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Abstract

collapse is a large C/C++-based infrastructure package facilitating complex statistical
computing, data transformation, and exploration tasks in R - at outstanding levels of
performance and programming efficiency. It also implements a class-agnostic approach to
R programming, supporting vector, matrix and data frame-like objects and their popular
variants (e.g., ‘factor’, ‘ts’, ‘xts’, ‘tibble’, ‘data.table’, ‘sf’), enabling its seamless
integration with large parts of the R ecosystem. This article introduces the package’s key
components and design principles in a structured way, supported by a rich set of examples.
A small benchmark demonstrates its computational performance.

Keywords: statistical computing, vectorization, data manipulation and transformation, sum-
mary statistics, class-agnostic programming, R.

1. Introduction
collapse1 is a large C/C++-based R package that provides an integrated suite of statistical
and data manipulation functions. Most of these statistical functions are vectorized along
multiple dimensions (notably along groups and columns) and perform high-cardinality oper-
ations2 very efficiently. It also offers vectorizations for advanced operations such as weighted
statistics (including mode and quantiles), functions and classes for fully indexed (time-aware)
computations on time series and panel data, recursive (list-processing) tools to deal with
nested data and advanced descriptive statistical tools. This functionality is supported by
efficient algorithms for intensive operations like grouping, unique values, matching, ordering,
etc., tailored to R’s data structures, and powerful data manipulation functions. The package
also supplies many features for memory efficient R programming, such as data transforma-
tion and math by reference, and aversion of logical vectors. collapse is class-agnostic, i.e., it
provides most statistical operations for atomic vectors, matrices, and data frames/lists, and
seamlessly supports key variants of these objects used in the R ecosystem (e.g., ‘tibble’,
‘data.table’, ‘sf’, ‘xts’, ‘pdata.frame’). It is globally and interactively configurable, which
includes setting different defaults for key function arguments (such as na.rm arguments to
statistical functions, default TRUE), and modifying the package namespace itself.3

1Website: https://sebkrantz.github.io/collapse/
2With many columns and/or groups relative to data size.
3collapse’s namespace is fully compatible with base R and the tidyverse, but can be interactively modified

to overwrite key functions like unique, match, %in%, table, subset, mutate, summarise etc. with much faster
collapse equivalents. See Section 8.

https://orcid.org/0000-0001-6212-5229
https://sebkrantz.github.io/collapse/
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What is the purpose of combining all of this in a package? The short answer is to make
computations in R as flexible and powerful as possible. The more elaborate answer is to (1)
facilitate complex data transformation, exploration, and computing tasks in R; (2) increase
performance and parsimony by avoiding R-level repetition;4 (3) increase the memory efficiency
and flexibility of R programs;5 and (4) to create a new foundation package for statistics and
data manipulation in R that implements successful ideas developed in the R ecosystem and
other programming environments such as Python or STATA (StataCorp LLC. 2023), including
some new ideas, in a stable, high performance, and broadly compatible manor.6

R already has a large and tested data manipulation and statistical computing ecosystem.
Notably, the tidyverse (Wickham et al. 2019) provides a consistent toolkit for data manipu-
lation in R, centered around the ‘tibble’ (Müller and Wickham 2023) object and tidy data
principles (Wickham 2014). data.table (Dowle and Srinivasan 2023) provides an enhanced
high-performance data frame with parsimonious data manipulation syntax. sf (Pebesma
2018) provides a data frame for spatial data and supporting functionality. tsibble (Wang
et al. 2020) and xts (Ryan and Ulrich 2023) provide classes and operations for time series
data, the former via an enhanced ‘tibble’, the latter through an efficient matrix-based class.
Econometric packages like plm (Croissant and Millo 2008) and fixest (Bergé 2018) also provide
solutions to deal with panel data and irregularity in the time dimension. Packages like ma-
trixStats (Bengtsson 2023) and Rfast (Papadakis et al. 2023) offer fast statistical calculations
along the rows and columns of matrices and faster basic statistical procedures. DescTools
(Signorell 2023) provides a wide variety of descriptive statistics, including weighted versions.
survey (Lumley 2004) allows statistical computations on complex survey data. labelled (Lar-
marange 2023) provides tools to deal with labelled data. Packages like tidyr (Wickham et al.
2023b), purrr (Wickham and Henry 2023) and rrapply (Chau 2022) provide some functions
to deal with nested data and messy structures.

collapse relates to and integrates key elements from these projects. It offers tidyverse-like data
manipulation at the speed and stability of data.table for any data frame-like object. It can
turn any vector/matrix/data frame into a time-aware indexed series or frame and perform op-
erations such as lagging, differencing, scaling or centering, encompassing and enhancing core
manipulation functionality of plm, fixest, and xts. It also performs fast (grouped, weighted)
statistical computations along the columns of matrix-like objects, complementing and en-
hancing matrixStats and Rfast. Its low-level vectorizations and workhorse algorithms are
accessible at the R and C-levels, unlike data.table, where most vectorizations and algorithms
are internal. It also supports variable labels and intelligently preserves attributes of all ob-
jects, complementing labelled. It provides general (recursive) tools to deal with nested data,
enhancing tidyr, purrr, and rrapply. Finally, it provides a small but consistent and powerful

4Such as applying R functions across columns or split-apply-combine computing to apply functions across
groups or other divisions of data.

5E.g., by avoiding object conversions and the need for certain classes to do certain things, such as converting
to data frame or ‘data.table’ to do something "by groups" and then convert back to matrix to continue with
linear algebra, and in general to reduce the need for metaprogramming.

6Examples of such ideas are tidyverse syntax, vectorized aggregations (data.table), data transformation by
reference (Python, pandas), vectorized and verbose joins (polars, STATA), indexed time series and panel data
(xts, plm), summary statistics for panel data (STATA), reshaping labelled data (myself) etc...
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set of descriptive statistical tools, yielding sufficient detail for most data exploration pur-
poses, requiring users to invoke packages like DescTools or survey only for specific statistics.
In summary, collapse is a foundation package for statistical computing and data manipulation
in R that enhances and integrates seamlessly with the R ecosystem while being outstandingly
computationally efficient. A significant benefit is that, rather than piecing together a frag-
mented ecosystem oriented at different classes and tasks, many core computational tasks can
be done with collapse, and easily extended by more specialized packages. This tends to result
in R scripts that are shorter, more efficient, and more lightweight in dependencies.

Other programming environments such as Python and Julia now also offer computationally
very powerful libraries for tabular data such as DataFrames.jl (Bouchet-Valat and Kamiński
2023), Polars (Vink et al. 2023), and Pandas (Wes McKinney 2010; pandas Development
Team 2023), and supporting numerical libraries such as Numpy (Harris et al. 2020), or Stats-
Base.jl (JuliaStats 2023). In comparison with these, collapse offers a class-agnostic approach
bridging the divide between data frames and atomic structures, has more advanced statistical
capabilities,7 supports recursive operations, variable labels, verbosity for critical operations
such as joins, and is extensively globally configurable. In short, it is very utile for complex
statistical workflows, rich datasets (e.g., surveys), and for integrating with different parts of
the R ecosystem. On the other hand, collapse, for the most part, does not offer a sub-column-
level parallel architecture and is thus not highly competitive with top frameworks, including
data.table, on aggregating billion-row datasets with few columns.8 Its vectorization capabili-
ties are also limited to the statistical functions it provides and not, like DataFrames.jl, to any
Julia function. However, as demonstrated in Section 3.1, vectorized statistical functions can
be combined to calculate more complex statistics in a vectorized way.

The package has a built-in structured documentation facilitating its use. This documentation
includes a central overview page linking to all other documentation pages and supplementary
topic pages which briefly describe related functionality. The names of these extra pages are
collected in a global macro .COLLAPSE_TOPICS and can be called directly with help():

R> .COLLAPSE_TOPICS

[1] "collapse-documentation" "fast-statistical-functions"
[3] "fast-grouping-ordering" "fast-data-manipulation"
[5] "quick-conversion" "advanced-aggregation"
[7] "data-transformations" "time-series-panel-series"
[9] "list-processing" "summary-statistics"

[11] "recode-replace" "efficient-programming"
[13] "small-helpers" "collapse-options"

7Such as weighted statistics, including various quantile and mode estimators, support for fully time-
aware computations on irregular series/panels, higher order centering, advanced (grouped, weighted, panel-
decomposed) descriptive statistics etc., all supporting missing values.

8As can be seen in the DuckDB Benchmarks: collapse is highly competitive on the 10-100 million ob-
servations datasets, but deteriorates in performance at larger data sizes (except for joins where it remains
competitive). There may be performance improvements for "long data" in the future, but, at present, the
treatment of columns as fundamental units of computation is a tradeoff for the highly flexible class-agnostic
architecture.

https://sebkrantz.github.io/collapse/reference/collapse-documentation.html
https://sebkrantz.github.io/collapse/reference/collapse-documentation.html
https://duckdblabs.github.io/db-benchmark/
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R> help("collapse-documentation")

collapse is too large and complex to fully present it in a single article, or even to present
selected topics in depth. The following sections therefore briefly introduce its key components:
(2) the Fast Statistical Functions and their (3) integration with data manipulation functions;
(4) architecture for time series and panel data; (5) joins and reshaping; (6) list processing
functions; (7) descriptive tools; and (8) global options. Section 9 provides a small benchmark,
Section 10 concludes. For deeper engagement with collapse, a short vignette summarizing
available documentation and resources is an excellent starting point.

2. Fast statistical functions
The Fast Statistical Functions, comprising fsum(), fprod(), fmean(), fmedian(), fmode(),
fvar(), fsd(), fmin(), fmax(), fnth(), ffirst(), flast(), fnobs() and fndistinct(),
are a consistent set of S3-generic statistical functions providing fully vectorized statistical
operations in R. Specifically, operations such as calculating the mean via the S3 generic
fmean() function are vectorized across columns and groups. They may also involve weights
or transformations of the original data. The basic syntax of these functions is

FUN(x, g = NULL, [w = NULL], TRA = NULL, [na.rm = TRUE],
use.g.names = TRUE, drop = TRUE, [nthreads = 1L], ...)

with arguments x - data (vector, matrix or data frame-like), g - groups (atomic vector,
list of vectors, or ‘GRP’ object), w - weights, TRA - transformation, na.rm - missing values,
use.g.names - attach group names upon aggregation (if g is used), drop - drop dimensions
(i.e., simplify to atomic vector if is.null(g) and x is matrix or data frame-like), nthreads -
multithreading.9 The following examples, taken from the collapse for tidyverse Users vignette
demonstrate their basic usage to calculate (column-wise, grouped, weighted) statistics on
different objects. As laid out in the vignette on object handling, statistical functions have basis
S3 methods for vectors (‘default’), ‘matrix’, and ‘data.frame’, which call corresponding C
implementations that intelligently preserve object attributes. Thus, the functions can be
applied to a broad set of ‘matrix’ or ‘data.frame’-based objects without the need to define
explicit methods. Users can also directly call the basis methods in case S3 dispatch does not
yield the intended outcome. For example, fmean.default(EuStockMarkets) computes the
mean of the entire matrix.

R> fmean(mtcars$mpg)

[1] 20.09

R> fmean(EuStockMarkets)

DAX SMI CAC FTSE
2531 3376 2228 3566

9Not all functions are multithreaded, and parallelism is implemented differently for different functions
(detailed in the documentation). The use of single instruction multiple data (SIMD) parallelism in single-
threaded mode also implies limited gains from multithreading for simple operations such as fsum().

https://sebkrantz.github.io/collapse/articles/collapse_documentation.html
https://sebkrantz.github.io/collapse/reference/fast-statistical-functions.html
https://sebkrantz.github.io/collapse/articles/collapse_for_tidyverse_users.html#using-the-fast-statistical-functions
https://sebkrantz.github.io/collapse/articles/collapse_object_handling.html
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R> fmean(mtcars[5:10])

drat wt qsec vs am gear
3.5966 3.2173 17.8488 0.4375 0.4062 3.6875

R> fmean(mtcars$mpg, w = mtcars$wt)

[1] 18.55

R> fmean(mtcars$mpg, g = mtcars$cyl)

4 6 8
26.66 19.74 15.10

R> fmean(mtcars$mpg, g = mtcars$cyl, w = mtcars$wt)

4 6 8
25.94 19.65 14.81

R> fmean(mtcars[5:10], g = mtcars$cyl, w = mtcars$wt)

drat wt qsec vs am gear
4 4.031 2.415 19.38 0.9149 0.6498 4.047
6 3.569 3.152 18.12 0.6212 0.3788 3.821
8 3.206 4.133 16.89 0.0000 0.1204 3.241

R> fmean(mtcars$mpg, g = mtcars$cyl, TRA = "fill") |> head(20)

[1] 19.74 19.74 26.66 19.74 15.10 19.74 15.10 26.66 26.66 19.74 19.74 15.10
[13] 15.10 15.10 15.10 15.10 15.10 26.66 26.66 26.66

2.1. Transformations

The final example invoking TRA expands the mean vector to full length, like stats::ave(mtcars$mpg,
mtcars$cyl), but much faster. The TRA argument invokes the TRA() function for column-wise
(grouped) replacing and sweeping operations (by reference). Its syntax is

TRA(x, STATS, FUN = "-", g = NULL, set = FALSE, ...)

where STATS is a vector/matrix/data.frame of statistics used to transform x. Table 1 lists the
11 possible FUN operations, toggled using either an integer or string. TRA() is called internally
in the Fast Statistical Functions, the TRA argument is passed to FUN. Thus fmean(x, g, w,
TRA = "-") is equivalent to TRA(x, fmean(x, g, w), "-", g). The set argument can also
be passed to Fast Statistical Functions to toggle transformation by reference. The following
examples demonstrate how this design allows flexible ad-hoc transformations using R’s built-in
airquality dataset with daily measurements in New York from May to September 1973.

https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/airquality
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Int String Description
0 "replace_na"/"na" replace missing values in x
1 "replace_fill"/"fill" replace data and missing values in x
2 "replace" replace data but preserve missing values in x
3 "-" subtract (i.e., center)
4 "-+" center on overall average statistic
5 "/" divide (i.e., scale)
6 "%" compute percentages (i.e., divide and multiply by 100)
7 "+" add
8 "*" multiply
9 "%%" modulus (i.e., remainder from division by STATS)
10 "-%%" subtract modulus (i.e., make data divisible by STATS)

Table 1: Available FUN choices in TRA().

R> fnobs(airquality)

Ozone Solar.R Wind Temp Month Day
116 146 153 153 153 153

This imputes columns Ozone and Solar.R by reference using the month median.

R> fmedian(airquality[1:2], airquality$Month, TRA = "replace_na", set = TRUE)

This performs different grouped and/or weighted transformations at once.

R> airquality |> fmutate(ozone_deg = Ozone / Temp,
+ rad_day = fsum(as.double(Solar.R), Day, TRA = "/"),
+ ozone_amed = Ozone > fmedian(Ozone, Month, TRA = "fill"),
+ ozone_resid = fmean(Ozone, list(Month, ozone_amed), ozone_deg, "-")
+ ) |> head(3)

Ozone Solar.R Wind Temp Month Day ozone_deg rad_day ozone_amed ozone_resid
1 41 190 7.4 67 5 1 0.6119 0.191 TRUE -10.279
2 36 118 8.0 72 5 2 0.5000 0.135 TRUE -15.279
3 12 149 12.6 74 5 3 0.1622 0.168 FALSE -3.035

2.2. Grouping objects and optimization

Whereas the g argument supports ad-hoc grouping with vectors and lists/data frames, the cost
of grouping can be optimized by using factors or, even better, ‘GRP’ objects, which readily
contain all information collapse’s vectorized statistical functions might require to operate
across groups. These objects can be created with GRP(). Its syntax is

GRP(X, by = NULL, sort = TRUE, decreasing = FALSE, na.last = TRUE,
return.groups = TRUE, return.order = sort, method = "auto", ...)
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The example below creates and displays a ‘GRP’ object from 3 columns in mtcars. The by
argument also supports column names or indices, and X could also be an atomic vector.

R> str(g <- GRP(mtcars, ~ cyl + vs + am))

Class 'GRP' hidden list of 9
$ N.groups : int 7
$ group.id : int [1:32] 4 4 3 5 6 5 6 2 2 5 ...
$ group.sizes : int [1:7] 1 3 7 3 4 12 2
$ groups :'data.frame': 7 obs. of 3 variables:
..$ cyl: num [1:7] 4 4 4 6 6 8 8
..$ vs : num [1:7] 0 1 1 0 1 0 0
..$ am : num [1:7] 1 0 1 1 0 0 1

$ group.vars : chr [1:3] "cyl" "vs" "am"
$ ordered : Named logi [1:2] TRUE FALSE
..- attr(*, "names")= chr [1:2] "ordered" "sorted"

$ order : int [1:32] 27 8 9 21 3 18 19 20 26 28 ...
..- attr(*, "starts")= int [1:7] 1 2 5 12 15 19 31
..- attr(*, "maxgrpn")= int 12
..- attr(*, "sorted")= logi FALSE

$ group.starts: int [1:7] 27 8 3 1 4 5 29
$ call : language GRP.default(X = mtcars, by = ~cyl + vs + am)

‘GRP’ objects make grouped statistical computations in collapse fully programmable. Below,
the object is used with the Fast Statistical Functions and some utility functions to efficiently
aggregate data (with optional frequency weights).

R> dat <- get_vars(mtcars, c("mpg", "disp")); w <- mtcars$wt;
R> add_vars(g$groups,
+ fmean(dat, g, w, use.g.names = FALSE) |> add_stub("w_mean_"),
+ fsd(dat, g, w, use.g.names = FALSE) |> add_stub("w_sd_")) |> head(2)

cyl vs am w_mean_mpg w_mean_disp w_sd_mpg w_sd_disp
1 4 0 1 26.00 120.3 0.000 0.0
2 4 1 0 23.02 137.1 1.236 11.6

Similarly, data can be transformed, here using the S3 generic fscale() function.

R> mtcars |> add_vars(fmean(dat, g, w, "-") |> add_stub("w_demean_"),
+ fscale(dat, g, w) |> add_stub("w_scale_")) |> head(2)

mpg cyl disp hp drat wt qsec vs am gear carb w_demean_mpg
Mazda RX4 21 6 160 110 3.9 2.620 16.46 0 1 4 4 0.4357
Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4 0.4357

w_demean_disp w_scale_mpg w_scale_disp
Mazda RX4 5.027 0.6657 0.6657
Mazda RX4 Wag 5.027 0.6657 0.6657

https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/mtcars
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This programming access can become very useful. For example, the useR 2022 presenta-
tion Slides 18-19 aggregates the EORA Global Supply Chain Database from the country to
the world region level. After defining a single grouping object, a list of value-added shares
matrices (VB) and outputs (O) for years 1990-2021, is aggregated with no grouping cost us-
ing a single line of code like lapply(VB_list, function(x) x$VB |> fsum(g) |> t() |>
fmean(g, x$O) |> t()). On an M1 Mac using 4 threads, this computation, involving 44.7
million summations and 2.6 million weighted means, takes only 0.33 seconds.10

3. Integration with data manipulation functions
collapse also provides a broad set of fast data manipulation functions familiar to R and tidy-
verse users, including fselect(), fsubset(), fgroup_by(), fsummarise(), ftransform(),
fmutate(), across(), frename(), fcount(), etc. These are integrated with the Fast Sta-
tistical Functions to enable vectorized statistical operations in a familiar data frame oriented
and tidyverse-like workflow. For example, the following code calculates the mean of columns

R> mtcars |> fsubset(mpg > 11) |> fgroup_by(cyl, vs, am) |>
+ fsummarise(across(c(mpg, carb, hp), fmean),
+ qsec_w_med = fmean(qsec, wt)) |> head(2)

cyl vs am mpg carb hp qsec_w_med
1 4 0 1 26.0 2.000 91.00 16.70
2 4 1 0 22.9 1.667 84.67 21.04

mpg, carb and hp, and the weighted mean of qsec, after subsetting and grouping the data.
This code is very fast (especially with many groups) because data does not need to be split
by groups at all. There is also no need to call lapply() inside the across() statement:
fmean.data.frame() is applied to a subset of the data containing the three columns.11 The
Fast Statistical Functions also have a method for grouped data, so fsummarise is not always
needed. The following example calculates weighted group means. By default (keep.w =
TRUE) fmean.grouped_df also sums the weights in each group.12

R> mtcars |> fsubset(mpg > 11, cyl, vs, am, mpg, carb, hp, wt) |>
+ fgroup_by(cyl, vs, am) |> fmean(wt) |> head(2)

cyl vs am sum.wt mpg carb hp
1 4 0 1 2.140 26.00 2.00 91.0
2 4 1 0 8.805 23.02 1.72 83.6

10Another recent example involved numerically optimizing a parameter a in an equation of the form yj =∑
i
xa

ij ∀j ∈ J where there are J groups (1 million in my case), and the optimal value of a is determined by
the proximity of the aggregated vector y to another vector z. Thus each iteration of the numerical routine
raises the vector x to a different power (a), sums it in 1 million groups (j) to generate y, and computes the
Euclidean distance to z (using collapse::fdist). Without grouping objects and vectorization, this would
have been difficult to handle within reasonable computing times (of a few seconds on the M1).

11Internally, the g argument of the statistical functions is set as a keyword argument by fsummarise/across
and the function is evaluated on a suitable subset of columns. Thus w becomes the second positional argument...

12‘grouped_df’ methods in collapse support grouped data created with either fgroup_by() or
dplyr::group_by(). The latter requires an additional C routine to convert the dplyr grouping object to
a ‘GRP’ object, and is thus less efficient.

https://raw.githubusercontent.com/SebKrantz/collapse/master/misc/useR2022%20presentation/collapse_useR2022_final.pdf
https://worldmrio.com/
https://sebkrantz.github.io/collapse/reference/fast-data-manipulation.html
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3.1. Vectorizations for advanced tasks
fsummarise() and fmutate() can also evaluate arbitrary statistical functions in the classical
way (split-apply-combine) and handle more complex expressions involving multiple columns
and/or functions. However, using any Fast Statistical Function causes the whole expression
to be vectorized, i.e., evaluated only once and not for every group. This eager vectorization
approach enables efficient grouped calculation of more complex statistics. The example below
calculates grouped (vs) bivariate regression slopes (mpg ~ carb) in a vectorized way.

R> mtcars |> fgroup_by(vs) |>
+ fmutate(dm_carb = fmean(carb, TRA = "-")) |>
+ fsummarise(slope = fsum(mpg, dm_carb) %/=% fsum(dm_carb^2))

vs slope
1 0 -0.5557
2 1 -2.0706

Apart from vectorization, this code avoids 3 intermediate copies: (1) fmean(carb, TRA =
"-") avoids an expanded vector of group means, (2) fsum(mpg, dm_carb) uses the weights
(w) argument to fsum() to avoid materializing a multiplication (as in fsum(mpg * dm_carb)),
and (3) division by reference (%/=%) avoids allocating an additional vector for the final result.
Under the hood, the expression boils down to an (expensive) grouping step, 5 allocations (of
which 2 full length), and 6 loops in C to calculate the result. Any modern laptop can calculate
1 million regression slopes in less than 1 second like this. Another very neat example, shared
by Andrew Ghazi in a recent blog post,13 vectorizes an expression to compute the p value
across 300k groups for a simulation study, yielding a 70x performance increase over dplyr.

collapse also vectorizes advanced statistics, such as weighted medians and modes. The fol-
lowing example calculates a weighted set of summary statistics by groups, with weighted
quantiles type 8 following Hyndman and Fan (1996).14 and a weighted maximum mode.15

R> mtcars |> fgroup_by(cyl, vs, am) |>
+ fmutate(o = radixorder(GRPid(), mpg)) |>
+ fsummarise(mpg_min = fmin(mpg),
+ mpg_Q1 = fnth(mpg, 0.25, wt, o = o, ties = "q8"),
+ mpg_mean = fmean(mpg, wt),
+ mpg_median = fmedian(mpg, wt, o = o, ties = "q8"),
+ mpg_mode = fmode(mpg, wt, ties = "max"),
+ mpg_Q3 = fnth(mpg, 0.75, wt, o = o, ties = "q8"),
+ mpg_max = fmax(mpg)) |> head(3)

cyl vs am mpg_min mpg_Q1 mpg_mean mpg_median mpg_mode mpg_Q3 mpg_max
1 4 0 1 26.0 26.00 26.00 26.00 26.0 26.00 26.0
2 4 1 0 21.5 21.90 23.02 23.16 24.4 24.38 24.4
3 4 1 1 21.4 22.37 27.74 28.28 30.4 31.51 33.9

13https://andrewghazi.github.io/posts/collapse_is_sick/sick.html
14collapse calculates weighted quantiles by replacing the sample size with the sum of weights and 1 with the

minimum non-zero weight in the respective quantile definition. See fquantile for more details.
15The weighted maximum mode is the largest element with the maximum sum of weights.

https://andrewghazi.github.io/posts/collapse_is_sick/sick.html
https://sebkrantz.github.io/collapse/reference/fquantile.html
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Both weighted mode and quantiles have a sub-column parallel implementation,16 and, as
shown above, can also harness an (optional) optimization by computing an overall order-
ing vector and passing it to each quantile function to avoid repeated partial sorting (using
quickselect) of the same elements within groups. For advanced data aggregation, collapse
also provides a convenience function, collap(), which (by default) uses fmean for numeric
and fmode for non-numeric columns. Below, it aggregates GDP per capita, life expectancy,
and country name by World Bank income group, with population weights.17 This yields
population-weighted statistics, the largest country, and each income group’s total population
(sum of weights) for each year, preserving (default keep.col.order = TRUE) the order of
columns.

R> collap(wlddev, country + PCGDP + LIFEEX ~ year + income, w = ~ POP) |>
+ head(4)

country year income PCGDP LIFEEX POP
1 United States 1960 High income 12768.7 68.59 7.495e+08
2 Ethiopia 1960 Low income 658.5 38.33 1.474e+08
3 India 1960 Lower middle income 500.8 45.27 9.280e+08
4 China 1960 Upper middle income 1166.1 49.86 1.184e+09

4. Time series and panel data
collapse also provides a flexible high-performance architecture to perform (time aware) com-
putations on time series and panel series. In particular, the user enjoys great flexibility
in deciding the desired degree of indexation and mode of computation. It is possible to
apply time series and panel data transformations without any indexation by passing indi-
vidual and/or time identifiers to the respective functions in an ad-hoc fashion, or by using
‘indexed_frame’ and ‘indexes_series’ classes, which implement full and deep indexation.
Table 2 summarizes collapse’s time series and panel data architecture.

4.1. Ad-hoc computations

Time series functions such as fgrowth() (to compute growth rates) are S3 generic and can
be applied to most time series classes. In addition to a g argument for grouped computation,
these functions also have a t argument for indexation. If t is a plain numeric vector or
a factor, it is coerced to integer and interpreted as time steps.18 If t is a numeric time
object (e.g., ‘Date’, ‘POSIXct’, etc.), then it is internally passed through timeid() which
computes the greatest common divisor (GCD) and generates an integer time-id. For the
GCD approach to work, t must have an appropriate class, e.g., for monthly/quarterly data,
zoo::yearmon()/zoo::yearqtr() should be used instead of ‘Date’ or ‘POSIXct’.

R> fgrowth(airmiles) |> round(2)
16Use set_collapse(nthreads = #) or the nthreads arguments to fnth/fmedian/fmode (default 1).
17wlddev is a dataset supplied by collapse, extracted from the World Bank World Development Indicators.
18This is premised on the observation that the most common form of temporal identifier is a numeric variable

denoting calendar years. Users need to manually call timeid() on plain numeric vectors with decimals to yield
an appropriate integer representation.

https://sebkrantz.github.io/collapse/reference/wlddev.html
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Classes, constructors and utilities
findex_by(), findex(), unindex(), reindex(), timeid(), is_irregular(),
to_plm() + S3 methods for ‘indexed_frame’, ‘indexed_series’ and ‘index_df’

Core time-based functions
flag(), fdiff(), fgrowth(), fcumsum(), psmat()
psacf(), pspacf(), psccf()

Data transformation functions with supporting methods
fscale(), f[hd]between(), f[hd]within()

Data manipulation functions with supporting methods
fsubset(), funique(), roworder[v]() (internal), na_omit() (internal)

Summary functions with supporting methods
varying(), qsu()

Table 2: Time series and panel data architecture.

Time Series:
Start = 1937
End = 1960
Frequency = 1
[1] NA 16.50 42.29 54.03 31.65 2.38 15.23 33.29 54.36 76.92 2.71 -2.10

[13] 12.91 18.51 32.03 18.57 17.82 13.61 18.19 12.83 13.32 0.01 15.49 4.25

The following code creates an irregular series by removing the 3rd and 15th observation and
shows how indexation with the t argument accounts for this.

R> am_ir <- airmiles[-c(3, 15)]
R> t <- time(airmiles)[-c(3, 15)]
R> fgrowth(am_ir, t = t) |> round(2)

[1] NA 16.50 NA 31.65 2.38 15.23 33.29 54.36 76.92 2.71 -2.10 12.91
[13] 18.51 NA 17.82 13.61 18.19 12.83 13.32 0.01 15.49 4.25

R> fgrowth(am_ir, -1:3, t = t) |> head(4)

FG1 -- G1 L2G1 L3G1
[1,] -14.167 412 NA NA NA
[2,] NA 480 16.50 NA NA
[3,] -24.043 1052 NA 119.2 155.3
[4,] -2.327 1385 31.65 NA 188.5

For these functions, there also exists shorthands in the form of statistical operators, e.g.,
L()/D()/G() are shorthands for flag()/fdiff()/fgrowth(), which facilitate their use inside
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formulas and also provide enhanced data frame interfaces for convenient ad-hoc computations.
With panel data, t can be omitted, but this requires sorted data with consecutive groups.19

R> G(wlddev, c(1, 10), by = POP + LIFEEX ~ iso3c, t = ~ year) |> head(3)

iso3c year G1.POP L10G1.POP G1.LIFEEX L10G1.LIFEEX
1 AFG 1960 NA NA NA NA
2 AFG 1961 1.917 NA 1.590 NA
3 AFG 1962 1.985 NA 1.544 NA

R> settransform(wlddev, POP_growth = G(POP, g = iso3c, t = year))

These functions and operators are also integrated with fsummarise() and fmutate() for
vectorized grouped computations.

R> wlddev |> fgroup_by(iso3c) |> fselect(iso3c, year, POP, LIFEEX) |>
+ fmutate(across(c(POP, LIFEEX), G, t = year)) |> head(2)

iso3c year POP LIFEEX G1.POP G1.LIFEEX
1 AFG 1960 8996973 32.45 NA NA
2 AFG 1961 9169410 32.96 1.917 1.59

Similarly, functions to scale, center, and average data have groups (g) and also weights (w)
arguments, and corresponding operators STD(),[HD]W(),[HD]B() to facilitate ad-hoc trans-
formations. Below, two ways to perform grouped scaling are demonstrated. The operator
version is slightly faster and renames the transformed columns by default (stub = TRUE).

R> iris |> fgroup_by(Species) |> fscale() |> head(2)

Species Sepal.Length Sepal.Width Petal.Length Petal.Width
1 setosa 0.2667 0.1899 -0.357 -0.4365
2 setosa -0.3007 -1.1291 -0.357 -0.4365

R> STD(iris, ~ Species) |> head(2)

Species STD.Sepal.Length STD.Sepal.Width STD.Petal.Length STD.Petal.Width
1 setosa 0.2667 0.1899 -0.357 -0.4365
2 setosa -0.3007 -1.1291 -0.357 -0.4365

The following example demonstrates a fixed-effects regression à la Mundlak (1978).

R> lm(mpg ~ carb + B(carb, cyl), data = mtcars) |> coef()

(Intercept) carb B(carb, cyl)
34.8297 -0.4655 -4.7750

19This is because a group-lag is computed in a single pass, requiring all group elements to be consecutive.
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collapse also offers higher-dimensional between and within transformations, powered by C++
code conditionally imported (and accessed directly) from fixest. The following detrends GDP
per Capita and Life Expectancy at Birth using country-specific cubic polynomials.

R> HDW(wlddev, PCGDP + LIFEEX ~ iso3c * poly(year, 3), stub = F) |> head(2)

PCGDP LIFEEX
1 8.885 0.023614
2 13.685 0.006724

4.2. Indexed series and frames

For more complex use cases, indexation is very convenient. collapse supports plm’s ‘pseries’
and ‘pdata.frame’ classes through dedicated methods. Flexibility and performance consid-
erations lead to the creation of new classes ‘indexes_series’ and ‘indexed_frame’ which
inherit from the former. Any data frame-like object can be an ‘indexed_frame’ with any
number of individual and/or time identifiers (e.g., an indexed ‘data.table’ is fully func-
tional for other operations). The technical implementation of these classes is described in the
vignette on object handling and, in more detail, in the documentation. The basic syntax is:

data_ix <- findex_by(data, id1, ..., time)
data_ix$indexed_series; with(data, indexed_series)
index_df <- findex(data_ix)

Data can be indexed using one or more indexing variables. Unlike ‘pdata.frame’, an
‘indexed_frame’ is a deeply indexed structure, i.e., every series inside the frame is already
an ‘indexes_series’ and contains, in its ‘index_df’ attribute, an external pointer to the
‘index_df’ attribute of the frame (to avoid duplication in memory). A comprehensive set
of methods for subsetting and manipulation, and applicable ‘pseries’ and ‘pdata.frame’
methods for time series and transformation functions like flag()/L(), ensure that these
objects behave in a time-/panel-aware manor in any caller environment (created by with(),
lm() etc.). Indexation can be undone using unindex() and redone with reindex() and a
suitable ‘index_df’. ‘indexes_series’ can be atomic vectors or matrices (including objects
such as ‘ts’ or ‘xts’) and can also be created directly using reindex().

data <- unindex(data_ix)
data_ix <- reindex(data, index = index_df)
indexed_series <- reindex(vec/mat, index = vec/index_df)

An example using the wlddev data follows:

R> wldi <- wlddev |> findex_by(iso3c, year)
R> wldi |> fsubset(-3, iso3c, year, PCGDP:POP) |> G() |> head(4)

iso3c year G1.PCGDP G1.LIFEEX G1.GINI G1.ODA G1.POP
1 AFG 1960 NA NA NA NA NA
2 AFG 1961 NA 1.590 NA 98.75 1.917

https://sebkrantz.github.io/collapse/articles/collapse_object_handling.html#class-agnostic-grouped-and-indexed-data-frames
https://sebkrantz.github.io/collapse/reference/indexing.html
https://sebkrantz.github.io/collapse/reference/indexing.html
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3 AFG 1963 NA NA NA NA NA
4 AFG 1964 NA 1.448 NA 24.48 2.112

Indexed by: iso3c [1] | year [4 (61)]

The index statistics are: [N. ids] | [N. periods (total periods: (max-min)/GCD)].
This creates an ‘indexes_series’ of life expectancy and demonstrates its properties:

R> LIFEEXi <- wldi$LIFEEX; str(LIFEEXi, width = 70, strict = "cut")

'indexed_series' num [1:13176] 32.4 33 33.5 34 34.5 ...
- attr(*, "label")= chr "Life expectancy at birth, total (years)"
- attr(*, "index_df")=Classes 'index_df', 'pindex' and 'data.frame'..
..$ iso3c: Factor w/ 216 levels "ABW","AFG","AGO",..: 2 2 2 2 2 2 ..
.. ..- attr(*, "label")= chr "Country Code"
..$ year : Ord.factor w/ 61 levels "1960"<"1961"<..: 1 2 3 4 5 6 7..
.. ..- attr(*, "label")= chr "Year"

R> c(is_irregular(LIFEEXi), is_irregular(LIFEEXi[-5]))

[1] FALSE TRUE

R> G(LIFEEXi[c(1:5, 7:10)])

[1] NA 1.590 1.544 1.494 1.448 NA 1.366 1.362 1.365

Indexed by: iso3c [1] | year [9 (61)]

The transformation and estimation below demonstrate the deep indexation of
‘indexed_frame”s, allowing correct computations in arbitrary data masking environments.

R> settransform(wldi, PCGDP_ld = Dlog(PCGDP))
R> lm(D(LIFEEX) ~ L(PCGDP_ld, 0:5) + B(PCGDP_ld), wldi) |>
+ summary() |> coef() |> round(3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.299 0.007 44.412 0.000
L(PCGDP_ld, 0:5)-- 0.300 0.080 3.735 0.000
L(PCGDP_ld, 0:5)L1 0.269 0.081 3.332 0.001
L(PCGDP_ld, 0:5)L2 0.227 0.079 2.854 0.004
L(PCGDP_ld, 0:5)L3 0.200 0.078 2.563 0.010
L(PCGDP_ld, 0:5)L4 0.143 0.076 1.871 0.061
L(PCGDP_ld, 0:5)L5 0.095 0.073 1.301 0.193
B(PCGDP_ld) -1.021 0.316 -3.234 0.001
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The above example could also have been executed in one line as lm(D(LIFEEX) ~
L(Dlog(PCGDP), 0:5) + B(Dlog(PCGDP)), wldi), log-differencing PCGDP twice.

In comparison with existing solutions, the flexibility of this architecture is new to the R ecosys-
tem: A ‘pdata.frame’ or ‘fixest_panel’ only works inside plm/fixest estimation functions.20

Time series classes like ‘xts’ and ‘tsibble’ also do not provide deeply indexed structures for
time series operations or native handling of irregularity in basic operations. ‘indexed_series’
and ‘indexed_frame’, on the other hand, work anywhere and can be superimposed on any
suitable object (such as ‘sf’ to create a spatiotemporal panel), as long as collapse’s func-
tions (flag()/L() etc.) are used to perform the time-based computations. The ‘index_df’
attached to these objects can be used with other general tools such as collapse::BY() to
perform grouped computations using 3rd-party functions. An example of calculating a 5-year
rolling average is given below. Last but not least, the performance of these classes is second
to none, as demonstrated in the useR 2022 presentation on slide 40.

R> BY(LIFEEXi, findex(LIFEEXi)$iso3c, data.table::frollmean, 5) |> head(10)

[1] NA NA NA NA 33.46 33.96 34.46 34.95 35.43 35.92

Indexed by: iso3c [1] | year [10 (61)]

5. Table joins and pivots
While collapse has a broad set of data manipulation functions, its implementations of table
joins and pivots is particularly noteworthy since they offer several new features, including
rich verbosity for table joins, pivots supporting variable labels, and ’recast’ pivots. Both
implementations provide outstanding computational performance and memory efficiency.

5.1. Joins

Compared to commercial environments such as STATA, the implementation of joins in most
open-source software, including R, is non-verbose, i.e., provides no information on how many
and which records were joined from both tables. This is somewhat unsatisfying and often
provokes manual efforts to validate the join operation. collapse::join provides a rich set
of options to make table join operations intelligible. Its syntax is:

join(x, y, on = NULL, how = "left", suffix = NULL, validate = "m:m",
multiple = FALSE, sort = FALSE, keep.col.order = TRUE,
drop.dup.cols = FALSE, verbose = 1, column = NULL, attr = NULL, ...)

By default (verbose = 1), it prints information about the join operation and number of
records joined. Users can request the generation of a .join column (column = "name"/TRUE),
akin to STATA’s _merge column, indicating the origin of records in the joined table.

20And, in the case of fixest, inside data.table due to dedicated methods.

https://raw.githubusercontent.com/SebKrantz/collapse/master/misc/useR2022%20presentation/collapse_useR2022_final.pdf
https://sebkrantz.github.io/collapse/reference/fast-data-manipulation.html
https://sebkrantz.github.io/collapse/reference/join.html
https://sebkrantz.github.io/collapse/reference/pivot.html
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R> df1 <- data.frame(id1 = c(1, 1, 2, 3), id2 = c("a", "b", "b", "c"),
+ name = c("John", "Jane", "Bob", "Carl"), age = c(35, 28, 42, 50))
R> df2 <- data.frame(id1 = c(1, 2, 3, 3), id2 = c("a", "b", "c", "e"),
+ salary = c(60000, 55000, 70000, 80000),
+ dept = c("IT", "Marketing", "Sales", "IT"))
R> join(df1, df2, on = c("id1", "id2"), how = "full", column = TRUE)

full join: df1[id1, id2] 3/4 (75%) <m:m> df2[id1, id2] 3/4 (75%)
id1 id2 name age salary dept .join

1 1 a John 35 60000 IT matched
2 1 b Jane 28 NA <NA> df1
3 2 b Bob 42 55000 Marketing matched
4 3 c Carl 50 70000 Sales matched
5 3 e <NA> NA 80000 IT df2

An alternative to the join column is to request an attribute (attr = "name"/TRUE) that also
summarizes the join operation, including the output of fmatch() (the workhorse of join()
if sort = FALSE). Users can also invoke the validate argument to check the uniqueness of
the join keys in either table: passing a ’1’ for a non-unique key produces an error.

R> join(df1, df2, on = c("id1", "id2"), validate = "1:1", attr = "join") |>
+ attr("join") |> str(width = 70, strict = "cut")

left join: df1[id1, id2] 3/4 (75%) <1:1> df2[id1, id2] 3/4 (75%)
List of 3
$ call : language join(x = df1, y = df2, on = c("id1", "id2"), v"..
$ on.cols:List of 2
..$ x: chr [1:2] "id1" "id2"
..$ y: chr [1:2] "id1" "id2"

$ match : 'qG' int [1:4] 1 NA 2 3
..- attr(*, "N.nomatch")= int 1
..- attr(*, "N.groups")= int 4
..- attr(*, "N.distinct")= int 3

A few further particularities are worth highlighting. First, collapse::join is also class-
agnostic and preserves the attributes of x. It supports 6 different join operations ("left",
"right", "inner", "full", "semi", or "anti") and defaults to "left", so the default be-
havior simply adds columns to x. By default (sort = FALSE), the order of rows in x is also
preserved. Setting sort = TRUE sorts all records in the joined table by the keys.21 Addi-
tionally, by default (multiple = FALSE), only the first matches from y are joined to avoid
silent cartesian duplication of records. In multi-match settings, this will be reflected by few
records from y being used. fmatch() also has a built-in overidentification check, which issues
a warning if more key columns than necessary to identify the records are provided:

21This is done using a separate sort-merge-join algorithm, so it is faster than performing a hash join (using
fmatch()) followed by sorting, particularly if the data is already sorted on the keys.
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R> df2$name = df1$name
R> join(df1, df2) |> capture.output(type = "m") |>
+ strwrap(77) |> cat(sep = "\n")

left join: df1[id1, id2, name] 1/4 (25%) <m:m> df2[id1, id2, name] 1/4 (25%)
id1 id2 name age salary dept

1 1 a John 35 60000 IT
2 1 b Jane 28 NA <NA>
3 2 b Bob 42 NA <NA>
4 3 c Carl 50 NA <NA>
Warning in fmatch(x[ixon], y[iyon], nomatch = NA_integer_, count = count, :
Overidentified match/join: the first 2 of 3 columns uniquely match the
records. With overid > 0, fmatch() continues to match columns. Consider
removing columns or setting overid = 0 to terminate the algorithm after 2
columns (the results may differ, see ?fmatch). Alternatively set overid = 2
to silence this warning.

A final noteworthy feature is the handling of duplicate non-id columns in both tables:

R> join(df1, df2, on = c("id1", "id2"))

left join: df1[id1, id2] 3/4 (75%) <m:m> df2[id1, id2] 3/4 (75%)
duplicate columns: name => renamed using suffix '_df2' for y

id1 id2 name age salary dept name_df2
1 1 a John 35 60000 IT John
2 1 b Jane 28 NA <NA> <NA>
3 2 b Bob 42 55000 Marketing Jane
4 3 c Carl 50 70000 Sales Bob

By default (suffix = NULL), join() extracts the name of the y table and appends y-columns
with it. x-columns are not renamed. This is congruent to the principle of adding columns to
x and altering this table as little as possible. Another option, drop.dup.cols = "x"/"y",
can be used to simply drop duplicate columns from x or y before the join operation.

5.2. Pivots

The reshaping/pivoting functionality of both commercial and open source software is also
unsatisfying for complex datasets such as surveys or disaggregated production, trade, or fi-
nancial sector data, where variable names resemble codes and variable labels are essential to
making sense of the data. Such datasets can presently only be reshaped by losing these labels
or additional manual efforts to retain them. Modern R packages also offer different func-
tions for different reshaping operations, such as data.table::melt/tidyr::pivot_longer
to combine columns and data.table::dcast/tidyr::pivot_wider to expand them, requir-
ing users to learn both. Since the depreciation of reshape(2) (Wickham 2007), there is also
no modern replacement for reshape2::recast(), requiring R users to consecutively call two
reshaping functions, incurring a high cost in terms of syntax and memory.
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collapse::pivot provides a modern class-agnostic implementation of reshaping for R that
addresses these shortcomings: it has a single intuitive syntax to perform ’longer’, ’wider’, and
’recast’ pivots, and supports complex labelled data without loss of information. Its syntax is:

pivot(data, ids = NULL, values = NULL, names = NULL, labels = NULL,
how = "longer", na.rm = FALSE, factor = c("names", "labels"),
check.dups = FALSE, nthreads = 1, fill = NULL, drop = TRUE,
sort = FALSE, transpose = FALSE)

The demonstration below employs a generated dataset about fruits. We could equivalently
think about a survey with households and individuals, or sectors and firms. Variable labels are
stored in attr(column, "label"). The documentation provides more elaborate examples.

R> data <- data.frame(type = rep(c("A", "B"), each = 2),
+ type_name = rep(c("Apples", "Bananas"), each = 2),
+ id = rep(1:2, 2), r = abs(rnorm(4)), h = abs(rnorm(4)*2))
R> setrelabel(data, id = "Fruit Id", r = "Fruit Radius", h = "Fruit Height")
R> print(data)

type type_name id r h
1 A Apples 1 0.3139 2.983
2 A Apples 2 0.4095 1.572
3 B Bananas 1 0.4302 2.220
4 B Bananas 2 0.1851 2.380

R> vlabels(data)

type type_name id r h
NA NA "Fruit Id" "Fruit Radius" "Fruit Height"

To reshape this dataset into a longer format, it suffices to call pivot(data, ids = c(...)).
If labels = "lab_name" is specified, variable labels are saved to an additional column named
lab_name. In addition, names = list(variable = "var_name", value = "val_name") can
be passed to assign alternative names to the variable and value columns, respectively.

R> (dl <- pivot(data, ids = c("type", "type_name", "id"), labels = "label"))

type type_name id variable label value
1 A Apples 1 r Fruit Radius 0.3139
2 A Apples 2 r Fruit Radius 0.4095
3 B Bananas 1 r Fruit Radius 0.4302
4 B Bananas 2 r Fruit Radius 0.1851
5 A Apples 1 h Fruit Height 2.9829
6 A Apples 2 h Fruit Height 1.5722
7 B Bananas 1 h Fruit Height 2.2203
8 B Bananas 2 h Fruit Height 2.3797

https://sebkrantz.github.io/collapse/reference/pivot.html#ref-examples
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R> vlabels(dl)

type type_name id variable label value
NA NA "Fruit Id" NA NA NA

pivot() only requires essential information and intelligently guesses the rest. For example,
the same result could have been obtained by pivot(data, values = c("r", "h"), labels
= "label"). An exact reverse operation can also be performed by specifying as little as
pivot(dl, labels = "label", how = "w").

The second option is a wider pivot with how = "wider". Here, names and labels can be
used to select columns containing the names of new columns and their labels.22 Note how
the labels are combined with existing labels such that also this operation is without loss of
information. It is, however, a destructive operation, i.e., with 2 or more columns selected
through values, pivot() is not able to reverse it. Further arguments like na.rm, fill, sort,
and transpose can be used to control the casting process.

R> (dw <- pivot(data, "id", names = "type", labels = "type_name", how = "w"))

id r_A r_B h_A h_B
1 1 0.3139 0.4302 2.983 2.22
2 2 0.4095 0.1851 1.572 2.38

R> namlab(dw)

Variable Label
1 id Fruit Id
2 r_A Fruit Radius - Apples
3 r_B Fruit Radius - Bananas
4 h_A Fruit Height - Apples
5 h_B Fruit Height - Bananas

For the recast pivot (how = "recast"), unless a column named variable exists in the data,
the source and (optionally) destination of variable names need to be specified using a list
passed to names, and similarly for labels. Again, taking along labels is optional, and omitting
either the list’s from or to elements will omit the respective operations.

R> (dr <- pivot(data, ids = "id", names = list(from = "type"),
+ labels = list(from = "type_name", to = "label"), how = "r"))

id variable label A B
1 1 r Fruit Radius 0.3139 0.4302
2 2 r Fruit Radius 0.4095 0.1851
3 1 h Fruit Height 2.9829 2.2203
4 2 h Fruit Height 1.5722 2.3797

22multiple columns with names and labels could be selected, which would be combined using "_" for names
and " - " for labels.
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R> vlabels(dr)

id variable label A B
"Fruit Id" NA NA "Apples" "Bananas"

As with the other pivots, this operation does not incur any loss of information. A suitable
reverse operation also exists: pivot(dr, "id", names = list(to = "type"), labels =
list(from = "label", to = "type_name"), how = "r"). More features of pivot() are
demonstrated in the documentation examples. Notably, it is also possible to perform longer
and recast pivots without id variables. The recast pivot without ids resembles a generalization
of data.table::transpose(), albeit slightly less efficient.

6. List processing
Often in programming, nested structures are needed. A typical use case involves running
statistical procedures for multiple configurations of variables and parameters and saving mul-
tiple objects (such as a model object, performance statistics, and predictions) in a list. Nested
data is also often the result of web scraping or web APIs. A typical use case in development
involves serving different data according to user choices, e.g., in response to nested user inputs
in shiny apps. Except for certain recursive functions found in packages such as purr, tidyr, or
rrapply, R lacks a general recursive toolkit to create, query, and tidy nested data. collapse’s
list processing functions attempt to provide a basic toolkit.

To create nested data, rsplit() generalizes split() and (recursively) splits up data frame-
like objects into a (nested) list.

R> (dl <- mtcars |> rsplit(mpg + hp + carb ~ vs + am)) |> str(max.level = 2)

List of 2
$ 0:List of 2
..$ 0:'data.frame': 12 obs. of 3 variables:
..$ 1:'data.frame': 6 obs. of 3 variables:

$ 1:List of 2
..$ 0:'data.frame': 7 obs. of 3 variables:
..$ 1:'data.frame': 7 obs. of 3 variables:

If a nested structure is not wanted, argument flatten = TRUE lets rsplit() operate like
a faster version of split(). With a single column on the LHS of the formula, the default
(simplify = TRUE) returns a nested list of atomic vectors. Having created a nested list,
rapply2d() is used to fit a linear model on each frame,23 followed by get_elem() to obtain
the coefficient matrices. get_elem() offers several options for filtering lists but, by default,
simplifies the list tree as much as possible while maintaining existing hierarchies. In this case,
it returns the same nested list with coefficient matrices in all final nodes.

23rapply2d() is just a recursive wrapper around lapply(), with different defaults than rapply(). Notably,
by default, it excludes data frames from being considered as sub-lists and does not simplify the result.

https://sebkrantz.github.io/collapse/reference/pivot.html#ref-examples
https://sebkrantz.github.io/collapse/reference/list-processing.html
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R> nest_lm_coef <- dl |> rapply2d(lm, formula = mpg ~ .) |>
+ rapply2d(summary, classes = "lm") |> get_elem("coefficients")
R> nest_lm_coef |> str(give.attr = FALSE, strict = "cut")

List of 2
$ 0:List of 2
..$ 0: num [1:3, 1:4] 15.8791 0.0683 -4.5715 3.655 0.0345 ...
..$ 1: num [1:3, 1:4] 26.9556 -0.0319 -0.308 2.293 0.0149 ...

$ 1:List of 2
..$ 0: num [1:3, 1:4] 30.896903 -0.099403 -0.000332 3.346033 0.03587 ...
..$ 1: num [1:3, 1:4] 37.0012 -0.1155 0.4762 7.3316 0.0894 ...

At last, unlist2d() is applied to unlist the nested list to a data frame. This function
can create a data frame (or ‘data.table’) representation of any nested list containing data
using recursive row-binding and coercion operations while generating (optional) id variables
representing the list tree and (optionally) saving row names of matrices or data frames.

R> nest_lm_coef |> unlist2d(c("vs", "am"), row.names = "variable") |> head(2)

vs am variable Estimate Std. Error t value Pr(>|t|)
1 0 0 (Intercept) 15.87915 3.65495 4.345 0.001865
2 0 0 hp 0.06832 0.03449 1.981 0.078938

This example does not represent an optimal workflow for this specific task24 but exemplifies
the power of these tools to create, query, and combine nested data in very general ways.
collapse’s list processing toolkit provides further useful functions such as t_list() to turn
lists of lists inside out, has_elem() to check for the existence of elements, ldepth() to return
the maximum level of recursion, and is_unlistable() to check whether a list has atomic
elements in all final nodes. A non-recursive and class-agnostic rowbind() function also exists
to efficiently bind lists of data frame-like objects (like data.table::rbindlist()).

7. Summary statistics
collapse’s summary statistics functions offer a parsimonious and powerful toolset to examine
complex datasets. A particular focus has been on providing tools for examining longitudinal
(panel) data. Recall the indexed world development panel (wldi) from Section 4. The function
varying() indicates which of these variables are time-varying:

R> varying(wldi)

country date year decade region income OECD PCGDP LIFEEX
FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE
GINI ODA POP
TRUE TRUE TRUE

24A better way of achieving the same result would be mtcars |> fgroup_by(vs, am) |>
fsummarise(qDF(lmtest::coeftest(lm(mpg hp + carb)), "variable")).

https://sebkrantz.github.io/collapse/reference/summary-statistics.html
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R> varying(wldi, any_group = FALSE) |> head(3)

country date year decade region income OECD PCGDP LIFEEX GINI ODA POP
ABW FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE NA TRUE TRUE
AFG FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE NA TRUE TRUE
AGO FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

Country-variance can be examined using varying(wldi, effect = "year"). For non-indexed
data, varying() also has a g argument. A related exercise is to decompose the variance of a
panel series into a component due to variation between countries and one capturing variance
within countries over time. Using the W()/B() operators and the LIFEEXi ‘indexed_series’
from Section 4, this is easily demonstrated:

R> all.equal(fvar(W(LIFEEXi)) + fvar(B(LIFEEXi)), fvar(LIFEEXi))

[1] TRUE

The function qsu() (quick-summary) provides an efficient method to approximately compute
this decomposition, considering the group-means instead of the between transformation25 and
adding the mean back to the within transformation to preserve the scale of the data.

R> qsu(LIFEEXi)

N/T Mean SD Min Max
Overall 11670 64.2963 11.4764 18.907 85.4171
Between 207 64.9537 9.8936 40.9663 85.4171
Within 56.3768 64.2963 6.0842 32.9068 84.4198

This decomposition shows more variation in life expectancy between countries than within
countries over time. It can also be computed for different subgroups, such as OECD members
and non-members, and with sampling weights, such as population. qsu() can also return
Pearson’s measures of higher-order statistics.

R> qsu(LIFEEXi, g = wlddev$OECD, w = wlddev$POP, higher = TRUE) |> aperm()

, , FALSE

N/T Mean SD Min Max Skew Kurt
Overall 9503 63.5476 9.2368 18.907 85.4171 -0.7394 2.7961
Between 171 63.5476 6.0788 43.0905 85.4171 -0.8041 3.082
Within 55.5731 65.8807 6.9545 30.3388 82.8832 -1.0323 4.0998

, , TRUE

N/T Mean SD Min Max Skew Kurt
Overall 2156 74.9749 5.3627 45.369 84.3563 -1.2966 6.5505
Between 36 74.9749 2.9256 66.2983 78.6733 -1.3534 4.5999
Within 59.8889 65.8807 4.4944 44.9513 77.2733 -0.627 3.9839

25This is more efficient and equal to using the between transformation if the panel is balanced.
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The output shows that the variation in life expectancy is significantly larger for non-OECD
countries and that for these countries, the between- and within-country variation is approx-
imately equal in magnitude.26 For more detailed (grouped, weighted) statistics, descr()
provides a rich statistical description of variables in a dataset.

R> descr(wlddev, LIFEEX ~ OECD, w = ~ replace_na(POP))

Dataset: wlddev, 1 Variables, N = 13176, WeightSum = 313233706778
Grouped by: OECD [2]

N Perc WeightSum Perc
FALSE 10980 83.33 2.49344474e+11 79.6
TRUE 2196 16.67 6.38892329e+10 20.4
-----------------------------------------------------------------------------
LIFEEX (numeric): Life expectancy at birth, total (years)
Statistics (N = 11659, 11.51% NAs)

N Perc Ndist Mean SD Min Max Skew Kurt
FALSE 9503 81.51 8665 63.55 9.24 18.91 85.42 -0.74 2.8
TRUE 2156 18.49 2016 74.97 5.36 45.37 84.36 -1.3 6.55

Quantiles
1% 5% 10% 25% 50% 75% 90% 95% 99%

FALSE 41.39 45.78 49.08 57.51 65.98 70.14 74.12 75.63 76.91
TRUE 56.65 65.98 69.7 71.85 75.38 78.64 81.26 82.43 83.6
-----------------------------------------------------------------------------

While descr() does not support panel-variance decompositions like qsu(), it also computes
detailed (grouped, weighted) frequency tables for categorical data and is thus very utile with
complex surveys. A stepwise argument toggles describing one variable at a time, allowing
users to naturally ’click-through’ a large dataset rather than printing a massive output to
the console. More details and examples are in the documentation. Both qsu() and descr()
provide an as.data.frame() method for efficient tidying and further analysis.

A final noteworthy function from collapse’s descriptive statistics toolkit is qtab(), an en-
hanced drop-in replacement for base::table. It is enhanced both in a statistical and com-
putational sense, providing a remarkable performance boost, an option (sort = FALSE) to
preserve the first-appearance-order of vectors being cross-tabulated, support for frequency
weights (w), and the ability to compute different statistics representing table entries using
these weights - vectorized when using Fast Statistical Functions, as demonstrated below.

R> library("magrittr")
R> wlda15 <- wlddev |> fsubset(year >= 2015) |> fgroup_by(iso3c) |> flast()
R> wlda15 %$% qtab(OECD, income)

income
OECD High income Low income Lower middle income Upper middle income

26qsu() also has a convenient formula interface to perform these transformations in an ad-hoc fashion, e.g.,
the above can be obtained using qsu(wlddev, LIFEEX OECD, iso3c, POP, higher = TRUE), without
prior indexation.

https://sebkrantz.github.io/collapse/reference/descr.html
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FALSE 45 30 47 58
TRUE 34 0 0 2

This shows the total population (latest post-2015 estimates) in millions.

R> wlda15 %$% qtab(OECD, income, w = POP) %>% divide_by(1e6)

income
OECD High income Low income Lower middle income Upper middle income

FALSE 93.01 694.89 3063.54 2459.71
TRUE 1098.75 0.00 0.00 211.01

This shows the average life expectancy in years. The use of fmean() toggles an efficient
vectorized computation of the table entries (i.e., fmean() is only called once).

R> wlda15 %$% qtab(OECD, income, w = LIFEEX, wFUN = fmean) %>% replace_na(0)

income
OECD High income Low income Lower middle income Upper middle income

FALSE 78.75 62.81 68.30 73.81
TRUE 81.09 0.00 0.00 76.37

Finally, this calculates a population-weighted average of life expectancy in each group.

R> wlda15 %$% qtab(OECD, income, w = LIFEEX, wFUN = fmean,
+ wFUN.args = list(w = POP)) %>% replace_na(0)

income
OECD High income Low income Lower middle income Upper middle income

FALSE 77.91 63.81 68.76 75.93
TRUE 81.13 0.00 0.00 76.10

‘qtab’ objects inherit the ‘table’ class, thus all ‘table’ methods apply. Apart from the above
functions, collapse also provides functions pwcor, pwcov, pwnobs for convenient (pairwise,
weighted) correlations, covariances, and observations counts, and also functions psacf, pspacf
and psccf for auto- and cross-covariance and correlation function estimation on panel series.

8. Global options
collapse is globally configurable to an extent few packages are: the default value of key func-
tion arguments governing the behavior of its algorithms, and the exported namespace, can
be adjusted interactively through the set_collapse() function. These options are saved in
an internal environment called .op (for safety and performance reasons) visible in the docu-
mentation of some functions. Its contents can be accessed using get_collapse().

https://sebkrantz.github.io/collapse/reference/collapse-options.html
https://sebkrantz.github.io/collapse/reference/fmean.html
https://sebkrantz.github.io/collapse/reference/fmean.html
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The current set of options comprises the default behavior for missing values (na.rm argu-
ments in all statistical functions and algorithms), sorted grouping (sort), multithreading and
algorithmic optimizations (nthreads, stable.algo), presentational settings (stub, digits,
verbose), and, surpassing all else, the package namespace itself (mask, remove).

As evident from previous sections, collapse provides performance-improved or otherwise en-
hanced versions of functionality already present in base R (like the Fast Statistical Functions,
funique(), fmatch(), fsubset(), ftransform(), etc.) and other packages (esp. dplyr
(Wickham et al. 2023a): fselect(), fsummarise(), fmutate(), frename(), etc.). The ob-
jective of being namespace compatible warrants such a naming convention, but this has a
syntactical cost, particularly when collapse is the primary data manipulation package.

To reduce this cost, collapse’s mask option allows masking existing R functions with the
faster collapse versions by creating additional functions in the namespace and instantly ex-
porting them. All collapse functions starting with ’f’ can be passed to the option (with or
without the ’f’), e.g., set_collapse(mask = c("subset", "transform")) creates subset
<- fsubset and transform <- ftransform and exports them. Special functions are "n",
"table"/"qtab", and "%in%", which create n <- GRPN (for use in (f)summarise/(f)mutate),
table <- qtab, and replace %in% with a fast version using fmatch, respectively. There are
also several convenience keywords to mask related groups of functions. The most powerful of
these is "all", which masks all f-functions + specials, as shown below.

set_collapse(mask = "all", na.rm = FALSE, sort = FALSE, nthreads = 4)
wlddev |> subset(year >= 1990 & is.finite(GINI)) |>

group_by(year) |>
summarise(n = n(), across(PCGDP:GINI, mean, w = POP))

with(mtcars, table(cyl, vs, am))
sum(mtcars)
diff(EuStockMarkets)
mean(num_vars(iris), g = iris$Species)
unique(wlddev, cols = c("iso3c", "year"))
range(wlddev$date)
wlddev |> index_by(iso3c, year) |>

mutate(PCGDP_lag = lag(PCGDP),
PCGDP_diff = PCGDP - PCGDP_lag,
PCGDP_growth = growth(PCGDP)) |> unindex()

The above is now 100% collapse code. Similarly, using this option, all code in this article could
have been written without f-prefixes. Thus, collapse, together with namespace masking, is
able to provide a fast and syntactically clean experience of R - without the need to even restart
the session. Masking is completely interactive and reversible within the active session: calling
set_collapse(mask = NULL) instantly removes the additional functions. Option remove can
further be used to remove any collapse function from the list of exported functions, allowing
manual conflict management. Function fastverse::fastverse_conflicts() from the re-
lated fastverse project27 can be used to display namespace conflicts with collapse. Invoking

27Website: https://fastverse.github.io/fastverse/

https://sebkrantz.github.io/collapse/reference/collapse-options.html
https://fastverse.github.io/fastverse/
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either mask or remove detaches collapse and reattaches it at the top of the search path, letting
its namespace to take precedence over other packages.

9. Benchmark
This section offers a small benchmark to demonstrate that collapse provides best-in-R per-
formance for many basic statistical and data manipulation tasks. They are executed on an
Apple M1 MacBook Pro with 16 GB unified memory. The DuckDB Benchmarks compare
more software packages on larger datasets, using a large server with many (slow) cores.28

R> setDTthreads(4)
R> set_collapse(na.rm = FALSE, sort = FALSE, nthreads = 4)
R> set.seed(101)
R> m <- matrix(rnorm(1e7), ncol = 1000)
R> data <- qDT(replicate(100, rnorm(1e5), simplify = FALSE))
R> g <- sample.int(1e4, 1e5, TRUE)
R> microbenchmark(R = colMeans(m),
+ Rfast = Rfast::colmeans(m, parallel = TRUE, cores = 4),
+ collapse = fmean(m))

Unit: milliseconds
expr min lq mean median uq max neval

R 9.827 9.858 10.061 9.885 9.970 16.701 100
Rfast 1.349 1.819 2.135 1.877 2.009 11.236 100

collapse 1.321 1.475 1.728 1.521 1.701 5.502 100

28A lot may be said about benchmarking collapse, which would be beyond the scope of this article. Users
should note, however, that its defaults (na.rm = TRUE, sort = TRUE, stable.algo = TRUE, nthreads = 1)
cater to convenience rather than maximum performance. For maximum performance, set these 3 settings
to FALSE and increase the number of threads. To also provide a minimalistic guide for R users seeking to
understand the relative performance of collapse and data.table, reflecting current (spring 2024) developments:
collapse has highly efficient algorithms for grouping and computing statistics, but presently does not provide
sub-column level parallel grouping architecture. Simple statistics like fmean() are parallelized across columns
and perform grouped computations in a single pass. More complex ones fmedian(), fmode() have group-
level parallelism. data.table, on the other hand, has sub-column parallel grouping and also group-level parallel
implementations for simple statistics such as mean(), but no parallelism for complex statistics such as median().
data.table’s GForce optimization also only applies to simple statistics, not complex expressions or weighted
statistics - as can be vectorized using Fast Statistical Functions in collapse. Thus, if your data is moderately
sized (≤100mio. obs.), you have more than 1 column to compute on, you want to do complex statistical things,
or if your processor is very fast (high single core speed), collapse is a great choice. On the other hand, if your
data is really long (>100mio. obs.), you have only a few columns to compute on, you are computing simple
statistics that data.table optimizes, and you have massive parallel compute, then data.table is a great choice.
My recommendation: use both, just need to call library(fastverse). Finally, let me note that polars uses
optimized memory buffers based on Apache Arrow, multithreaded hash-based grouping, SIMD instructions and
multithreading at the group-level, and a query optimizer - all implemented in Rust, a thread-safe programming
language. While some of these parallel algorithms could be ported to collapse, this is more challenging since
C, and particularly R’s C API, is not thread safe - and it would still be lacking the benefits of Arrow memory
buffers. At core, R is a 30-year old statistical language and not intended to work like an optimized database.
collapse seamlessly integrates with R’s data structures; polars, at present, has nothing to do with them (and
is therefore also not part of this benchmark).

https://duckdblabs.github.io/db-benchmark/
https://rdatatable.gitlab.io/data.table/reference/datatable-optimize.html
https://arrow.apache.org/
https://pola.rs/posts/i-wrote-one-of-the-fastest-dataframe-libraries/
https://pola.rs/posts/i-wrote-one-of-the-fastest-dataframe-libraries/
https://pola.rs/posts/polars_birds_eye_view/
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R> microbenchmark(R = rowsum(data, g, reorder = FALSE),
+ data.table = data[, lapply(.SD, sum), by = g],
+ collapse = fsum(data, g))

Unit: milliseconds
expr min lq mean median uq max neval

R 11.002 11.331 12.255 11.516 11.946 24.269 100
data.table 13.918 19.036 21.956 19.746 21.676 64.273 100

collapse 1.911 2.743 3.408 3.136 3.702 6.514 100

R> add_vars(data) <- g
R> microbenchmark(data.table = data[, lapply(.SD, median), by = g],
+ collapse = data |> fgroup_by(g) |> fmedian())

Unit: milliseconds
expr min lq mean median uq max neval

data.table 136.94 137.72 141.04 138.48 140.01 265.1 100
collapse 70.48 76.56 81.03 79.72 82.17 191.9 100

R> d <- data.table(g = unique(g), x = 1, y = 2, z = 3)
R> microbenchmark(data.table = d[data, on = "g"],
+ collapse = join(data, d, on = "g", verbose = 0))

Unit: milliseconds
expr min lq mean median uq max neval

data.table 9.153 12.140 24.382 14.118 20.849 66.701 100
collapse 1.220 1.391 1.472 1.424 1.466 2.948 100

R> microbenchmark(data.table = melt(data, "g"),
+ collapse = pivot(data, "g"))

Unit: milliseconds
expr min lq mean median uq max neval

data.table 11.96 15.34 22.6 16.63 18.41 75.20 100
collapse 11.74 15.01 22.0 16.32 18.28 63.01 100

R> settransform(data, id = rowid(g))
R> cols = grep("^V", names(data), value = TRUE)
R> microbenchmark(data.table = dcast(data, g ~ id, value.var = cols),
+ collapse = pivot(data, ids = "g", names = "id", how = "w"))

Unit: milliseconds
expr min lq mean median uq max neval

data.table 72.48 116.74 119.65 119.7 123.68 142.7 100
collapse 55.83 87.97 92.83 90.6 93.19 200.7 100
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The benchmark below further shows that collapse provides faster algorithms for basic compu-
tationally intensive operations such as unique values and matching. These algorithms power
much of its functionality, such as efficient factor generation with qF(), cross-tabulation with
qtab(), join()’s, pivot()’s, etc.

R> set.seed(101)
R> g_int <- sample.int(1e3, 1e7, replace = TRUE)
R> char <- c(letters, LETTERS, month.abb, month.name)
R> char <- outer(char, char, paste0)
R> g_char <- sample(char, 1e7, replace = TRUE)
R> microbenchmark(base_int = unique(g_int), collapse_int = funique(g_int),
+ base_char = unique(g_char), collapse_char = funique(g_char))

Unit: milliseconds
expr min lq mean median uq max neval

base_int 60.294 63.508 65.73 65.251 66.62 110.97 100
collapse_int 8.677 9.347 10.49 9.595 10.91 15.83 100

base_char 92.569 95.032 99.15 98.483 100.67 141.98 100
collapse_char 21.756 23.128 24.91 23.691 24.46 88.37 100

R> microbenchmark(base_int = match(g_int, 1:1000),
+ collapse_int = fmatch(g_int, 1:1000),
+ base_char = match(g_char, char),
+ data.table_char = chmatch(g_char, char),
+ collapse_char = fmatch(g_char, char), times = 10)

Unit: milliseconds
expr min lq mean median uq max neval

base_int 27.24 27.502 29.085 28.093 30.789 32.41 10
collapse_int 8.78 8.867 9.429 8.891 9.185 13.29 10

base_char 94.72 96.474 99.857 97.048 101.644 110.06 10
data.table_char 42.21 42.412 44.063 42.758 43.287 51.68 10

collapse_char 36.61 36.769 37.592 36.959 37.667 41.62 10

Apart from the raw algorithmic efficiency demonstrated here, collapse is often more effi-
cient than other solutions by simply doing less. For example, if grouping columns are factor
variables, collapse’s algorithms in funique(), group() or fmatch(), etc., use the values as
hashes without checking for collisions. Similarly, if data is already sorted/unique, it is directly
returned by functions like roworder()/funique().
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10. Conclusion
It is coming close to 4 years since the first CRAN release of collapse in March 2020, and
since then, the package has grown and matured considerably. At the time of writing this
article in early 2024, it has been downloaded >1.5 million times off CRAN. In this article, I
have articulated key ideas and design principles and demonstrated some core features of the
package. In summary, my work with R as an applied economist has led me to believe that
there should be a new foundation package for statistical computing and data manipulation
in R that is statistically advanced, class-agnostic, flexible, fast, lightweight, stable, and able
to manipulate complex scientific data with ease. collapse is my attempt at providing such a
package, and the feedback I have received over the years, particularly from users in academia,
government, and international organizations, is a strong indication that I have responded to a
need felt in larger parts of the R community. As mentioned, a single article cannot comprehen-
sively introduce collapse, but there is a modern website with comprehensive documentation
resources.

Computational details
The results in this paper were obtained using R (R Core Team 2023) 4.3.0 with collapse 2.0.10,
data.table 1.15.0, Rfast 2.1.0, fixest 0.11.3, magrittr (Bache and Wickham 2022) 2.0.3 and
microbenchmark (Mersmann 2023) 1.4.10. All packages used are available from the Com-
prehensive R Archive Network (CRAN) at https://CRAN.R-project.org/. The benchmark
was run on an Apple M1 MacBook Pro (2020) with 16GB unified memory. Packages were
compiled from source using Homebrew Clang version 16.0.4 with OpenMP enabled and the
-O3 optimization flag.
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