The R Package sentometrics to Compute, Aggregate
and Predict with Textual Sentiment
Supplementary Appendix

January 2020

David Ardia
Keven Bluteau

Samuel Borms®
Kris Boudt

Efficiency of various lexicon—based sentiment analysis tools in R

This appendix provides an illustrative comparison of the computation time of various lexicon—based
sentiment analysis tools in R. The core of the sentiment computation in the R package sentometrics
(Ardia et al. 2020) is implemented in C++ through Repp (Eddelbuettel and Francois 2011). We
compare the speed of our computation with the R packages meanr (Schmidt 2019), Sentiment Analysis
(Feuerriegel and Prollochs 2019), syuzhet (Jockers 2017), quanteda (Benoit et al. 2018), and tidytext
(Silge and Robinson 2016). The first three of these five packages have proper sentiment functions.
The quanteda and tidytext packages have no explicit sentiment computation function; it needs to
be constructed first, based on their respective toolsets. This is an entry barrier for less—experienced
programmers. The SentimentAnalysis package has the tm package as backend and uses internally
a similar calculation as tm’s tm_term_score() function. The sentimentr package is not part of the
exercise because it proved to be vastly slower than all others, which was anticipated as it aims to
handle more difficult linguistic edge cases.

We perform two analyses. Sentiment is computed for 1000, 5000, 10000, 25000, 50000, 75000
and 100000 texts, and the average execution time in seconds across five repetitions, using the mi-
crobenchmark (Mersmann and Ulrich 2019) package, is shown in Table 1.

The first analysis (see Panel 1a) benchmarks these implementations with three approaches using
the compute_sentiment () function from sentometrics: one without valence shifters, one with valence
shifters integrated from a bigrams perspective, and one with valence shifters integrated from a clusters
perspective. The number of threads for parallel computation is set to one where appropriate. All
other algorithms are run with a version of the the Hu & Liu lexicon (about 6600 single words). The
computations are counts—based and constructed so as to give the same output across all packages
for a binary lexicon, if the tokenization is the same. For example, the sentometrics and tidytext
implementations give identical results.

The meanr implementation comes out fastest because everything is written in the C programming
language. Yet, it offers no flexibility to define the input lexicon nor the scale on which the scores are
returned. On the other spectrum, amongst these approaches, the SentimentAnalysis and suyzhet
packages are slowest. The latter package further does not offer the flexibility of adding different
sentiment lexicons than those available in their package. SentimentAnalysis becomes exponentially

*Corresponding author, contact details: borms_sam@hotmail.com.

(a) Average execution time of the sentiment computation for one lexicon

sentometrics

Texts wunigrams bigrams clusters meanr SentimentAnalysis syuzhet quanteda tidytext

1000 0.24 0.20 0.22 0.08 1.18 0.55 0.60 0.16
5000 0.87 0.87 0.91 0.34 5.26 1.99 1.74 0.60
10000 1.73 1.68 1.72 0.67 11.23 3.83 3.07 1.11
25000 4.41 4.21 4.40 1.71 26.88 9.07 7.19 2.83
50000 9.18 8.55 9.42 3.75 53.08 18.37 14.12 5.88
75000 13.62 13.49 1344 5.06 78.44 27.13 20.37 8.48
100000 18.69 18.22 18.61 6.57 109.58 35.25 26.98 11.06

(b) Average execution time of the sentiment computation for nine lexicons

sentometrics tidytext

Texts wunigrams unigrams, feats. bigrams clusters clusters, parallel unigrams bigrams

1000 0.26 0.24 0.27 0.26 0.22 0.21 0.66
5000 1.00 0.87 1.01 1.01 0.79 0.67 2.80
10000 1.96 1.68 1.98 1.97 1.54 1.27 5.68
25000 4.82 4.24 4.90 4.97 3.81 3.07 13.95
50000 9.96 8.71 10.13 10.02 7.85 6.03 28.00
75000 16.70 19.14 16.67 23.04 15.43 14.00 58.02
100000 32.40 23.66 23.80 36.41 30.86 14.02 64.73

Table 1: Average computation time (in seconds) of various lexicon—based sentiment tools in R.
All implementations consider the Hu & Liu lexicon (Panel 1la), or the nine lexicons specified in
the lex object defined in the main text of the vignette (Panel 1b). Some implementations do not
integrate valence shifters (unigrams), others do from a bigrams perspective (bigrams) or from a
clusters perspective (clusters).

slower as it suffers to manage the memory required for larger corpora. The quanteda package is
fast, but slower than the sentometrics and tidytext implementations. The tidytext package is faster,
particularly for the two largest corpus sizes.

The second analysis (see Panel 1b) compares the computation time with nine lexicons as input.
The comparison is against the tidytext package, for a unigrams and a bigrams implementation. The
lexicons are those in the lex object defined in the main text of the vignette. For the clusters approach,
we also look at its parallelized version, using eight cores (see the ‘clusters, parallel’ column). For
the unigrams approach in sentometrics, we also assess the additional time it takes to spread out
sentiment across features (see the ‘unigrams, feats.” column).

The tidytext package is, in general, faster for many lexicons as well. Differences are not large
nonetheless, and running any sentometrics computation in parallel would make the speed differentials
disappear. However, the bigrams calculation using tidytext is markedly slower. With sentometrics,
the speed of the computation is comparable across all types of sentiment calculation. The tidytext
framework thus copes more slowly with complexity.

Overall, the sentometrics package brings an off-the—shelf yet flexible sentiment calculator that is
computationally efficient, being fast in itself, and independent as to the decision (how) to integrate
valence shifters as well as (though to a smaller extent) the number of input lexicons.

Computational details

For the main computational details, we refer to the paper. The timings comparison can be repli-
cated using the R script run timings.R, available on the sentometrics GitHub repository (https:
//github.com/sborms/sentometrics) in the appendix folder. To generate the results, we have also
used the packages dplyr version 0.8.3 (Wickham et al. 2019), meanr version 0.1.2 (Schmidt 2019),
microbenchmark version 1.4.7 (Mersmann and Ulrich 2019), Sentiment Analysis version 1.3.3 (Feuer-
riegel and Prollochs 2019), syuzhet version 1.0.4 (Jockers 2017), tidytext version 0.2.2 (Silge and
Robinson 2016), and tidyr version 1.0.0 (Wickham and Henry 2019).

References

Ardia D, Bluteau K, Borms S, Boudt K (2020). “The R Package sentometrics to Compute, Aggregate
and Predict with Textual Sentiment.” doi:10.2139/ssrn.3067734. Working paper.

Benoit K, Watanabe K, Wang H, Nulty P, Obeng A, Miiller S, Matsuo A (2018). “quanteda: An R
Package for the Quantitative Analysis of Textual Data.” Journal of Open Source Software, 3(30),
774. d0i:10.21105/joss.00774.

Eddelbuettel D, Francois R (2011). “Repp: Seamless R and C++ Integration.” Journal of Statistical
Software, 40(8), 1-18. doi:10.18637/jss.v040.i08.

Feuerriegel S, Prollochs N (2019). SentimentAnalysis: Dictionary—Based Sentiment Analysis. R
Package Version 1.3.3, URL https://CRAN.R-project.org/package=SentimentAnalysis.

Jockers M (2017). syuzhet: Extract Sentiment and Plot Arcs from Text. R Package Version 1.0.4,
URL https://CRAN.R-project.org/package=syuzhet.

Mersmann O, Ulrich J (2019). microbenchmark: Accurate Timing Functions. R Package Version
1.4.7, URL https://CRAN.R-project.org/package=microbenchmark.

Schmidt D (2019). meanr: Sentiment Analysis Scorer. R Package Version 0.1.2, URL https:
//CRAN.R-project.org/package=meanr.

Silge J, Robinson D (2016). “tidytext: Text Mining and Analysis Using Tidy Data Principles in R.”
Journal of Open Source Software, 1(3). doi:10.21105/joss.00037.

Wickham H, Frangois R, Henry L, Miiller K (2019). dplyr: A Grammar of Data Manipulation. R
package version 0.8.3, URL https://CRAN.R-project.org/package=dplyr.

Wickham H, Henry L (2019). tidyr: Tidy Messy Data. R package version 1.0.0, URL https:
//CRAN.R-project.org/package=tidyr.

https://github.com/sborms/sentometrics
https://github.com/sborms/sentometrics
https://CRAN.R-project.org/package=SentimentAnalysis
https://CRAN.R-project.org/package=syuzhet
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=meanr
https://CRAN.R-project.org/package=meanr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr

