have the form

STRUCT (REF COMP composite, PROC (INT, REF COMP) X index, INT upb)

Chapter 6: Stream language in detail 37

where COMP is the original row, vector, struct, i-struct or union mode (but with FLEX intro-
duced wherever applicable).

6.7 The Control Imperatives (XCONTROL)

The mode XCONTROL is defined as

MODE XCONTROL = STRUCT (INT fn, m, BITS props, INT param);

fn Distinguishes the various XCONTROLs, as listed below, and reflects the structure of
Algol 68 in stream language.

m In an XCONTROL at the start of a serial clause (or an enquiry clause, or the remainder
of a serial clause after an EXIT in the source text), the m field gives the mode of the
result of the clause. The mode number is negated when the result of the closed
clause is also the result of the surrounding serial clause. m is defined only where
indicated in the table below.

props The letters in the table refer to properties detailed on the next section, which are
concerned with the implementation of lifetimes and the handling of results. Fur-
thermore, any XCONTROL generated by the compiler has the compgenbit set.

param Additional information, defined in the following section.

6.7.1 Fields of an XCONTROL

xcase, etc [1]
m defined; props = a; param = mode of result of closed clause [7]

xin, etc [2]
m defined;props = a b;param = total number of cases [8]

xcomma, etc [3]
m defined; props = a b e [6];param = case no of ensuing serial clause

xwhile, xdo [4]
m defined;props = a; param = mode of result of closed clause

xesac, etc [5]
props = b; param = undefined

xroutinend

props = b g; param = undefined

xsemi props = s; param = undefined

xexit m defined;props = b;param = first exit in a serial clause is treated like an xin, sub-
sequent exits like xcomma

xfinish the final imperative from a successful compilation

Notes

1 closed clause starters: xbegin, xif, xcase, xcaseu, xcoll

2 xthen, xin, xinu

3 serial clause separators: xelse, xcomma, xout, xcommau, xoutu, xcollcomma

4 if xwhile is present, it is the closed clause starter; otherwise xdo is the closed clause
starter

5 closed clause terminators: xend, xfi, xesac, xesacu, xendcoll, xod (which is im-
mediately preceded by an xsemi, so bit b will in this case be absent).

38 The RS Compiler for ALGOL 68

6 this property applies to xelse, xout and xoutu only.

7 the mode number is negated when the result of the closed clause is also the result
of the surrounding closed clause

8 in an if clause, then and else count as "cases" 1 and 2; in a case clause with an out
part, the param field at the xin is minus the number of cases between in and out.

6.7.2 The props field of an XCONTROL

As with the corresponding field of XROUTINE, the props field is made up as a conjunction of bits
values of the form 2**n. These are denoted mnemonically (eg iddbit), and represent attributes
of the context at which they are given. The contexts (a, b, s, e, g) are those given in the above
table. Bits not mentioned for a particular context (or bits of the props field which have no
mnemonics) must be assumed undefined.

6.7.2.1 General preliminary information

The meaning of individual bits is as follows

priobit an Algol 68 priority declaration in the source text

semibit semicolon

decbit an Algol 68 declaration (except priority)

vardecbit

an xvardec or xivardec

labbit a label setting

exitbit an EXIT

locgenbit

an explicit local generator

locdydecbit

a declaration containing a dynamic part

6.7.2.2 Dynamic result bits

Table a

Presence of bit means that the following serial clause contains a discarded dynamic result
. . .

dyprocbit

. . . from a procedure

dyvardecbit

. . . from a closed clause containing an xvardec or an xivardec

dydecbit . . . from a closed clause containing an Algol 68 declaration in the source-text

Table b

Presence of bit means . . .

dontpullbit

. . . that there is a dynamic result from the preceding serial clause (or part of serial
clause before an EXIT)

Table s

Presence of bit means (at an xsemi only) . . .

dontpullbit

. . . that the preceding phrase was a declaration

Chapter 6: Stream language in detail 39

dyprocbit

dyvardecbit

dydecbit . . . that a dynamic result can now be discarded unless the dontpullbit is also
present

6.7.2.3 Routine bits

Table g

Presence of bit means that . . .

genprocbit

. . . the foregoing routine was an invented generator routine

globscopebit

. . . the foregoing routine was an invented assignment or straightening routine that
used no non-local names

valbit . . . the foregoing routine is to be loaded onto the reverse Polish stack; there is no
XLOAD following

\subsubsectionSpecial bit

Table e

Presence of bit means that . . .

elifousebit

. . . xelse, xout or xoutu are derived from elided source-text constructions ELIF or
OUSE

6.7.3 Other control imperatives

\subsubsectionfn = xfor

Introduces a do-statement. Values for the FROM, BY and TO parts (if any) will have been
loaded, in that order.

m undefined

props

1 if an identifier has been given for the loop counter, in which case the
next imperative will be an XIDDEC for the identifier with type xfordec

+2 if a value for FROM is present

+4 if a value for BY is present

+8 f a value for TO is present

param gives the number of values on the stack

6.7.3.1 fn = xforall

Introduces a forall-statement. Values for the arrays or vectors to be sequenced through will have
been loaded, in the order in which they were given in the source text.

m undefined

props undefined

param the number of values on the stack

The xforall imperative will be followed by a series of xiddec imperatives for the identifiers
declared by the forall statement. Each of these refers to the array or vector value on top of
the stack, which must be removed.

40 The RS Compiler for ALGOL 68

6.7.3.2 fn = xuchoice

Occurs immediately after an xinu or xcommau (except for the possibility of intervening labels),
and represents the declarer in a choice.

m mode of the declarer

props setting of the decbit indicates that a formal identifier has been given, in which case
the next imperative will be an XIDDEC for the identifier, with type xccdec

param the serial number of m in the union mode under test (say n), or -n if m is itself a
union

6.8 The XWARN Imperative

The XWARN imperative gives advance warning of various stream language imperatives. Most of
these are certain types of dyadic operation, for which the XWARN is given between the loading
of the two operands and is additional to the XOPER which will come when both operands have
been loaded. XWARN has the form

MODE XWARN = STRUCT (INT w)

where w takes one of the mnemonic values specified below indicating what operation is being
forewarned.

xwass xassign operation

xwandth xdyop operation ANDTH (see Appendix 1)

xworel xdyop operation OREL (see Appendix 1)

xwindex xsimpleindex, xtrimindex, xtrim and xstrindex operations

xwplusabetc

xdyop operations PLUSAB, MINUSAB, TIMESAB, OVERAB, MODAB and DIVAB

xwforall forall-statement. The warning occurs after each loading of a vector or an array

xwloop for-statement. The warning occurs at the beginning, ie before the loading of the
FROM, BY or TO parts if present

6.9 The XPRAG Imperative

This is defined as

MODE XPRAG = STRUCT (BOOL all, REF VECTOR [] CHAR pr)

where pr refers to a vector containing the first line of a pragmat in the source-text. The all
field is TRUE if pr contains the whole of the pragmat, otherwise FALSE. If the first line contains
an opening comment symbol, pr will contain only the characters preceding the comment symbol.

6.10 The XCHARPOS Imperative

The XCHARPOS imperative allows the shell to keep track of the character position within a line
of Algol 68 source-text. It is defined as

MODE XCHARPOS = STRUCT (INT charpos)

where charpos indicates the character position of a significant symbol. Such information
may be required for diagnostic purposes. The XCHARPOS imperative will normally be output so
that when read back, it immediately precedes an XCONTROL; the significant symbol will be the
source-text analogue of the XCONTROL. However, if the XCONTROL is a closing control, there may
be coercions between the XCHARPOS and the XCONTROL.

Chapter 6: Stream language in detail 41

The imperatives xfor and xforall are not output at positions corresponding to the FOR and
FORALL symbols; for these the symbol position is output preceding the XWARN (Xwloop). A sym-
bol position is also output before an XROUTINE imperative and an XLABDEC (where notsetting
= FALSE).

6.11 An example of stream language

0 PROGRAM p10

1 CONTEXT VOID

2 BEGIN INT i; INT k = 80;

3 REAL rrr := 2.34e5;

4 MODE V = VECTOR [3] INT;

5 V v := (k, i, ENTIER rrr);

6 FLEX V fv := v;

7

8 PROC p = (INT n) INT:

9 IF n > 0

10 THEN n * (v[n] - i)

11 ELSE 0

12 FI;

13

14 p(i := -4)

15 END

16 FINISH

When the above program is compiled by the RS compiler, the following stream language is
obtained:

6.11.1 Sizes

module contains 130 outputs, 2 routines, 35 modes, 1 labels, 11 identifiers, 1 modules and 0
libinds

6.11.2 Modes

31 VECTOR [] INT

32 PROC (BOOL) 31

33 STRUCT 3 INT

34 FLEX VECTOR [] INT

35 PROC (INT) INT

6.11.3 Other imperatives

xtdtype(902)

2: begin(5, 8r361, 5)

3: dummydec(0, 4, " anonymous") vardec(1039, 5, "i")

semi(0, 8r4000, 0) number(15, "a80") iddec(15, 6, "k")

4: semi(0, 8r4000, 0) number(19, "r2d34p5")

ivardec(1043, 7, "rrr")

5: semi(0, 8r4000, 0)

vardec(1056, 8, " anonymous")

load(8) warn-assign

routine(1001, 32, 32778, 8, " generator")

fdec(7, 9, " anonymous")

begin(31, 8r420, 31) number(15, "a3") bdpack(0, 1)

42 The RS Compiler for ALGOL 68

load(9) dyngrab(31, 0)

end(0, 8r4400, 31)

endrd(0, 8r100410, 0)

assign(1056, 1) void(5, 0) semi(0, 8r400, 0)

6: semi(0, 8r4000, 0) load(8) deref(32, 0) true

ppack(32, 1) call(31, 1)

ivardec(1055, 9, "v")

semi(0, 8r4000, 0) load(9) warn-assign

coll(15, 8r41, 33) load(6)

collcomma(15, 8r41, 2) load(5) deref(15, 0)

collcomma(15, 8r41, 3) load(7) deref(19, 0)

monop(15, 209)

endcoll(0, 8r0, 33) isvec(31, 0) assign(1055, 2)

void(5, 0) semi(0, 8r0, 0)

7: semi(0, 8r4000, 0) load(8) deref(32, 0) true

ppack(32, 1)

call(34, 1)

ivardec(1058, 10, "fv")

semi(0, 8r4000, 0) load(10) warn-assign load(9)

deref(31, 0) copy(31, 0) assign(1058, 1) void(5, 0)

semi(0, 8r0, 0)

9: semi(0, 8r4000, 0)

routine(1002, 35, 2, 9, "p")

fdec(15, 11, "n")

10: if(7, 8r41, 15) load(11)

11: number(15, "a0") diop(7, 114)

then(15, 8r41, 2) load(11) load(9) warn-index

load(11) simpleindex(1039, 1) deref(15, 0) load(5)

deref(15, 0)

diop(15, 17)

12: diop(15, 194)

else(15, 8r41, 2) number(15, "a0")

13: fi(0, 8r0, 15)

endrd(0, 8r0, 0)

15: semi(0, 8r4000, 0) load(1002) load(5) warn-assign

number(15, "a4") monop(15, 17) assign(1039, 1)

deref(15, 0)

16: ppack(35, 1) call(15, 0) void(5, 0)

end(0, 8r0, 5)

finish(0, 8r0, 0)

The above is merely a visual representation of the output from a ‘standard’ shell. The XEDIT
imperatives have been absorbed in order to produce a continuous series of other imperatives.

43

7 Introduction

A program can be compiled in portions known as modules, of which there are three different
types. The basic type is the closed clause or cc module which consists of an Algol 68 closed
clause with a suitable heading and the word FINISH. This could be a complete program or one
of a number of cc modules which are to be nested one within another. In the actual Algol text
of a cc module, any place at which some inner module is later to be inserted is marked by a new
type of unitary clause known as a here-clause.

A nest of modules will be described as a composition. The selection and placement of modules
to make a composition is specified in a composition module, which contains no Algol 68 text
of its own. A composition need not be completed all at once. A program can be partially
composed in one composition module, leaving spaces for further cc modules to be inserted later
on by other composition modules.

A third type of module, the declarations module, enables modes, procedures and other items
to be declared and compiled in advance of their use in other modules. Declarations modules are
used in a very straightforward way requiring no composition, but they can never make a program
by themselves. To make this distinction clear, the other types of module (cc and composition)
will be described as program modules.

45

8 The Source Language

8.1 keeplists

Interaction between modules demands that source-text indicators (identifiers, modenames and
operators) declared in one module shall be usable with the same meanings in another module.
The source-text of a module must always specify which of its indicators are to be kept after
compilation for use in modules to be compiled later. A keeplist is a sequence of such indicators,
separated by commas. To distinguish between versions of operators, the modes of operands
must always be included, as in the keeplist here:

MAN, WOMAN, = (MAN, WOMAN), = (WOMAN, MAN), adam, eve

The order of the items in a keeplist is never significant.

8.2 Simple declarations modules

The sole purpose of a declarations module is to make declared items available for use in other
modules. Consequently, a declarations module must invariably have a keeplist for such items,
and if it uses no indicators from other modules itself (other than from automatically incorporated
library modules), its form is

DECS decstitle:

body

KEEP keeplist

FINISH

In the first line, decstitle stands for an identifier chosen to be the title of the module.
The body is not enclosed in BEGIN-END brackets but is introduced by a colon. It consists of
Algol 68 declarations and other phrases which may be convenient for setting things up. Certain
restrictions are enforced to ensure that declarations modules can be obeyed in any order without
giving rise to side-effects. Thus no procedures or user-defined operators may be called, except
within routine texts. Also, no labels may be declared in the outermost level. These are the only
restrictions for a self-sufficient declarations module, but we must now turn attention to a more
general class of module which has an added restriction.

A DECS module can use indicators kept from previously compiled DECS modules. There are
two requirements for the passage of an item from one module to another. Its indicator must be
included in the keeplist of the source module and the title of that module must be included in
the heading of the using module, as shown in the second line below:

DECS decstitle

USE decstitlelist:

body

KEEP keeplist

FINISH

The decstitlelist is simply a list of the titles of all the other DECS modules required,
separated by commas. The body can now use kept items from these modules, with one further
restriction to ensure complete absence of side-effects. No kept item which is a reference (or a
structure, array or union containing a reference) may be used, except within a routine text. These
restrictions on the use of external references and calls of procedures or user-defined operators
are peculiar to DECS modules and free the user from having to consider at what stage his DECS
modules are actually obeyed.

46 The RS Compiler for ALGOL 68

8.3 Simple Programs

Simple programs will usually consist of one closed clause module, possibly supported by previ-
ously compiled declarations modules. Using square brackets to indicate this option, the form in
which the cc module is written is:

PROGRAM progtitle

[USE decstitlelist]

closed clause

FINISH

8.4 Nested Modules

Within any program module, a place can be held for a separately compiled program module to
be inserted later. This is done by the new unitary clause

HERE place(keeplist)

where place stands for some identifier to name the place, and the keeplist contains any
indicators currently in scope which are to be kept for the of the inserted program module. If
there are several HERE clauses in the same module, the place identifiers must all be distinct.

The form of a cc module which contains HERE-clauses is similar to that of the simple program
shown in C2.3, except that each place defined in a HERE-clause must also be listed in the module
heading before the title, ie

PROGRAM (placelist) progtitle

[USE decstitlelist]

closed clause including HERE-clauses

FINISH

The places in the placelist are listed, with comma separation, in any order.

A simple cc module suitable for insertion at a given place would be

PROGRAM title

[CONTEXT place IN progtitle]

closed clause

FINISH

The CONTEXT part of the heading, if present, makes the keeplist at the given place accessible
in the closed clause. It also prevents the module being used in any other context. (By contrast, a
module with no context specification could be inserted at any place, but would be denied access
to the associated keeplist. This may seem a pointless construction, but a realistic example of its
use is given in C2.7.)

Example of nesting

PROGRAM (detail) frame

BEGIN MODE FORM = ... ;

OP CONV = (FORM f)INT: ... ;

FORM f1, f2, g1, g2;

- - -

HERE detail(FORM, CONV(FORM), g2);

- - -

END

FINISH

PROGRAM insert

CONTEXT detail IN frame

BEGIN FORM f := g2;

Chapter 8: The Source Language 47

INT n := CONV f;

- - -

END

FINISH

Although insert is compiled in the context of the first module so as to pick up its kept
indicators, it remains a separate module. A program combining the two modules has to be
expressed as a composition module,

PROGRAM whole

COMPOSE frame(detail = insert)

FINISH

8.5 Composition

The purpose of a composition module is to assemble a nest of modules by pairing up formal
place names (the ones in the Algol 68 HERE clauses) with actual names of program modules.

The form of module which completes a nesting, inwards from some given starting module x,
say, is

PROGRAM progtitle

COMPOSE nest

FINISH

where progtitle is a new identifier to act as the title of the composition and nest starts
with the title, x, of the starting module, continuing with a bracketed list of substitutions having
a place on the left and on the right a further nest or the name of a program module.

8.5.1 Example

Given a program module starting

PROGRAM (x1, x2) x

and a set of inner modules with the headings

PROGRAM a

CONTEXT x1 IN x

PROGRAM (b1, b2, b3) b

CONTEXT x2 IN x

PROGRAM (c1) c

CONTEXT b1 IN b

PROGRAM d

CONTEXT b2 IN b

PROGRAM e

CONTEXT b3 IN b

PROGRAM f

CONTEXT c1 IN c

the following composition module combines them all into one:

PROGRAM compo

COMPOSE x(x1 = a,

x2 = b(b1 = c(c1 = f),

b2 = d,

48 The RS Compiler for ALGOL 68

b3 = e))

FINISH

This composition module may still not be a complete runnable program, for x may specify
some context. If so, it will obviously apply to compo as well. Composition modules cannot
have context specifications in their headings; the context which applies to such a module is that
specified in its outermost cc module.

8.6 Partial Composition

A composition module may leave some places to be filled by other program modules in a further
composition later. It does this by pairing a place name with a new place name of its own instead
of an actual program module title. A new place name in a composition module is introduced
by the word HERE, even though it is not in an Algol text setting. As an example, let us omit
module c from the composition given above, and make the partial composition

PROGRAM (hole) p

COMPOSE x(x1 = a,

x2 = b(b1 = HERE hole,

b2 = d,

b3 = e))

FINISH

Observe that there is no explicit keeplist at HERE in a partial composition. The available
indicators are all those kept en route from the outermost module to the word HERE in the
composition. Thus, any module now compiled at

CONTEXT hole IN p

has available to it all the indicators kept at x2 in x, as well as those at b1 in b. Combination
of keeplists is the main purpose of partial composition, enabling programs to exploit several
‘environmental packages’ simultaneously, as we shall now see.

8.7 Use of environmental packages

Many packages (eg for simulation or graph-plotting), besides declaring modes and procedures,
have to set up some starting position before the user’s program is obeyed, and tidy up afterwards
(eg close files which were opened at the start). The basis of any such package must be a cc module
with a HERE for the rest of the program.

For instance,

PROGRAM (userprog) package1

BEGIN - - -;

- - -;

HERE userprog(keeplist1);

- - -;

- - -

END

FINISH

PROGRAM myprog

CONTEXT userprog IN package1

closed clause

FINISH

with

PROGRAM runner

COMPOSE package1(userprog = myprog)

Chapter 8: The Source Language 49

FINISH

as the composition.

Now consider writing a program, ourprog say, which requires the services of two packages,
designed independently along the lines of package1. The question will be, in what context to
compile ourprog? It cannot be userprog IN package1, which brings in only keeplist1, nor
can it be userprog IN package2 for a similar reason. The only answer is a context like user IN

both, set up specially by the partial composition:

PROGRAM (user) both

COMPOSE package1(userprog = package2(userprog = HERE user))

FINISH

The context user IN both combines the keeplists of both packages, as explained in C2.6.
Before leaving this example, it is worth remarking that package2 fits at userprog IN package1

because package2 specifies no particular context. Being an independent package, it needs no
access to package1’s keeplist.

8.8 Declarations Modules In A Context

DECS modules, like cc modules, can specify a context in their heading:

DECS decstitle

CONTEXT place IN progtitle:

body using kepts at above place

FINISH

The CONTEXT line makes the kepts at place IN progtitle accessible for use in the body of
the DECS module, with the same restrictions as given in C2.2 earlier. No kept item which is
a reference (or a structure, array or union containing a reference) may be used except within
routine texts. And as with all DECS modules, there can be no procedure calls, or calls of user-
defined operators.

Any module which has access to the same kepts (ie those at place IN progtitle) can USE

this declarations module. The context specified by the using module must therefore be the same
as that of the DECS module or be a dependent context resulting from partial composition —
which, by the combination rule, would supply the same kepts and more besides. To see this
clearly, consider once more the composition

PROGRAM (hole) p

COMPOSE x(x1 = a,

x2 = b(b1 = HERE hole,

b2 = d,

b3 = e))

FINISH

The context hole IN p is derived from b1 IN b which is in turn derived from x2 IN x. It
follows that any module specifying CONTEXT hole IN p can USE declaration modules specifying
one of hole IN p, b1 IN b, x2 IN x, or, of course, no context at all.

8.9 Provision For ALGOL 68 Standard Environment

Any cc module or declarations module having no explicit context specification in its heading is
assumed by the compiler to have specified a standard default context. For descriptive purposes
only, we shall refer to this as

CONTEXT %program IN %stdprelude

Thus, a program which appears to be complete, such as

PROGRAM pmw

50 The RS Compiler for ALGOL 68

closed clause

FINISH

can only be run when nested in %stdprelude. The intention is that the necessary composition
should be effected automatically. The %stdprelude will go some part of the way towards
providing the Algol 68 standard environment and will do so without any action by the user. (Its
kepts are accessible to all modules without need for partial composition, see 2.10.)

The remainder of the standard environment will be provided by library DECS modules. With
the cooperation of its shell, the compiler will supply a default USE for any library declarations
modules required in a program.

8.10 The VOID Context

A truly outermost cc module specifies CONTEXT VOID and is, by that token, a prelude. (Absence
of any context specification, as we have already seen, does not imply a void context.) The
compiler treats preludes in a special way. For simplicity of explanation, it will be assumed that
a prelude has only one HERE clause.

The first special property of a prelude is that it provides what may be described as a universal
context for composition purposes. A cc module which specifies a prelude context (explicitly or
by default) can be inserted directly in the prelude or in any dependent context. An example of
this is to be found at the end of C2.7 (environmental packages).

The second property of a prelude is that its kepts are universal. Its own keeplist and those
of any DECS modules compiled at that context are freely accessible to all dependent modules.
This is shown below for a chain of cc modules.

PROGRAM (prog) ownprelude

CONTEXT VOID

closed clause

FINISH

can accept cc keeplists from nowhere.

PROGRAM (a1) a

CONTEXT prog IN ownprelude

closed clause

FINISH

can accept cc keeplists from prog IN ownprelude.

PROGRAM (b1) b

CONTEXT a1 IN a

closed clause

FINISH

can accept cc keeplists from prog IN ownprelude and a1 IN a.

PROGRAM c

CONTEXT b1 IN b

closed clause

FINISH

can accept cc keeplists from prog IN ownprelude and b1 IN b.

The last of these modules, c, shows the accessible kepts to be those from the immediately
surrounding context and the outermost one. The keeplist at a1 IN a is not accessible.

Declarations modules, like cc modules, can be compiled at CONTEXT VOID. Any module can
USE such a DECS module. This is a consequence of the general rule given in C2.8, and in fact
the limiting case of it.

Chapter 8: The Source Language 51

Finally, the context for a composition will be VOID if the composition starts from a prelude.
This means that systems programmers will be able to modify %stdprelude if they wish, without
losing any of its special properties.

8.11 Summary Of Syntax And Semantics Of Modules

8.11.1 DECS Module

DECS decstitle

[CONTEXT place IN progtitle]*

[USE decstitlelist]

:

body

KEEP keeplist

FINISH

Except within routine texts, the body must not use any externally declared references or call
any procedures or user-defined operators.

8.11.2 PROGRAM Modules

PROGRAM [(placelist)] progtitle

[CONTEXT place IN progtitle]*

[USE decstitlelist]

closed clause

FINISH

The above is a closed clause or cc module. The closed clause can include here-clauses of the
form HERE place(keeplist). This makes a hole which can be filled by another cc module, as
specified in a composition module:

PROGRAM [(placelist)] progtitle

COMPOSE nest

FINISH

8.11.3 Notes

decstitle, place and progtitle all stand for identifiers. An itemlist is a sequence of items
with comma separation. For the definition of a keeplist, see C2.1. For definition of nest, see
C2.5.

* Omission of an explicit context introduces the default context:

CONTEXT %program IN %stdprelude

For absolutely no context at all, CONTEXT VOID must be written.

8.12 Composition Rules

A program module can be composed at p IN q if its context specification (explicitly or by default)
is one of the following three possibilities

• p IN q

• the prelude context from which q is derived

• VOID (applicable only to prelude writers)

The context specification of a composition module is that of its starting module.

52 The RS Compiler for ALGOL 68

8.13 Accessibility Of Kepts For Use In A Cc Module

If the context specification is CONTEXT p IN q, the cc module can use kept indicators from

• p IN q and any DECS compiled at p IN q

• if q is a partial composition, from any hierarchical context embracing p, and any DECS

compiled at any of those contexts

• the prelude context of q and any DECS compiled there

• any DECS compiled at context VOID

Any DECS modules required must be mentioned in the heading of the using module (in USE

decstitlelist), unless they are library DECS which may be incorporated in the final program
automatically as needed.

8.14 Accessibility Of Kepts For Use In A DECS Module

The sources are the same as for cc modules, but any kept references are debarred from use in
the body of the DECS module except within routine texts. This restriction extends to objects
such as structures, arrays and unions containing references.

53

9 Stream Language

This chapter may be regarded as a continuation of B3, which specified the details of stream
language for a single module.

\sectionThe imperatives

The constituent modes of OUTPUT needed for the compilation of single modules have been
described in B2.1. The remaining imperatives can be divided into three groups

1. Giving information about the current compilation

XMODINFO gives the name and type of the current module

XSPEC gives information about a HERE clause, or the current module if it is a DECS

module

XTDTYPE contains the local number and type of a cc module

XBUTYPE gives advance notice of items to be kept from a DECS module

XCOMPTYPE

describes the properties of a composition module

XKEEPS contains the decnos of items kept from a DECS module

2. Giving information about other modules

XTDEC defines a kept identifier available to the current module

XTMODULE introduces an external module

XINTERF describes a keeplist and introduces a series of XTDECs

3. Representing constructions in the code

XOPENMODULE

gives information about the code of a module and marks its beginning

XCLOSEMODULE

marks the end of the code of a cc module

XCLOSURE deals with a composition module

XCALLMODULE

starts a new cc-module running (produced by a HERE clause in the source-text)

9.1 The Current Compilation

The output to stream 0 is

XMODINFO [XSPEC]*

followed by the XEDIT down, regardless of the type of the module. The mode definitions are as
follows

MODE XMODINFO = STRUCT (ID name, CAT l, g, INT type),

XSPEC = STRUCT (ID f, INT no, nl, ng,

UNION (REF VECTOR [] CHAR,

REF VECTOR [] CAT

) u

),

where

MODE CAT = STRUCT (ID n, f, INT level)

54 The RS Compiler for ALGOL 68

The mode CAT (an abbreviation for ‘Compiled AT’) is used to hold context information and
corresponds to CONTEXT f IN n in some module. The name field of XMODINFO contains the name
of the module and type is the number of HERE clauses or -1 for a declarations module. The
contexts described by the other fields are defined below.

If the module is being compiled at CONTEXT VOID, both l and g will be null. Otherwise,
suppose that the local context is CONTEXT a IN b (where for a simple program b will be the
standard prelude). Then the first two items in the l field will be (b, a). If b was compiled at
CONTEXT VOID, g will be null. If not, g describes the prelude context from which b was derived.

For a cc-module or composition module, there will be one XSPEC corresponding to each HERE

Clause. The name of the HERE clause is f and no is its number. The remaining fields contain
information on the keeplist (normally given in brackets after HERE in the source text) available
to the module to be inserted.

If the module is a declarations module, the XSPEC contains its own name and the no field is
0.

The fields nl and ng are the number of modules accessible at the local and global levels
respectively. The mode of u depends on the type of the module; for a cc-module or declarations
module it refers to a VECTOR [] CHAR containing a coded form of the keeplist. The u field
of a composition module contains a REF VECTOR [] CAT, allowing access to all of its context
information.

The output to level 1 depends on the type of module

composition
XCOMPTYPE

cc XSIZES, REF VECTOR [] MDE, XTDTYPE

declarations
XSIZES, REF VECTOR [] MDE, XBUTYPE

In each case an XEDIT down switches the reader to stream 2. XSIZES and MDE have been
described in part B, except for the last two fields of XSIZES. The field nomodules contains the
total number of modules involved and nolibinds gives the size of the array required to hold
details of identifiers kept from other modules.

The modes XCOMPTYPE, XTDTYPE and XBUTYPE are given by

MODE XCOMPTYPE = STRUCT (INT moduleno, type, maxmodule),

XTDTYPE = STRUCT (INT moduleno, type),

XBUTYPE = STRUCT (REF VECTOR [] INT decnos, modes)

The type fields are the same as in XMODINFO (-1 for a declarations module, otherwise the
number of HERE clauses) and the moduleno is the local number given to the module. maxmodule
is the maximum number of modules directly involved in the composition. The purpose of
XBUTYPE is to give advance notice of the identifiers and routine texts that are to be kept. The
decnos array contains the declaration numbers and the modes array, which is the same size,
contains the modes of these kept objects. The decnos are repeated at the end of the compilation
of a declarations module, where they are output as an XKEEPS (= REF VECTOR [] INT).

9.2 Parameters Of The Compile Procedure

PROC give module details = (ID name, INT mn, BOOL comp) YMODINFO:

PROC give spec = (ID n, f, YM ym) YSPEC:

The above procedures are the parameters of the compile procedure that are concerned with
modules, where

MODE YMODINFO = STRUCT (XMODINFO xmi, YM ym),

Chapter 9: Stream Language 55

YSPEC = STRUCT (XSPEC xs, YS ys),

YM = STRUCT (INT version, address),

YS = INT

The modes YM and YS are implementation dependent and may be extended; the above defi-
nitions are chosen so that they may contain the minimum amount of information.

The action of givemoduledetails depends on the value of the second parameter. If it is 0,
the procedure must return a YMODINFO, whose xmi field is identical to the XMODINFO output on
some previous compilation of the module x, or has illegal type (-2) if not found. If the second
parameter is non-zero, the compiler is looking for a library declarations module whose keeplist
contains the name x, as specified by the second parameter below:

1 identifier

2 compound symbol (operator)

3 bold symbol (mode or operator)

The third parameter is TRUE if the module currently being compiled is a composition module,
otherwise FALSE. The ym field of YMODINFO has a version field which must change whenever the
module x changes significantly. It also contains information to allow the translator efficient
access to the library. It may be output as part of an XTMODULE (see next section) to check that
the module concerned has not changed significantly between compilation and loading; it could
also be output in an XINTERF as a help in its other possible role as a fast look-up.

When the compiler calls givespec(n, f, ym), the result must be a YSPEC whose xs field (of
mode XSPEC) has name f and was output by a previous compilation of module n; ym is the ym

field of givemoduledetails(N, 0,). The ys field contains the version number (as for ym) and
must change if the XSPEC changes in any way. A module x changes significantly if its stream 0
is altered in any way.

9.3 Information About Other Modules

Stream 2 contains information defining the kept names, if any, available to the current module
as a result of its context. This will be given by

XINTERF XTDEC [XTDEC]*, where

MODE XINTERF = STRUCT (ID name, YM ym, ID formal, YS ys,

INT level, ownlevel

),

XTDEC = STRUCT (BOOL bu, INT level, REF IDDEC id),

IDDEC = STRUCT (ID name, INT decno, level, mode, scope,

REF IDDEC rest

)

Each keeplist contributing to the context will produce one XINTERF (only in this position),
immediately followed by a series of XTDECs. Each XTDEC defines one identifier kept in this
keeplist available to the current module. The fields name and ym identify the module containing
the keeplist, with the next two fields being provided so that the translator may check that this
is compatible with the following XTDECs, which were derived from a keeplist at compilation. The
level field of XINTERF is the same as in the following XTDECs; this and ownlevel will be discussed
more fully later.

The above applies only to modules connected by means of a CONTEXT specification. Names
derived from declarations modules, that arise from the USE construction or the default library,
are introduced on stream 2 by

XTMODULE XTDEC [XTDEC]*,

56 The RS Compiler for ALGOL 68

where

MODE XTMODULE = STRUCT (INT type, moduleno, ID name, YM ym)

The XTMODULE is a general construction introducing an external module and giving it a local
module number. The name and ym fields are used to locate and check the module, with the type
being the same as that of its XMODINFO. In the present case, the type will be -1 since the module
is a declarations module; this is the only situation in which it will be followed by XTDECs as
above. The bu field will be TRUE if the XTDEC is introduced by an XTMODULE, otherwise FALSE.

The IDDEC pointed to by the id field of an XTDEC has the same form as that of an XIDDEC (See
B3.2). If the XTDEC describes a declaration from a declarations module in the default library,
the decno of the IDDEC is in a series which starts at startlib + 1. Each decno is used only
once in a compilation and refers to an entry in the libinds array. For XTDECs arising from a
CONTEXT specification or the USE construction, the declaration numbers are normally included
in the series for the current module (ie identifiers start at 4 and procedures at startrd + 1).
However, the treatment is different for an XTDEC corresponding to a variable which refers to a
generating routine for a kept mode. Firstly, the translator must arrange for the variable to be
dereferenced; secondly, startkmp is added to its declaration number. The values of startlib,
startrd and startkmp are implementation dependent (see Appendix 5).

The stream language corresponding to the code of the module starts on stream 3. There is
an XEDIT down at the end of stream 2.

9.4 A Model For A Running CC Module

The model given below describes the context information that is available to a running cc
module. The simplest way to present it is by means of Algol 68 mode declarations, even though
they would not appear in any translator. The current module may be thought of as a CONINFO

current, where

MODE CONINFO = STRUCT(REF CONINFO last, REF [] CLOSURE holes,

[] REF CONINFO condisp, [] VALUE keeps

),

CLOSURE = STRUCT (CODE code, REF [] CLOSURE holes)

Suppose the current context is CONTEXT p IN q. Then the last field refers to the CONINFO

of the module q, with keeps providing information about the keeplist given at the HERE clause
p. holes are the HERE clauses of this module, while the condisp field contains the CONINFOs of
all modules accessible to this one. There is in the condisp and keeps arrays because indexing
should be possible without requiring descriptors.

A CONINFO is rather similar to a procedure environment, with holes and keeps being like
parameters and condisp like a procedure display. New CONINFOs are added to this array dy-
namically by means of XCALLMODULE (see next section, while CLOSUREs may be constructed at
load-time by means of XCLOSUREs.

The level fields of the modes in the previous section can be defined most easily in terms
of this model. The level field of XINTERF is the index into condisp OF current that gives the
CONINFO of the relevant module. This CONINFO contains the VALUEs which are the kepts defined
by the XTDECs following the XINTERF; the level of the XINTERF is repeated in the succeeding
XTDECS. The ownlevel field of an XINTERF is the size of the condisp of the CONINFO of this
module.

There is a level associated with each XTMODULE, but this is given only in the succeeding
XTDECs and is not part of the mode XTMODULE. The level fields of the XTDECs define the context
under which the module was compiled as being 0 for CONTEXT VOID or equal to the level of some
previously introduced XINTERF.

Chapter 9: Stream Language 57

9.5 Constructions In The Code

The code of a cc-module is introduced by an XOPENMODULE and terminated by an XCLOSEMODULE,
where

MODE XOPENMODULE = STRUCT (ID name,

INT maxlevel, nof, moduleno

),

XCLOSEMODULE = STRUCT (INT moduleno, nof)

The name field of XOPENMODULE gives the name of the module, with the fields common to
both modes, nof and moduleno, giving the number of formals and local module number respec-
tively. The maxlevel field is similar to the ownlevel of an XINTERF, containing UPB condisp

OF current; this could be used to combine the condisp with the normal procedure display by
allowing space for a copy of the condisp at its base. A composition module may include several
open-close pairs around each synthetically generated module, whereas a normal cc-module has
only one pair round its code.

The mode XCLOSURE, defined by

MODE XCLOSURE = STRUCT (INT body, REF VECTOR [] INT actuals,

INT moduleno

),

is used to make up a new CLOSURE newcl, with the moduleno field giving it a local module
number. The other fields contain local module numbers that have been previously introduced
by XTMODULEs, XOPENMODULEs or other XCLOSUREs. The body field refers to the module containing
the instructions that become code OF newcl. The elements of actuals refer to the modules that
are supplied to the HERE clauses; these are set up as the holes OF newcl.

The code produced by a HERE clause will be an XCALLMODULE, where

MODE XCALLMODULE = STRUCT (INTPAIR body,

REF VECTOR [] INTRIPLE kset,

REF VECTOR [] INT keeps, INT last

),

INTPAIR = STRUCT (INT i, j),

INTRIPLE = STRUCT (INT i, j, k)

Its purpose is to start running a new cc-module, having set up a new CONINFO newcon, created
as shown below. It will be helpful to first define a recursive procedure:

PROC l = (INT n) CONINFO:

IF n = 0

THEN current

ELSE last OF l(n - 1)

FI

The Body field is used to construct the CLOSURE for the module to be run, given by

CLOSURE m = (holes OF l(j OF body OF c))[i OF body OF c],

where c is the XCALLMODULE concerned. The fields of the CONINFO newcon are set up as follows:

holes OF newcon

:= holes OF m

last OF newcon

:= l(last OF c)

keeps OF newcon

consists of the values corresponding to decnos given in keeps OF c

58 The RS Compiler for ALGOL 68

condisp OF newcon

is constructed by the concatenation in order of (condisp OF l(k))[i:j] for each
of the triples I, J, k in kset OF c, with newcon added as its final element

9.6 An Example Of Modular Compilation

The basis of this example is the use of two environmental packages, as in C2.7. There are
altogether 10 modules, a brief description of which is given below.

package1 cc, contains 2 HERE clauses for user programs

package2 cc, contains HERE clause for user program

comp2 composition, contains 2 HERE clauses, one of which allows the user program to use
both packages, as in C2.7.

cc1 cc, the module to be inserted into the first hole in the above context. It also contains
a HERE clause and uses two DECS modules.

decs3 declarations, uses no other modules

decs4 declarations, uses decs3 and package1

cc3 cc, the module to fill the hole in cc1

comp1 composition, composes cc1 to incorporate cc3

cc2 cc, the module to be inserted into the second hole in comp2

starter composition, runs the complete program

The source texts take the following forms:

(1) PROGRAM (userprog, results) package1

BEGIN

....

HERE userprog(keeplist1)

....

HERE results(keeplistr)

....

END

FINISH

(2) PROGRAM (userprog) package2

BEGIN

....

HERE userprog(keeplist2)

....

END

FINISH

(3) PROGRAM (user1, user2) comp2

COMPOSE package1(userprog = package2(userprog = HERE user1),

results = HERE user2)

FINISH

(4) PROGRAM (hole) cc1

CONTEXT user1 IN comp2

USE decs3, decs4

Chapter 9: Stream Language 59

BEGIN

....

HERE hole(keeplist)

....

END

FINISH

(5) DECS decs3:

....

....

KEEP keeplist3

FINISH

(6) DECS decs4

CONTEXT userprog IN package1

USE decs3:

....

....

KEEP keeplist4

FINISH

(7) PROGRAM cc3

CONTEXT hole IN cc1

USE decs3

BEGIN

....

END

FINISH

(8) PROGRAM comp1

COMPOSE cc1(hole = cc3)

FINISH

(9) PROGRAM cc2

CONTEXT user2 IN comp2

BEGIN

....

END

FINISH

(10) PROGRAM starter

COMPOSE comp2(user1 = comp1, user2 = cc2)

FINISH

9.6.1 Stream Language Produced For The Above Modules

The outputs are given in the order in which they would be read by the translator. XTDEC*

indicates an arbitrary number of XTDECs. The values of the fields (except for version fields) are
shown on the right-hand side. The u field of XSPEC has mode REF VECTOR [] CHAR if it refers to
a keeplist - otherwise it has mode REF VECTOR [] CAT.

The following declarations are used:

CAT c = (%stdprelude, %program, 1) {default context}

60 The RS Compiler for ALGOL 68

CAT n = ("", "", 0) {VOID context}

CAT u1 = (package1, userprog, 1)

CAT ur = (package1, results, 1)

CAT u2 = (package2, userprog, 1)

ID item = description of a kept identifier

ID lastid = description of the last declared identifier

modes: the REF VECTOR [] MDE imperative

(1) PACKAGE1

XMODINFO name = package1, l = c, g = n, type = 2

XSPEC f = userprog, no = 1, nl = 1, ng = 1, u -> keeplist1

XSPEC f = results, no = 2, nl = 1, ng = 1, u -> keeplistr

XSIZES

modes

XTDTYPE moduleno = 1, type = 2

XINTERF name = %stdprelude, formal = %program, level = 1,

ownlevel = 1

XTDEC* bu = FALSE, level = 1, id = item

XOPENMODULE name = package1, maxlevel = 1, nof = 2, moduleno = 1

XCALLMODULE body = (1,0), kset = (1,1,0), keeps = keeplist1,

last = 0

XCALLMODULE body = (2,0), kset = (1,1,0), keeps = keeplistr,

last = 0

XCLOSEMODULE moduleno = 1, nof = 2

(2) PACKAGE2

XMODINFO name = package2, l = c, g = n, type = 1

XSPEC f = userprog, no = 1, nl = 1, ng = 1, u -> keeplist2

XSIZES

modes

XTDTYPE moduleno = 1, type = 1

XINTERF name = %stdprelude, formal = %program, level = 1,

ownlevel = 1

XTDEC* bu = FALSE, level = 1, id = item

XOPENMODULE name = package2, maxlevel = 1, nof = 1, moduleno = 1

XCALLMODULE body = (1,0), kset = (1,1,0), keeps = keeplist2,

last = 0

XCLOSEMODULE moduleno = 1, nof = 1

(3) COMP2

XMODINFO name = comp2, l = c, g = n, type = 2

XSPEC f = user1, no = 1, nl = 2, ng = 1, u -> (u1,u2)

XSPEC f = user2, no = 2, nl = 1, ng = 1, u -> ur

XCOMPTYPE moduleno = 6, type = 2, maxmodule = 6

XTMODULE type = 2, moduleno = 1, name = package1

XTMODULE type = 1, moduleno = 2, name = package2

XOPENMODULE name = user1, maxlevel = 2, nof = 0, moduleno = 3

Chapter 9: Stream Language 61

XCALLMODULE body = (1,2), kset = ((1,2,2), (0,2,2)), keeps = NIL,

last = 2

XCLOSEMODULE moduleno = 3, nof = 0

XCLOSURE body = 2, actuals = (3), moduleno = 4

XOPENMODULE name = user2, maxlevel = 2, nof = 0, moduleno = 5

XCALLMODULE body = (2,1), kset = (0,1,2), keeps = NIL, last = 1

XCLOSEMODULE moduleno = 5, nof = 0

XCLOSURE body = 1, actuals = (4,5), moduleno = 6

(4) CC1

XMODINFO name = cc1, l = (comp2, user1, 3), g = c, type = 1

XSPEC f = hole, no = 1, nl = 1, ng = 1, u -> keeplist

XSIZES

modes

XTDTYPE moduleno = 3, type = 1

XINTERF name = %stdprelude, formal = %program, level = 1,

ownlevel = 1

XTDEC* bu = FALSE, level = 1, id = item

XINTERF name = package1, formal = userprog, level = 2,

ownlevel = 2

XTDEC* bu = FALSE, level = 2, id = item

XINTERF name = package2, formal = userprog, level = 3,

ownlevel = 2

XTDEC* bu = FALSE, level = 3, id = item

XINTERF name = comp2, formal = user1, level = 4, ownlevel = 3

XTDEC* bu = FALSE, level = 4, id = lastid

XTMODULE type = -1, moduleno = 1, name = decs3

XTDEC* bu = TRUE, level = 3, id = item

XTMODULE type = -1, moduleno = 2, name = decs4

XTDEC* bu = TRUE, level = 3, id = item

XOPENMODULE name = cc1, maxlevel = 4, nof = 1, moduleno = 3

XCALLMODULE body = (1,0), kset = (1,1,0), keeps = keeplist,

last = 0

XCLOSEMODULE moduleno = 3, nof = 1

(5) DECS3

XMODINFO name = decs3, l = c, g = n, type = -1

XSPEC f = decs3, no = 0, nl = 1, ng = 0, u -> keeplist3

XSIZES

modes

XBUTYPE keeplist3

XINTERF name = %stdprelude, formal = %program, level = 1,

ownlevel = 1

XTDEC* bu = FALSE, level = 1, id = item

XKEEPS keeplist3

(6) DECS4

62 The RS Compiler for ALGOL 68

XMODINFO name = decs4, l = u1, g = c, type = -1

XSPEC f = decs4, no = 0, nl = 1, ng = 1, u -> keeplist4

XSIZES

modes

XBUTYPE keeplist4

XINTERF name = %stdprelude, formal = %program, level = 1,

ownlevel = 1

XTDEC* bu = FALSE, level = 1, id = item

XINTERF name = package1, formal = userprog, level = 2,

ownlevel = 2

XTDEC* bu = FALSE, level = 2, id = item

XTMODULE type = -1, moduleno = 1, name = decs3

XTDEC* bu = TRUE, level = 3, id = item

XKEEPS keeplist4

(7) CC3

XMODINFO name = cc3, l = (cc1, hole, 1), g = c, type = 0

XSIZES

modes

XTDTYPE moduleno = 2, type = 0

XINTERF name = %stdprelude, formal = %program, level = 1,

ownlevel = 1

XTDEC* bu = FALSE, level = 1, id = item

XINTERF name = cc1, formal = hole, level = 2, ownlevel = 2

XTDEC* bu = FALSE, level = 2, id = item

XTMODULE type = -1, moduleno = 1, name = decs3

XTDEC* bu = TRUE, level = 3, id = item

XOPENMODULE name = cc3, maxlevel = 2, nof = 0, moduleno = 2

XCLOSEMODULE moduleno = 2, nof = 0

(8) COMP1

XMODINFO name = comp1, l = (comp2, user1, 3), g = c, type = 0

XCOMPTYPE moduleno = 3, type = 0, maxmodule = 3

XTMODULE type = 1, moduleno = 1, name = cc1

XTMODULE type = 0, moduleno = 2, name = cc3

XCLOSURE body = 1, actuals = (2), moduleno = 3

(9) CC2

XMODINFO name = cc2, l = (comp2, user2, 2), g = c, type = 0

XSIZES

modes

XTDTYPE moduleno = 1, type = 0

XINTERF name = %stdprelude, formal = %program, level = 1,

ownlevel = 1

XTDEC* bu = FALSE, level = 1, id = item

63

XINTERF name = package1, formal = userprog, level = 2,

ownlevel = 2

XTDEC* bu = FALSE, level = 2, id = item

XINTERF name = comp2, formal = user2, level = 3, ownlevel = 2

XTDEC* bu = FALSE, level = 3, id = lastid

XOPENMODULE name = cc2, maxlevel = 3, nof = 0, moduleno = 1

XCLOSEMODULE moduleno = 1, nof = 0

(10) STARTER

XMODINFO name = starter, l = c, g = n, type = 0

XCOMPTYPE moduleno = 4, type = 0, maxmodule = 4

XTMODULE type = 2, moduleno = 1, name = comp2

XTMODULE type = 0, moduleno = 2, name = comp1

XTMODULE type = 0, moduleno = 3, name = cc2

XCLOSURE body = 1, actuals = (2,3), moduleno = 4

65

Appendix A Values and representations of symbols

Note: symbols marked with a * must have a single-character representation provided for them.

The values of the symbols are given in brackets.

A.1 Note

Any representation whose meaning is undefined must be given one of the following values in the
charset array or lookup procedure:

156 (other bold)
if the representation is to be an acceptable form for a user-defined mode name or
operator

176 (other op)
if the representation is to be acceptable as a user-defined operator symbol but un-
acceptable as a mode name

100 (illegal)
if the representation is to be illegal

67

Appendix B Fixed Mode Numbers

The mode numbers given below are fixed for all programs. For 1 to 21, 29 and 30, the mode
MDE decomposes to PRIMITIVE.

These mode numbers assume that there may be up to 1 SHORT or 2 LONG symbols before
a mode or denotation (although these are not all required to represent different lengths). It is
possible to allow SHORT SHORT (at the expense of LONG LONG) by interchanging LONG and SHORT

in the following table. If this is done, the values for the symbols LONG and SHORT, LENG and
SHORTEN must also be interchanged.

1 vacmode

2 skipmode

3 nilmode

4 gotomode

5 voidmode

6 faultmode (does not occur in stream language)

7 BOOL

8 CHAR

9 FORMAT

10 SHORT BITS

11 BITS

12 LONG BITS

13 LONG LONG BITS

14 SHORT INT

15 INT

16 LONG INT

17 LONG LONG INT

18 SHORT REAL

19 REAL

20 LONG REAL

21 LONG LONG REAL

22 SHORT COMPL = STRUCT (SHORT REAL re, im)

23 COMPL = STRUCT (REAL re, im)

24 LONG COMPL = STRUCT (LONG REAL re, im)

25 LONG LONG COMPL = STRUCT (LONG LONG REAL re, im)

26 VECTOR [] CHAR

27 [] CHAR

28 collatmode

29 XTYPE

30 YTYPE

69

Appendix C Numbering of standard prelude
operators in XOPER

Key to headings:

BL BOOL

C CHAR

LB BITS (possibly with LONG or SHORT prefixes)

I INT

LI INT (possibly with LONG or SHORT prefixes)

LR REAL (possibly with LONG or SHORT prefixes)

LC COMPL (possibly with LONG or SHORT prefixes)

VC VECTOR [] CHAR (REF FLEX for +:=, *:=)

AC] CHAR (REF FLEX for +:=, *:=)

V Any vector

A Any array S Any straight

C.1 Monadic operators

BL C LB I LI LR LC VC AC V A S

op version number

number

+ 0 - - - - 1 2 3 - - - - -

- 1 - - - - 1 2 3 - - - - -

UPB 2 - - - - - - - - - 1 2 3

LWB 3 - - - - - - - - - 1 2 3

NOT 4 1 - 2 - - - - - - - - -

ABS 5 1 2 3 - 4 5 6 - - - - -

BIN 6 - - - - 1 - - - - - - -

REPR 7 - - - 1 - - - - - - - -

LENG 8 - - 1 - 2 3 4 - - - - -

SHORTEN 9 - - 1 - 2 3 4 - - - - -

ODD 10 - - - - 1 - - - - - - -

SIGN 11 - - - - 1 2 - - - - - -

ROUND 12 - - - - - 1 - - - - - -

ENTIER 13 - - - - - 1 - - - - - -

RE 14 - - - - - - 1 - - - - -

IM 15 - - - - - - 1 - - - - -

ARG 16 - - - - - - 1 - - - - -

CONJ 17 - - - - - - 1 - - - - -

C.2 Dyadic operators

BL C LB I LI LR LC VC AC V A S

op version number

number

+ 0 - 1 - - 2 3 4 5 6 - - -

70 The RS Compiler for ALGOL 68

- 1 - - - - 1 2 3 - - - - -

UPB 2 - - - - - - - - - - 1 -

LWB 3 - - - - - - - - - - 1 -

ANDTH 4 1 - - - - - - - - - - -

OREL 5 1 - - - - - - - - - - -

< 6 - 1 - - 2 3 - 4 5 - - -

> 7 - 1 - - 2 3 - 4 5 - - -

<= 8 - 1 2 - 3 4 - 5 6 - - -

>= 9 - 1 2 - 3 4 - 5 6 - - -

= 10 1 2 3 - 4 5 6 7 8 - - -

/= 11 1 2 3 - 4 5 6 7 8 - - -

* 12 - 1 - - 2 3 4 5 6 - - -

/ 13 - - - - 1 2 3 - - - - -

OVER 14 - - - - 1 - - - - - - -

MOD 15 - - - - 1 - - - - - - -

** 16 - - - - 1 2 3 - - - - -

I 17 - - - - 1 2 - - - - - -

SHL 18 - - 1 - - - - - - - - -

SHR 19 - - 1 - - - - - - - - -

ELEM 20 - - 1 - - - - - - - - -

PLUSAB 21 - - - - 1 2 3 4 5 - - -

MINUSAB 22 - - - - 1 2 3 - - - - -

TIMESAB 23 - - - - 1 2 3 4 5 - - -

OVERAB 24 - - - - 1 - - - - - - -

MODAB 25 - - - - 1 - - - - - - -

DIVAB 26 - - - - - 1 2 - - - - -

IS 27 (only version number = 1)

ISNT 28 (only version number = 1)

AND 29 1 - 2 - - - - - - - - -

OR 30 1 - 2 - - - - - - - - -

PLUSTO 31 - - - - - - - 1 2 - - -

CYCLE 32 - - - - - - - - - - 1 -

71

Appendix D Extensions To ALGOL 68

D.1 Vectors and indexable structures

A vector is a one-dimensional array with an understood lower bound of 1. A typical declaration
would be

VECTOR [n] INT v;

where the size n can be any unitary clause. A vector can be flexible or not, and subscripted
and trimmed like an array, though the use of AT results in an array. In strong contexts, a single
object can be rowed to a vector. The overheads associated with vectors are smaller than arrays,
and assignment of vectors is simpler than for arrays because the elements are always contiguous.

The indexable structure or more briefly i-struct represents the ultimate step in removing
array overheads while preserving the facility of indexing. It groups together a fixed number of
objects of any specified mode; for example, a STRUCT 30 REAL consists of 30 reals and the size
30 is part of the mode. The size must therefore be an integer denotation; the permissible range
of values is from 1 to maxistruct (see Appendix 5). An i-struct can be indexed with the same
notation as for an array, and the indexing starts at 1. If trimmed, it normally gives rise to a
vector (although the AT construction produces an array). In strong contexts, a single object
can be rowed to an i-struct. The i-struct enables fixed length rows of characters to be handled
with the efficiency expected for Algol 68 BYTES, LONG BYTES etc, but without any restrictions
on length.

Coercions on i-structs and vectors are all in the direction i-struct to vector to array. All such
coercions (including ref i-struct to ref vector etc) are allowed before uniting. However, i-structs,
vectors and arrays of the same mode can exist side by side in the same union, and any seeming
ambiguity when uniting is avoided by preference for minimum travel in the “i-struct to vector
to array” direction. The same preference rule applies to operator selection, as shown in the
following example:

OP Y2 = (VECTOR [] REAL p) ;

OP Y2 = ([] REAL p) ;

With these two declarations in force, an operand of mode STRUCT 4 REAL would be coerced
to VECTOR [] REAL and the first operator definition would be selected.

String denotations are i-structs (eg "ABC" is STRUCT 3 CHAR), but the above coercions ensure
that users wishing to avoid the language extensions need not be aware of them. The word VECTOR

does not appear in compile-time diagnostic messages unless it has already been explicitly used
in the source-text, while strings like "ABC" are typically described as 3 CHAR rather than STRUCT

3 CHAR. The mode of the empty string "" is STRUCT 0 CHAR, even though i-structs with zero size
cannot be declared.

D.2 The FORALL statement

The FORALL statement has been introduced for efficiency in sequencing through all the elements
in one dimension of an array, or all the elements of a vector. As an example, in the unitary
clause

FORALL xi IN x DO xi *:= xi OD

the new identifier xi (declared by FORALL) successively takes each of the values x[i] with i

going FROM LWB x TO UPB x. The effect of this example, therefore, is to square all the elements
of x. It avoids explicit indexing and the associated overheads in the compiled code. There can
be a sequence of parts like xi IN x provided each has the same bounds. For example,

VECTOR [10] INT v;

72 The RS Compiler for ALGOL 68

[10, n : m] REAL w;

FORALL elemv IN v, elemw IN w

DO f(elemv, elemw) OD

applies the function f to all pairs of arguments (v[i], w[i,]) for i FROM 1 TO 10.

A FORALL statement can have a while part, and the range of the identifiers declared by
FORALL (eg elemv, elemw) is the WHILE clause and the DO clause.

Primarily for use in conjunction with the FORALL statement, a new dyadic operator, CYCLE,
is defined to act on (ref) multi-dimensional arrays. The expression n CYCLE w delivers the (ref)
array w with a new descriptor, in which the dimensions are cycled to bring the (n+1)th to the
front.

D.3 Straightening

A ‘straightening’ facility is provided to enable Algol 68 programmers to write transput proce-
dures with arbitrarily structured parameters. Straightening is the reduction of any type of data
structure to a simple sequence - which we shall describe as a straight. The basic step is the
coercion of a simple row or structure to a straight; applied recursively, the method can be used
to straighten data structures of arbitrary complexity.

The mode STRAIGHT U, where U is any Algol 68 mode (but most commonly a union), describes
a set of objects of mode U. In this respect it is similar to [] U, but in other respects it is quite
different and must be treated as a new type of mode. An actual straight is brought into existence
by strong coercion of a row, vector, structure, i-struct or union. Such modes are strongly
coercible to STRAIGHT U if their "members’ can be coerced to U by uniting, straightening or any
of the coercions i-struct to vector to array (A4.1). The coercions excluded are dereferencing,
deproceduring, widening and rowing.

Example 1

STRAIGHT UNION (INT, CHAR) s1 = "ABCD"

As CHAR is coercible to UNION(INT, CHAR), the i-struct "ABCD" can be coerced to the
STRAIGHT. If s1 were the formal parameter of an output procedure, acceptable actuals would
be a row of characters, row of integers, structure with integer and character fields or a union of
integer and character. However, a single INT or a single CHAR would not be accepted.

Example 2

STRUCT (INT i, REAL r) p;

STRAIGHT UNION (REF REAL, REF INT, REF CHAR) s2 = p

The members of p have modes REF INT and REF REAL, both of which are coercible to the
given union, so p will be coercible to the mode of s2. Clearly, s2 might be the formal parameter
of an input procedure and p its actual parameter. The actual could not be a simple real, integer
or character variable.

Example 3

[3] INT v := (1, 2, 3);

STRAIGHT INT s = v;

In this example, the members of the variable v have mode REF INT, but s is a straight of plain
integers. As it stands, v cannot be straightened to s because dereferencing of members is not
allowed. But as v can be dereferenced before straightening, the example is correct. Considered
as a formal parameter for an output procedure, s would handle any row or structure of integers,
but not a single integer by itself.

As a straight cannot represent an unstructured value, most applications will demand that it
be combined with basic modes in a union, eg

UNION (INT, REAL, ... , STRAIGHT UNION (INT, REAL, ...))

Appendix D: Extensions To ALGOL 68 73

This mode will handle an object of data which possesses structure at no level (eg an INT)
or one level (eg [] REAL, STRUCT 17 INT) but not more. When an object is being united to the
above mode, then — regardless of the order in which the constituent modes have been written —
the fit will be sought from the non-STRAIGHT modes first, so as to avoid any possible ambiguities
of coercion.

To handle one object structured at any number of levels, a recursive mode is needed.

MODE PRINTMODE = UNION (INT, REAL, ... , STRAIGHT PRINTMODE)

The definition of STRAIGHT is such as permits this recursion. PRINTMODE will handle an inte-
ger, real, etc, or any row or structure built up from all these to any depth. For a corresponding
input parameter mode, the basic modes would each be preceded by a REF.

The parameter of the standard print procedure has mode VECTOR [] PRINTMODE rather than
PRINTMODE. This allows the use of a collateral as the actual parameter.

A straight cannot be handled with the full generality applicable to other Algol 68 modes.
The manipulations are confined to subscripting and interrogation by the operator UPB. Let m
stand for any mode, and let s have mode STRAIGHT M. Then UPB s gives the number of objects in
the straight, and s[i] picks out the ith object (i >= 1). There is no such thing as a STRAIGHT

generator or variable because objects of mode REF STRAIGHT do not exist.

D.4 Low level facilities

Code can be inserted in an Algol 68 program by the construction

mode CODE (unc, unc, ...) " code "

which is treated as a primary of the specified mode (absence of which implies mode VOID). The
unitary clauses, to which no coercions are applied, supply Algol 68 objects for use in the code.
Other alien insertions, such as non-Algol procedures, must take the form

mode identifier = ALIEN " insertion "

ALIEN is allowed only in this identity declaration context.

An alternative method of expressing a string denotation is provided. This uses the ABS values
of the characters rather than the characters themselves, which might be non-printing characters.
The ABS values can be to radix 2, 4, 8, 10 or 16, and must be separated by spaces; the string
must be preceded by 10r or 16r or whatever the case may be. Thus the following 3-character
strings (or more strictly STRUCT 3 CHARS) are equivalent: 8r "1 15 251", 16r "1 d a9", where
a-f represent the digits 10-15.

D.5 Built-in operators

The declaration

OP (INT, INT) INT ** = BIOP 1013

declares the operator ** in the usual way, but the definition is built into the translator. The
integer after BIOP corresponds to the param field of a dyop or monop (in XOPER).

The BIOP construction may also be used in declarations of the form

M x = BIOP 671

where M is any mode, most usefully a procedure with three or more parameters. The integer
corresponds to the decno of an identifier declaration.

If built-in operators or identifiers are to be used in other modules, the integer after BIOP

must be less than Maxchar*maxchar (see Appendix 5).

74 The RS Compiler for ALGOL 68

D.6 Generalised modes

The primitive modes XTYPE and YTYPE have been introduced as representations for any simple
mode. For the purpose of this definition, a ‘simple’ mode is one which contains no vectors,
arrays or references or which is a vector of such objects. They may be used in transput routines
to avoid the overheads of straightening. For scope reasons objects of modes XTYPE and YTYPE

may not be assigned.

The coercions associated with these modes are in the direction YTYPE to M to XTYPE or REF
YTYPE to REF M to REF XTYPE, where M is any simple mode. The coercions from REF YTYPE and
REF M may also remove the initial REF; the compiler does not output an xderef in this case.
Thus a procedure dealing with objects of various simple modes might have the specification

PROC p = (VECTOR [] XTYPE x) YTYPE:

so that the parameters and result could be handled easily. If coercions in the opposite direction
are required, the translator must incorporate the relevant BIOPs.

The coercion to XTYPE is allowed before uniting, but as with i-structs and vectors, XTYPE may
exist side by side in the same union with a simple mode or a STRAIGHT. Possible ambiguities
are resolved by preference for minimum travel in the ‘simple to XTYPE to STRAIGHT’ direction.

D.7 Implementation dependent declarations

One section of the text of the RS compiler is marked as implementation-dependent and may be
changed freely by implementors. The modes and values given below are used in the Algol 68 to
C translator implementation.

MODE ID = STRUCT 12 CHAR

mode used to store an identifier, label, mode or operator

INT maxid = 12

maximum significant length of (1)

INT maxchar = 64

size of character set

MODE YM = STRUCT (INT album, index, version)

description of module

MODE YS = INT

description of spec

INT startrd = 1000

integer added to routine numbers

INT startlib = 2000

integer added to numbers of library identifiers

INT startkmp = 10000

integer added to numbers of kept modeprocs

INT upbofmodes = 500

size of modes array in compiler

INT upbofsidstack = 250

size of analyser stack

INT maxistruct = 512

maximum allowable size of indexable structures

CHAR dchar = "d", pchar = "p", nchar = "n"

for REAL denotations in stream language

Appendix D: Extensions To ALGOL 68 75

INT linesize = 160

maximum length of a line of source-text

i

Short Contents

1 Introduction . 1

2 Stream Language Output . 3
3 Implementation . 9

4 The Compiler Shell . 11
5 Stream Language In Outline . 17
6 Stream language in detail . 27
7 Introduction . 43
8 The Source Language . 45

9 Stream Language . 53
A Values and representations of symbols . 65
B Fixed Mode Numbers . 67
C Numbering of standard prelude operators in XOPER . 69

D Extensions To ALGOL 68 . 71

iii

Table of Contents

1 Introduction . 1
1.1 The Source Language . 2

2 Stream Language Output . 3
2.1 The Structure Of Stream Language . 3
2.2 The Reverse Polish Stack . 4
2.3 The Creation Of New Objects . 5
2.4 Assignment . 6

3 Implementation . 9

4 The Compiler Shell . 11
4.1 Input Of Source Text . 11
4.2 The charset Parameter . 11
4.3 Values Of Symbols . 13
4.4 The Lookup Procedure . 13
4.5 Output Of Fault Messages . 14
4.6 Output Of Stream Language . 14

5 Stream Language In Outline . 17
5.1 The Imperatives . 17

5.1.1 XEDIT . 17
5.1.2 REF VECTOR [] MDE . 18
5.1.3 XDEC . 18
5.1.4 XROUTINE . 18
5.1.5 XSIZES . 18
5.1.6 XLOAD . 18
5.1.7 XCHARS . 18
5.1.8 XOPER . 18
5.1.9 XWARN . 19
5.1.10 XPRAG . 19
5.1.11 XCHARPOS . 19
5.1.12 XCONTROL . 19

5.2 Syntax Analysis Of Stream Language . 20
5.2.1 Abridged Syntax Of Stream Language . 20

5.2.1.1 Notation . 20
5.2.1.2 Syntax rules . 20
5.2.1.3 Skeleton translator — stage 1 . 21

5.3 The Reverse Polish Stack . 22
5.3.0.1 Skeleton translator — stage 2 . 23

6 Stream language in detail . 27
6.1 The Vector Of Modes — REF VECTOR [] MDE modes . 27

6.1.1 Constituent Modes Of MDE . 27
6.1.2 REF STRCT . 27
6.1.3 REF ISTRUCT . 27

iv The RS Compiler for ALGOL 68

6.1.4 REF VCTOR . 28
6.1.5 REF ARRAY . 28
6.1.6 REF UNN . 28
6.1.7 REF PROCP . 28
6.1.8 REF PRC . 28
6.1.9 REF STEN . 28
6.1.10 REF AMODE . 28
6.1.11 SAMEAS . 28
6.1.12 PRIMITIVE . 28

6.2 Identifier Declarations (XIDDEC from XDEC) . 29
6.3 Routine Text Declarations, XROUTINE . 29
6.4 Label Declarations (XLABDEC from XDEC) . 30
6.5 The Loading Imperative, XLOAD, And XCHARS . 31

6.5.1 BOOL . 31
6.5.2 INT . 31
6.5.3 REF LABEL . 31
6.5.4 STRUCT (INT Nse) . 31
6.5.5 XGEN = STRUCT (INT mode, BOOL loc) . 31
6.5.6 XNUMBER = STRUCT (INT mode, REF VECTOR [] CHAR nu) . 31
6.5.7 XSTRING = STRUCT (INT strmode) . 32
6.5.8 XFORMAT = STRUCT (INT nochars, nocases, w) . 32
6.5.9 XALIEN = STRUCT (INT almode) . 32
6.5.10 XCODE = STRUCT (INT mode, nopars) . 32
6.5.11 XCHARS = STRUCT (INT nochars, base, REF VECTOR [] CHAR chars) 32

6.6 Operations, XOPER . 33
6.6.1 Standard prelude operators . 33
6.6.2 Coercions and similar operations . 34
6.6.3 Field selection and array indexing . 34
6.6.4 Procedure calls . 35
6.6.5 Assignment . 35
6.6.6 Space finding . 35
6.6.7 Straightening . 36

6.7 The Control Imperatives (XCONTROL) . 37
6.7.1 Fields of an XCONTROL . 37
6.7.2 The props field of an XCONTROL . 38

6.7.2.1 General preliminary information . 38
6.7.2.2 Dynamic result bits . 38
6.7.2.3 Routine bits . 39

6.7.3 Other control imperatives . 39
6.7.3.1 fn = xforall . 39
6.7.3.2 fn = xuchoice . 40

6.8 The XWARN Imperative . 40
6.9 The XPRAG Imperative . 40
6.10 The XCHARPOS Imperative . 40
6.11 An example of stream language . 41

6.11.1 Sizes . 41
6.11.2 Modes . 41
6.11.3 Other imperatives . 41

7 Introduction . 43

v

8 The Source Language . 45
8.1 keeplists . 45
8.2 Simple declarations modules . 45
8.3 Simple Programs . 46
8.4 Nested Modules . 46
8.5 Composition . 47

8.5.1 Example . 47
8.6 Partial Composition . 48
8.7 Use of environmental packages . 48
8.8 Declarations Modules In A Context . 49
8.9 Provision For ALGOL 68 Standard Environment . 49
8.10 The VOID Context . 50
8.11 Summary Of Syntax And Semantics Of Modules . 51

8.11.1 DECS Module . 51
8.11.2 PROGRAM Modules . 51
8.11.3 Notes . 51

8.12 Composition Rules . 51
8.13 Accessibility Of Kepts For Use In A Cc Module . 52
8.14 Accessibility Of Kepts For Use In A DECS Module . 52

9 Stream Language . 53
9.1 The Current Compilation . 53
9.2 Parameters Of The Compile Procedure . 54
9.3 Information About Other Modules . 55
9.4 A Model For A Running CC Module . 56
9.5 Constructions In The Code . 57
9.6 An Example Of Modular Compilation . 58

9.6.1 Stream Language Produced For The Above Modules . 59

Appendix A Values and representations of symbols 65
A.1 Note . 65

Appendix B Fixed Mode Numbers . 67

Appendix C Numbering of standard
prelude operators in XOPER . 69
C.1 Monadic operators . 69
C.2 Dyadic operators . 69

Appendix D Extensions To ALGOL 68 . 71
D.1 Vectors and indexable structures . 71
D.2 The FORALL statement . 71
D.3 Straightening . 72
D.4 Low level facilities . 73
D.5 Built-in operators . 73
D.6 Generalised modes . 74
D.7 Implementation dependent declarations . 74

	Introduction
	The Source Language

	Stream Language Output
	The Structure Of Stream Language
	The Reverse Polish Stack
	The Creation Of New Objects
	Assignment

	Implementation
	The Compiler Shell
	Input Of Source Text
	The charset Parameter
	Values Of Symbols
	The Lookup Procedure
	Output Of Fault Messages
	Output Of Stream Language

	Stream Language In Outline
	The Imperatives
	XEDIT
	REF VECTOR [] MDE
	XDEC
	XROUTINE
	XSIZES
	XLOAD
	XCHARS
	XOPER
	XWARN
	XPRAG
	XCHARPOS
	XCONTROL

	Syntax Analysis Of Stream Language
	Abridged Syntax Of Stream Language
	Notation
	Syntax rules
	Skeleton translator --- stage 1

	The Reverse Polish Stack

	Skeleton translator --- stage 2
	Stream language in detail
	The Vector Of Modes --- REF VECTOR [] MDE modes
	Constituent Modes Of MDE
	REF STRCT
	REF ISTRUCT
	REF VCTOR
	REF ARRAY
	REF UNN
	REF PROCP
	REF PRC
	REF STEN
	REF AMODE
	SAMEAS
	PRIMITIVE

	Identifier Declarations (XIDDEC from XDEC)
	Routine Text Declarations, XROUTINE
	Label Declarations (XLABDEC from XDEC)
	The Loading Imperative, XLOAD, And XCHARS
	BOOL
	INT
	REF LABEL
	STRUCT (INT Nse)
	XGEN = STRUCT (INT mode, BOOL loc)
	XNUMBER = STRUCT (INT mode, REF VECTOR [] CHAR nu)
	XSTRING = STRUCT (INT strmode)
	XFORMAT = STRUCT (INT nochars, nocases, w)
	XALIEN = STRUCT (INT almode)
	XCODE = STRUCT (INT mode, nopars)
	XCHARS = STRUCT (INT nochars, base, REF VECTOR [] CHAR chars)

	Operations, XOPER
	Standard prelude operators
	Coercions and similar operations
	Field selection and array indexing
	Procedure calls
	Assignment
	Space finding
	Straightening

	The Control Imperatives (XCONTROL)
	Fields of an XCONTROL
	The props field of an XCONTROL
	General preliminary information
	Dynamic result bits
	Routine bits

	Other control imperatives
	fn = xforall
	fn = xuchoice

	The XWARN Imperative
	The XPRAG Imperative
	The XCHARPOS Imperative
	An example of stream language
	Sizes
	Modes
	Other imperatives

	Introduction
	The Source Language
	keeplists
	Simple declarations modules
	Simple Programs
	Nested Modules
	Composition
	Example

	Partial Composition
	Use of environmental packages
	Declarations Modules In A Context
	Provision For ALGOL 68 Standard Environment
	The VOID Context
	Summary Of Syntax And Semantics Of Modules
	DECS Module
	PROGRAM Modules
	Notes

	Composition Rules
	Accessibility Of Kepts For Use In A Cc Module
	Accessibility Of Kepts For Use In A DECS Module

	Stream Language
	The Current Compilation
	Parameters Of The Compile Procedure
	Information About Other Modules
	A Model For A Running CC Module
	Constructions In The Code
	An Example Of Modular Compilation
	Stream Language Produced For The Above Modules

	Values and representations of symbols
	Note

	Fixed Mode Numbers
	Numbering of standard prelude operators in XOPER
	Monadic operators
	Dyadic operators

	Extensions To ALGOL 68
	Vectors and indexable structures
	The FORALL statement
	Straightening
	Low level facilities
	Built-in operators
	Generalised modes
	Implementation dependent declarations

