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Abstract

This document provides the user with a description of the algebraic programming
system REDUCE. The capabilities of this system include:

1. expansion and ordering of polynomials and rational functions,

2. substitutions and pattern matching in a wide variety of forms,

3. automatic and user controlled simplification of expressions,

4. calculations with symbolic matrices,

5. arbitrary precision integer and real arithmetic,

6. facilities for defining new functions and extending program syntax,

7. analytic differentiation and integration,

8. factorization of polynomials,

9. facilities for the solution of a variety of algebraic equations,

10. facilities for the output of expressions in a variety of formats,

11. facilities for generating numerical programs from symbolic input,

12. Dirac matrix calculations of interest to high energy physicists.
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Chapter 1

Introductory Information

REDUCE is a system for carrying out algebraic operations accurately, no matter
how complicated the expressions become. It can manipulate polynomials in a va-
riety of forms, both expanding and factoring them, and extract various parts of
them as required. REDUCE can also do differentiation and integration, but we
shall only show trivial examples of this in this introduction. Other topics not con-
sidered include the use of arrays, the definition of procedures and operators, the
specific routines for high energy physics calculations, the use of files to eliminate
repetitious typing and for saving results, and the editing of the input text.

Also not considered in any detail in this introduction are the many options that
are available for varying computational procedures, output forms, number systems
used, and so on.

REDUCE is designed to be an interactive system, so that the user can input an al-
gebraic expression and see its value before moving on to the next calculation. For
those systems that do not support interactive use, or for those calculations, espe-
cially long ones, for which a standard script can be defined, REDUCE can also be
used in batch mode. In this case, a sequence of commands can be given to RE-
DUCE and results obtained without any user interaction during the computation.

In this introduction, we shall limit ourselves to the interactive use of REDUCE,
since this illustrates most completely the capabilities of the system. When RE-
DUCE is called, it begins by printing a banner message like:

Reduce (Free CSL version), 25-Oct-14 ...

where the version number and the system release date will change from time to
time. It proceeds to execute the commands in user’s startup (reducerc) file, if
such a file is present, then prompts the user for input by:

1:
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You can now type a REDUCE statement, terminated by a semicolon to indicate the
end of the expression, for example:

(x+y+z)^2;

This expression would normally be followed by another character (a Return on
an ASCII keyboard) to “wake up” the system, which would then input the expres-
sion, evaluate it, and return the result:

2 2 2
X + 2*X*Y + 2*X*Z + Y + 2*Y*Z + Z

Let us review this simple example to learn a little more about the way that RE-
DUCE works. First, we note that REDUCE deals with variables, and constants
like other computer languages, but that in evaluating the former, a variable can
stand for itself. Expression evaluation normally follows the rules of high school
algebra, so the only surprise in the above example might be that the expression was
expanded. REDUCE normally expands expressions where possible, collecting like
terms and ordering the variables in a specific manner. However, expansion, order-
ing of variables, format of output and so on is under control of the user, and various
declarations are available to manipulate these.

Another characteristic of the above example is the use of lower case on input and
upper case on output. In fact, input may be in either mode, but output is usually in
lower case. To make the difference between input and output more distinct in this
manual, all expressions intended for input will be shown in lower case and output
in upper case. However, for stylistic reasons, we represent all single identifiers in
the text in upper case.

Finally, the numerical prompt can be used to reference the result in a later compu-
tation.

As a further illustration of the system features, the user should try:

for i:= 1:40 product i;

The result in this case is the value of 40!,

815915283247897734345611269596115894272000000000

You can also get the same result by saying

factorial 40;

Since we want exact results in algebraic calculations, it is essential that integer
arithmetic be performed to arbitrary precision, as in the above example. Further-



33

more, the FOR statement in the above is illustrative of a whole range of combining
forms that REDUCE supports for the convenience of the user.

Among the many options in REDUCE is the use of other number systems, such as
multiple precision floating point with any specified number of digits — of use if
roundoff in, say, the 100th digit is all that can be tolerated.

In many cases, it is necessary to use the results of one calculation in succeeding
calculations. One way to do this is via an assignment for a variable, such as

u := (x+y+z)^2;

If we now use U in later calculations, the value of the right-hand side of the above
will be used.

The results of a given calculation are also saved in the variable WS (for WorkSpace),
so this can be used in the next calculation for further processing.

For example, the expression

df(ws,x);

following the previous evaluation will calculate the derivative of (x+y+z)^2with
respect to X. Alternatively,

int(ws,y);

would calculate the integral of the same expression with respect to y.

REDUCE is also capable of handling symbolic matrices. For example,

matrix m(2,2);

declares m to be a two by two matrix, and

m := mat((a,b),(c,d));

gives its elements values. Expressions that include M and make algebraic sense
may now be evaluated, such as 1/m to give the inverse, 2*m - u*m^2 to give us
another matrix and det(m) to give us the determinant of M.

REDUCE has a wide range of substitution capabilities. The system knows about
elementary functions, but does not automatically invoke many of their well-known
properties. For example, products of trigonometrical functions are not converted
automatically into multiple angle expressions, but if the user wants this, he can say,
for example:

(sin(a+b)+cos(a+b))*(sin(a-b)-cos(a-b))
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where cos(~x)*cos(~y) = (cos(x+y)+cos(x-y))/2,
cos(~x)*sin(~y) = (sin(x+y)-sin(x-y))/2,
sin(~x)*sin(~y) = (cos(x-y)-cos(x+y))/2;

where the tilde in front of the variables X and Y indicates that the rules apply for
all values of those variables. The result of this calculation is

-(COS(2*A) + SIN(2*B))

See also the user-contributed packages ASSIST (chapter 16.5), CAMAL (chap-
ter 16.10) and TRIGSIMP (chapter 16.78).

Another very commonly used capability of the system, and an illustration of one of
the many output modes of REDUCE, is the ability to output results in a FORTRAN
compatible form. Such results can then be used in a FORTRAN based numerical
calculation. This is particularly useful as a way of generating algebraic formulas
to be used as the basis of extensive numerical calculations.

For example, the statements

on fort;
df(log(x)*(sin(x)+cos(x))/sqrt(x),x,2);

will result in the output

ANS=(-4.*LOG(X)*COS(X)*X**2-4.*LOG(X)*COS(X)*X+3.*
. LOG(X)*COS(X)-4.*LOG(X)*SIN(X)*X**2+4.*LOG(X)*
. SIN(X)*X+3.*LOG(X)*SIN(X)+8.*COS(X)*X-8.*COS(X)-8.
. *SIN(X)*X-8.*SIN(X))/(4.*SQRT(X)*X**2)

These algebraic manipulations illustrate the algebraic mode of REDUCE. RE-
DUCE is based on Standard Lisp. A symbolic mode is also available for executing
Lisp statements. These statements follow the syntax of Lisp, e.g.

symbolic car ’(a);

Communication between the two modes is possible.

With this simple introduction, you are now in a position to study the material in the
full REDUCE manual in order to learn just how extensive the range of facilities
really is. If further tutorial material is desired, the seven REDUCE Interactive
Lessons by David R. Stoutemyer are recommended. These are normally distributed
with the system.
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Structure of Programs

A REDUCE program consists of a set of functional commands which are evaluated
sequentially by the computer. These commands are built up from declarations,
statements and expressions. Such entities are composed of sequences of numbers,
variables, operators, strings, reserved words and delimiters (such as commas and
parentheses), which in turn are sequences of basic characters.

2.1 The REDUCE Standard Character Set

The basic characters which are used to build REDUCE symbols are the following:

1. The 26 letters a through z

2. The 10 decimal digits 0 through 9

3. The special characters _ ! " $ % ’ ( ) * + , - . / : ; <
> = { } 〈blank〉

With the exception of strings and characters preceded by an exclamation mark, the
case of characters is ignored: depending of the underlying LISP they will all be
converted internally into lower case or upper case: ALPHA, Alpha and alpha
represent the same symbol. Most implementations allow you to switch this con-
version off. The operating instructions for a particular implementation should be
consulted on this point. For portability, we shall limit ourselves to the standard
character set in this exposition.
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2.2 Numbers

There are several different types of numbers available in REDUCE. Integers consist
of a signed or unsigned sequence of decimal digits written without a decimal point,
for example:

-2, 5396, +32

In principle, there is no practical limit on the number of digits permitted as exact
arithmetic is used in most implementations. (You should however check the spe-
cific instructions for your particular system implementation to make sure that this
is true.) For example, if you ask for the value of 22000 you get it displayed as a
number of 603 decimal digits, taking up several lines of output on an interactive
display. It should be borne in mind of course that computations with such long
numbers can be quite slow.

Numbers that aren’t integers are usually represented as the quotient of two integers,
in lowest terms: that is, as rational numbers.

In essentially all versions of REDUCE it is also possible (but not always desirable!)
to ask REDUCE to work with floating point approximations to numbers again, to
any precision. Such numbers are called real. They can be input in two ways:

1. as a signed or unsigned sequence of any number of decimal digits with an
embedded or trailing decimal point.

2. as in 1. followed by a decimal exponent which is written as the letter E
followed by a signed or unsigned integer.

e.g. 32. +32.0 0.32E2 and 320.E-1 are all representations of 32.

The declaration SCIENTIFIC_NOTATION controls the output format of float-
ing point numbers. At the default settings, any number with five or less dig-
its before the decimal point is printed in a fixed-point notation, e.g., 12345.6.
Numbers with more than five digits are printed in scientific notation, e.g.,
1.234567E+5. Similarly, by default, any number with eleven or more zeros
after the decimal point is printed in scientific notation. To change these defaults,
SCIENTIFIC_NOTATION can be used in one of two ways.

SCIENTIFIC_NOTATION m;

where m is a positive integer, sets the printing format so that a number with more
than m digits before the decimal point, or m or more zeros after the decimal point,
is printed in scientific notation.

SCIENTIFIC_NOTATION{m,n},

with m and n both positive integers, sets the format so that a number with more
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than m digits before the decimal point, or n or more zeros after the decimal point
is printed in scientific notation.

CAUTION: The unsigned part of any number may not begin with a decimal point,
as this causes confusion with the CONS (.) operator, i.e., NOT ALLOWED ARE:
.5 -.23 +.12; use 0.5 -0.23 +0.12 instead.

2.3 Identifiers

Identifiers in REDUCE consist of one or more alphanumeric characters (i.e. alpha-
betic letters or decimal digits) the first of which must be alphabetic. The maximum
number of characters allowed is implementation dependent, although twenty-four
is permitted in most implementations. In addition, the underscore character (_) is
considered a letter if it is within an identifier. For example,

a az p1 q23p a_very_long_variable

are all identifiers, whereas

_a

is not.

A sequence of alphanumeric characters in which the first is a digit is interpreted as
a product. For example, 2ab3c is interpreted as 2*ab3c. There is one exception
to this: If the first letter after a digit is E, the system will try to interpret that part of
the sequence as a real number, which may fail in some cases. For example, 2E12
is the real number 2.0 ∗ 1012, 2e3c is 2000.0*C, and 2ebc gives an error.

Special characters, such as -, *, and blank, may be used in identifiers too, even as
the first character, but each must be preceded by an exclamation mark in input. For
example:

light!-years d!*!*n good! morning
!$sign !5goldrings

CAUTION: Many system identifiers have such special characters in their names
(especially * and =). If the user accidentally picks the name of one of them for his
own purposes it may have catastrophic consequences for his REDUCE run. Users
are therefore advised to avoid such names.

Identifiers are used as variables, labels and to name arrays, operators and proce-
dures.

In graphical environments with typeset mathematics enabled, the (shared) vari-
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able FANCY_LOWER_DIGITS can be set to one of the values T, NIL or ALL to
control the display of digits within identifiers. The default value is T. Digits in
an identifier are typeset as subscripts if fancy_lower_digits = all or if
fancy_lower_digits = t and the digits are all at the end of the identifier.
For example, with the following values assigned to fancy_lower_digits, the
identifiers ab12cd34 and abcd34 are displayed as follows:

fancy_lower_digits ab12cd34 abcd34
t ab12cd34 abcd34

all ab12cd34 abcd34

nil ab12cd34 abcd34

Restrictions

The reserved words listed in section (A may not be used as identifiers. No spaces
may appear within an identifier, and an identifier may not extend over a line of text.

2.4 Variables

Every variable is named by an identifier, and is given a specific type. The type is
of no concern to the ordinary user. Most variables are allowed to have the default
type, called scalar. These can receive, as values, the representation of any ordinary
algebraic expression. In the absence of such a value, they stand for themselves.

Reserved Variables

Several variables in REDUCE have particular properties which should not be
changed by the user. These variables include:

CATALAN Catalan’s constant, defined as
∞∑
n=0

(−1)n

(2n+ 1)2
.

E Intended to represent the base of the natural logarithms. log(e),
if it occurs in an expression, is automatically replaced by 1. If
ROUNDED is on, E is replaced by the value of E to the current degree
of floating point precision.

EULER_GAMMA Euler’s constant, also available as −ψ(1).

GOLDEN_RATIO The number 1+
√

5
2 .
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I Intended to represent the square

root of −1. i^2 is replaced by −1, and appropriately for higher
powers of I. This applies only to the symbol I used on the top level,
not as a formal parameter in a procedure, a local variable, nor in the
context for i:= ....

INFINITY Intended to represent∞
in limit and power series calculations for example, as well as in def-
inite integration. Note however that the current system does not do
proper arithmetic on∞. For example, infinity + infinity
is 2*infinity.

KHINCHIN Khinchin’s constant, defined as
∞∏
n=1

(
1 +

1

n(n+ 2)

)log2 n

.

NEGATIVE Used in the Roots package.

NIL In REDUCE (algebraic mode only) taken as a synonym for zero.
Therefore NIL cannot be used as a variable.

PI Intended to represent the circular constant. With ROUNDED on, it
is replaced by the value of π to the current degree of floating point
precision.

POSITIVE Used in the Roots package.

T Must not be used as a formal parameter or local variable in proce-
dures, since conflict arises with the symbolic mode meaning of T as
true.

Other reserved variables, such as LOW_POW, described in other sections, are listed
in Appendix A.

Using these reserved variables inappropriately will lead to errors.

There are also internal variables used by REDUCE that have similar restrictions.
These usually have an asterisk in their names, so it is unlikely a casual user would
use one. An example of such a variable is K!* used in the asymptotic command
package.

Certain words are reserved in REDUCE. They may only be used in the manner
intended. A list of these is given in the section “Reserved Identifiers”. There are,
of course, an impossibly large number of such names to keep in mind. The reader
may therefore want to make himself a copy of the list, deleting the names he doesn’t
think he is likely to use by mistake.
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2.5 Strings

Strings are used in WRITE statements, in other output statements (such as error
messages), and to name files. A string consists of any number of characters en-
closed in double quotes. For example:

"A String".

Lower case characters within a string are not converted to upper case.

The string "" represents the empty string. A double quote may be included in a
string by preceding it by another double quote. Thus "a""b" is the string a"b,
and """" is the string consisting of the single character ".

2.6 Comments

Text can be included in program listings for the convenience of human readers, in
such a way that REDUCE pays no attention to it. There are two ways to do this:

1. Everything from the word COMMENT to the next statement terminator, nor-
mally ; or $, is ignored. Such comments can be placed anywhere a blank
could properly appear. (Note that END and >> are not treated as COMMENT
delimiters!)

2. Everything from the symbol % to the end of the line on which it appears is
ignored. Such comments can be placed as the last part of any line. Statement
terminators have no special meaning in such comments. Remember to put
a semicolon before the % if the earlier part of the line is intended to be so
terminated. Remember also to begin each line of a multi-line % comment
with a % sign.

2.7 Operators

Operators in REDUCE are specified by name and type. There are two types, in-
fix and prefix. Operators can be purely abstract, just symbols with no properties;
they can have values assigned (using := or simple LET declarations) for specific
arguments; they can have properties declared for some collection of arguments
(using more general LET declarations); or they can be fully defined (usually by a
procedure declaration).

Infix operators have a definite precedence with respect to one another, and normally
occur between their arguments. For example:
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a + b - c (spaces optional)
x<y and y=z (spaces required where shown)

Spaces can be freely inserted between operators and variables or operators and
operators. They are required only where operator names are spelled out with let-
ters (such as the AND in the example) and must be unambiguously separated from
another such or from a variable (like Y). Wherever one space can be used, so can
any larger number.

Prefix operators occur to the left of their arguments, which are written as a list
enclosed in parentheses and separated by commas, as with normal mathematical
functions, e.g.,

cos(u)
df(x^2,x)
q(v+w)

Unmatched parentheses, incorrect groupings of infix operators and the like, natu-
rally lead to syntax errors. The parentheses can be omitted (replaced by a space
following the operator name) if the operator is unary and the argument is a single
symbol or begins with a prefix operator name:

cos y means cos(y)
cos (-y) – parentheses necessary
log cos y means log(cos(y))
log cos (a+b) means log(cos(a+b))

but

cos a*b means (cos a)*b
cos -y is erroneous (treated as a variable

“cos” minus the variable y)

A unary prefix operator has a precedence higher than any infix operator, including
unary infix operators. In other words, REDUCE will always interpret cos y +
3 as (cos y) + 3 rather than as cos(y + 3).

Infix operators may also be used in a prefix format on input, e.g., +(a,b,c). On
output, however, such expressions will always be printed in infix form (i.e., a +
b + c for this example).

A number of prefix operators are built into the system with predefined properties.
Users may also add new operators and define their rules for simplification. The
built in operators are described in another section.
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Built-In Infix Operators

The following infix operators are built into the system. They are all defined inter-
nally as procedures.

〈infix operator〉 −→ where | := | or | and | member | memq |
= | neq | eq | >= | > | <= | < |
+ | - | * | / | ^ | ** | .

These operators may be further divided into the following subclasses:

〈assignment operator〉 −→ :=
〈logical operator〉 −→ or | and | member | memq
〈relational operator〉 −→ = | neq | eq | >= | > | <= | <
〈substitution operator〉 −→ where
〈arithmetic operator〉 −→ + | - | * | / | ^ | **
〈construction operator〉 −→ .

MEMQ and EQ are not used in the algebraic mode of REDUCE. They are explained
in the section on symbolic mode. WHERE is described in the section on substitu-
tions.

In previous versions of REDUCE, not was also defined as an infix operator. In the
present version it is a regular prefix operator, and interchangeable with null.

For compatibility with the intermediate language used by REDUCE, each special
character infix operator has an alternative alphanumeric identifier associated with
it. These identifiers may be used interchangeably with the corresponding special
character names on input. This correspondence is as follows:

:= setq (the assignment operator)
= equal
>= geq
> greaterp
<= leq
< lessp
+ plus
- difference (if unary, minus)
* times
/ quotient (if unary, recip)
^ or ** expt (raising to a power)
. cons

Note: NEQ is used to mean not equal. There is no special symbol provided for it.
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The above operators are binary, except NOT which is unary and + and * which
are nary (i.e., taking an arbitrary number of arguments). In addition, - and / may
be used as unary operators, e.g., /2 means the same as 1/2. Any other operator is
parsed as a binary operator using a left association rule. Thus a/b/c is interpreted
as (a/b)/c. There are two exceptions to this rule: := and . are right associa-
tive. Example: a:=b:=c is interpreted as a:=(b:=c). Unlike ALGOL and
PASCAL, ^ is left associative. In other words, a^b^c is interpreted as (a^b)^c.

The operators <, <=, >, >= can only be used for making comparisons between
numbers. No meaning is currently assigned to this kind of comparison between
general expressions.

Parentheses may be used to specify the order of combination. If parentheses are
omitted then this order is by the ordering of the precedence list defined by the
right-hand side of the 〈infix operator〉 table at the beginning of this section, from
lowest to highest. In other words, WHERE has the lowest precedence, and . (the
dot operator) the highest.
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Chapter 3

Expressions

REDUCE expressions may be of several types and consist of sequences of num-
bers, variables, operators, left and right parentheses and commas. The most com-
mon types are as follows:

3.1 Scalar Expressions

Using the arithmetic operations + - * / ^ (power) and parentheses, scalar ex-
pressions are composed from numbers, ordinary “scalar” variables (identifiers), ar-
ray names with subscripts, operator or procedure names with arguments and state-
ment expressions.

Examples:

x
x^3 - 2*y/(2*z^2 - df(x,z))
(p^2 + m^2)^(1/2)*log (y/m)
a(5) + b(i,q)

The symbol ** may be used as an alternative to the caret symbol (^) for forming
powers, particularly in those systems that do not support a caret symbol.

Statement expressions, usually in parentheses, can also form part of a scalar ex-
pression, as in the example

w + (c:=x+y) + z .

When the algebraic value of an expression is needed, REDUCE determines it, start-
ing with the algebraic values of the parts, roughly as follows:

Variables and operator symbols with an argument list have the algebraic values
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they were last assigned, or if never assigned stand for themselves. However, array
elements have the algebraic values they were last assigned, or, if never assigned,
are taken to be 0.

Procedures are evaluated with the values of their actual parameters.

In evaluating expressions, the standard rules of algebra are applied. Unfortunately,
this algebraic evaluation of an expression is not as unambiguous as is numerical
evaluation. This process is generally referred to as “simplification” in the sense that
the evaluation usually but not always produces a simplified form for the expression.

There are many options available to the user for carrying out such simplification.
If the user doesn’t specify any method, the default method is used. The default
evaluation of an expression involves expansion of the expression and collection
of like terms, ordering of the terms, evaluation of derivatives and other functions
and substitution for any expressions which have values assigned or declared (see
assignments and LET statements). In many cases, this is all that the user needs.

The declarations by which the user can exercise some control over the way in which
the evaluation is performed are explained in other sections. For example, if a real
(floating point) number is encountered during evaluation, the system will normally
convert it into a ratio of two integers. If the user wants to use real arithmetic,
he can effect this by the command on rounded;. Other modes for coefficient
arithmetic are described elsewhere.

If an illegal action occurs during evaluation (such as division by zero) or functions
are called with the wrong number of arguments, and so on, an appropriate error
message is generated.

3.2 Integer Expressions

These are expressions which, because of the values of the constants and variables
in them, evaluate to whole numbers.

Examples:

2, 37 * 999, (x + 3)^2 - x^2 - 6*x

are obviously integer expressions.

j + k - 2 * j^2

is an integer expression when J and K have values that are integers, or if not integers
are such that “the variables and fractions cancel out”, as in

k - 7/3 - j + 2/3 + 2*j^2.



3.3. BOOLEAN EXPRESSIONS 47

3.3 Boolean Expressions

A boolean expression returns a truth value. In the algebraic mode of REDUCE,
boolean expressions have the syntactical form:

〈expression〉 〈relational operator〉 〈expression〉

or

〈boolean operator〉(〈arguments〉)

or

〈boolean expression〉 〈logical operator〉 〈boolean expression〉.

Parentheses can also be used to control the precedence of expressions.

In addition to the logical and relational operators defined earlier as infix operators,
the following boolean operators are also defined:

EVENP(U) determines if the number U is even or not;

FIXP(U) determines if the expression U is integer or not;

FREEOF(U,V) determines if the expression U does not contain the kernel
V anywhere in its structure;

NUMBERP(U) determines if U is a number or not;

ORDP(U,V) determines if U is ordered ahead of V by some canonical
ordering (based on the expression structure and an internal
ordering of identifiers);

PRIMEP(U) true if U is a prime object, i.e., any object other than 0 and
plus or minus 1 which is only exactly divisible by itself or
a unit.

Examples:

j<1
x>0 or x=-2
numberp x
fixp x and evenp x
numberp x and x neq 0
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Boolean expressions can only appear directly within IF, FOR, WHILE, and UNTIL
statements, as described in other sections. Such expressions cannot be used in place
of ordinary algebraic expressions, or assigned to a variable.

NB: For those familiar with symbolic mode, the meaning of some of these oper-
ators is different in that mode. For example, NUMBERP is true only for integers and
reals in symbolic mode.

When two or more boolean expressions are combined with AND, they are evaluated
one by one until a false expression is found. The rest are not evaluated. Thus

numberp x and numberp y and x>y

does not attempt to make the x>y comparison unless X and Y are both verified to
be numbers.

Similarly, evaluation of a sequence of boolean expressions connected by OR stops
as soon as a true expression is found.

NB: In a boolean expression, and in a place where a boolean expression is expected,
the algebraic value 0 is interpreted as false, while all other algebraic values are
converted to true. So in algebraic mode a procedure can be written for direct usage
in boolean expressions, returning say 1 or 0 as its value as in

procedure polynomialp(u,x);
if den(u)=1 and deg(u,x)>=1 then 1 else 0;

One can then use this in a boolean construct, such as

if polynomialp(q,z) and not polynomialp(q,y) then ...

In addition, any procedure that does not have a defined return value (for example,
a block without a RETURN statement in it) has the boolean value false.

3.4 Equations

Equations are a particular type of expression with the syntax

〈expression〉 = 〈expression〉.

In addition to their role as boolean expressions, they can also be used as arguments
to several operators (e.g., SOLVE), and can be returned as values.

Under normal circumstances, the right-hand-side of the equation is evaluated but
not the left-hand-side. This also applies to any substitutions made by the SUB
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operator. If both sides are to be evaluated, the switch EVALLHSEQP should be
turned on.

To facilitate the handling of equations, two selectors, LHS and RHS, which re-
turn the left- and right-hand sides of an equation respectively, are provided. For
example,

lhs(a+b=c) -> a+b
and

rhs(a+b=c) -> c.

3.5 Proper Statements as Expressions

Several kinds of proper statements deliver an algebraic or numerical result of some
kind, which can in turn be used as an expression or part of an expression. For
example, an assignment statement itself has a value, namely the value assigned. So

2 * (x := a+b)

is equal to 2*(a+b), as well as having the “side-effect” of assigning the value
a+b to X. In context,

y := 2 * (x := a+b);

sets X to a+b and Y to 2*(a+b).

The sections on the various proper statement types indicate which of these state-
ments are also useful as expressions.



50 CHAPTER 3. EXPRESSIONS



Chapter 4

Lists

A list is an object consisting of a sequence of other objects (including lists them-
selves), separated by commas and surrounded by braces. Examples of lists are:

{a,b,c}

{1,a-b,c=d}

{{a},{{b,c},d},e}.

The empty list is represented as

{}.

4.1 Operations on Lists

Several operators in the system return their results as lists, and a user can create
new lists using braces and commas. Alternatively, one can use the operator LIST
to construct a list. An important class of operations on lists are MAP and SELECT
operations. For details, please refer to the chapters on MAP, SELECT and the FOR
command. See also the documentation on the ASSIST (chapter 16.5) package.

To facilitate the use of lists, a number of operators are also available for manip-
ulating them. PART(〈list〉,n) for example will return the nth element of a
list. LENGTH will return the length of a list. Several operators are also defined
uniquely for lists. For those familiar with them, these operators in fact mirror the
operations defined for Lisp lists. These operators are as follows:
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4.1.1 LIST

The operator LIST is an alternative to the usage of curly brackets. LIST accepts an
arbitrary number of arguments and returns a list of its arguments. This operator is
useful in cases where operators have to be passed as arguments. E.g.,

list(a,list(list(b,c),d),e); -> {{a},{{b,c},d},e}

4.1.2 FIRST

This operator returns the first member of a list. An error occurs if the argument is
not a list, or the list is empty.

4.1.3 SECOND

SECOND returns the second member of a list. An error occurs if the argument is
not a list or has no second element.

4.1.4 THIRD

This operator returns the third member of a list. An error occurs if the argument is
not a list or has no third element.

4.1.5 REST

REST returns its argument with the first element removed. An error occurs if the
argument is not a list, or is empty.

4.1.6 . (Cons) Operator

This operator adds (“conses”) an expression to the front of a list. For example:

a . {b,c} -> {a,b,c}.

4.1.7 APPEND

This operator appends its first argument to its second to form a new list. Examples:

append({a,b},{c,d}) -> {a,b,c,d}
append({{a,b}},{c,d}) -> {{a,b},c,d}.
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4.1.8 REVERSE

The operator REVERSE returns its argument with the elements in the reverse or-
der. It only applies to the top level list, not any lower level lists that may occur.
Examples are:

reverse({a,b,c}) -> {c,b,a}
reverse({{a,b,c},d}) -> {d,{a,b,c}}.

4.1.9 List Arguments of Other Operators

If an operator other than those specifically defined for lists is given a single argu-
ment that is a list, then the result of this operation will be a list in which that
operator is applied to each element of the list. For example, the result of evaluating
log{a,b,c} is the expression {LOG(A),LOG(B),LOG(C)}.

There are two ways to inhibit this operator distribution. Firstly, the switch
LISTARGS, if on, will globally inhibit such distribution. Secondly, one can in-
hibit this distribution for a specific operator by the declaration LISTARGP. For
example, with the declaration listargp log, log{a,b,c} would evaluate to
LOG({A,B,C}).

If an operator has more than one argument, no such distribution occurs.

4.1.10 Caveats and Examples

Some of the natural list operations such as member or delete are available only
after loading the package ASSIST (chapter 16.5).

Please note that a non-list as second argument to CONS (a "dotted pair" in LISP
terms) is not allowed and causes an "invalid as list" error.

a := 17 . 4;

***** 17 4 invalid as list

Also, the initialization of a scalar variable is not the empty list – one has to set list
type variables explicitly, as in the following example:

load_package assist;

procedure lotto (n,m);
begin scalar list_1_n, luckies, hit;

list_1_n := {};
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luckies := {};
for k:=1:n do list_1_n := k . list_1_n;
for k:=1:m do

<< hit := part(list_1_n,random(n-k+1) + 1);
list_1_n := delete(hit,list_1_n);
luckies := hit . luckies >>;

return luckies;
end;

% In Germany, try lotto (49,6);

Another example: Find all coefficients of a multivariate polynomial with respect to
a list of variables:

procedure allcoeffs(q,lis);
% q : polynomial, lis: list of vars
allcoeffs1 (list q,lis);

procedure allcoeffs1(q,lis);
if lis={} then q else

allcoeffs1(foreach qq in q join coeff(qq,first lis),
rest lis);



Chapter 5

Statements

A statement is any combination of reserved words and expressions, and has the
syntax

〈statement〉 −→ 〈expression〉 | 〈proper statement〉

A REDUCE program consists of a series of commands which are statements fol-
lowed by a terminator:

〈terminator〉 −→ ; | $

The division of the program into lines is arbitrary. Several statements can be on
one line, or one statement can be freely broken onto several lines. If the program
is run interactively, statements ending with ; or $ are not processed until an end-of-
line character is encountered. This character can vary from system to system, but
is normally the Return key on an ASCII terminal. Specific systems may also use
additional keys as statement terminators.

If a statement is a proper statement, the appropriate action takes place.

Depending on the nature of the proper statement some result or response may or
may not be printed out, and the response may or may not depend on the terminator
used.

If a statement is an expression, it is evaluated. If the terminator is a semicolon, the
result is printed. If the terminator is a dollar sign, the result is not printed. Because
it is not usually possible to know in advance how large an expression will be, no
explicit format statements are offered to the user. However, a variety of output
declarations are available so that the output can be produced in different forms.
These output declarations are explained in Section 8.3.3.

The following sub-sections describe the types of proper statements in REDUCE.

55
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5.1 Assignment Statements

These statements have the syntax

〈assignment statement〉 −→ 〈expression〉 := 〈expression〉

The 〈expression〉 on the left side is normally the name of a variable, an operator
symbol with its list of arguments filled in, or an array name with the proper number
of integer subscript values within the array bounds. For example:

a1 := b + c
h(l,m) := x-2*y (where h is an operator)
k(3,5) := x-2*y (where k is a 2-dim. array)

More general assignments such as a+b := c are also allowed. The effect of these
is explained in Section 11.2.5.

An assignment statement causes the expression on the right-hand-side to be evalu-
ated. If the left-hand-side is a variable, the value of the right-hand-side is assigned
to that unevaluated variable. If the left-hand-side is an operator or array expression,
the arguments of that operator or array are evaluated, but no other simplification
done. The evaluated right-hand-side is then assigned to the resulting expression.
For example, if a is a single-dimensional array, a(1+1) := b assigns the value
b to the array element a(2).

If a semicolon is used as the terminator when an assignment is issued as a command
(i.e. not as a part of a group statement or procedure or other similar construct), the
left-hand side symbol of the assignment statement is printed out, followed by a
“:=”, followed by the value of the expression on the right.

It is also possible to write a multiple assignment statement:

〈expression〉 := . . . := 〈expression〉 := 〈expression〉

In this form, each 〈expression〉 but the last is set to the value of the last 〈expression〉.
If a semicolon is used as a terminator, each expression except the last is printed
followed by a “:=” ending with the value of the last expression.

5.1.1 Set and Unset Statements

In some cases, it is desirable to perform an assignment in which both the left- and
right-hand sides of an assignment are evaluated. In this case, the SET statement
can be used with the syntax:

SET(〈expression〉, 〈expression〉);
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For example, the statements

j := 23;
set(mkid(a,j),x);

assigns the value X to A23.

To remove a value from such a variable, the UNSET statement can be used with the
syntax:

UNSET(〈expression〉);

For example, the statement

j := 23;
unset(mkid(a,j));

clears the value of A23.

5.2 Group Statements

The group statement is a construct used where REDUCE expects a single state-
ment, but a series of actions needs to be performed. It is formed by enclosing one
or more statements (of any kind) between the symbols << and >>, separated by
semicolons or dollar signs – it doesn’t matter which. The statements are executed
one after another.

Examples will be given in the sections on IF and other types of statements in which
the << . . .>> construct is useful.

If the last statement in the enclosed group has a value, then that is also the value
of the group statement. Care must be taken not to have a semicolon or dollar sign
after the last grouped statement, if the value of the group is relevant: such an extra
terminator causes the group to have the value NIL or zero.

5.3 Conditional Statements

The conditional statement has the following syntax:

〈conditional statement〉 −→ IF 〈boolean expression〉 THEN 〈statement〉
[ELSE 〈statement〉]

The boolean expression is evaluated. If this is true, the first 〈statement〉 is executed.
If it is false, the second is.
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Examples:

if x=5 then a:=b+c else d:=e+f

if x=5 and numberp y
then <<ff:=q1; a:=b+c>>
else <<ff:=q2; d:=e+f>>

Note the use of the group statement.

Conditional statements associate to the right; i.e.,

IF <a> THEN <b> ELSE IF <c> THEN <d> ELSE <e>

is equivalent to:

IF <a> THEN <b> ELSE (IF <c> THEN <d> ELSE <e>)

In addition, the construction

IF <a> THEN IF <b> THEN <c> ELSE <d>

parses as

IF <a> THEN (IF <b> THEN <c> ELSE <d>).

If the value of the conditional statement is of primary interest, it is often called a
conditional expression instead. Its value is the value of whichever statement was
executed. (If the executed statement has no value, the conditional expression has
no value or the value 0, depending on how it is used.)

Examples:

a:=if x<5 then 123 else 456;
b:=u + v^(if numberp z then 10*z else 1) + w;

If the value is of no concern, the ELSE clause may be omitted if no action is
required in the false case.

if x=5 then a:=b+c;

Note: As explained in Section 3.3, if a scalar or numerical expression is used in
place of the boolean expression – for example, a variable is written there – the true
alternative is followed unless the expression has the value 0.
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5.4 FOR Statements

The FOR statement is used to define a variety of program loops. Its general syntax
is as follows:

FOR


〈var〉 := 〈number〉

{
STEP 〈number〉 UNTIL

:

}
〈number〉

EACH 〈var〉
{
IN
ON

}
〈list〉

 〈action〉 〈exprn〉

where

〈action〉 −→ do | product | sum | collect | join.

The assignment form of the FOR statement defines an iteration over the indicated
numerical range. If expressions that do not evaluate to numbers are used in the
designated places, an error will result.

The FOR EACH form of the FOR statement is designed to iterate down a list.
Again, an error will occur if a list is not used.

The action DO means that 〈exprn〉 is simply evaluated and no value kept; the state-
ment returning 0 in this case (or no value at the top level). COLLECT means that
the results of evaluating 〈exprn〉 each time are linked together to make a list, and
JOIN means that the values of 〈exprn〉 are themselves lists that are joined to make
one list (similar to CONC in Lisp). Finally, PRODUCT and SUM form the respective
combined value out of the values of 〈exprn〉.

In all cases, 〈exprn〉 is evaluated algebraically within the scope of the current value
of 〈var〉. If 〈action〉 is DO, then nothing else happens. In other cases, 〈action〉 is
a binary operator that causes a result to be built up and returned by FOR. In those
cases, the loop is initialized to a default value (0 for SUM, 1 for PRODUCT, and an
empty list for the other actions). The test for the end condition is made before any
action is taken. As in Pascal, if the variable is out of range in the assignment case,
or the 〈list〉 is empty in the FOR EACH case, 〈exprn〉 is not evaluated at all.

Examples:

1. If A, B have been declared to be arrays, the following stores 52 through 102

in A(5) through A(10), and at the same time stores the cubes in the B
array:

for i := 5 step 1 until 10 do
<<a(i):=i^2; b(i):=i^3>>

2. As a convenience, the common construction

step 1 until
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may be abbreviated to a colon. Thus, instead of the above we could write:

for i := 5:10 do <<a(i):=i^2; b(i):=i^3>>

3. The following sets C to the sum of the squares of 1,3,5,7,9; and D to the
expression x*(x+1)*(x+2)*(x+3)*(x+4):

c := for j:=1 step 2 until 9 sum j^2;
d := for k:=0 step 1 until 4 product (x+k);

4. The following forms a list of the squares of the elements of the list
{a,b,c}:

for each x in {a,b,c} collect x^2;

5. The following forms a list of the listed squares of the elements of the list
{a,b,c} (i.e., {{A^2},{B^2},{C^2}}):

for each x in {a,b,c} collect {x^2};

6. The following also forms a list of the squares of the elements of the list
{a,b,c}, since the JOIN operation joins the individual lists into one list:

for each x in {a,b,c} join {x^2};

The control variable used in the FOR statement is actually a new variable, not
related to the variable of the same name outside the FOR statement. In other words,
executing a statement for i:= . . . doesn’t change the system’s assumption that
i2 = −1. Furthermore, in algebraic mode, the value of the control variable is
substituted in 〈exprn〉 only if it occurs explicitly in that expression. It will not
replace a variable of the same name in the value of that expression. For example:

b := a; for a := 1:2 do write b;

prints A twice, not 1 followed by 2.

5.5 WHILE . . . DO

The FOR . . . DO feature allows easy coding of a repeated operation in which the
number of repetitions is known in advance. If the criterion for repetition is more
complicated, WHILE . . . DO can often be used. Its syntax is:

WHILE 〈boolean expression〉 DO 〈statement〉
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The WHILE . . . DO controls the single statement following DO. If several state-
ments are to be repeated, as is almost always the case, they must be grouped using
the << . . . >> or BEGIN . . . END as in the example below.

The WHILE condition is tested each time before the action following the DO is
attempted. If the condition is false to begin with, the action is not performed at all.
Make sure that what is to be tested has an appropriate value initially.

Example:

Suppose we want to add up a series of terms, generated one by one, until we reach
a term which is less than 1/1000 in value. For our simple example, let us suppose
the first term equals 1 and each term is obtained from the one before by taking one
third of it and adding one third its square. We would write:

ex:=0; term:=1;
while num(term - 1/1000) >= 0 do

<<ex := ex+term; term:=(term + term^2)/3>>;
ex;

As long as TERM is greater than or equal to (>=) 1/1000 it will be added to EX and
the next TERM calculated. As soon as TERM becomes less than 1/1000 the WHILE
test fails and the TERM will not be added.

5.6 REPEAT . . . UNTIL

REPEAT . . . UNTIL is very similar in purpose to WHILE . . . DO. Its syntax is:

REPEAT 〈statement〉 UNTIL 〈boolean expression〉

(PASCAL users note: Only a single statement – usually a group statement – is
allowed between the REPEAT and the UNTIL.)

There are two essential differences:

1. The test is performed after the controlled statement (or group of statements)
is executed, so the controlled statement is always executed at least once.

2. The test is a test for when to stop rather than when to continue, so its “polar-
ity” is the opposite of that in WHILE . . . DO.
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As an example, we rewrite the example from the WHILE ...DO section:

ex:=0; term:=1;
repeat <<ex := ex+term; term := (term + term^2)/3>>

until num(term - 1/1000) < 0;
ex;

In this case, the answer will be the same as before, because in neither case is a term
added to EX which is less than 1/1000.

5.7 Compound Statements

Often the desired process can best (or only) be described as a series of steps to be
carried out one after the other. In many cases, this can be achieved by use of the
group statement. However, each step often provides some intermediate result, until
at the end we have the final result wanted. Alternatively, iterations on the steps are
needed that are not possible with constructs such as WHILE or REPEAT statements.
In such cases the steps of the process must be enclosed between the words BEGIN
and END forming what is technically called a block or compound statement. Such a
compound statement can in fact be used wherever a group statement appears. The
converse is not true: BEGIN ...END can be used in ways that << . . . >> cannot.

If intermediate results must be formed, local variables must be provided in which
to store them. Local means that their values are deleted as soon as the block’s
operations are complete, and there is no conflict with variables outside the block
that happen to have the same name. Local variables are created by a SCALAR
declaration immediately after the BEGIN:

scalar a,b,c,z;

If more convenient, several SCALAR declarations can be given one after another:

scalar a,b,c;
scalar z;

In place of SCALAR one can also use the declarations INTEGER or REAL. In the
present version of REDUCE variables declared INTEGER are expected to have
only integer values, and are initialized to 0. REAL variables on the other hand are
currently treated as algebraic mode SCALARs.

CAUTION: INTEGER, REAL and SCALAR declarations can only be given imme-
diately after a BEGIN. An error will result if they are used after other statements
in a block (including ARRAY and OPERATOR declarations, which are global in
scope), or outside the top-most block (e.g., at the top level). All variables declared
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SCALAR are automatically initialized to zero in algebraic mode (NIL in symbolic
mode).

Any symbols not declared as local variables in a block refer to the variables of
the same name in the current calling environment. In particular, if they are not so
declared at a higher level (e.g., in a surrounding block or as parameters in a calling
procedure), their values can be permanently changed.

Following the SCALAR declaration(s), if any, write the statements to be executed,
one after the other, separated by delimiters (e.g., ; or $) (it doesn’t matter which).
However, from a stylistic point of view, ; is preferred.

The last statement in the body, just before END, need not have a terminator (since
the BEGIN . . . END are in a sense brackets confining the block statements). The
last statement must also be the command RETURN followed by the variable or
expression whose value is to be the value returned by the procedure. If the RETURN
is omitted (or nothing is written after the word RETURN) the procedure will have
no value or the value zero, depending on how it is used (and NIL in symbolic
mode). Remember to put a terminator after the END.

Example:

Given a previously assigned integer value for N, the following block will compute
the Legendre polynomial of degree N in the variable X:

begin scalar seed,deriv,top,fact;
seed:=1/(y^2 - 2*x*y +1)^(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

5.7.1 Compound Statements with GO TO

It is possible to have more complicated structures inside the BEGIN . . . END brack-
ets than indicated in the previous example. That the individual lines of the program
need not be assignment statements, but could be almost any other kind of state-
ment or command, needs no explanation. For example, conditional statements,
and WHILE and REPEAT constructions, have an obvious role in defining more
intricate blocks.

If these structured constructs don’t suffice, it is possible to use labels and GO TOs
within a compound statement, and also to use RETURN in places within the block
other than just before the END. The following subsections discuss these matters in
detail. For many readers the following example, presenting one possible definition
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of a process to calculate the factorial of N for preassigned N will suffice:

Example:

begin scalar m;
m:=1;

l: if n=0 then return m;
m:=m*n;
n:=n-1;
go to l

end;

5.7.2 Labels and GO TO Statements

Within a BEGIN ...END compound statement it is possible to label statements,
and transfer to them out of sequence using GO TO statements. Only statements on
the top level inside compound statements can be labeled, not ones inside subsidiary
constructions like << . . .>>, IF . . .THEN . . . , WHILE . . .DO . . . , etc.

Labels and GO TO statements have the syntax:

〈go to statement〉 −→ GO TO 〈label〉 | GOTO 〈label〉
〈label〉 −→ 〈identifier〉
〈labeled statement〉 −→ 〈label〉:〈statement〉

Note that statement names cannot be used as labels.

While GO TO is an unconditional transfer, it is frequently used in conditional state-
ments such as

if x>5 then go to abcd;

giving the effect of a conditional transfer.

Transfers using GO TOs can only occur within the block in which the GO TO is
used. In other words, you cannot transfer from an inner block to an outer block us-
ing a GO TO. However, if a group statement occurs within a compound statement,
it is possible to jump out of that group statement to a point within the compound
statement using a GO TO.

5.7.3 RETURN Statements

The value corresponding to a BEGIN . . . END compound statement, such as a
procedure body, is normally 0 (NIL in symbolic mode). By executing a RETURN
statement in the compound statement a different value can be returned. After a
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RETURN statement is executed, no further statements within the compound state-
ment are executed.

Examples:

return x+y;
return m;
return;

Note that parentheses are not required around the x+y, although they are permitted.
The last example is equivalent to return 0 or return nil, depending on
whether the block is used as part of an expression or not.

Since RETURN actually moves up only one block level, in a sense the casual user
is not expected to understand, we tabulate some cautions concerning its use.

1. RETURN can be used on the top level inside the compound statement, i.e. as
one of the statements bracketed together by the BEGIN . . . END

2. RETURN can be used within a top level << . . . >> construction within the
compound statement. In this case, the RETURN transfers control out of both
the group statement and the compound statement.

3. RETURN can be used within an IF . . . THEN . . . ELSE . . . on the top level
within the compound statement.

NOTE: At present, there is no construct provided to permit early termination of
a FOR, WHILE, or REPEAT statement. In particular, the use of RETURN in such
cases results in a syntax error. For example,

begin scalar y;
y := for i:=0:99 do if a(i)=x then return b(i);
...

will lead to an error.
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Chapter 6

Commands and Declarations

A command is an order to the system to do something. Some commands cause
visible results (such as calling for input or output); others, usually called declara-
tions, set options, define properties of variables, or define procedures. Commands
are formally defined as a statement followed by a terminator

〈command〉 −→ 〈statement〉〈terminator〉
〈terminator〉 −→ ; | $

Some REDUCE commands and declarations are described in the following sub-
sections.

6.1 Array Declarations

Array declarations in REDUCE are similar to FORTRAN dimension statements.
For example:

array a(10),b(2,3,4);

Array indices each range from 0 to the value declared. An element of an array is
referred to in standard FORTRAN notation, e.g. A(2).

We can also use an expression for defining an array bound, provided the value of
the expression is a positive integer. For example, if X has the value 10 and Y the
value 7 then array c(5*x+y) is the same as array c(57).

If an array is referenced by an index outside its range, an error occurs. If the array
is to be one-dimensional, and the bound a number or a variable (not a more general
expression) the parentheses may be omitted:

array a 10, c 57;
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The operator LENGTH applied to an array name returns a list of its dimensions.

All array elements are initialized to 0 at declaration time. In other words, an array
element has an instant evaluation property and cannot stand for itself. If this is
required, then an operator should be used instead.

Array declarations can appear anywhere in a program. Once a symbol is declared
to name an array, it can not also be used as a variable, or to name an operator or
a procedure. It can however be re-declared to be an array, and its size may be
changed at that time. An array name can also continue to be used as a parameter in
a procedure, or a local variable in a compound statement, although this use is not
recommended, since it can lead to user confusion over the type of the variable.

Arrays once declared are global in scope, and so can then be referenced anywhere
in the program. In other words, unlike arrays in most other languages, a declara-
tion within a block (or a procedure) does not limit the scope of the array to that
block, nor does the array go away on exiting the block (use CLEAR instead for this
purpose).

6.2 Mode Handling Declarations

The ON and OFF declarations are available to the user for controlling various sys-
tem options. Each option is represented by a switch name. ON and OFF take a list
of switch names as argument and turn them on and off respectively, e.g.,

on time;

causes the system to print a message after each command giving the elapsed CPU
time since the last command, or since TIME was last turned off, or the session be-
gan. Another useful switch with interactive use is DEMO, which causes the system
to pause after each command in a file (with the exception of comments) until a
Return is typed on the terminal. This enables a user to set up a demonstration

file and step through it command by command.

As with most declarations, arguments to ON and OFF may be strung together sep-
arated by commas. For example,

off time,demo;

will turn off both the time messages and the demonstration switch.

We note here that while most ON and OFF commands are obeyed almost instanta-
neously, some trigger time-consuming actions such as reading in necessary mod-
ules from secondary storage.

A diagnostic message is printed if ON or OFF are used with a switch that is not



6.3. END 69

known to the system. For example, if you misspell DEMO and type

on demq;

you will get the message

***** DEMQ not defined as switch.

6.3 END

The identifier END has two separate uses.

1) Its use in a BEGIN . . . END bracket has been discussed in connection with
compound statements.

2) Files to be read using IN should end with an extra END; command. The reason
for this is explained in the section on the IN command. This use of END does not
allow an immediately preceding END (such as the END of a procedure definition),
so we advise using ;END; there.

6.4 BYE Command

The command BYE; (or alternatively QUIT;) stops the execution of REDUCE,
closes all open output files, and returns you to the calling program (usually the
operating system). Your REDUCE session is normally destroyed.

6.5 SHOWTIME Command

SHOWTIME; prints the elapsed time since the last call of this command or, on its
first call, since the current REDUCE session began. The time is normally given
in milliseconds and gives the time as measured by a system clock. The operations
covered by this measure are system dependent.

6.6 DEFINE Command

The command DEFINE allows a user to supply a new name for any identifier or
replace it by any well-formed expression. Its argument is a list of expressions of
the form
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〈identifier〉 = 〈number〉 | 〈identifier〉 | 〈operator〉 |
〈reserved word〉 | 〈expression〉

Example:

define be==,x=y+z;

means that BE will be interpreted as an equal sign, and X as the expression y+z
from then on. This renaming is done at parse time, and therefore takes precedence
over any other replacement declared for the same identifier. It stays in effect until
the end of the REDUCE run.

The identifiers ALGEBRAIC and SYMBOLIC have properties which prevent
DEFINE from being used on them. To define ALG to be a synonym for
ALGEBRAIC, use the more complicated construction

put(’alg,’newnam,’algebraic);
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Built-in Prefix Operators

In the following subsections are descriptions of the most useful prefix operators
built into REDUCE that are not defined in other sections (such as substitution
operators). Some are fully defined internally as procedures; others are more nearly
abstract operators, with only some of their properties known to the system.

In many cases, an operator is described by a prototypical header line as follows.
Each formal parameter is given a name and followed by its allowed type. The
names of classes referred to in the definition are printed in lower case, and param-
eter names in upper case. If a parameter type is not commonly used, it may be
a specific set enclosed in brackets { . . . }. Operators that accept formal param-
eter lists of arbitrary length have the parameter and type class enclosed in square
brackets indicating that zero or more occurrences of that argument are permitted.
Optional parameters and their type classes are enclosed in angle brackets.

7.1 Numerical Operators

REDUCE includes a number of functions that are analogs of those found in most
numerical systems. With numerical arguments, such functions return the expected
result. However, they may also be called with non-numerical arguments. In such
cases, except where noted, the system attempts to simplify the expression as far as
it can. In such cases, a residual expression involving the original operator usually
remains. These operators are as follows:

7.1.1 ABS

ABS returns the absolute value of its single argument, if that argument has a nu-
merical value. A non-numerical argument is returned as an absolute value, with an
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overall numerical coefficient taken outside the absolute value operator. For exam-
ple:

abs(-3/4) -> 3/4
abs(2a) -> 2*ABS(A)
abs(i) -> 1
abs(-x) -> ABS(X)

7.1.2 CEILING

This operator returns the ceiling (i.e., the least integer greater than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

ceiling(-5/4) -> -1
ceiling(-a) -> CEILING(-A)

7.1.3 CONJ

This returns the complex conjugate of an expression, if that argument has a nu-
merical value. By default the complex conjugate of a non-numerical argument is
returned as an expression in the operators REPART and IMPART. For example:

conj(1+i) -> 1-I
conj(a+i*b) -> REPART(A) - REPART(B)*I

- IMPART(A)*I - IMPART(B)

If rules have been previously defined for the complex conjugate(s) of one or more
non-numerical terms appearing in the argument, these rules are applied and the
expansion in terms of the operators REPART and IMPART is suppressed.

For example:

realvalued a,b;
conj(a+i*b) -> a-b*i
let conj z => z!*, conj c => c!*;
conj(a+b*z*z!*+z*c!*) -> a+b*z*z* + c*z*
conj atan z -> atan(z*)

Note that in defining the rule conj z => z!*, the rule conj z!* => z is (in
effect) automatically defined and should not be entered by the user. A more conve-
nient method of associating two identifiers as mutual complex-conjugates is to use
the COMPLEX_CONJUGATES declaration as described in the section Declaring
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Complex Conjugates.

The main use of rules for CONJ is to associate two identifiers as complex conju-
gates as in the examples above. In addition rules of the form let conj(z)=>z,
conj(w)=>-w may be used. They imply that z is real-valued and w is purely
imaginary, although the effect of the first rule can also be obtained by declaring z
to be realvalued.

Rules of the form let conj z => «some-expression» may be used, but
are not recommended. More useful results will usually be obtained by defining
the equivalent rule let z => conj(«some-expression»). Rules of the
form let conj z => «some-expression» are particularly problematic if
«some-expression» involves z itself as they may be inconsistent, for exam-
ple let conj z => z+1. Even where they are consistent, better results may
usually achieved by defining alternative rules. For example, given:

realvalued a,b;
let conj z => 2*a-z, conj w => w-2*b*i;

so that the real part of z is a and the imaginary part of w is b, more useful results
will be obtained by defining the mathematically equivalent rules:

realvalued a,b,x,y;
let z => a +i*y, w => x + b*i;

Note also that the standard elementary functions and their inverses (where appro-
priate) are automatically defined to be SELFCONJUGATE so that conj(f(z))
is simplified to f(conj(z)). User-defined operators may be declared to be self-
conjugate with the declaration SELFCONJUGATE.

7.1.4 FACTORIAL

If the single argument of FACTORIAL evaluates to a non-negative integer, its fac-
torial is returned. Otherwise an expression involving FACTORIAL is returned. For
example:

factorial(5) -> 120
factorial(a) -> FACTORIAL(A)

7.1.5 FIX

This operator returns the fixed value (i.e., the integer part of the given argument) if
its single argument has a numerical value. A non-numerical argument is returned
as an expression in the original operator. For example:
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fix(-5/4) -> -1
fix(a) -> FIX(A)

7.1.6 FLOOR

This operator returns the floor (i.e., the greatest integer less than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

floor(-5/4) -> -2
floor(a) -> FLOOR(A)

7.1.7 IMPART

This operator returns the imaginary part of an expression, if that argument has an
numerical value. A non-numerical argument is returned as an expression in the
operators REPART and IMPART. For example:

impart(1+i) -> 1
impart(sin(3+4*i)) -> cos(3)*sinh(4)
impart(log(2+i)) -> atan(1/2)
impart(asin(1+i)) -> acosh(sqrt(5)+2)/2
impart(a+i*b) -> impart(a) + repart(b)

For the inverse trigometric and hyperbolic functions with non-numeric arguments
the output is usually more compact when the FACTOR is on.

7.1.8 MAX/MIN

MAX and MIN can take an arbitrary number of expressions as their arguments.
If all arguments evaluate to numerical values, the maximum or minimum of the
argument list is returned. If any argument is non-numeric, an appropriately reduced
expression is returned. For example:

max(2,-3,4,5) -> 5
min(2,-2) -> -2.
max(a,2,3) -> MAX(A,3)
min(x) -> X

MAX or MIN of an empty list returns 0.
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7.1.9 NEXTPRIME

NEXTPRIME returns the next prime greater than its integer argument, using a prob-
abilistic algorithm. A type error occurs if the value of the argument is not an inte-
ger. For example:

nextprime(5) -> 7
nextprime(-2) -> 2
nextprime(-7) -> -5
nextprime 1000000 -> 1000003

whereas nextprime(a) gives a type error.

7.1.10 RANDOM

random(n) returns a random number r in the range 0 ≤ r < n. A type error
occurs if the value of the argument is not a positive integer in algebraic mode, or
positive number in symbolic mode. For example:

random(5) -> 3
random(1000) -> 191

whereas random(a) gives a type error.

7.1.11 RANDOM_NEW_SEED

random_new_seed(n) reseeds the random number generator to a sequence
determined by the integer argument n. It can be used to ensure that a repeat-
able pseudo-random sequence will be delivered regardless of any previous use of
RANDOM, or can be called early in a run with an argument derived from something
variable (such as the time of day) to arrange that different runs of a REDUCE pro-
gram will use different random sequences. When a fresh copy of REDUCE is first
created it is as if random_new_seed(1) has been obeyed.

A type error occurs if the value of the argument is not a positive integer.

7.1.12 REIMPART

This returns a two-element list of the real and imaginary parts of an expression, if
that argument has an numerical value. A non-numerical argument is returned as an
expression in the operators REPART and IMPART. This is more efficient than call-
ing REPART and IMPART separately particularly if its argument is complicated.
For example:
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reimpart(1+i) -> {1,1}
reimpart(sin(3+4*i)) -> {cosh(4)*sin(3),cos(3)*sinh(4)}
reimpart(log(2+i)) -> {log(5)/2,atan(1/2)}
reimpart(asin(1+i)) -> {acos(sqrt(5)2)/2,acosh(sqrt(5)+2)/2}
reimpart(a+i*b) ->

{ - impart(b) + repart(a),impart(a) + repart(b)}

For the inverse trigometric and hyperbolic functions with non-numeric arguments
the output is usually more compact when the FACTOR is on.

7.1.13 REPART

This returns the real part of an expression, if that argument has an numerical value.
A non-numerical argument is returned as an expression in the operators REPART
and IMPART. For example:

repart(1+i) -> 1
repart(sin(3+4*i)) -> cosh(4)*sin(3)
repart(log(2+i)) -> log(5)/2
repart(asin(1+i)) -> acos(sqrt(5)-2)/2
repart(a+i*b) -> - impart(b) + repart(a)

For the inverse trigometric and hyperbolic functions with non-numeric arguments
the output is usually more compact when the FACTOR is on.

7.1.14 ROUND

This operator returns the rounded value (i.e, the nearest integer) of its single argu-
ment if that argument has a numerical value. A non-numeric argument is returned
as an expression in the original operator. For example:

round(-5/4) -> -1
round(a) -> ROUND(A)

7.1.15 SIGN

SIGN tries to evaluate the sign of its argument. If this is possible SIGN returns
one of 1, 0 or -1. Otherwise, the result is the original form or a simplified variant.
For example:

sign(-5) -> -1
sign(-a^2*b) -> -SIGN(B)
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Note that even powers of formal expressions are assumed to be positive only as
long as the switch COMPLEX is off.

7.2 Mathematical Functions

REDUCE knows that the following represent mathematical functions that can take
arbitrary scalar expressions as their argument(s).

7.2.1 Elementary Functions

Trigonometric, hyperbolic and exponential functions:

sin cos tan cot csc sec sinh
cosh tanh coth csch sech exp

Their inverse functions:

asin acos atan acot acsc asec asinh acosh
atanh acoth acsch asech log log10 logb

where log is the natural logarithm, log10 is the logarithm to base 10, and logb
has two arguments of which the second is the logarithmic base. Note on the CSL
GUI and other graphical interfaces the inverse trig and hyperbolic functions are
output as arcsin etc.

Miscellaneous functions:

sqrt hypot atan2

The function hypot takes two arguments x and y and returns the value
√
x2 + y2

but, when the switch ROUNDED is ON, problems with rounding and possible over-
flow for large numerical arguments are reduced.

The function atan2 also takes two arguments y and x respectively and returns a
value of arctan(y/x) in the range (−π, π] taking account of the signs of its two
arguments and avoiding an error if x = 0.

REDUCE knows various elementary identities and properties of these functions.
For example:

cos(-x) = cos(x) sin(-x) = -sin(x)
cos(n*pi) = (-1)^n sin(n*pi) = 0
log(e) = 1 e^(i*pi/2) = i
log(1) = 0 e^(i*pi) = -1
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log(e^x) = x e^(3*i*pi/2) = -i
sin(asin(x) = x atan(0) = 0
atan2(0, -1) = pi atan2(1, 0) = pi/2

The derivatives of all the elementary functions except hypot are also known
to the system. Beside these identities, there are a lot of simplifications for ele-
mentary functions defined in REDUCE as rulelists. In order to view these, the
SHOWRULES operator can be used, e.g.

SHOWRULES tan;

{tan(~n*arbint(~i)*pi + ~~x) => tan(x) when fixp(n),

tan(~x) => trigquot(sin(x),cos(x)) when knowledge_about(sin,x,tan),

~x + ~~k*pi x k
tan(-------------) => - cot(--- + i*pi*impart(---))

~~d d d
k 1

when abs(repart(---))=---,
d 2

~~w + ~~k*pi w k k
tan(--------------) => tan(--- + (--- - fix(repart(---)))*pi)

~~d d d d

k
when ((ratnump(rp) and abs(rp)>=1) where rp => repart(---)),

d

tan(atan(~x)) => x,

2
df(tan(~x),~x) => 1 + tan(x) }

For further simplification, especially of expressions involving trigonometric funct-
ions, see the TRIGSIMP package (chapter 16.78) documentation.

Functions not listed above may be defined in the special functions package
SPECFN.

The user can add further rules for the reduction of expressions involving these
operators by using the LET command.

In many cases it is desirable to expand product arguments of logarithms, or collect
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a sum of logarithms into a single logarithm. Since these are inverse operations, it
is not possible to provide rules for doing both at the same time and preserve the
REDUCE concept of idempotent evaluation. As an alternative, REDUCE provides
two switches EXPANDLOGS and COMBINELOGS to carry out these operations.
Both are off by default, and are subject to the value of the switch PRECISE. This
switch is on by default and prevents modifications that may be false in a complex
domain. Thus to expand LOG(3*Y) into a sum of logs, one can say

ON EXPANDLOGS; LOG(3*Y);

whereas to expand LOG(X*Y) into a sum of logs, one needs to say

OFF PRECISE; ON EXPANDLOGS; LOG(X*Y);

To combine this sum into a single log:

OFF PRECISE; ON COMBINELOGS; LOG(X) + LOG(Y);

These switches affect the logarithmic functions LOG10 (base 10) and LOGB (ar-
bitrary base) as well.

At the present time, it is possible to have both switches on at once, which could
lead to infinite recursion. However, an expression is switched from one form to the
other in this case. Users should not rely on this behavior, since it may change in
the future.

The current version of REDUCE does a poor job of simplifying surds. In particular,
expressions involving the product of variables raised to non-integer powers do not
usually have their powers combined internally, even though they are printed as if
those powers were combined. For example, the expression

x^(1/3)*x^(1/6);

will print as

SQRT(X)

but will have an internal form containing the two exponentiated terms. If you
now subtract sqrt(x) from this expression, you will not get zero. Instead, the
confusing form

SQRT(X) - SQRT(X)

will result. To combine such exponentiated terms, the switch COMBINEEXPT
should be turned on.
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The square root function can be input using the name SQRT, or the power opera-
tion ^(1/2). On output, unsimplified square roots are normally represented by
the operator SQRT rather than a fractional power. With the default system switch
settings, the argument of a square root is first simplified, and any divisors of the
expression that are perfect squares taken outside the square root argument. The
remaining expression is left under the square root. Thus the expression

sqrt(-8a^2*b)

becomes

2*a*sqrt(-2*b).

Note that such simplifications can cause trouble if A is eventually given a value
that is a negative number. If it is important that the positive property of the square
root and higher even roots always be preserved, the switch PRECISE should be
set on (the default value). This causes any non-numerical factors taken out of surds
to be represented by their absolute value form. With PRECISE on then, the above
example would become

2*abs(a)*sqrt(-2*b).

However, this is incorrect in the complex domain, where
√
x2 is not identical to

|x|. To avoid the above simplification, the switch PRECISE_COMPLEX should be
set on (default is off). For example:

on precise_complex; sqrt(-8a^2*b);

yields the output

2
2*sqrt( - 2*a *b)

If the switch ROUNDED is on, any of the elementary functions

acos acosh acot acoth acsc acsch asec asech
asin asinh atan atanh atan2 cos cosh cot coth
csc csch exp hypot log logb log10 sec sech
sin sinh sqrt tan tanh

when given a numerical argument has its value calculated to the current degree of
floating point precision. In addition, real (non-integer valued) powers of numbers
will also be evaluated.

If the COMPLEX switch is turned on in addition to ROUNDED, these funct-
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ions will also calculate a real or complex result, again to the current degree of
floating point precision, if given complex arguments. For example, with on
rounded,complex;

2.3^(5.6i) -> -0.0480793490914 - 0.998843519372*I
cos(2+3i) -> -4.18962569097 - 9.10922789376*I

For log and the inverse trigonometric and hyperbolic functions which are multi-
valued, the principal value is returned. The branch cuts chosen (except for acot)
are now those recommended by W. Kahan (Branch Cuts for Complex Elementary
Functions, or Much Ado About Nothing’s Sign Bit, in The State of the Art in Nu-
merical Analysis, A. Iserles, M.J.D. Powell Eds., Clarendon Press, Oxford, 1987).

The exception for acot is necessary as elsewhere in REDUCE acot(−z) is taken
to be π − acot(z) rather than − acot(z). The branch cuts are:
log, sqrt: {r | r ∈ R ∧ r < 0}
asin, acos: {r | r ∈ R ∧ (r > 1 ∨ r < −1)}
acsc, asec: {r | r ∈ R ∧ r 6= 0 ∧ r > −1 ∧ r < 1}
atan, acot: {r ∗ i | r ∈ R ∧ (r > 1 ∨ r < −1)}
asinh: {r ∗ i | r ∈ R ∧ (r ≥ 1 ∨ r ≤ −1)}
acsch: {r ∗ i | r ∈ R ∧ r 6= 0 ∧ r ≥ −1 ∧ r ≤ 1}
acosh: {r | r ∈ R ∧ r < 1}
asech: {r | r ∈ R ∧ (r > 1 ∨ r < 0)}
atanh: {r | r ∈ R ∧ (r > 1 ∨ r < −1)}
acoth: {r | r ∈ R ∧ r > −1 ∧ r < 1}

7.2.2 Special Functions

The functions in this section are either built-in or are autoloading functions from
the package SPECFN. On the CSL GUI and other graphical interfaces many of the
functions will be output in standard form; for example BesselJ(nu,x) will be
output as Jν(x) and Jacobisn(u,k) as sn(u, k). For most of the non-unary
special functions in this section (Lerch_Phi is an exception), the last parameter
is the ‘main’ variable and the earlier parameters are the order (or orders) usually
rendered in the literature as subscipts and/or superscripts.

The information provided below is fairly rudimentary; more complete information
may be found in the SPECFN package. Quick Reference Tables are also available.

Integral Functions:

Ei Li Si Ci Shi Chi Erf Fresnel_S Fresnel_C

All these functions are unary; the first six are the exponential, logarithmic, sine
and cosine integrals and their hyperbolic counterparts. Erf, Fresnel_S and
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Fresnel_C are the error function and the Fresnel sine and cosine integrals re-
spectively.

Beta, Gamma and Related Functions:

Beta ibeta Gamma igamma psi Polygamma

The Gamma function is unary whilst Beta is binary. The binary function igamma
and ternary function ibeta are the (normalised) incomplete Gamma and Beta
functions respectively. The unary function psi is sometimes known as the
Digamma function and the binary function Polygamma with integer first param-
eter n is the nth derivative of the function psi.

Bessel and Related Functions:

BesselJ BesselY BesselI BesselK Hankel1 Hankel2

All of these functions are binary, their first argument being the order of the function.

For the special functions below, a second Quick Reference Table is available.

Airy Functions:

Airy_Ai Airy_Aiprime Airy_Bi Airy_Biprime

These are all unary functions.

Kummer, Lommel, Struve and Whittaker Functions:

KummerM KummerU Lommel1 Lommel2
StruveH StruveL WhittakerM WhittakerW

The Struve functions are both binary whilst the remaining ones are all ternary.

Riemann Zeta and Lambert’s W Function:

zeta Lambert_W

These are both unary functions.

PolyLogarithms and Related Functions

dilog Polylog Lerch_Phi

These take one, two and three arguments respectively.

Associated Legendre functions:

SphericalHarmonicY SolidHarmonicY
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These functions take four and six arguments respectively.

Jacobi Elliptic Functions:

Jacobisn Jacobicn Jacobidn

and their three reciprocals

Jacobins Jacobinc Jacobind

and six quotients

Jacobisc Jacobisd Jacobicd
Jacobics Jacobids Jacobidc

All are binary functions with the second argument being the modulus. The binary
function Jacobiam is the amplitude.

Complete and Incomplete Elliptic Integrals of the First & Second Kinds:

EllipticK EllipticE EllipticF EllipticE
JacobiE JacobiZeta

The function EllipticE may take one or two arguments to denote the com-
plete and Legendre’s form of the incomplete elliptic integrals of the second kind
respectively. The complete integral of the first kind EllipticK is unary whilst
EllipticF, JacobiE and JacobiZeta are binary and represent the incom-
plete integral of the first kind, Jacobi’s form of the incomplete elliptic integral of
the second kind and Jacobi’s Zeta function respectively.

Jacobi’s Theta Functions:

EllipticTheta1 EllipticTheta2
EllipticTheta3 EllipticTheta4

are all binary functions with the second argument being the ‘parameter’ τ , the
nome q being given by q = exp(iπτ)

Weierstrassian Elliptic Functions:

Weierstrass WeierstrassZeta
sigma sigma1 sigma2 sigma3
Weierstrass1 WeierstrassZeta1

are all ternary functions with the second and third arguments of the first six funct-
ions being the the lattice period parameters ω1 and ω3. The remaining two funct-
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ions are alternative versions of the Weierstrass functions with the second and third
arguments being the lattice invariants g2 and g3. For the elliptic functions above a
Quick Reference Table is available.

7.2.3 Polynomial Functions

The polynomial functions below are from the non-core package SPECFN and for
the most part are not autoloading. This package needs to be loaded before they
may be used with the command:

load_package specfn;

The names of the REDUCE operators for the polynomial functions below are
mostly built by adding a P to the name of the polynomial, e.g. EulerP imple-
ments the Euler polynomials.

The information in this subsection is fairly rudimentary; more complete informa-
tion may be found in the SPECFN package.
A Quick Reference Table is available for all the polynomial functions below.

Orthogonal Polynomials

Some well-known orthogonal polynomials are available:

• Hermite polynomials: (HermiteP);

• Chebyshev polynomials: (ChebyshevT, ChebyshevU);

• Legendre polynomials: (LegendreP);

• Laguerre polynomials: (LaguerreP);

• Associated Legendre functions: (LegendreP);

• Generalised Laguerre (or Sonin) polynomials: (LaguerreP);

• Gegenbauer polynomials: (GegenbauerP);

• Jacobi polynomials: (JacobiP).

The first three of these functions are binary and the first argument should be an in-
teger specifying the order of the required polynomial. The functions LegendreP
and LaguerreP may be used either as binary operators or ternary ones and rep-
resent the corresponding ‘basic’ and associated functions respectively. Finally the
Gegenbauer polynomials are ternary whilst the Jacobi polynomials are quaternary.
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Most definitions are equivalent to those in [AS72], except for the ternary associated
Legendre functions:

P (m)
n (x) = (−1)m(1− x2)m/2

dmPn(x)

dxm
.

These are sometimes mistakenly referred to as associated Legendre polynomials,
but they are only polynomial when m is even.

Other Polynomial Functions

Fibonacci Polynomials are computed by the binary operator FibonacciP,
where FibonacciP(n,x) returns the nth Fibonacci polynomial in the variable
x. If n is an integer, it will be evaluated using the recursive definition:

F0(x) = 0; F1(x) = 1; Fn(x) = xFn−1(x) + Fn−2(x) .

Euler Polynomials are computed by the binary operator EulerP, where
EulerP(n,x) returns the nth Euler polynomial in the variable x.

Bernoulli Polynomials are computed by the binary operator BernoulliP, where
BernoulliP(n,x) returns the nth Bernoulli polynomial in the variable x.

7.3 Combinatorial Numbers

Binomial coefficients are provided by the binary operator Binomial. The value
of binomial(n, m), where n and m are non-negative integers with n ≥ m, is
the number of ways of choosing m items from a set of n distinct items as well, of
course, as being the coefficient of xm in the expansion of (1 + x)n.

The function call binomial(n,m), where n and m are non-negative integers,
will return the expected integer value (from Pascal’s triangle). For other real
numerical values the result will usually involve the Γ function, but if the switch
ROUNDED is ON the Γ functions will be evaluated numerically. This will also be
the case for complex numerical arguments if the switch COMPLEX is ON. For non-
numeric arguments the result returned will involve the original oerator binomial,
or its pretty-printed equivalent on graphical interfaces.

Stirling numbers of the first and second kind are computed by the binary
operators Stirling1 and Stirling2 respectively using explicit formulae.
stirling1(n, k) is (−1)n−k × (the number of permutations of the set
{1, 2, . . . , n} into exactly k cycles).
stirling2(n, k) is the number of partitions of the set {1, 2, . . . , n} into ex-
actly k non-empty subsets.
Here n and k should be non-negative integers with n ≥ k.
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For integer arguments an integer result will be returned, otherwise a result in-
volving the original operator will be returned. Note on graphical user interfaces
Stirling1(n,m) and Stirling2(n,m) are rendered as smn and Smn respec-
tively.

Stirling numbers are implemented in the non-core package SPECFN and are not
currently autoloading. Before use this package should be loaded with the com-
mand:

load_package specfn;

For more information see here.

A Motzkin number Mn (named after Theodore Motzkin) is the number of differ-
ent ways of drawing non-intersecting chords on a circle between n points. For a
non-negative integer n, the operator Motzkin(n) returns the nth Motzkin num-
ber, according to the recursion formula

M0 = 1; M1 = 1; Mn+1 =
2n+ 3

n+ 3
Mn +

3n

n+ 3
Mn−1 .

The recursion is, of course, optimised as a simple loop to avoid repeated computa-
tion of lower-order numbers.

For the functions in this and the section below a Quick Reference Table is available.
It also includes a list of reserved constants known to REDUCE.

7.4 Bernoulli, Euler and Fibonacci Numbers

Bernoulli numbers are provided by the unary operator Bernoulli. If n is a non-
negative integer, the call Bernoulli(n) evaluates to the nth Bernoulli number;
all of the odd Bernoulli numbers, except Bernoulli(1), are zero. Otherwise
the result involves the original operator bernoulli; on graphical interfaces this
is rendered as Bn.

Euler numbers are computed by the unary operator Euler. If n is a non-negative
integer, the call Euler(n) returns the nth Euler number; all of the odd Euler num-
bers are zero. Otherwise the result returned involves the original operator euler;
on graphical interfaces this is rendered as En.

Fibonacci numbers are provided by the unary operator Fibonacci, where
Fibonacci(n) evaluates to the nth Fibonacci number; if n is an integer, this
will be evaluated following the recursive definition:

F0 = 0; F1 = 1; Fn = Fn−1 + Fn−2 .

The recursion is, of course, optimised as a simple loop to avoid repeated compu-
tation of lower-order numbers. Otherwise the result returned involves the original
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operator fibonacci; on graphical interfaces this is rendered as Fn.

7.5 CHANGEVAR operator

Author: G. Üçoluk.

The operator CHANGEVAR does a variable transformation in a set of differential
equations. Syntax:

changevar(〈depvars〉, 〈newvars〉, 〈eqlist〉, 〈diffeq〉)

〈diffeq〉 is either a single differential equation or a list of differential equat-
ions, 〈depvars〉 are the dependent variables to be substituted, 〈newvars〉 are the
new depend variables, and 〈eqlist〉 is a list of equations of the form 〈depvar〉 =
〈expression〉 where 〈expression〉 is some function in the new dependent variables.

The three lists 〈depvars〉, 〈newvars〉, and 〈eqlist〉 must be of the same length. If
there is only one variable to be substituted, then it can be given instead of the
list. The same applies to the list of differential equations, i.e., the following two
commands are equivalent

changevar(u,y,x=e^y,df(u(x),x) - log(x));

changevar({u},{y},{x=e^y},{df(u(x),x) - log(x)});

except for one difference: the first command returns the transformed differential
equation, the second one a list with a single element.

The switch DISPJACOBIAN governs the display the entries of the inverse Jaco-
bian, it is OFF per default.

The mathematics behind the change of independent variable(s) in differential
equations is quite straightforward. It is basically the application of the chain rule.
If the dependent variable of the differential equation is F , the independent vari-
ables are xi and the new independent variables are ui (where i=1...n) then the first
derivatives are:

∂F

∂xi
=
∂F

∂uj

∂uj
∂xi

We assumed Einstein’s summation convention. Here the problem is to calculate
the ∂uj/∂xi terms if the change of variables is given by

xi = fi(u1, . . . , un)

The first thought might be solving the above given equations for uj and then dif-
ferentiating them with respect to xi, then again making use of the equations above,
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substituting new variables for the old ones in the calculated derivatives. This is
not always a preferable way to proceed. Mainly because the functions fi may not
always be easily invertible. Another approach that makes use of the Jacobian is
better. Consider the above given equations which relate the old variables to the
new ones. Let us differentiate them:

∂xj
∂xi

=
∂fj
∂xi

δij =
∂fj
∂uk

∂uk
∂xi

The first derivative is nothing but the (j, k) th entry of the Jacobian matrix.

So if we speak in matrix language

1 = J ·D

where we defined the Jacobian

Jij
4
=
∂fi
∂uj

and the matrix of the derivatives we wanted to obtain as

Dij
4
=
∂ui
∂xj

.

If the Jacobian has a non-vanishing determinant then it is invertible and we are able
to write from the matrix equation above:

D = J−1

so finally we have what we want

∂ui
∂xj

=
[
J−1

]
ij

The higher derivatives are obtained by the successive application of the chain rule
and using the definitions of the old variables in terms of the new ones. It can be
easily verified that the only derivatives that are needed to be calculated are the first
order ones which are obtained above.

7.5.1 CHANGEVAR example: The 2-dim. Laplace Equation

The 2-dimensional Laplace equation in cartesian coordinates is:

∂2u

∂x2
+
∂2u

∂y2
= 0
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Now assume we want to obtain the polar coordinate form of Laplace equation. The
change of variables is:

x = r cos θ, y = r sin θ

The solution using CHANGEVAR is as follows

changevar({u},{r,theta},{x=r*cos theta,y=r*sin theta},
{df(u(x,y),x,2)+df(u(x,y),y,2)} );

Here we could omit the curly braces in the first and last arguments (because those
lists have only one member) and the curly braces in the third argument (because
they are optional), but you cannot leave off the curly braces in the second argument.
So one could equivalently write

changevar(u,{r,theta},x=r*cos theta,y=r*sin theta,
df(u(x,y),x,2)+df(u(x,y),y,2) );

If you have tried out the above example, you will notice that the denominator con-
tains a cos2 θ + sin2 θ which is actually equal to 1. This has of course nothing to
do with CHANGEVAR. One has to be overcome these pattern matching problems
by the conventional methods REDUCE provides (a rule, for example, will fix it).

Secondly you will notice that your u(x,y) operator has changed to u(r,theta)
in the result. Nothing magical about this. That is just what we do with pencil and
paper. u(r,theta) represents the the transformed dependent variable.

7.5.2 Another CHANGEVAR example: An Euler Equation

Consider a differential equation which is of Euler type, for instance:

x3y′′′ − 3x2y′′ + 6xy′ − 6y = 0

where prime denotes differentiation with respect to x. As is well known, Euler
type of equations are solved by a change of variable:

x = eu

So our call to CHANGEVAR reads as follows:

changevar(y, u, x=e**u, x**3*df(y(x),x,3)-
3*x**2*df(y(x),x,2)+6*x*df(y(x),x)-6*y(x));

and returns the result

df(y(u),u,3) - 6*df(y(u),u,2) + 11*df(y(u),u) - 6*y(u)
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7.6 CONTINUED_FRACTION Operator

The operator CONTINUED_FRACTION generates the continued fraction expan-
sion of a rational number argument. For irrational or rounded arguments, it ap-
proximates the real number as a rational number to the current system precision
and generates the continued fraction expansion. Currently the operator CF is a
complete synonym for CONTINUED_FRACTION although this may change in fu-
ture updates of the package RATAPRX.

The operator CONTINUED_FRACTION accepts one, two or three arguments: the
number to be expanded; an optional maximum size permitted for the denominator
of the convergent and an optional number of continuents to be generated:

continued_fraction(〈num〉)
continued_fraction(〈num〉, 〈size〉)
continued_fraction(〈num〉, 〈size〉, 〈numterms〉)

The result is the special operator contfrac with three arguments: the original
number to be expanded 〈num〉, secondly the rational number approximation (the
final convergent) and thirdly a list of continuents of the continued fraction (i.e. a
list of pairs of partial numerators and denominators)

{t0, {1, t1}, {1, t2}, .... }

which represents the same value according to the definition

t0 +1/(t1 + 1/(t2 + ...)).

Note that, although with the current algorithm all the partial numerators have the
value 1, they are stored in the list of continuents. This is for compatibility with
the output of other continued fractions functions cfrac and cf_euler. This
facilitates pretty-printing and the implementation of various equivalence transfor-
mations all of which are documented in the continued fraction subsection of the
RATAPRX manual (Section 16.51).

Precision: the second optional parameter 〈size〉 is an upper bound for the absolute
value of the denominator of the convergent.
Number of terms: the third optional parameter 〈numterms〉 is the maximum num-
ber of terms (continuents) to be generated.
If both optional parameters omitted, the expansion performed is exact for rational
number arguments and for irrational or rounded arguments it is up to the current
system precision. If both optional parameters are given the expansion is halted
when the desired precision is reached or when the specified maximum number of
terms have been generated whichever is the sooner. If the size parameter is zero, its
value is ignored. Thus to obtain a continued fraction expansion to, for example, 10
terms one would specify the 〈size〉 parameter to be 0 and the 〈numterms〉 parameter
to be 10.
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Note that the operator contfrac is not normally seen as the output is pretty-
printed, unless the number of continuents generated is larger than 12.

Examples:

continued_fraction(6/11);

6 1
{----,exact,---------------}

11 1
1 + ---------

1
1 + ---

5

continued_fraction(pi,1000);

355 1
{pi,-----,3 + ----------------}

113 1
7 + ----------

1
15 + ---

1

continued_fraction(pi,0,6);

104348 1
{pi,--------,3 + ------------------------------}

33215 1
7 + ------------------------

1
15 + -----------------

1
1 + -----------

1
292 + ---

1

continued_fraction(pi,1000,3);

333 1
{pi,-----,3 + ----------}

106 1
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7 + ----
15

continued_fraction(pi,1000,6);

355 1
{pi,-----,3 + ----------------}

113 1
7 + ----------

1
15 + ---

1

continued_fraction e;

{e,

13580623
----------,
4996032

{2, {1,1}, {1,2}, {1,1}, {1,1}, {1,4}, {1,1}, {1,1}, {1,6},
{1,1}, {1,1}, {1,8}, {1,1}, {1,1}, {1,10}, {1,1}, {1,1}, {1,12}}}

7.7 DF Operator

The operator DF is used to represent partial differentiation with respect to one or
more variables. It is used with the syntax:

DF(〈EXPRN:algebraic〉[, 〈VAR:kernel〉<, 〈NUM:integer〉>]) : algebraic.

The first argument is the expression to be differentiated. The remaining arguments
specify the differentiation variables and the number of times they are applied.

The number NUM may be omitted if it is 1. For example,

df(y,x) = ∂y/∂x
df(y,x,2) = ∂2y/∂x2

df(y,x1,2,x2,x3,2) = ∂5y/∂x2
1∂x2∂x

2
3.

The evaluation of df(y,x) proceeds as follows: first, the values of Y and X are
found. Let us assume that X has no assigned value, so its value is X. Each term
or other part of the value of Y that contains the variable X is differentiated by the
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standard rules. If Z is another variable, not X itself, then its derivative with respect
to X is taken to be 0, unless Z has previously been declared to DEPEND on X, in
which case the derivative is reported as the symbol df(z,x).

7.7.1 Switches influencing differentiation

Consider df(u,x,y,z), assuming u depends on each of x,y,z in some way.
If none of x,y,z is equal to u then the order of differentiation is commuted into a
canonical form, unless the switch NOCOMMUTEDF is turned on (default is off). If at
least one of x,y,z is equal to u then the order of differentiation is not fully com-
muted and the derivative is not simplified to zero, unless the switch COMMUTEDF
is turned on. It is off by default.

If COMMUTEDF is off and the switch SIMPNONCOMDF is on then simplify as fol-
lows:

DF(U,X,U) -> DF(U,X,2) / DF(U,X)
DF(U,X,N,U) -> DF(U,X,N+1) / DF(U,X)

provided U depends only on the one variable X. This simplification removes the
non-commutative aspect of the derivative.

If the switch EXPANDDF is turned on then REDUCE uses the chain rule to expand
symbolic derivatives of indirectly dependent variables provided the result is unam-
biguous, i.e. provided there is no direct dependence. It is off by default. Thus, for
example, given

DEPEND F,U,V; DEPEND {U,V},X;
ON EXPANDDF;
DF(F,X) -> DF(F,U)*DF(U,X) + DF(F,V)*DF(V,X)

whereas after

DEPEND F,X;

DF(F,X) does not expand at all (since the result would be ambiguous and the
algorithm would loop).

Turning on the switch ALLOWDFINT allows “differentiation under the integral
sign”, i.e.

DF(INT(Y, X), V) -> INT(DF(Y, V), X)

if this results in a simplification. If the switch DFINT is also turned on then this
happens regardless of whether the result simplifies. Both switches are off by de-
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fault.

7.7.2 Adding Differentiation Rules

The LET statement can be used to introduce rules for differentiation of user-defined
operators. Its general form is

FOR ALL 〈var1〉, . . ., 〈varn〉
LET DF(〈operator〉〈varlist〉, 〈vari〉) = 〈expression〉

where

〈varlist〉 −→ (〈var1〉, . . . , 〈varn〉),

and 〈var1〉, . . . , 〈varn〉 are the dummy variable arguments of 〈operator〉.

An analogous form applies to infix operators.

Examples:

for all x let df(tan x,x) = 1 + tan(x)^2;

(This is how the tan differentiation rule appears in the REDUCE source.)

for all x,y let df(f(x,y),x)=2*f(x,y),
df(f(x,y),y)=x*f(x,y);

Notice that all dummy arguments of the relevant operator must be declared arbi-
trary by the FOR ALL command, and that rules may be supplied for operators with
any number of arguments. If no differentiation rule appears for an argument in an
operator, the differentiation routines will return as result an expression in terms
of DF. For example, if the rule for the differentiation with respect to the second
argument of F is not supplied, the evaluation of df(f(x,z),z) would leave this
expression unchanged. (No DEPEND declaration is needed here, since f(x,z)
obviously “depends on” Z.)

Once such a rule has been defined for a given operator, any future differentiation
rules for that operator must be defined with the same number of arguments for that
operator, otherwise we get the error message

Incompatible DF rule argument length for <operator>

7.7.3 Options controlling display of derivatives

If the switch DFPRINT is turned on (it is off by default) then derivatives are dis-
played using subscripts, as illustrated below. In graphical environments with type-
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set mathematics enabled, the (shared) variable FANCY_PRINT_DF can be set to
one of the values PARTIAL, TOTAL or INDEXED to control the display of deriva-
tives. The default value is PARTIAL. However, if the switch DFPRINT is on then
FANCY_PRINT_DF is ignored. For example, with the following settings, deriva-
tives are displayed as follows (assuming DEPEND F,X,Y and OPERATOR G):

Setting df(f,x,2,y) df(g(x,y),x,2,y)

fancy_print_df:=partial ∂3f
∂x2∂y

∂3g(x,y)
∂x2∂y

fancy_print_df:=total d3f
dx2dy

d3g(x,y)
dx2dy

fancy_print_df:=indexed fx,x,y g(x, y)x,x,y
on dfprint fx,x,y gx,x,y

7.8 INT Operator

INT is an operator in REDUCE for indefinite integration using a combination of
the Risch-Norman algorithm and pattern matching. It is used with the syntax:

INT(〈EXPRN:algebraic〉, 〈VAR:kernel〉) : algebraic.

This will return correctly the indefinite integral for expressions comprising poly-
nomials, log functions, exponential functions and tan and atan. The arbitrary con-
stant is not represented. If the integral cannot be done in closed terms, it returns a
formal integral for the answer in one of two ways:

1. It returns the input, INT(...,...) unchanged.

2. It returns an expression involving INTs of some other functions (sometimes
more complicated than the original one, unfortunately).

Rational functions can be integrated when the denominator is factorizable by the
program. In addition it will attempt to integrate expressions involving error funct-
ions, dilogarithms and other trigonometric expressions. In these cases it might not
always succeed in finding the solution, even if one exists.

Examples:

int(log(x),x) -> X*(LOG(X) - 1),
int(e^x,x) -> E**X.

The program checks that the second argument is a variable and gives an error if it
is not.

Note: If the int operator is called with 4 arguments, REDUCE will implicitly call
the definite integration package (DEFINT) and this package will interpret the third
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and fourth arguments as the lower and upper limit of integration, respectively. For
details, consult the documentation on the DEFINT package.

7.8.1 Options

The switch TRINT when on will trace the operation of the algorithm. It produces
a great deal of output in a somewhat illegible form, and is not of much interest to
the general user. It is normally off.

The switch TRINTSUBST when on will trace the heuristic attempts to solve the
integral by substitution. It is normally off.

If the switch FAILHARD is on the algorithm will terminate with an error if the
integral cannot be done in closed terms, rather than return a formal integration
form. FAILHARD is normally off.

The switch NOLNR suppresses the use of the linear properties of integration in
cases when the integral cannot be found in closed terms. It is normally off.

The switch NOINTSUBST disables the heuristic attempts to solve the integral by
substitution. It is normally off.

7.8.2 Advanced Use

If a function appears in the integrand that is not one of the functions EXP, Erf,
TAN, ATAN, LOG, dilog then the algorithm will make an attempt to inte-
grate the argument if it can, differentiate it and reach a known function. However
the answer cannot be guaranteed in this case. If a function is known to be alge-
braically independent of this set it can be flagged transcendental by

flag(’(trilog),’transcendental);

in which case this function will be added to the permitted field descriptors for a
genuine decision procedure. If this is done the user is responsible for the mathe-
matical correctness of his actions.

The standard version does not deal with algebraic extensions. Thus integration
of expressions involving square roots and other like things can lead to trouble. A
contributed package that supports integration of functions involving square roots is
available, however (ALGINT, chapter 16.1). In addition there is a definite integra-
tion package, DEFINT( chapter 16.19).
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7.9 LENGTH Operator

LENGTH is a generic operator for finding the length of various objects in the sys-
tem. The meaning depends on the type of the object. In particular, the length
of an algebraic expression is the number of additive top-level terms its expanded
representation.

Examples:

length(a+b) -> 2
length(2) -> 1.

Other objects that support a length operator include arrays, lists and matrices. The
explicit meaning in these cases is included in the description of these objects.

7.10 MAP Operator

The MAP operator applies a uniform evaluation pattern to all members of a com-
posite structure: a matrix, a list, or the arguments of an operator expression. The
evaluation pattern can be a unary procedure, an operator, or an algebraic expression
with one free variable.

It is used with the syntax:

MAP(FNC:function,OBJ:object)

Here OBJ is a list, a matrix or an operator expression. FNC can be one of the
following:

1. the name of an operator with a single argument: the operator is evaluated
once with each element of OBJ as its single argument;
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2. an algebraic expression with exactly one free variable, i.e. a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
OBJ, with the element substituted for the free variable;

3. a replacement rule of the form var => rep where var is a variable (a
kernel without a subscript) and rep is an expression that contains var. The
replacement expression rep is evaluated for each element of OBJ with the
element substituted for var. The variable var may be optionally preceded
by a tilde.

The rule form for FNC is needed when more than one free variable occurs.

Examples:

map(abs,{1,-2,a,-a}) -> {1,2,ABS(A),ABS(A)}
map(int(~w,x), mat((x^2,x^5),(x^4,x^5))) ->

[ 3 6 ]
[ x x ]
[---- ----]
[ 3 6 ]
[ ]
[ 5 6 ]
[ x x ]
[---- ----]
[ 5 6 ]

map(~w*6, x^2/3 = y^3/2 -1) -> 2*X^2=3*(Y^3-2)

You can use MAP in nested expressions. However, you cannot apply MAP to a
non-composite object, e.g. an identifier or a number.

7.11 MKID Operator

In many applications, it is useful to create a set of identifiers for naming objects in
a consistent manner. In most cases, it is sufficient to create such names from two
components. The operator MKID is provided for this purpose. Its syntax is:

MKID(U:id,V:id|non-negative integer):id

for example

mkid(a,3) -> A3
mkid(apple,s) -> APPLES
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while mkid(a+b,2) gives an error.

The SET statement can be used to give a value to the identifiers created by MKID,
for example

set(mkid(a,3),3);

will give A3 the value 2. Similarly, the UNSET statement can be used to remove
the value from these identifiers, for example

unset(mkid(a,3));

7.12 The Pochhammer Notation

The Pochhammer notation (a)k (also called Pochhammer’s symbol) is supported
by the binary operator Pochhammer(a,k). For a non-negative integer k, it is
defined as (http://dlmf.nist.gov/5.2.iii)

(a)0 = 1,

(a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1).

For a 6= 0,−1,−2,−3, . . ., this is equivalent to

(a)k =
Γ(a+ k)

Γ(a)
.

When n is integral, the defining product is expanded (assuming the switch EXP is
ON). With ROUNDED off, this expression is evaluated numerically if a is numerical
and k is integral, and otherwise may be simplified where appropriate. The simpli-
fication rules are based upon algorithms supplied by Wolfram Koepf [Koe92].

The Pochammer symbol is used quite extensively in the simplification and numer-
ical evaluation of special functions.

7.13 PF Operator

PF(〈exp〉,〈var〉) transforms the expression 〈exp〉 into a list of partial fractions
with respect to the main variable, 〈var〉. PF does a complete partial fraction decom-
position, and as the algorithms used are fairly unsophisticated (factorization and the
extended Euclidean algorithm), the code may be unacceptably slow in complicated
cases.

http://dlmf.nist.gov/5.2.iii


100 CHAPTER 7. BUILT-IN PREFIX OPERATORS

Example: Given 2/((x+1)^2*(x+2)) in the workspace, pf(ws,x); gives
the result

2 - 2 2
{-------,-------,--------------} .

X + 2 X + 1 2
X + 2*X + 1

If you want the denominators in factored form, use off exp;. Thus, with
2/((x+1)^2*(x+2)) in the workspace, the commands off exp; pf(ws,x);
give the result

2 - 2 2
{-------,-------,----------} .

X + 2 X + 1 2
(X + 1)

To recombine the terms, FOR EACH . . . SUM can be used. So with the above list
in the workspace, for each j in ws sum j; returns the result

2
------------------

2
(X + 2)*(X + 1)

Alternatively, one can use the operations on lists to extract any desired term.

7.14 SELECT Operator

The SELECT operator extracts from a list, or from the arguments of an n–ary
operator, elements corresponding to a boolean predicate. It is used with the syntax:

SELECT(〈FNC:function〉, 〈LST:list〉)

FNC can be one of the following forms:

1. the name of an operator with a single argument: the operator is evaluated
once on each element of LST;

2. an algebraic expression with exactly one free variable, i.e. a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
〈LST〉, with the element substituted for the free variable;
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3. a replacement rule of the form 〈var〉 => 〈rep〉 where 〈var〉 is a variable (a
kernel without subscript) and 〈rep〉 is an expression that contains 〈var〉. 〈rep〉
is evaluated for each element of LST with the element substituted for 〈var〉.
〈var〉 may be optionally preceded by a tilde.

The rule form for FNC is needed when more than one free variable occurs.

The result of evaluating FNC is interpreted as a boolean value corresponding to the
conventions of REDUCE. These values are composed with the leading operator of
the input expression.

Examples:

select( ~w>0 , {1,-1,2,-3,3}) -> {1,2,3}
select(evenp deg(~w,y),part((x+y)^5,0):=list)

-> {X^5 ,10*X^3*Y^2 ,5*X*Y^4}
select(evenp deg(~w,x),2x^2+3x^3+4x^4) -> 4X^4 + 2X^2
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7.15 SOLVE Operator

SOLVE is an operator for solving one or more simultaneous algebraic equations.
It is used with the syntax:

SOLVE(〈EXPRN:algebraic〉[, 〈VAR:kernel〉 | , 〈VARLIST:list of kernels〉]) : list.

EXPRN is of the form 〈expression〉 or { 〈expression1〉,〈expression2〉, . . .}. Each
expression is an algebraic equation, or is the difference of the two sides of the
equation. The second argument is either a kernel or a list of kernels representing
the unknowns in the system. This argument may be omitted if the number of
distinct, non-constant, top-level kernels equals the number of unknowns, in which
case these kernels are presumed to be the unknowns.

For one equation, SOLVE recursively uses factorization and decomposition, to-
gether with the known inverses of LOG, SIN, COS, ^, ACOS, ASIN, and linear,
quadratic, cubic, quartic, or binomial factors. Solutions of equations built with
exponentials or logarithms are often expressed in terms of Lambert’s W function.
This function is (partially) implemented in the special functions package.

Linear equations are solved by the multi-step elimination method due to Bareiss,
unless the switch CRAMER is on, in which case Cramer’s method is used. The
Bareiss method is usually more efficient unless the system is large and dense.

Non-linear equations are solved using the Groebner basis package (chapter 16.30).
Users should note that this can be quite a time consuming process.

Examples:

solve(log(sin(x+3))^5 = 8,x);
solve(a*log(sin(x+3))^5 - b, sin(x+3));
solve({a*x+y=3,y=-2},{x,y});

SOLVE returns a list of solutions. If there is one unknown, each solution is an
equation for the unknown. If a complete solution was found, the unknown will
appear by itself on the left-hand side of the equation. On the other hand, if the
solve package could not find a solution, the “solution” will be an equation for the
unknown in terms of the operator ROOT_OF. If there are several unknowns, each
solution will be a list of equations for the unknowns. For example,

solve(x^2=1,x); -> {X=-1,X=1}

solve(x^7-x^6+x^2=1,x)
6

-> {X=ROOT_OF(X_ + X_ + 1,X_,TAG_1),X=1}
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solve({x+3y=7,y-x=1},{x,y}) -> {{X=1,Y=2}}.

The TAG argument is used to uniquely identify those particular solutions. Solution
multiplicities are stored in the global variable ROOT_MULTIPLICITIES rather
than the solution list. The value of this variable is a list of the multiplicities of the
solutions for the last call of SOLVE. For example,

solve(x^2=2x-1,x); root_multiplicities;

gives the results

{X=1}

{2}

If you want the multiplicities explicitly displayed, the switch MULTIPLICITIES
can be turned on. For example

on multiplicities; solve(x^2=2x-1,x);

yields the result

{X=1,X=1}

7.15.1 Handling of Undetermined Solutions

When SOLVE cannot find a solution to an equation, it normally returns an equation
for the relevant indeterminates in terms of the operator ROOT_OF. For example, the
expression

solve(cos(x) + log(x),x);

returns the result

{X=ROOT_OF(COS(X_) + LOG(X_),X_,TAG_1)} .

An expression with a top-level ROOT_OF operator is implicitly a list with an un-
known number of elements (since we don’t always know how many solutions an
equation has). If a substitution is made into such an expression, closed form solu-
tions can emerge. If this occurs, the ROOT_OF construct is replaced by an operator
ONE_OF. At this point it is of course possible to transform the result of the original
SOLVE operator expression into a standard SOLVE solution. To effect this, the
operator EXPAND_CASES can be used.
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The following example shows the use of these facilities:

solve(-a*x^3+a*x^2+x^4-x^3-4*x^2+4,x);
2 3

{X=ROOT_OF(A*X_ - X_ + 4*X_ + 4,X_,TAG_2),X=1}

sub(a=-1,ws);

{X=ONE_OF({2,-1,-2},TAG_2),X=1}

expand_cases ws;

{X=2,X=-1,X=-2,X=1}

7.15.2 Solutions of Equations Involving Cubics and Quartics

Since roots of cubics and quartics can often be very messy, a switch FULLROOTS
is available, that, when off (the default), will prevent the production of a result in
closed form. The ROOT_OF construct will be used in this case instead.

In constructing the solutions of cubics and quartics, trigonometrical forms are used
where appropriate. This option is under the control of a switch TRIGFORM, which
is normally on.

The following example illustrates the use of these facilities:

let xx = solve(x^3+x+1,x);

xx;
3

{X=ROOT_OF(X_ + X_ + 1,X_)}

on fullroots;

xx;

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
{X=(I*(SQRT(3)*SIN(-----------------------)

3
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- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
- COS(-----------------------)))/SQRT(3),

3

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
X=( - I*(SQRT(3)*SIN(-----------------------)

3

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
+ COS(-----------------------)))/SQRT(

3

3),

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
2*COS(-----------------------)*I

3
X=----------------------------------}

SQRT(3)

off trigform;

xx;
2/3

{X=( - (SQRT(31) - 3*SQRT(3)) *SQRT(3)*I

2/3 2/3
- (SQRT(31) - 3*SQRT(3)) - 2 *SQRT(3)*I

2/3 1/3 1/3
+ 2 )/(2*(SQRT(31) - 3*SQRT(3)) *6

1/6

*3 ),

2/3
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X=((SQRT(31) - 3*SQRT(3)) *SQRT(3)*I

2/3 2/3
- (SQRT(31) - 3*SQRT(3)) + 2 *SQRT(3)*I

2/3 1/3 1/3
+ 2 )/(2*(SQRT(31) - 3*SQRT(3)) *6

1/6

*3 ),

2/3 2/3
(SQRT(31) - 3*SQRT(3)) - 2

X=-------------------------------------}
1/3 1/3 1/6

(SQRT(31) - 3*SQRT(3)) *6 *3

7.15.3 Other Options

If SOLVESINGULAR is on (the default setting), degenerate systems such as
x+y=0, 2x+2y=0 will be solved by introducing appropriate arbitrary constants.
The consistent singular equation 0=0 or equations involving functions with multi-
ple inverses may introduce unique new indeterminant kernels ARBCOMPLEX(j),
or ARBINT(j), (j=1,2,...), representing arbitrary complex or integer numbers re-
spectively. To automatically select the principal branches, do OFF ALLBRANCH.
To avoid the introduction of new indeterminant kernels do OFF ARBVARS – then
no equations are generated for the free variables and their original names are used
to express the solution forms. To suppress solutions of consistent singular equat-
ions do OFF SOLVESINGULAR.

To incorporate additional inverse functions do, for example:

put(’sinh,’inverse,’asinh);
put(’asinh,’inverse,’sinh);

together with any desired simplification rules such as

for all x let sinh(asinh(x))=x, asinh(sinh(x))=x;

For completeness, functions with non-unique inverses should be treated as ^, SIN,
and COS are in the SOLVE module source.

Arguments of ASIN and ACOS are not checked to ensure that the absolute value
of the real part does not exceed 1; and arguments of LOG are not checked to ensure



7.15. SOLVE OPERATOR 107

that the absolute value of the imaginary part does not exceed π; but checks (perhaps
involving user response for non-numerical arguments) could be introduced using
LET statements for these operators.

7.15.4 Parameters and Variable Dependency

The proper design of a variable sequence supplied as a second argument to SOLVE
is important for the structure of the solution of an equation system. Any unknown
in the system not in this list is considered totally free. E.g. the call

solve({x=2*z,z=2*y},{z});

produces an empty list as a result because there is no function z = z(x, y) which
fulfills both equations for arbitrary x and y values. In such a case the share variable
REQUIREMENTS displays a set of restrictions for the parameters of the system:

requirements;

{x - 4*y}

The non-existence of a formal solution is caused by a contradiction which disap-
pears only if the parameters of the initial system are set such that all members of
the requirements list take the value zero. For a linear system the set is complete:
a solution of the requirements list makes the initial system solvable. E.g. in the
above case a substitution x = 4y makes the equation set consistent. For a non-
linear system only one inconsistency is detected. If such a system has more than
one inconsistency, you must reduce them one after the other. 1 The set shows you
also the dependency among the parameters: here one of x and y is free and a formal
solution of the system can be computed by adding it to the variable list of solve.
The requirement set is not unique – there may be other such sets.

A system with parameters may have a formal solution, e.g.

solve({x=a*z+1,0=b*z-y},{z,x});

y a*y + b
{{z=---,x=---------}}

b b

which is not valid for all possible values of the parameters. The variable
1 The difference between linear and non–linear inconsistent systems is based on the algorithms

which produce this information as a side effect when attempting to find a formal solution; example:
solve({x = a, x = b, y = c, y = d}, {x, y} gives a set {a− b, c− d} while solve({x2 = a, x2 =
b, y2 = c, y2 = d}, {x, y} leads to {a− b}.
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ASSUMPTIONS contains then a list of restrictions: the solutions are valid only
as long as none of these expressions vanishes. Any zero of one of them represents
a special case that is not covered by the formal solution. In the above case the value
is

assumptions;

{b}

which excludes formally the case b = 0; obviously this special parameter value
makes the system singular. The set of assumptions is complete for both, linear and
non–linear systems.

SOLVE rearranges the variable sequence to reduce the (expected) computing time.
This behavior is controlled by the switch VAROPT, which is on by default. If it is
turned off, the supplied variable sequence is used or the system kernel ordering is
taken if the variable list is omitted. The effect is demonstrated by an example:

s:= {y^3+3x=0,x^2+y^2=1};

solve(s,{y,x});

6 2
{{y=root_of(y_ + 9*y_ - 9,y_),

3
- y

x=-------}}
3

off varopt; solve(s,{y,x});

6 4 2
{{x=root_of(x_ - 3*x_ + 12*x_ - 1,x_),

4 2
x*( - x + 2*x - 10)

y=-----------------------}}
3

In the first case, solve forms the solution as a set of pairs (yi, x(yi)) because the
degree of x is higher – such a rearrangement makes the internal computation of the
Gröbner basis generally faster. For the second case the explicitly given variable
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sequence is used such that the solution has now the form (xi, y(xi)). Controlling
the variable sequence is especially important if the system has one or more free
variables. As an alternative to turning off varopt, a partial dependency among
the variables can be declared using the depend statement: solve then rearranges
the variable sequence but keeps any variable ahead of those on which it depends.

on varopt;
s:={a^3+b,b^2+c}$
solve(s,{a,b,c});

3 6
{{a=arbcomplex(1),b= - a ,c= - a }}

depend a,c; depend b,c; solve(s,{a,b,c});

{{c=arbcomplex(2),

6
a=root_of(a_ + c,a_),

3
b= - a }}

Here solve is forced to put c after a and after b, but there is no obstacle to inter-
changing a and b.

7.16 Even and Odd Operators

An operator can be declared to be even or odd in its first argument by the declara-
tions EVEN and ODD respectively. Expressions involving an operator declared in
this manner are transformed if the first argument contains a minus sign. Any other
arguments are not affected. In addition, if say F is declared odd, then f(0) is
replaced by zero unless F is also declared non zero by the declaration NONZERO.
For example, the declarations

even f1; odd f2;

mean that

f1(-a) -> F1(A)
f2(-a) -> -F2(A)
f1(-a,-b) -> F1(A,-B)
f2(0) -> 0.
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To inhibit the last transformation, say nonzero f2;.

7.17 Linear Operators

An operator can be declared to be linear in its first argument over powers of its
second argument. If an operator F is so declared, F of any sum is broken up into
sums of Fs, and any factors that are not powers of the variable are taken outside.
This means that F must have (at least) two arguments. In addition, the second
argument must be an identifier (or more generally a kernel), not an expression.

Example:

If F were declared linear, then

5
f(a*x^5+b*x+c,x) -> F(X ,X)*A + F(X,X)*B + F(1,X)*C

More precisely, not only will the variable and its powers remain within the scope
of the F operator, but so will any variable and its powers that had been declared
to DEPEND on the prescribed variable; and so would any expression that contains
that variable or a dependent variable on any level, e.g. cos(sin(x)).

To declare operators F and G to be linear operators, use:

linear f,g;

The analysis is done of the first argument with respect to the second; any other
arguments are ignored. It uses the following rules of evaluation:

f(0) −→ 0
f(-y,x) −→ -F(Y,X)
f(y+z,x) −→ F(Y,X)+F(Z,X)
f(y*z,x) −→ Z*F(Y,X) if Z does not depend on X
f(y/z,x) −→ F(Y,X)/Z if Z does not depend on X

To summarize, Y “depends” on the indeterminate X in the above if either of the
following hold:

1. Y is an expression that contains X at any level as a variable, e.g.: cos(sin(x))

2. Any variable in the expression Y has been declared dependent on X by use
of the declaration DEPEND.

The use of such linear operators can be seen in the paper Fox, J.A. and A. C. Hearn,
“Analytic Computation of Some Integrals in Fourth Order Quantum Electrodynam-
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ics” Journ. Comp. Phys. 14 (1974) 301-317, which contains a complete listing of
a program for definite integration of some expressions that arise in fourth order
quantum electrodynamics.

7.18 Non-Commuting Operators

An operator can be declared to be non-commutative under multiplication by the
declaration NONCOM.

Example:

After the declaration

noncom u,v;

the expressions u(x)*u(y)-u(y)*u(x) and u(x)*v(y)-v(y)*u(x) will
remain unchanged on simplification, and in particular will not simplify to zero.

Note that it is the operator (U and V in the above example) and not the variable that
has the non-commutative property.

The LET statement may be used to introduce rules of evaluation for such operators.
In particular, the boolean operator ORDP is useful for introducing an ordering on
such expressions.

Example:

The rule

for all x,y such that x neq y and ordp(x,y)
let u(x)*u(y)= u(y)*u(x)+comm(x,y);

would introduce the commutator of u(x) and u(y) for all X and Y. Note that
since ordp(x,x) is true, the equality check is necessary in the degenerate case
to avoid a circular loop in the rule.

7.19 Symmetric and Antisymmetric Operators

An operator can be declared to be symmetric with respect to its arguments by the
declaration SYMMETRIC. For example

symmetric u,v;

means that any expression involving the top level operators U or V will have its
arguments reordered to conform to the internal order used by REDUCE. The user
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can change this order for kernels by the command KORDER.

For example, u(x,v(1,2)) would become u(v(2,1),x), since numbers are
ordered in decreasing order, and expressions are ordered in decreasing order of
complexity.

Similarly the declaration ANTISYMMETRIC declares an operator antisymmetric.
For example,

antisymmetric l,m;

means that any expression involving the top level operators L or M will have its
arguments reordered to conform to the internal order of the system, and the sign
of the expression changed if there are an odd number of argument interchanges
necessary to bring about the new order.

For example, l(x,m(1,2)) would become -l(-m(2,1),x) since one inter-
change occurs with each operator. An expression like l(x,x) would also be
replaced by 0.

7.20 Declaring New Prefix Operators

The user may add new prefix operators to the system by using the declaration
OPERATOR. For example:

operator h,g1,arctan;

adds the prefix operators H, G1 and ARCTAN to the system.

This allows symbols like h(w), h(x,y,z), g1(p+q), arctan(u/v) to
be used in expressions, but no meaning or properties of the operator are implied.
The same operator symbol can be used equally well as a 0-, 1-, 2-, 3-, etc.-place
operator.

To give a meaning to an operator symbol, or express some of its properties, LET
statements can be used, or the operator can be given a definition as a procedure.

If the user forgets to declare an identifier as an operator, the system will prompt the
user to do so in interactive mode, or do it automatically in non-interactive mode.
A diagnostic message will also be printed if an identifier is declared OPERATOR
more than once.

Operators once declared are global in scope, and so can then be referenced any-
where in the program. In other words, a declaration within a block (or a procedure)
does not limit the scope of the operator to that block, nor does the operator go away
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on exiting the block (use CLEAR instead for this purpose).

An operator declared PRINT_INDEXED has its arguments displayed as indices,
e.g. after print_indexed a; the operator value a(i,2) is displayed as ai,2.
You can declare several operators together to be indexed, e.g.

print_indexed b, c;

and remove indexed declarations using PRINT_NOINDEXED.

7.21 Declaring New Infix Operators

Users can add new infix operators by using the declarations INFIX and PRECEDENCE.
For example,

infix mm;
precedence mm,-;

The declaration infix mm; would allow one to use the symbol MM as an infix
operator:

a mm b instead of mm(a,b).

The declaration precedence mm,-; says that MM should be inserted into the
infix operator precedence list just after the − operator. This gives it higher prece-
dence than − and lower precedence than * . Thus

a - b mm c - d means a - (b mm c) - d,

while

a * b mm c * d means (a * b) mm (c * d).

Both infix and prefix operators have no transformation properties unless LET state-
ments or procedure declarations are used to assign a meaning.

We should note here that infix operators so defined are always binary:

a mm b mm c means (a mm b) mm c.

7.22 Creating/Removing Variable Dependency

There are several facilities in REDUCE, such as the differentiation operator and
the linear operator facility, that can utilize knowledge of the dependency between
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various variables, or kernels. Such dependency may be expressed by the command
DEPEND. This takes an arbitrary number of arguments and sets up a dependency
of the first argument on the remaining arguments. For example,

depend x,y,z;

says that X is dependent on both Y and Z.

depend z,cos(x),y;

says that Z is dependent on COS(X) and Y.

Dependencies introduced by DEPEND can be removed by NODEPEND. The argu-
ments of this are the same as for DEPEND. For example, given the above depen-
dencies,

nodepend z,cos(x);

says that Z is no longer dependent on COS(X), although it remains dependent on
Y.

As a convenience, one or more dependent variables can be specified together in a
list for both the DEPEND and NODEPEND commands, i.e.

(no)depend {y1, y2, . . .}, x1, x2, . . .

is equivalent to

(no)depend y1, x1, x2, . . .; (no)depend y2, x1, x2, . . .; . . .

Both commands also accept a sequence of “dependence sequences”, where the
beginning of each new dependence sequence is indicated by a list of one or more
dependent variables. For example,

depend {x,y,z},u,v,{theta},time;

is equivalent to

depend x,u,v;
depend y,u,v;
depend z,u,v;
depend theta,time;



Chapter 8

Display and Structuring of
Expressions

In this section, we consider a variety of commands and operators that permit the
user to obtain various parts of algebraic expressions and also display their structure
in a variety of forms. Also presented are some additional concepts in the REDUCE
design that help the user gain a better understanding of the structure of the system.

8.1 Kernels

REDUCE is designed so that each operator in the system has an evaluation (or
simplification) function associated with it that transforms the expression into an
internal canonical form. This form, which bears little resemblance to the original
expression, is described in detail in Hearn, A. C., “REDUCE 2: A System and Lan-
guage for Algebraic Manipulation,” Proc. of the Second Symposium on Symbolic
and Algebraic Manipulation, ACM, New York (1971) 128-133.

The evaluation function may transform its arguments in one of two alternative
ways. First, it may convert the expression into other operators in the system, leav-
ing no functions of the original operator for further manipulation. This is in a sense
true of the evaluation functions associated with the operators +, * and / , for ex-
ample, because the canonical form does not include these operators explicitly. It
is also true of an operator such as the determinant operator DET because the rel-
evant evaluation function calculates the appropriate determinant, and the operator
DET no longer appears. On the other hand, the evaluation process may leave some
residual functions of the relevant operator. For example, with the operator COS,
a residual expression like COS(X) may remain after evaluation unless a rule for
the reduction of cosines into exponentials, for example, were introduced. These
residual functions of an operator are termed kernels and are stored uniquely like

115



116 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

variables. Subsequently, the kernel is carried through the calculation as a variable
unless transformations are introduced for the operator at a later stage.

In those cases where the evaluation process leaves an operator expression with
non-trivial arguments, the form of the argument can vary depending on the state
of the system at the point of evaluation. Such arguments are normally produced in
expanded form with no terms factored or grouped in any way. For example, the
expression cos(2*x+2*y) will normally be returned in the same form. If the
argument 2*x+2*y were evaluated at the top level, however, it would be printed
as 2*(X+Y). If it is desirable to have the arguments themselves in a similar form,
the switch INTSTR (for “internal structure”), if on, will cause this to happen.

In cases where the arguments of the kernel operators may be reordered, the sys-
tem puts them in a canonical order, based on an internal intrinsic ordering of the
variables. However, some commands allow arguments in the form of kernels, and
the user has no way of telling what internal order the system will assign to these
arguments. To resolve this difficulty, we introduce the notion of a kernel form as
an expression that transforms to a kernel on evaluation.

Examples of kernel forms are:

a
cos(x*y)
log(sin(x))

whereas

a*b
(a+b)^4

are not.

We see that kernel forms can usually be used as generalized variables, and most
algebraic properties associated with variables may also be associated with kernels.

8.2 The Expression Workspace

Several mechanisms are available for saving and retrieving previously evaluated
expressions. The simplest of these refers to the last algebraic expression simpli-
fied. When an assignment of an algebraic expression is made, or an expression is
evaluated at the top level, (i.e., not inside a compound statement or procedure) the
results of the evaluation are automatically saved in a variable WS that we shall refer
to as the workspace. (More precisely, the expression is assigned to the variable WS
that is then available for further manipulation.)
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Example:

If we evaluate the expression (x+y)^2 at the top level and next wish to differen-
tiate it with respect to Y, we can simply say

df(ws,y);

to get the desired answer.

If the user wishes to assign the workspace to a variable or expression for later use,
the SAVEAS statement can be used. It has the syntax

SAVEAS 〈expression〉

For example, after the differentiation in the last example, the workspace holds the
expression 2*x+2*y. If we wish to assign this to the variable Z we can now say

saveas z;

If the user wishes to save the expression in a form that allows him to use some of
its variables as arbitrary parameters, the FOR ALL command can be used.

Example:

for all x saveas h(x);

with the above expression would mean that h(z) evaluates to 2*Y+2*Z.

A further method for referencing more than the last expression is described in
chapter 13 on interactive use of REDUCE.

8.3 Output of Expressions

A considerable degree of flexibility is available in REDUCE in the printing of
expressions generated during calculations. No explicit format statements are sup-
plied, as these are in most cases of little use in algebraic calculations, where the size
of output or its composition is not generally known in advance. Instead, REDUCE
provides a series of mode options to the user that should enable him to produce his
output in a comprehensible and possibly pleasing form.

The most extreme option offered is to suppress the output entirely from any top
level evaluation. This is accomplished by turning off the switch OUTPUT which is
normally on. It is useful for limiting output when loading large files or producing
“clean” output from the prettyprint programs.

In most circumstances, however, we wish to view the output, so we need to know
how to format it appropriately. As we mentioned earlier, an algebraic expression
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is normally printed in an expanded form, filling the whole output line with terms.
Certain output declarations, however, can be used to affect this format. To begin
with, we look at an operator for changing the length of the output line.

8.3.1 LINELENGTH Operator

This operator is used with the syntax

LINELENGTH(NUM:integer):integer

and sets the output line length to the integer NUM. It returns the previous output line
length (so that it can be stored for later resetting of the output line if needed).

8.3.2 Output Declarations

We now describe a number of switches and declarations that are available for con-
trolling output formats. It should be noted, however, that the transformation of
large expressions to produce these varied output formats can take a lot of comput-
ing time and space. If a user wishes to speed up the printing of the output in such
cases, he can turn off the switch PRI. If this is done, then output is produced in
one fixed format, which basically reflects the internal form of the expression, and
none of the options below apply. PRI is normally on.

With PRI on, the output declarations and switches available are as follows:

ORDER Declaration

The declaration ORDER may be used to order variables on output. The syntax is:

order v1,...vn;

where the vi are kernels. Thus,

order x,y,z;

orders X ahead of Y, Y ahead of Z and all three ahead of other variables not given
an order. order nil; resets the output order to the system default. The order
of variables may be changed by further calls of ORDER, but then the reordered
variables would have an order lower than those in earlier ORDER calls. Thus,

order x,y,z;
order y,x;
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would order Z ahead of Y and X. The default ordering is usually alphabetic.

FACTOR Declaration

This declaration takes a list of identifiers or kernels as argument. FACTOR is not
a factoring command (use FACTORIZE or the FACTOR switch for this purpose);
rather it is a separation command. All terms involving fixed powers of the declared
expressions are printed as a product of the fixed powers and a sum of the rest of the
terms.

For example, after the declaration

factor x;

the polynomial (x+ y + 1)2 will be printed as

2 2
X + 2*X*(Y + 1) + Y + 2*Y + 1

All expressions involving a given prefix operator may also be factored by putting
the operator name in the list of factored identifiers. For example:

factor x,cos,sin(x);

causes all powers of X and SIN(X) and all functions of COS to be factored.

Note that FACTOR does not affect the order of its arguments. You should also use
ORDER if this is important.

The declaration remfac v1,...,vn; removes the factoring flag from the ex-
pressions v1 through vn.

8.3.3 Output Control Switches

In addition to these declarations, the form of the output can be modified by switch-
ing various output control switches using the declarations ON and OFF. We shall
illustrate the use of these switches by an example, namely the printing of the ex-
pression

x^2*(y^2+2*y)+x*(y^2+z)/(2*a) .

The relevant switches are as follows:
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ALLFAC Switch

This switch will cause the system to search the whole expression, or any sub-
expression enclosed in parentheses, for simple multiplicative factors and print them
outside the parentheses. Thus our expression with ALLFAC off will print as

2 2 2 2
(2*X *Y *A + 4*X *Y*A + X*Y + X*Z)/(2*A)

and with ALLFAC on as

2 2
X*(2*X*Y *A + 4*X*Y*A + Y + Z)/(2*A) .

ALLFAC is normally on, and is on in the following examples, except where other-
wise stated.

DIV Switch

This switch makes the system search the denominator of an expression for simple
factors that it divides into the numerator, so that rational fractions and negative
powers appear in the output. With DIV on, our expression would print as

2 2 (-1) (-1)
X*(X*Y + 2*X*Y + 1/2*Y *A + 1/2*A *Z) .

DIV is normally off.

HORNER Switch

This switch causes the system to print polynomials according to Horner’s rule.
With HORNER on, our expression prints as

2
X*(Y + Z + 2*(Y + 2)*A*X*Y)/(2*A) .

HORNER is normally off.

LIST Switch

This switch causes the system to print each term in any sum on a separate line.
With LIST on, our expression prints as
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2
X*(2*X*Y *A

+ 4*X*Y*A

2
+ Y

+ Z)/(2*A) .

LIST is normally off.

NOSPLIT Switch

Under normal circumstances, the printing routines try to break an expression across
lines at a natural point. This is a fairly expensive process. If you are not overly
concerned about where the end-of-line breaks come, you can speed up the printing
of expressions by turning off the switch NOSPLIT. This switch is normally on.

RAT Switch

This switch is only useful with expressions in which variables are factored with
FACTOR. With this mode, the overall denominator of the expression is printed
with each factored sub-expression. We assume a prior declaration factor x; in
the following output. We first print the expression with RAT set to off:

2 2
(2*X *Y*A*(Y + 2) + X*(Y + Z))/(2*A) .

With RAT on the output becomes:

2 2
X *Y*(Y + 2) + X*(Y + Z)/(2*A) .

RAT is normally off.

Next, if we leave X factored, and turn on both DIV and RAT, the result becomes

2 (-1) 2
X *Y*(Y + 2) + 1/2*X*A *(Y + Z) .

Finally, with X factored, RAT on and ALLFAC off we retrieve the original structure
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2 2 2
X *(Y + 2*Y) + X*(Y + Z)/(2*A) .

RATPRI Switch

If the numerator and denominator of an expression can each be printed in one line,
the output routines will print them in a two dimensional notation, with numerator
and denominator on separate lines and a line of dashes in between. For example,
(a+b)/2 will print as

A + B
-----

2

Turning this switch off causes such expressions to be output in a linear form.

REVPRI Switch

The normal ordering of terms in output is from highest to lowest power. In some
situations (e.g., when a power series is output), the opposite ordering is more con-
venient. The switch REVPRI if on causes such a reverse ordering of terms. For
example, the expression y*(x+1)^2+(y+3)^2 will normally print as

2 2
X *Y + 2*X*Y + Y + 7*Y + 9

whereas with REVPRI on, it will print as

2 2
9 + 7*Y + Y + 2*X*Y + X *Y.

8.3.4 WRITE Command

In simple cases no explicit output command is necessary in REDUCE, since the
value of any expression is automatically printed if a semicolon is used as a delim-
iter. There are, however, several situations in which such a command is useful.

In a FOR, WHILE, or REPEAT statement it may be desired to output something
each time the statement within the loop construct is repeated.

It may be desired for a procedure to output intermediate results or other information
while it is running. It may be desired to have results labeled in special ways,
especially if the output is directed to a file or device other than the terminal.
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The WRITE command consists of the word WRITE followed by one or more items
separated by commas, and followed by a terminator. There are three kinds of items
that can be used:

1. Expressions (including variables and constants). The expression is evalu-
ated, and the result is printed out.

2. Assignments. The expression on the right side of the := operator is evalu-
ated, and is assigned to the variable on the left; then the symbol on the left is
printed, followed by a “:=”, followed by the value of the expression on the
right – almost exactly the way an assignment followed by a semicolon prints
out normally. (The difference is that if the WRITE is in a FOR statement and
the left-hand side of the assignment is an array position or something similar
containing the variable of the FOR iteration, then the value of that variable is
inserted in the printout.)

3. Arbitrary strings of characters, preceded and followed by double-quote
marks (e.g., "string").

The items specified by a single WRITE statement print side by side on one line.
(The line is broken automatically if it is too long.) Strings print exactly as quoted.
The WRITE command itself however does not return a value.

The print line is closed at the end of a WRITE command evaluation. Therefore the
command WRITE ""; (specifying nothing to be printed except the empty string)
causes a line to be skipped.

Examples:

1. If A is X+5, B is itself, C is 123, M is an array, and Q=3, then

write m(q):=a," ",b/c," THANK YOU";

will set M(3) to x+5 and print

M(Q) := X + 5 B/123 THANK YOU

The blanks between the 5 and B, and the 3 and T, come from the blanks in
the quoted strings.

2. To print a table of the squares of the integers from 1 to 20:

for i:=1:20 do write i," ",i^2;

3. To print a table of the squares of the integers from 1 to 20, and at the same
time store them in positions 1 to 20 of an array A:
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for i:=1:20 do <<a(i):=i^2; write i," ",a(i)>>;

This will give us two columns of numbers. If we had used

for i:=1:20 do write i," ",a(i):=i^2;

we would also get A(i) := repeated on each line.

4. The following more complete example calculates the famous f and g se-
ries, first reported in Sconzo, P., LeSchack, A. R., and Tobey, R., “Symbolic
Computation of f and g Series by Computer”, Astronomical Journal 70 (May
1965).

x1:= -sig*(mu+2*eps)$
x2:= eps - 2*sig^2$
x3:= -3*mu*sig$
f:= 1$
g:= 0$
for i:= 1 step 1 until 10 do begin

f1:= -mu*g+x1*df(f,eps)+x2*df(f,sig)+x3*df(f,mu);
write "f(",i,") := ",f1;
g1:= f+x1*df(g,eps)+x2*df(g,sig)+x3*df(g,mu);
write "g(",i,") := ",g1;
f:=f1$
g:=g1$
end;

A portion of the output, to illustrate the printout from the WRITE command,
is as follows:

... <prior output> ...

2
F(4) := MU*(3*EPS - 15*SIG + MU)

G(4) := 6*SIG*MU

2
F(5) := 15*SIG*MU*( - 3*EPS + 7*SIG - MU)

2
G(5) := MU*(9*EPS - 45*SIG + MU)

... <more output> ...
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8.3.5 Suppression of Zeros

It is sometimes annoying to have zero assignments (i.e. assignments of the form
<expression> := 0) printed, especially in printing large arrays with many
zero elements. The output from such assignments can be suppressed by turning on
the switch NERO.

8.3.6 FORTRAN Style Output Of Expressions

It is naturally possible to evaluate expressions numerically in REDUCE by giving
all variables and sub-expressions numerical values. However, as we pointed out
elsewhere the user must declare real arithmetical operation by turning on the switch
ROUNDED. However, it should be remembered that arithmetic in REDUCE is not
particularly fast, since results are interpreted rather than evaluated in a compiled
form. The user with a large amount of numerical computation after all necessary
algebraic manipulations have been performed is therefore well advised to perform
these calculations in a FORTRAN or similar system. For this purpose, REDUCE
offers facilities for users to produce FORTRAN compatible files for numerical pro-
cessing.

First, when the switch FORT is on, the system will print expressions in a FOR-
TRAN notation. Expressions begin in column seven. If an expression extends over
one line, a continuation mark (.) followed by a blank appears on subsequent cards.
After a certain number of lines have been produced (according to the value of the
variable CARD_NO), a new expression is started. If the expression printed arises
from an assignment to a variable, the variable is printed as the name of the expres-
sion. Otherwise the expression is given the default name ANS. An error occurs if
identifiers or numbers are outside the bounds permitted by FORTRAN.

A second option is to use the WRITE command to produce other programs.

Example:

The following REDUCE statements

on fort;
out "forfil";
write "C this is a fortran program";
write " 1 format(e13.5)";
write " u=1.23";
write " v=2.17";
write " w=5.2";
x:=(u+v+w)^11;
write "C it was foolish to expand this expression";
write " print 1,x";



126 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

write " end";
shut "forfil";
off fort;

will generate a file forfil that contains:

c this is a fortran program
1 format(e13.5)

u=1.23
v=2.17
w=5.2
ans1=1320.*u**3*v*w**7+165.*u**3*w**8+55.*u**2*v**9+495.*u

. **2*v**8*w+1980.*u**2*v**7*w**2+4620.*u**2*v**6*w**3+

. 6930.*u**2*v**5*w**4+6930.*u**2*v**4*w**5+4620.*u**2*v**3*

. w**6+1980.*u**2*v**2*w**7+495.*u**2*v*w**8+55.*u**2*w**9+

. 11.*u*v**10+110.*u*v**9*w+495.*u*v**8*w**2+1320.*u*v**7*w

. **3+2310.*u*v**6*w**4+2772.*u*v**5*w**5+2310.*u*v**4*w**6

. +1320.*u*v**3*w**7+495.*u*v**2*w**8+110.*u*v*w**9+11.*u*w

. **10+v**11+11.*v**10*w+55.*v**9*w**2+165.*v**8*w**3+330.*

. v**7*w**4+462.*v**6*w**5+462.*v**5*w**6+330.*v**4*w**7+

. 165.*v**3*w**8+55.*v**2*w**9+11.*v*w**10+w**11
x=u**11+11.*u**10*v+11.*u**10*w+55.*u**9*v**2+110.*u**9*v*
. w+55.*u**9*w**2+165.*u**8*v**3+495.*u**8*v**2*w+495.*u**8
. *v*w**2+165.*u**8*w**3+330.*u**7*v**4+1320.*u**7*v**3*w+
. 1980.*u**7*v**2*w**2+1320.*u**7*v*w**3+330.*u**7*w**4+462.
. *u**6*v**5+2310.*u**6*v**4*w+4620.*u**6*v**3*w**2+4620.*u
. **6*v**2*w**3+2310.*u**6*v*w**4+462.*u**6*w**5+462.*u**5*
. v**6+2772.*u**5*v**5*w+6930.*u**5*v**4*w**2+9240.*u**5*v
. **3*w**3+6930.*u**5*v**2*w**4+2772.*u**5*v*w**5+462.*u**5
. *w**6+330.*u**4*v**7+2310.*u**4*v**6*w+6930.*u**4*v**5*w
. **2+11550.*u**4*v**4*w**3+11550.*u**4*v**3*w**4+6930.*u**
. 4*v**2*w**5+2310.*u**4*v*w**6+330.*u**4*w**7+165.*u**3*v
. **8+1320.*u**3*v**7*w+4620.*u**3*v**6*w**2+9240.*u**3*v**
. 5*w**3+11550.*u**3*v**4*w**4+9240.*u**3*v**3*w**5+4620.*u
. **3*v**2*w**6+ans1

c it was foolish to expand this expression
print 1,x
end

If the arguments of a WRITE statement include an expression that requires con-
tinuation records, the output will need editing, since the output routine prints the
arguments of WRITE sequentially, and the continuation mechanism therefore gen-
erates its auxiliary variables after the preceding expression has been printed.

Finally, since there is no direct analog of list in FORTRAN, a comment line of the
form

c ***** invalid fortran construct (list) not printed
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will be printed if you try to print a list with FORT on.

FORTRAN Output Options

There are a number of methods available to change the default format of the FOR-
TRAN output.

The breakup of the expression into subparts is such that the number of continuation
lines produced is less than a given number. This number can be modified by the
assignment

card_no := 〈number〉;

where 〈number〉 is the total number of cards allowed in a statement. The default
value of CARD_NO is 20.

The width of the output expression is also adjustable by the assignment

fort_width := 〈integer〉;

FORT_WIDTH which sets the total width of a given line to 〈integer〉. The initial
FORTRAN output width is 70.

REDUCE automatically inserts a decimal point after each isolated integer coeffi-
cient in a FORTRAN expression (so that, for example, 4 becomes 4. ). To prevent
this, set the PERIOD mode switch to OFF.

FORTRAN output is normally produced in lower case. If upper case is desired, the
switch FORTUPPER should be turned on.

Finally, the default name ANS assigned to an unnamed expression and its subparts
can be changed by the operator VARNAME. This takes a single identifier as argu-
ment, which then replaces ANS as the expression name. The value of VARNAME is
its argument.

Further facilities for the production of FORTRAN and other language output are
provided by the SCOPE and GENTRAN packagesdescribed in chapters 16.28 and
16.64.

8.3.7 Saving Expressions for Later Use as Input

It is often useful to save an expression on an external file for use later as input
in further calculations. The commands for opening and closing output files are
explained elsewhere. However, we see in the examples on output of expressions
that the standard “natural” method of printing expressions is not compatible with
the input syntax. So to print the expression in an input compatible form we must
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inhibit this natural style by turning off the switch NAT. If this is done, a dollar sign
will also be printed at the end of the expression.

Example:

The following sequence of commands

off nat; out "out"; x := (y+z)^2; write "end";
shut "out"; on nat;

will generate a file out that contains

X := Y**2 + 2*Y*Z + Z**2$
END$

8.3.8 Displaying Expression Structure

In those cases where the final result has a complicated form, it is often convenient
to display the skeletal structure of the answer. The operator STRUCTR, that takes
a single expression as argument, will do this for you. Its syntax is:

STRUCTR(EXPRN:algebraic[,ID1:identifier[,ID2:identifier]]);

The structure is printed effectively as a tree, in which the subparts are laid out with
auxiliary names. If the optional ID1 is absent, the auxiliary names are prefixed by
the root ANS. This root may be changed by the operator VARNAME. If the optional
ID1 is present, and is an array name, the subparts are named as elements of that
array, otherwise ID1 is used as the root prefix. (The second optional argument
ID2 is explained later.)

The EXPRN can be either a scalar or a matrix expression. Use of any other will
result in an error.

Example:

Let us suppose that the workspace contains ((A+B)^2+C)^3+D. Then the input
STRUCTR WS; will (with EXP off) result in the output:

ANS3

where

3
ANS3 := ANS2 + D

2
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ANS2 := ANS1 + C

ANS1 := A + B

The workspace remains unchanged after this operation, since STRUCTR in the de-
fault situation returns no value (if STRUCTR is used as a sub-expression, its value
is taken to be 0). In addition, the sub-expressions are normally only displayed and
not retained. If you wish to access the sub-expressions with their displayed names,
the switch SAVESTRUCTR should be turned on. In this case, STRUCTR returns a
list whose first element is a representation for the expression, and subsequent ele-
ments are the sub-expression relations. Thus, with SAVESTRUCTR on, STRUCTR
WS in the above example would return

3 2
{ANS3,ANS3=ANS2 + D,ANS2=ANS1 + C,ANS1=A + B}

The PART operator can be used to retrieve the required parts of the expression. For
example, to get the value of ANS2 in the above, one could say:

part(ws,3,2);

If FORT is on, then the results are printed in the reverse order; the algorithm in fact
guaranteeing that no sub-expression will be referenced before it is defined. The
second optional argument ID2 may also be used in this case to name the actual
expression (or expressions in the case of a matrix argument).

Example:

Let us suppose that M, a 2 by 1 matrix, contains the elements ((a+b)^2 + c)^3
+ d and (a + b)*(c + d) respectively, and that V has been declared to be an
array. With EXP off and FORT on, the statement structr(2*m,v,k); will
result in the output

V(1)=A+B
V(2)=V(1)**2+C
V(3)=V(2)**3+D
V(4)=C+D
K(1,1)=2.*V(3)
K(2,1)=2.*V(1)*V(4)

8.4 Changing the Internal Order of Variables

The internal ordering of variables (more specifically kernels) can have a significant
effect on the space and time associated with a calculation. In its default state, RE-
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DUCE uses a specific order for this which may vary between sessions. However,
it is possible for the user to change this internal order by means of the declaration
KORDER. The syntax for this is:

korder v1,...,vn;

where the Vi are kernels. With this declaration, the Vi are ordered internally ahead
of any other kernels in the system. V1 has the highest order, V2 the next highest,
and so on. A further call of KORDER replaces a previous one. KORDER NIL;
resets the internal order to the system default.

Unlike the ORDER declaration, that has a purely cosmetic effect on the way results
are printed, the use of KORDER can have a significant effect on computation time.
In critical cases then, the user can experiment with the ordering of the variables
used to determine the optimum set for a given problem.

8.5 Obtaining Parts of Algebraic Expressions

There are many occasions where it is desirable to obtain a specific part of an ex-
pression, or even change such a part to another expression. A number of operators
are available in REDUCE for this purpose, and will be described in this section. In
addition, operators for obtaining specific parts of polynomials and rational funct-
ions (such as a denominator) are described in another section.

8.5.1 COEFF Operator

Syntax:

COEFF(EXPRN:polynomial,VAR:kernel)

COEFF is an operator that partitions EXPRN into its various coefficients with re-
spect to VAR and returns them as a list, with the coefficient independent of VAR
first.

Under normal circumstances, an error results if EXPRN is not a polynomial in VAR,
although the coefficients themselves can be rational as long as they do not depend
on VAR. However, if the switch RATARG is on, denominators are not checked for
dependence on VAR, and are taken to be part of the coefficients.

Example:

coeff((y^2+z)^3/z,y);

returns the result
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2
{Z ,0,3*Z,0,3,0,1/Z}.

whereas

coeff((y^2+z)^3/y,y);

gives an error if RATARG is off, and the result

3 2
{Z /Y,0,3*Z /Y,0,3*Z/Y,0,1/Y}

if RATARG is on.

The length of the result of COEFF is the highest power of VAR encountered plus
1. In the above examples it is 7. In addition, the variable HIGH_POW is set to
the highest non-zero power found in EXPRN during the evaluation, and LOW_POW
to the lowest non-zero power, or zero if there is a constant term. If EXPRN is a

constant, then HIGH_POW and LOW_POW are both set to zero.

8.5.2 COEFFN Operator

The COEFFN operator is designed to give the user a particular coefficient of a vari-
able in a polynomial, as opposed to COEFF that returns all coefficients. COEFFN
is used with the syntax

COEFFN(EXPRN:polynomial,VAR:kernel,N:integer)

It returns the nth coefficient of VAR in the polynomial EXPRN.

8.5.3 PART Operator

Syntax:

PART(EXPRN:algebraic[,INTEXP:integer])

This operator works on the form of the expression as printed or as it would have
been printed at that point in the calculation bearing in mind all the relevant switch
settings at that point. The reader therefore needs some familiarity with the way
that expressions are represented in prefix form in REDUCE to use these operators
effectively. Furthermore, it is assumed that PRI is ON at that point in the calcula-
tion. The reason for this is that with PRI off, an expression is printed by walking
the tree representing the expression internally. To save space, it is never actually
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transformed into the equivalent prefix expression as occurs when PRI is on. How-
ever, the operations on polynomials described elsewhere can be equally well used
in this case to obtain the relevant parts.

The evaluation proceeds recursively down the integer expression list. In other
words,

PART(〈expression〉, 〈integer1〉, 〈integer2〉)
−→ PART(PART(〈expression〉, 〈integer1〉), 〈integer2〉)

and so on, and

PART(〈expression〉) −→ 〈expression〉.

INTEXP can be any expression that evaluates to an integer. If the integer is pos-
itive, then that term of the expression is found. If the integer is 0, the operator
is returned. Finally, if the integer is negative, the counting is from the tail of the
expression rather than the head.

For example, if the expression a+b is printed as A+B (i.e., the ordering of the
variables is alphabetical), then

part(a+b,2) -> B
part(a+b,-1) -> B

and
part(a+b,0) -> PLUS

An operator ARGLENGTH is available to determine the number of arguments of the
top level operator in an expression. If the expression does not contain a top level
operator, then −1 is returned. For example,

arglength(a+b+c) -> 3
arglength(f()) -> 0
arglength(a) -> -1

8.5.4 Substituting for Parts of Expressions

PART may also be used to substitute for a given part of an expression. In this case,
the PART construct appears on the left-hand side of an assignment statement, and
the expression to replace the given part on the right-hand side.

For example, with the normal settings of the REDUCE switches:

xx := a+b;
part(xx,2) := c; -> A+C
part(c+d,0) := -; -> C-D
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Note that xx in the above is not changed by this substitution. In addition, un-
like expressions such as array and matrix elements that have an instant evaluation
property, the values of part(xx,2) and part(c+d,0) are also not changed.
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Chapter 9

Polynomials and Rationals

Many operations in computer algebra are concerned with polynomials and rational
functions. In this section, we review some of the switches and operators available
for this purpose. These are in addition to those that work on general expressions
(such as DF and INT) described elsewhere. In the case of operators, the arguments
are first simplified before the operations are applied. In addition, they operate
only on arguments of prescribed types, and produce a type mismatch error if given
arguments which cannot be interpreted in the required mode with the current switch
settings. For example, if an argument is required to be a kernel and a/2 is used
(with no other rules for A), an error

A/2 invalid as kernel

will result.

With the exception of those that select various parts of a polynomial or rational
function, these operations have potentially significant effects on the space and time
associated with a given calculation. The user should therefore experiment with
their use in a given calculation in order to determine the optimum set for a given
problem.

One such operation provided by the system is an operator LENGTH which returns
the number of top level terms in the numerator of its argument. For example,

length ((a+b+c)^3/(c+d));

has the value 10. To get the number of terms in the denominator, one would first
select the denominator by the operator DEN and then call LENGTH, as in

length den ((a+b+c)^3/(c+d));

Other operations currently supported, the relevant switches and operators, and the

135
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required argument and value modes of the latter, follow.

9.1 Controlling the Expansion of Expressions

The switch EXP controls the expansion of expressions. If it is off, no expansion of
powers or products of expressions occurs. Users should note however that in this
case results come out in a normal but not necessarily canonical form. This means
that zero expressions simplify to zero, but that two equivalent expressions need not
necessarily simplify to the same form.

Example: With EXP on, the two expressions

(a+b)*(a+2*b)

and

a^2+3*a*b+2*b^2

will both simplify to the latter form. With EXP off, they would remain unchanged,
unless the complete factoring (ALLFAC) option were in force. EXP is normally on.

Several operators that expect a polynomial as an argument behave differently when
EXP is off, since there is often only one term at the top level. For example, with
EXP off

length((a+b+c)^3/(c+d));

returns the value 1.

9.2 Factorization of Polynomials

REDUCE is capable of factorizing univariate and multivariate polynomials that
have integer coefficients, finding all factors that also have integer coefficients. The
package for doing this was written by Dr. Arthur C. Norman and Ms. P. Mary Ann
Moore at The University of Cambridge. It is described in P. M. A. Moore and A.
C. Norman, “Implementing a Polynomial Factorization and GCD Package”, Proc.
SYMSAC ’81, ACM (New York) (1981), 109-116.

The easiest way to use this facility is to turn on the switch FACTOR, which causes
all expressions to be output in a factored form. For example, with FACTOR on, the
expression A^2-B^2 is returned as (A+B)*(A-B).

It is also possible to factorize a given expression explicitly. The operator
FACTORIZE that invokes this facility is used with the syntax
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FACTORIZE(EXPRN:polynomial[,INTEXP:prime integer]):list,

the optional argument of which will be described later. Thus to find and display all
factors of the cyclotomic polynomial x105 − 1, one could write:

factorize(x^105-1);

The result is a list of factor,exponent pairs. In the above example, there is no overall
numerical factor in the result, so the results will consist only of polynomials in x.
The number of such polynomials can be found by using the operator LENGTH. If
there is a numerical factor, as in factorizing 12x2 − 12, that factor will appear as
the first member of the result. It will however not be factored further. Prime factors
of such numbers can be found, using a probabilistic algorithm, by turning on the
switch IFACTOR. For example,

on ifactor; factorize(12x^2-12);

would result in the output

{{2,2},{3,1},{X + 1,1},{X - 1,1}}.

If the first argument of FACTORIZE is an integer, it will be decomposed into its
prime components, whether or not IFACTOR is on.

Note that the IFACTOR switch only affects the result of FACTORIZE. It has no
effect if the FACTOR switch is also on.

The order in which the factors occur in the result (with the exception of a possi-
ble overall numerical coefficient which comes first) can be system dependent and
should not be relied on. Similarly it should be noted that any pair of individ-
ual factors can be negated without altering their product, and that REDUCE may
sometimes do that.

The factorizer works by first reducing multivariate problems to univariate ones and
then solving the univariate ones modulo small primes. It normally selects both
evaluation points and primes using a random number generator that should lead
to different detailed behavior each time any particular problem is tackled. If, for
some reason, it is known that a certain (probably univariate) factorization can be
performed effectively with a known prime, P say, this value of P can be handed to
FACTORIZE as a second argument. An error will occur if a non-prime is provided
to FACTORIZE in this manner. It is also an error to specify a prime that divides
the discriminant of the polynomial being factored, but users should note that this
condition is not checked by the program, so this capability should be used with
care.

Factorization can be performed over a number of polynomial coefficient domains
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in addition to integers. The particular description of the relevant domain should
be consulted to see if factorization is supported. For example, the following state-
ments will factorize x4 + 1 modulo 7:

setmod 7;
on modular;
factorize(x^4+1);

The factorization module is provided with a trace facility that may be useful as a
way of monitoring progress on large problems, and of satisfying curiosity about the
internal workings of the package. The most simple use of this is enabled by issuing
the REDUCE command on trfac; . Following this, all calls to the factorizer
will generate informative messages reporting on such things as the reduction of
multivariate to univariate cases, the choice of a prime and the reconstruction of
full factors from their images. Further levels of detail in the trace are intended
mainly for system tuners and for the investigation of suspected bugs. For example,
TRALLFAC gives tracing information at all levels of detail. The switch that can
be set by on timings; makes it possible for one who is familiar with the algo-
rithms used to determine what part of the factorization code is consuming the most
resources. on overview; reduces the amount of detail presented in other forms
of trace. Other forms of trace output are enabled by directives of the form

symbolic set!-trace!-factor(<number>,<filename>);

where useful numbers are 1, 2, 3 and 100, 101, ... . This facility is intended to make
it possible to discover in fairly great detail what just some small part of the code has
been doing — the numbers refer mainly to depths of recursion when the factorizer
calls itself, and to the split between its work forming and factorizing images and
reconstructing full factors from these. If NIL is used in place of a filename the
trace output requested is directed to the standard output stream. After use of this
trace facility the generated trace files should be closed by calling

symbolic close!-trace!-files();

NOTE: Using the factorizer with MCD off will result in an error.

9.3 Cancellation of Common Factors

Facilities are available in REDUCE for cancelling common factors in the numer-
ators and denominators of expressions, at the option of the user. The system will
perform this greatest common divisor computation if the switch GCD is on. (GCD
is normally off.)
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A check is automatically made, however, for common variable and numerical prod-
ucts in the numerators and denominators of expressions, and the appropriate can-
cellations made.

When GCD is on, and EXP is off, a check is made for square free factors in an
expression. This includes separating out and independently checking the content
of a given polynomial where appropriate. (For an explanation of these terms, see
Anthony C. Hearn, “Non-Modular Computation of Polynomial GCDs Using Trial
Division”, Proc. EUROSAM 79, published as Lecture Notes on Comp. Science,
Springer-Verlag, Berlin, No 72 (1979) 227-239.)

Example: With EXP off and GCD on, the polynomial a*c+a*d+b*c+b*d would
be returned as (A+B)*(C+D).

Under normal circumstances, GCDs are computed using an algorithm described in
the above paper. It is also possible in REDUCE to compute GCDs using an al-
ternative algorithm, called the EZGCD Algorithm, which uses modular arithmetic.
The switch EZGCD, if on in addition to GCD, makes this happen.

In non-trivial cases, the EZGCD algorithm is almost always better than the basic
algorithm, often by orders of magnitude. We therefore strongly advise users to
use the EZGCD switch where they have the resources available for supporting the
package.

For a description of the EZGCD algorithm, see J. Moses and D.Y.Y. Yun, “The EZ
GCD Algorithm”, Proc. ACM 1973, ACM, New York (1973) 159-166.

NOTE: This package shares code with the factorizer, so a certain amount of trace
information can be produced using the factorizer trace switches.

An implementation of the heuristic GCD algorithm, first introduced by B.W. Char,
K.O. Geddes and G.H. Gonnet, as described in J.H. Davenport and J. Padget,
“HEUGCD: How Elementary Upperbounds Generate Cheaper Data”, Proc. of EU-
ROCAL ’85, Vol 2, 18-28, published as Lecture Notes on Comp. Science, No. 204,
Springer-Verlag, Berlin, 1985, is also available on an experimental basis. To use
this algorithm, the switch HEUGCD should be on in addition to GCD. Note that if
both EZGCD and HEUGCD are on, the former takes precedence.

9.3.1 Determining the GCD of Two Polynomials

This operator, used with the syntax

GCD(EXPRN1:polynomial,EXPRN2:polynomial):polynomial,

returns the greatest common divisor of the two polynomials EXPRN1 and EXPRN2.

Examples:
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gcd(x^2+2*x+1,x^2+3*x+2) -> X+1
gcd(2*x^2-2*y^2,4*x+4*y) -> 2*X+2*Y
gcd(x^2+y^2,x-y) -> 1.

9.4 Working with Least Common Multiples

Greatest common divisor calculations can often become expensive if extensive
work with large rational expressions is required. However, in many cases, the only
significant cancellations arise from the fact that there are often common factors
in the various denominators which are combined when two rationals are added.
Since these denominators tend to be smaller and more regular in structure than the
numerators, considerable savings in both time and space can occur if a full GCD
check is made when the denominators are combined and only a partial check when
numerators are constructed. In other words, the true least common multiple of
the denominators is computed at each step. The switch LCM is available for this
purpose, and is normally on.

In addition, the operator LCM, used with the syntax

LCM(EXPRN1:polynomial,EXPRN2:polynomial):polynomial,

returns the least common multiple of the two polynomials EXPRN1 and EXPRN2.

Examples:

lcm(x^2+2*x+1,x^2+3*x+2) -> X**3 + 4*X**2 + 5*X + 2
lcm(2*x^2-2*y^2,4*x+4*y) -> 4*(X**2 - Y**2)

9.5 Controlling Use of Common Denominators

When two rational functions are added, REDUCE normally produces an expression
over a common denominator. However, if the user does not want denominators
combined, he or she can turn off the switch MCD which controls this process. The
latter switch is particularly useful if no greatest common divisor calculations are
desired, or excessive differentiation of rational functions is required.

CAUTION: With MCD off, results are not guaranteed to come out in either normal
or canonical form. In other words, an expression equivalent to zero may in fact not
be simplified to zero. This option is therefore most useful for avoiding expression
swell during intermediate parts of a calculation.

MCD is normally on.
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9.6 Euclidean Division

The operators DIVIDE, POLY_QUOTIENT and MOD / REMAINDER implement
Euclidean division of polynomials (over the current number domain). The
remainder operator is used with the syntax

remainder(EXPRN1:polynomial,EXPRN2:polynomial):
polynomial.

It returns the remainder when EXPRN1 is divided by EXPRN2. This is the true
remainder based on the internal ordering of the variables, and not the pseudo-
remainder.

Examples:

remainder((x + y)*(x + 2*y), x + 3*y) -> 2*y^2
remainder(2*x + y, 2) -> y

CAUTION: In the default case, remainders are calculated over the integers. If you
need the remainder with respect to another domain, it must be declared explicitly.

Example:

remainder(x^2 - 2, x + sqrt(2)); -> x^2 - 2
load_package arnum;
defpoly sqrt2^2 - 2;
remainder(x^2 - 2, x + sqrt2); -> 0

(Note the use of sqrt2 in place of sqrt(2) in the second call of remainder.)

The infix operator mod is an alias for remainder when at least one operand is
explicitly polynomial, e.g.

(x^2 + y^2) mod (x - y);

2
2*y

However, when both operands are integers, mod implements the integer modulus
operation, regardless of the current number domain, e.g.

7 mod 4 -> 3

The Euclidean division operator divide is used with the syntax

divide(EXPRN1:polynomial,EXPRN2:polynomial):
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list(polynomial,polynomial)

and returns both the quotient and the remainder together as the first and second
elements of a list, e.g.

divide(x^2 + y^2, x - y);

2
{x + y,2*y }

It can also be used as an infix operator:

(x^2 + y^2) divide (x - y);

2
{x + y,2*y }

The infix operator poly_quotient returns only the quotient, i.e. the first ele-
ment of the list returned by divide.

All Euclidean division operators (when used in prefix form) accept an optional
third argument, which specifies the main variable to be used during the division.
The default is the leading kernel in the current global ordering. Specifying the main
variable does not change the ordering of any other variables involved, nor does it
change the global environment. For example

divide(x^2 + y^2, x - y, y);

2
{ - (x + y),2*x }

Specifying x as main variable gives the same behaviour as the default shown ear-
lier, i.e.

divide(x^2 + y^2, x - y, x);

2
{x + y,2*y }

All Euclidean division operators accept a (possibly nested) list as first argu-
ment/operand and map over that list, e.g.

{x, x + 1, x^2 - 1} mod x - 1;

{1,2,0}
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9.7 Polynomial Pseudo-Division

The polynomial division discussed above is normally most useful for a univariate
polynomial over a field, otherwise the division is likely to fail giving trivially a zero
quotient and a remainder equal to the dividend. (A ring of univariate polynomials
is a Euclidean domain only if the coefficient ring is a field.) For example, over the
integers:

divide(x^2 + y^2, 2(x - y));

2 2
{0,x + y }

The division of a polynomial u(x) of degreem by a polynomial v(x) of degree n ≤
m can be performed over any commutative ring with identity (such as the integers,
or any polynomial ring) if the polynomial u(x) is first multiplied by lc(v, x)m−n+1

(where lc denotes the leading coefficient). This is called pseudo-division. The
polynomial pseudo-division operators PSEUDO_DIVIDE, PSEUDO_QUOTIENT
and PSEUDO_REMAINDER are implemented as prefix operators (only). When
multivariate polynomials are pseudo-divided it is important which variable is taken
as the main variable, because the leading coefficient of the divisor is computed
with respect to this variable. Therefore, if this is allowed to default and there is any
ambiguity, i.e. the polynomials are multivariate or contain more than one kernel,
the pseudo-division operators output a warning message to indicate which kernel
has been selected as the main variable – it is the first kernel found in the internal
forms of the dividend and divisor. (As usual, the warning can be turned off by
setting the switch msg to off.) For example

pseudo_divide(x^2 + y^2, x - y);

*** Main division variable selected is x

2
{x + y,2*y }

pseudo_divide(x^2 + y^2, x - y, x);

2
{x + y,2*y }

pseudo_divide(x^2 + y^2, x - y, y);

2
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{ - (x + y),2*x }

If the leading coefficient of the divisor is a unit (invertible element) of the coeffi-
cient ring then division and pseudo-division should be identical, otherwise they are
not, e.g.

divide(x^2 + y^2, 2(x - y));

2 2
{0,x + y }

pseudo_divide(x^2 + y^2, 2(x - y));

*** Main division variable selected is x

2
{2*(x + y),8*y }

The pseudo-division gives essentially the same result as would division over the
field of fractions of the coefficient ring (apart from the overall factors [contents] of
the quotient and remainder), e.g.

on rational;

divide(x^2 + y^2, 2(x - y));

1 2
{---*(x + y),2*y }

2

pseudo_divide(x^2 + y^2, 2(x - y));

*** Main division variable selected is x

2
{2*(x + y),8*y }

Polynomial division and pseudo-division can only be applied to what REDUCE
regards as polynomials, i.e. rational expressions with denominator 1, e.g.

off rational;

pseudo_divide((x^2 + y^2)/2, x - y);
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2 2
x + y

***** --------- invalid as polynomial
2

All pseudo-division operators accept a (possibly nested) list as first argument/operand
and map over that list.

Pseudo-division is implemented using an algorithm (D. E. Knuth 1981, Seminu-
merical Algorithms, Algorithm R, page 407) that does not perform any actual di-
vision at all (which proves that it applies over a ring). It is more efficient than
the naive algorithm, and it also has the advantage that it works over coefficient
domains in which REDUCE may not be able to perform in practice divisions that
are possible mathematically. An example of this is coefficient domains involving
algebraic numbers, such as the integers extended by

√
2, as illustrated in the file

polydiv.tst.

The implementation attempts to be reasonably efficient, except that it always com-
putes the quotient internally even when only the remainder is required (as does the
standard remainder operator).

9.8 RESULTANT Operator

This is used with the syntax

RESULTANT(EXPRN1:polynomial,EXPRN2:polynomial,VAR:kernel):
polynomial.

It computes the resultant of the two given polynomials with respect to the given
variable, the coefficients of the polynomials can be taken from any domain. The
result can be identified as the determinant of a Sylvester matrix, but can often
also be thought of informally as the result obtained when the given variable is
eliminated between the two input polynomials. If the two input polynomials have
a non-trivial GCD their resultant vanishes.

The switch BEZOUT controls the computation of the resultants. It is off by default.
In this case a subresultant algorithm is used. If the switch Bezout is turned on,
the resultant is computed via the Bezout Matrix. However, in the latter case, only
polynomial coefficients are permitted.

The sign conventions used by the resultant function follow those in R. Loos, “Com-
puting in Algebraic Extensions” in “Computer Algebra — Symbolic and Algebraic
Computation”, Second Ed., Edited by B. Buchberger, G.E. Collins and R. Loos,
Springer-Verlag, 1983. Namely, with A and B not dependent on X:
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deg(p)*deg(q)
resultant(p(x),q(x),x)= (-1) *resultant(q,p,x)

deg(p)
resultant(a,p(x),x) = a

resultant(a,b,x) = 1

Examples:

2
resultant(x/r*u+y,u*y,u) -> - y

calculation in an algebraic extension:

load arnum;
defpoly sqrt2**2 - 2;

resultant(x + sqrt2,sqrt2 * x +1,x) -> -1

or in a modular domain:

setmod 17;
on modular;

resultant(2x+1,3x+4,x) -> 5

9.9 DECOMPOSE Operator

The DECOMPOSE operator takes a multivariate polynomial as argument, and re-
turns an expression and a list of equations from which the original polynomial can
be found by composition. Its syntax is:

DECOMPOSE(EXPRN:polynomial):list.

For example:

decompose(x^8-88*x^7+2924*x^6-43912*x^5+263431*x^4-
218900*x^3+65690*x^2-7700*x+234)
2 2 2

-> {U + 35*U + 234, U=V + 10*V, V=X - 22*X}
2
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decompose(u^2+v^2+2u*v+1) -> {W + 1, W=U + V}

Users should note however that, unlike factorization, this decomposition is not
unique.

9.10 INTERPOL operator

Syntax:

INTERPOL(〈values〉, 〈variable〉, 〈points〉);

where 〈values〉 and 〈points〉 are lists of equal length and <variable> is an alge-
braic expression (preferably a kernel).

INTERPOL generates an interpolation polynomial f in the given variable of degree
length(〈values〉)-1. The unique polynomial f is defined by the property that for
corresponding elements v of 〈values〉 and p of 〈points〉 the relation f(p) = v holds.

The Aitken-Neville interpolation algorithm is used which guarantees a stable result
even with rounded numbers and an ill-conditioned problem.

9.11 Obtaining Parts of Polynomials and Rationals

These operators select various parts of a polynomial or rational function structure.
Except for the cost of rearrangement of the structure, these operations take very
little time to perform.

For those operators in this section that take a kernel VAR as their second argument,
an error results if the first expression is not a polynomial in VAR, although the coef-
ficients themselves can be rational as long as they do not depend on VAR. However,
if the switch RATARG is on, denominators are not checked for dependence on VAR,
and are taken to be part of the coefficients.

9.11.1 DEG Operator

This operator is used with the syntax

DEG(EXPRN:polynomial,VAR:kernel):integer.

It returns the leading degree of the polynomial EXPRN in the variable VAR. If VAR
does not occur as a variable in EXPRN, 0 is returned.

Examples:
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deg((a+b)*(c+2*d)^2,a) -> 1
deg((a+b)*(c+2*d)^2,d) -> 2
deg((a+b)*(c+2*d)^2,e) -> 0.

Note also that if RATARG is on,

deg((a+b)^3/a,a) -> 3

since in this case, the denominator A is considered part of the coefficients of the
numerator in A. With RATARG off, however, an error would result in this case.

9.11.2 DEN Operator

This is used with the syntax:

DEN(EXPRN:rational):polynomial.

It returns the denominator of the rational expression EXPRN. If EXPRN is a poly-
nomial, 1 is returned.

Examples:

den(x/y^2) -> Y**2
den(100/6) -> 3

[since 100/6 is first simplified to 50/3]
den(a/4+b/6) -> 12
den(a+b) -> 1

9.11.3 LCOF Operator

LCOF is used with the syntax

LCOF(EXPRN:polynomial,VAR:kernel):polynomial.

It returns the leading coefficient of the polynomial EXPRN in the variable VAR. If
VAR does not occur as a variable in EXPRN, EXPRN is returned. Examples:

lcof((a+b)*(c+2*d)^2,a) -> C**2+4*C*D+4*D**2
lcof((a+b)*(c+2*d)^2,d) -> 4*(A+B)
lcof((a+b)*(c+2*d),e) -> A*C+2*A*D+B*C+2*B*D
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9.11.4 LPOWER Operator

Syntax:

LPOWER(EXPRN:polynomial,VAR:kernel):polynomial.

LPOWER returns the leading power of EXPRN with respect to VAR. If EXPRN
does not depend on VAR, 1 is returned.

Examples:

lpower((a+b)*(c+2*d)^2,a) -> A
lpower((a+b)*(c+2*d)^2,d) -> D**2
lpower((a+b)*(c+2*d),e) -> 1

9.11.5 LTERM Operator

Syntax:

LTERM(EXPRN:polynomial,VAR:kernel):polynomial.

LTERM returns the leading term of EXPRN with respect to VAR. If EXPRN does
not depend on VAR, EXPRN is returned.

Examples:

lterm((a+b)*(c+2*d)^2,a) -> A*(C**2+4*C*D+4*D**2)
lterm((a+b)*(c+2*d)^2,d) -> 4*D**2*(A+B)
lterm((a+b)*(c+2*d),e) -> A*C+2*A*D+B*C+2*B*D

Compatibility Note: In some earlier versions of REDUCE, LTERM returned 0 if
the EXPRN did not depend on VAR. In the present version, EXPRN is always equal
to LTERM(EXPRN,VAR) + REDUCT(EXPRN,VAR).

9.11.6 MAINVAR Operator

Syntax:

MAINVAR(EXPRN:polynomial):expression.

Returns the main variable (based on the internal polynomial representation) of
EXPRN. If EXPRN is a domain element, 0 is returned.

Examples:
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Assuming A has higher kernel order than B, C, or D:

mainvar((a+b)*(c+2*d)^2) -> A
mainvar(2) -> 0

9.11.7 NUM Operator

Syntax:

NUM(EXPRN:rational):polynomial.

Returns the numerator of the rational expression EXPRN. If EXPRN is a polyno-
mial, that polynomial is returned.

Examples:

num(x/y^2) -> X
num(100/6) -> 50
num(a/4+b/6) -> 3*A+2*B
num(a+b) -> A+B

9.11.8 REDUCT Operator

Syntax:

REDUCT(EXPRN:polynomial,VAR:kernel):polynomial.

Returns the reductum of EXPRN with respect to VAR (i.e., the part of EXPRN left
after the leading term is removed). If EXPRN does not depend on the variable VAR,
0 is returned.

Examples:

reduct((a+b)*(c+2*d),a) -> B*(C + 2*D)
reduct((a+b)*(c+2*d),d) -> C*(A + B)
reduct((a+b)*(c+2*d),e) -> 0

Compatibility Note: In some earlier versions of REDUCE, REDUCT returned
EXPRN if it did not depend on VAR. In the present version, EXPRN is always equal
to LTERM(EXPRN,VAR) + REDUCT(EXPRN,VAR).
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9.11.9 TOTALDEG Operator

Syntax:

totaldeg(a*x^2+b*x+c, x) => 2
totaldeg(a*x^2+b*x+c, {a,b,c}) => 1
totaldeg(a*x^2+b*x+c, {x, a}) => 3
totaldeg(a*x^2+b*x+c, {x,b}) => 2
totaldeg(a*x^2+b*x+c, {p,q,r}) => 0

totaldeg(u, kernlist) finds the total degree of the polynomial u in the
variables in kernlist. If kernlist is not a list it is treated as a simple single
variable. The denominator of u is ignored, and "degree" here does not pay attention
to fractional powers. Mentions of a kernel within the argument to any operator or
function (eg sin, cos, log, sqrt) are ignored. Really u is expected to be just a
polynomial.

9.12 Polynomial Coefficient Arithmetic

REDUCE allows for a variety of numerical domains for the numerical coefficients
of polynomials used in calculations. The default mode is integer arithmetic, al-
though the possibility of using real coefficients has been discussed elsewhere. Ra-
tional coefficients have also been available by using integer coefficients in both the
numerator and denominator of an expression, using the ON DIV option to print the
coefficients as rationals. However, REDUCE includes several other coefficient opt-
ions in its basic version which we shall describe in this section. All such coefficient
modes are supported in a table-driven manner so that it is straightforward to extend
the range of possibilities. A description of how to do this is given in R.J. Brad-
ford, A.C. Hearn, J.A. Padget and E. Schrüfer, “Enlarging the REDUCE Domain
of Computation,” Proc. of SYMSAC ’86, ACM, New York (1986), 100–106.

9.12.1 Rational Coefficients in Polynomials

Instead of treating rational numbers as the numerator and denominator of a rational
expression, it is also possible to use them as polynomial coefficients directly. This
is accomplished by turning on the switch RATIONAL.

Example: With RATIONAL off, the input expression a/2 would be converted
into a rational expression, whose numerator was A and denominator 2. With
RATIONAL on, the same input would become a rational expression with numerator
1/2*A and denominator 1. Thus the latter can be used in operations that require
polynomial input whereas the former could not.
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9.12.2 Real Coefficients in Polynomials

The switch ROUNDED permits the use of arbitrary sized real coefficients in poly-
nomial expressions. The actual precision of these coefficients can be set by the
operator PRECISION. For example, precision 50; sets the precision to fifty
decimal digits. The default precision is system dependent and can be found by
precision 0;. In this mode, denominators are automatically made monic, and
an appropriate adjustment is made to the numerator.

Example: With ROUNDED on, the input expression a/2 would be converted into a
rational expression whose numerator is 0.5*A and denominator 1.

Internally, REDUCE uses floating point numbers up to the precision supported by
the underlying machine hardware, and so-called bigfloats for higher precision or
whenever necessary to represent numbers whose value cannot be represented in
floating point. The internal precision is two decimal digits greater than the external
precision to guard against roundoff inaccuracies. Bigfloats represent the fraction
and exponent parts of a floating-point number by means of (arbitrary precision)
integers, which is a more precise representation in many cases than the machine
floating point arithmetic, but not as efficient. If a case arises where use of the
machine arithmetic leads to problems, a user can force REDUCE to use the bigfloat
representation at all precisions by turning on the switch ROUNDBF. In rare cases,
this switch is turned on by the system, and the user informed by the message

ROUNDBF turned on to increase accuracy

Rounded numbers are normally printed to the specified precision. However, if the
user wishes to print such numbers with less precision, the printing precision can be
set by the command PRINT_PRECISION. For example, print_precision
5; will cause such numbers to be printed with five digits maximum.

Under normal circumstances when ROUNDED is on, REDUCE converts the number
1.0 to the integer 1. If this is not desired, the switch NOCONVERT can be turned
on.

Numbers that are stored internally as bigfloats are normally printed with a space
between every five digits to improve readability. If this feature is not required, it
can be suppressed by turning off the switch BFSPACE.

Further information on the bigfloat arithmetic may be found in T. Sasaki, “Man-
ual for Arbitrary Precision Real Arithmetic System in REDUCE”, Department of
Computer Science, University of Utah, Technical Note No. TR-8 (1979).

When a real number is input, it is normally truncated to the precision in effect
at the time the number is read. If it is desired to keep the full precision of all
numbers input, the switch ADJPREC (for adjust precision) can be turned on. While
on, ADJPREC will automatically increase the precision, when necessary, to match
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that of any integer or real input, and a message printed to inform the user of the
precision increase.

When ROUNDED is on, rational numbers are normally converted to rounded rep-
resentation. However, if a user wishes to keep such numbers in a rational form
until used in an operation that returns a real number, the switch ROUNDALL can be
turned off. This switch is normally on.

Results from rounded calculations are returned in rounded form with two excep-
tions: if the result is recognized as 0 or 1 to the current precision, the integer result
is returned.

9.12.3 Modular Number Coefficients in Polynomials

REDUCE includes facilities for manipulating polynomials whose coefficients are
computed modulo a given base. To use this option, two commands must be used;
SETMOD 〈integer〉, to set the prime modulus, and ON MODULAR to cause the
actual modular calculations to occur. For example, with setmod 3; and on
modular;, the polynomial (a+2*b)^3 would become A^3+2*B^3.

The argument of SETMOD is evaluated algebraically, except that non-modular (in-
teger) arithmetic is used. Thus the sequence

setmod 3; on modular; setmod 7;

will correctly set the modulus to 7.

Modular numbers are by default represented by integers in the interval [0,p-1]
where p is the current modulus. Sometimes it is more convenient to use an equiv-
alent symmetric representation in the interval [-p/2+1,p/2], or more precisely [-
floor((p-1)/2), ceiling((p-1)/2)], especially if the modular numbers map objects that
include negative quantities. The switch BALANCED_MOD allows you to select the
symmetric representation for output.

Users should note that the modular calculations are on the polynomial coefficients
only. It is not currently possible to reduce the exponents since no check for a prime
modulus is made (which would allow xp−1 to be reduced to 1 mod p). Note also
that any division by a number not co-prime with the modulus will result in the error
“Invalid modular division”.

9.12.4 Complex Number Coefficients in Polynomials

Although REDUCE routinely treats the square of the variable i as equivalent to−1,
this is not sufficient to reduce expressions involving i to lowest terms, or to factor
such expressions over the complex numbers. For example, in the default case,
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factorize(a^2+1);

gives the result

{{A**2+1,1}}

and

(a^2+b^2)/(a+i*b)

is not reduced further. However, if the switch COMPLEX is turned on, full complex
arithmetic is then carried out. In other words, the above factorization will give the
result

{{A + I,1},{A - I,1}}

and the quotient will be reduced to A-I*B.

The switch COMPLEXmay be combined with ROUNDED to give complex real num-
bers; the appropriate arithmetic is performed in this case.

Complex conjugation is used to remove complex numbers from denominators
of expressions. To do this if COMPLEX is off, you must turn the switch
RATIONALIZE on.

9.13 ROOT_VAL Operator

The ROOT_VAL operator takes a single univariate polynomial as argument, and
returns a list of root values at system precision (or greater if required to separate
roots). It is used with the syntax

ROOT_VAL(EXPRN:univariate polynomial):list.

For example, the sequence

on rounded; root_val(x^3-x-1);

gives the result

{0.562279512062*I - 0.662358978622, - 0.562279512062*I

- 0.662358978622,1.32471795724}



Chapter 10

Assigning and Testing Algebraic
Properties

Sometimes algebraic expressions can be further simplified if there is additional
information about the value ranges of its components. The following section de-
scribes how to inform REDUCE of such assumptions.

10.1 REALVALUED Declaration and Check

The declaration REALVALUED may be used to restrict variables to the real num-
bers. The syntax is:

realvalued v1,...vn;

For such variables the operator IMPART gives the result zero. Thus, with

realvalued x,y;

the expression impart(x+sin(y)) is evaluated as zero. You may also declare
an operator as real valued with the meaning, that this operator maps real arguments
always to real values. Example:

operator h; realvalued h,x;
impart h(x);

0

impart h(w);

155
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impart(h(w))

Such declarations are not needed for the standard elementary functions.

To remove the propery from a variable or an operator use the declaration
NOTREALVALUED with the syntax:

notrealvalued v1,...vn;

The boolean operator REALVALUEDP allows you to check if a variable, an opera-
tor, or an operator expression is known as real valued. Thus,

realvalued x;
write if realvaluedp(sin x) then "yes" else "no";
write if realvaluedp(sin z) then "yes" else "no";

would print first yes and then no. For general expressions test the impart for
checking the value range:

realvalued x,y; w:=(x+i*y); w1:=conj w;
impart(w*w1);

0

impart(w*w);

2*x*y

10.2 SELFCONJUGATE Declaration

The declaration SELFCONJUGATE may be used to declare an operator to be self-
conjuate in the sense that conj(f(z)) = f(conj(z)). The syntax is:

selfconjugate f1,...fn;

Such declarations are not needed for the standard elementary functions nor for
the inverses atan, acot, asinh, acsch. The remaining inverse functions
log, asin, acos, atanh, acosh etc. and sqrt fail to be self-conjugate
on their branch cuts (which are all subsets of the real axis).
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10.3 Declaring Complex Conjugates

The argument u of a declaration COMPLEX_CONJUGATES should consist of one
or more (comma-separated) lists of two identifiers. This declaration associates the
two identifiers as mutual complex-conjugates. If the first is an operator, the second
is also declared as an operator, if it is not one already. A fancy print symbol is
automatically constructed and installed for the second identifier from that of the
first by adding over-lining. For example:

operator f;
complex_conjugates {f, fbar}, {z, zb};
conj zb -> z
conj(f(z)) -> fbar(zb)

This will associate f & fbar and z & zb as mutual complex conjugates and de-
clare fbar as an operator. On graphical interfaces zb and fbar will be rendered
as z and f respectively. If the first identifier already has a fancy special symbol
defined, this will be over-lined to produce the fancy print symbol for the second
identifier. Should the user not wish to have a fancy print symbol automatically
generated, they may instead use explicit LET statements as described in the sub-
section on the operator CONJ.

10.4 Declaring Expressions Positive or Negative

Detailed knowlege about the sign of expressions allows REDUCE to simplify ex-
pressions involving exponentials or ABS. You can express assumptions about the
positivity or negativity of expressions by rules for the operator SIGN. Examples:

abs(a*b*c);

abs(a*b*c);

let sign(a)=>1,sign(b)=>1; abs(a*b*c);

abs(c)*a*b

on precise; sqrt(x^2-2x+1);

abs(x - 1)

ws where sign(x-1)=>1;



158 CHAPTER 10. ASSIGNING AND TESTING ALGEBRAIC PROPERTIES

x - 1

Here factors with known sign are factored out of an ABS expression.

on precise; on factor;

(q*x-2q)^w;

w
((x - 2)*q)

ws where sign(x-2)=>1;

w w
q *(x - 2)

In this case the factor (x− 2)w may be extracted from the base of the exponential
because it is known to be positive.

Note that REDUCE knows a lot about sign propagation. For example, with x and y
also x+y, x+y+π and (x+e)/y2 are known as positive. Nevertheless, it is often
necessary to declare additionally the sign of a combined expression. E.g. at present
a positivity declaration of x− 2 does not automatically lead to sign evaluation for
x− 1 or for x.



Chapter 11

Substitution Commands

An important class of commands in REDUCE define substitutions for variables and
expressions to be made during the evaluation of expressions. Such substitutions use
the prefix operator SUB, various forms of the command LET, and rule sets.

11.1 SUB Operator

Syntax:

SUB(〈substitution_list〉, 〈EXPRN1:algebraic〉) : algebraic

where 〈substitution_list〉 is a list of one or more equations of the form

〈VAR:kernel〉 = 〈EXPRN:algebraic〉

or a kernel that evaluates to such a list.

The SUB operator gives the algebraic result of replacing every occurrence of the
variable VAR in the expression EXPRN1 by the expression EXPRN. Specifically,
EXPRN1 is first evaluated using all available rules. Next the substitutions are made,
and finally the substituted expression is reevaluated. When more than one variable
occurs in the substitution list, the substitution is performed by recursively walking
down the tree representing EXPRN1, and replacing every VAR found by the ap-
propriate EXPRN. The EXPRN are not themselves searched for any occurrences of
the various VARs. The trivial case SUB(EXPRN1) returns the algebraic value of
EXPRN1.

Examples:

2 2
sub({x=a+y,y=y+1},x^2+y^2) -> A + 2*A*Y + 2*Y + 2*Y + 1

159
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and with s := {x=a+y,y=y+1},

2 2
sub(s,x^2+y^2) -> A + 2*A*Y + 2*Y + 2*Y + 1

Note that the global assignments x:=a+y, etc., do not take place.

EXPRN1 can be any valid algebraic expression whose type is such that a substi-
tution process is defined for it (e.g., scalar expressions, lists and matrices). An
error will occur if an expression of an invalid type for substitution occurs either in
EXPRN or EXPRN1.

The braces around the substitution list may also be omitted, as in:

2 2
sub(x=a+y,y=y+1,x^2+y^2) -> A + 2*A*Y + 2*Y + 2*Y + 1

11.2 LET Rules

Unlike substitutions introduced via SUB, LET rules are global in scope and stay in
effect until replaced or CLEARed.

The simplest use of the LET statement is in the form

LET 〈substitution list〉

where 〈substitution list〉 is a list of rules separated by commas, each of the form:

〈variable〉 = 〈expression〉

or

〈prefix operator〉(〈argument〉, . . . , 〈argument〉) = 〈expression〉

or

〈argument〉〈infix operator〉, . . . , 〈argument〉 = 〈expression〉

For example,

let {x => y^2,
h(u,v) => u - v,
cos(pi/3) => 1/2,
a*b => c,
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l+m => n,
w^3 => 2*z - 3,
z^10 => 0}

The list brackets can be left out if preferred. The above rules could also have been
entered as seven separate LET statements.

After such LET rules have been input, X will always be evaluated as the square of
Y, and so on. This is so even if at the time the LET rule was input, the variable Y
had a value other than Y. (In contrast, the assignment x:=y^2 will set X equal to
the square of the current value of Y, which could be quite different.)

The rule let a*b=c means that whenever A and B are both factors in an ex-
pression their product will be replaced by C. For example, a^5*b^7*w would be
replaced by c^5*b^2*w.

The rule for l+m will not only replace all occurrences of l+m by N, but will also
normally replace L by n-m, but not M by n-l. A more complete description of this
case is given in Section 11.2.5.

The rule pertaining to w^3 will apply to any power of W greater than or equal to
the third.

Note especially the last example, let z^10=0. This declaration means, in effect:
ignore the tenth or any higher power of Z. Such declarations, when appropriate,
often speed up a computation to a considerable degree. (See Section 11.4 for more
details.)

Any new operators occurring in such LET rules will be automatically declared
OPERATOR by the system, if the rules are being read from a file. If they are being
entered interactively, the system will ask DECLARE . . . OPERATOR? . Answer Y
or N and hit Return .

In each of these examples, substitutions are only made for the explicit expressions
given; i.e., none of the variables may be considered arbitrary in any sense. For
example, the command

let h(u,v) = u - v;

will cause h(u,v) to evaluate to U - V, but will not affect h(u,z) or H with
any arguments other than precisely the symbols U,V.

These simple LET rules are on the same logical level as assignments made with
the := operator. An assignment x := p+q cancels a rule let x = y^2 made
earlier, and vice versa.

CAUTION: A recursive rule such as

let x = x + 1;
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is erroneous, since any subsequent evaluation of X would lead to a non-terminating
chain of substitutions:

x -> x + 1 -> (x + 1) + 1 -> ((x + 1) + 1) + 1 -> ...

Similarly, coupled substitutions such as

let l = m + n, n = l + r;

would lead to the same error. As a result, if you try to evaluate an X, L or N defined
as above, you will get an error such as

X improperly defined in terms of itself

Array and matrix elements can appear on the left-hand side of a LET statement.
However, because of their instant evaluation property, it is the value of the element
that is substituted for, rather than the element itself. E.g.,

array a(5);
a(2) := b;
let a(2) = c;

results in B being substituted by C; the assignment for a(2) does not change.

Finally, if an error occurs in any equation in a LET statement (including generalized
statements involving FOR ALL and SUCH THAT), the remaining rules are not
evaluated.

11.2.1 FOR ALL . . . LET

If a substitution for all possible values of a given argument of an operator is re-
quired, the declaration FOR ALL may be used. The syntax of such a command
is

FOR ALL 〈variable〉, . . . , 〈variable〉 〈LET statement〉〈terminator〉

e.g.,

for all x,y let h(x,y) = x-y;
for all x let k(x,y) = x^y;

The first of these declarations would cause h(a,b) to be evaluated as A-B,
h(u+v,u+w) to be V-W, etc. If the operator symbol H is used with more or
fewer argument places, not two, the LET would have no effect, and no error would
result.
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The second declaration would cause k(a,y) to be evaluated as a^y, but would
have no effect on k(a,z) since the rule didn’t say FOR ALL Y . . . .

Where we used X and Y in the examples, any variables could have been used. This
use of a variable doesn’t affect the value it may have outside the LET statement.
However, you should remember what variables you actually used. If you want
to delete the rule subsequently, you must use the same variables in the CLEAR
command.

It is possible to use more complicated expressions as a template for a LET state-
ment, as explained in the section on substitutions for general expressions. In nearly
all cases, the rule will be accepted, and a consistent application made by the sys-
tem. However, if there is a sole constant or a sole free variable on the left-hand side
of a rule (e.g., let 2=3 or for all x let x=2), then the system is unable
to handle the rule, and the error message

Substitution for ... not allowed

will be issued. Any variable listed in the FOR ALL part will have its symbol
preceded by an equal sign: X in the above example will appear as =X. An error will
also occur if a variable in the FOR ALL part is not properly matched on both sides
of the LET equation.

11.2.2 FOR ALL . . . SUCH THAT . . . LET

If a substitution is desired for more than a single value of a variable in an operator
or other expression, but not all values, a conditional form of the FOR ALL ...
LET declaration can be used.

Example:

for all x such that numberp x and x<0 let h(x)=0;

will cause h(-5) to be evaluated as 0, but H of a positive integer, or of an argument
that is not an integer at all, would not be affected. Any boolean expression can
follow the SUCH THAT keywords.

11.2.3 Removing Assignments and Substitution Rules

The user may remove all assignments and substitution rules from any expression
by the command CLEAR, in the form

CLEAR 〈expression〉, . . . , 〈expression〉〈terminator〉

e.g.
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clear x, h(x,y);

Because of their instant evaluation property, array and matrix elements cannot be
cleared with CLEAR. For example, if A is an array, you must say

a(3) := 0;

rather than

clear a(3);

to “clear” element a(3).

On the other hand, a whole array (or matrix) A can be cleared by the command
clear a; This means much more than resetting to 0 all the elements of A. The
fact that A is an array, and what its dimensions are, are forgotten, so A can be
redefined as another type of object, for example an operator.

If you need to clear a variable whose name must be computed, see the UNSET
statement.

The more general types of LET declarations can also be deleted by using CLEAR.
Simply repeat the LET rule to be deleted, using CLEAR in place of LET, and omit-
ting the equal sign and right-hand part. The same dummy variables must be used
in the FOR ALL part, and the boolean expression in the SUCH THAT part must be
written the same way. (The placing of blanks doesn’t have to be identical.)

Example: The LET rule

for all x such that numberp x and x<0 let h(x)=0;

can be erased by the command

for all x such that numberp x and x<0 clear h(x);

11.2.4 Overlapping LET Rules

CLEAR is not the only way to delete a LET rule. A new LET rule identical to
the first, but with a different expression after the equal sign, replaces the first.
Replacements are also made in other cases where the existing rule would be in
conflict with the new rule. For example, a rule for x^4 would replace a rule for
x^5. The user should however be cautioned against having several LET rules in
effect that relate to the same expression. No guarantee can be given as to which
rules will be applied by REDUCE or in what order. It is best to CLEAR an old rule
before entering a new related LET rule.
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11.2.5 Substitutions for General Expressions

The examples of substitutions discussed in other sections have involved very sim-
ple rules. However, the substitution mechanism used in REDUCE is very general,
and can handle arbitrarily complicated rules without difficulty.

The general substitution mechanism used in REDUCE is discussed in Hearn, A.
C., “REDUCE, A User-Oriented Interactive System for Algebraic Simplification,”
Interactive Systems for Experimental Applied Mathematics, (edited by M. Klerer
and J. Reinfelds), Academic Press, New York (1968), 79-90, and Hearn. A. C.,
“The Problem of Substitution,” Proc. 1968 Summer Institute on Symbolic Mathe-
matical Computation, IBM Programming Laboratory Report FSC 69-0312 (1969).
For the reasons given in these references, REDUCE does not attempt to imple-
ment a general pattern matching algorithm. However, the present system uses far
more sophisticated techniques than those discussed in the above papers. It is now
possible for the rules appearing in arguments of LET to have the form

〈substitution expression〉 = 〈expression〉

where any rule to which a sensible meaning can be assigned is permitted. How-
ever, this meaning can vary according to the form of 〈substitution expression〉. The
semantic rules associated with the application of the substitution are completely
consistent, but somewhat complicated by the pragmatic need to perform such sub-
stitutions as efficiently as possible. The following rules explain how the majority
of the cases are handled.

To begin with, the 〈substitution expression〉 is first partly simplified by collecting
like terms and putting identifiers (and kernels) in the system order. However, no
substitutions are performed on any part of the expression with the exception of
expressions with the instant evaluation property, such as array and matrix elements,
whose actual values are used. It should also be noted that the system order used is
not changeable by the user, even with the KORDER command. Specific cases are
then handled as follows:

1. If the resulting simplified rule has a left-hand side that is an identifier, an
expression with a top-level algebraic operator or a power, then the rule is
added without further change to the appropriate table.

2. If the operator * appears at the top level of the simplified left-hand side, then
any constant arguments in that expression are moved to the right-hand side
of the rule. The remaining left-hand side is then added to the appropriate
table. For example,

let 2*x*y=3

becomes
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let x*y=3/2

so that x*y is added to the product substitution table, and when this rule is
applied, the expression x*y becomes 3/2, but X or Y by themselves are not
replaced.

3. If the operators +, - or / appear at the top level of the simplified left-hand
side, all but the first term is moved to the right-hand side of the rule. Thus
the rules

let l+m=n, x/2=y, a-b=c

become

let l=n-m, x=2*y, a=c+b.

One problem that can occur in this case is that if a quantified expression is moved
to the right-hand side, a given free variable might no longer appear on the left-hand
side, resulting in an error because of the unmatched free variable. E.g.,

for all x,y let f(x)+f(y)=x*y

would become

for all x,y let f(x)=x*y-f(y)

which no longer has Y on both sides.

The fact that array and matrix elements are evaluated in the left-hand side of rules
can lead to confusion at times. Consider for example the statements

array a(5); let x+a(2)=3; let a(3)=4;

The left-hand side of the first rule will become X, and the second 0. Thus the first
rule will be instantiated as a substitution for X, and the second will result in an
error.

The order in which a list of rules is applied is not easily understandable without
a detailed knowledge of the system simplification protocol. It is also possible for
this order to change from release to release, as improved substitution techniques
are implemented. Users should therefore assume that the order of application of
rules is arbitrary, and program accordingly.

After a substitution has been made, the expression being evaluated is reexamined
in case a new allowed substitution has been generated. This process is continued
until no more substitutions can be made.

As mentioned elsewhere, when a substitution expression appears in a product, the
substitution is made if that expression divides the product. For example, the rule
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let a^2*c = 3*z;

would cause a^2*c*x to be replaced by 3*Z*X and a^2*c^2 by 3*Z*C. If the
substitution is desired only when the substitution expression appears in a product
with the explicit powers supplied in the rule, the command MATCH should be used
instead.

For example,

match a^2*c = 3*z;

would cause a^2*c*x to be replaced by 3*Z*X, but a^2*c^2 would not be
replaced. MATCH can also be used with the FOR ALL constructions described
above.

To remove substitution rules of the type discussed in this section, the CLEAR com-
mand can be used, combined, if necessary, with the same FOR ALL clause with
which the rule was defined, for example:

for all x clear log(e^x),e^log(x),cos(w*t+theta(x));

Note, however, that the arbitrary variable names in this case must be the same as
those used in defining the substitution.

11.3 Rule Lists

Rule lists offer an alternative approach to defining substitutions that is different
from either SUB or LET. In fact, they provide the best features of both, since they
have all the capabilities of LET, but the rules can also be applied locally as is pos-
sible with SUB. In time, they will be used more and more in REDUCE. However,
since they are relatively new, much of the REDUCE code you see uses the older
constructs.

A rule list is a list of rules that have the syntax

<expression> => <expression> (WHEN <boolean expression>)

For example,

{cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(~n*pi) => (-1)^n when remainder(n,2)=0}

The tilde preceding a variable marks that variable as free for that rule, much as a
variable in a FOR ALL clause in a LET statement. The first occurrence of that
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variable in each relevant rule must be so marked on input, otherwise inconsistent
results can occur. For example, the rule list

{cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(x)^2 => (1+cos(2x))/2}

designed to replace products of cosines, would not be correct, since the second
rule would only apply to the explicit argument X. Later occurrences in the same
rule may also be marked, but this is optional (internally, all such rules are stored
with each relevant variable explicitly marked). The optional WHEN clause allows
constraints to be placed on the application of the rule, much as the SUCH THAT
clause in a LET statement.

A rule list may be named, for example

trig1 := {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(~x)*sin(~y) => (sin(x+y)-sin(x-y))/2,
sin(~x)*sin(~y) => (cos(x-y)-cos(x+y))/2,
cos(~x)^2 => (1+cos(2*x))/2,
sin(~x)^2 => (1-cos(2*x))/2};

Such named rule lists may be inspected as needed. E.g., the command trig1;
would cause the above list to be printed.

Rule lists may be used in two ways. They can be globally instantiated by means of
the command LET. For example,

let trig1;

would cause the above list of rules to be globally active from then on until cancelled
by the command CLEARRULES, as in

clearrules trig1;

CLEARRULES has the syntax

CLEARRULES <rule list>|<name of rule list>(,...) .

The second way to use rule lists is to invoke them locally by means of a WHERE
clause. For example

cos(a)*cos(b+c)
where {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2};

or
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cos(a)*sin(b) where trigrules;

The syntax of an expression with a WHERE clause is:

<expression>
WHERE <rule>|<rule list>(,<rule>|<rule list> ...)

so the first example above could also be written

cos(a)*cos(b+c)
where cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2;

The effect of this construct is that the rule list(s) in the WHERE clause only apply to
the expression on the left of WHERE. They have no effect outside the expression. In
particular, they do not affect previously defined WHERE clauses or LET statements.
For example, the sequence

let a=2;
a where a=>4;
a;

would result in the output

4

2

Although WHERE has a precedence less than any other infix operator, it still binds
higher than keywords such as ELSE, THEN, DO, REPEAT and so on. Thus the
expression

if a=2 then 3 else a+2 where a=3

will parse as

if a=2 then 3 else (a+2 where a=3)

WHERE may be used to introduce auxiliary variables in symbolic mode expres-
sions, as described in Section 17.4. However, the symbolic mode use has different
semantics, so expressions do not carry from one mode to the other.

Compatibility Note: In order to provide compatibility with older versions of rule
lists released through the Network Library, it is currently possible to use an equal
sign interchangeably with the replacement sign => in rules and LET statements.
However, since this will change in future versions, the replacement sign is prefer-
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able in rules and the equal sign in non-rule-based LET statements.

Advanced Use of Rule Lists

Some advanced features of the rule list mechanism make it possible to write more
complicated rules than those discussed so far, and in many cases to write more
compact rule lists. These features are:

• Free operators

• Double slash operator

• Double tilde variables.

A free operator in the left hand side of a pattern will match any operator with the
same number of arguments. The free operator is written in the same style as a
variable. For example, the implementation of the product rule of differentiation
can be written as:

operator diff, !~f, !~g;

prule := {diff(~f(~x) * ~g(~x),x) =>
diff(f(x),x) * g(x) + diff(g(x),x) * f(x)};

let prule;

diff(sin(z)*cos(z),z);

cos(z)*diff(sin(z),z) + diff(cos(z),z)*sin(z)

The double slash operator may be used as an alternative to a single slash (quotient)
in order to match quotients properly. E.g., in the example of the Gamma function
above, one can use:

gammarule :=
{gamma(~z)//(~c*gamma(~zz)) => gamma(z)/(c*gamma(zz-1)*zz)

when fixp(zz -z) and (zz -z) >0,
gamma(~z)//gamma(~zz) => gamma(z)/(gamma(zz-1)*zz)

when fixp(zz -z) and (zz -z) >0};

let gammarule;

gamma(z)/gamma(z+3);



11.3. RULE LISTS 171

1
----------------------
3 2

z + 6*z + 11*z + 6

The above example suffers from the fact that two rules had to be written in order
to perform the required operation. This can be simplified by the use of double tilde
variables. E.g. the rule list

GGrule := {
gamma(~z)//(~~c*gamma(~zz)) => gamma(z)/(c*gamma(zz-1)*zz)
when fixp(zz -z) and (zz -z) >0};

will implement the same operation in a much more compact way. In general, dou-
ble tilde variables are bound to the neutral element with respect to the operation in
which they are used.

Pattern given Argument used Binding

~z + ~~y x z=x; y=0
~z + ~~y x+3 z=x; y=3 or z=3; y=x

~z * ~~y x z=x; y=1
~z * ~~y x*3 z=x; y=3 or z=3; y=x

~z / ~~y x z=x; y=1
~z / ~~y x/3 z=x; y=3

Remarks: A double tilde variable as the numerator of a pattern is not allowed.
Also, using double tilde variables may lead to recursion errors when the zero case
is not handled properly.

let f(~~a * ~x,x) => a * f(x,x) when freeof (a,x);

f(z,z);

***** f(z,z) improperly defined in terms of itself

% BUT:

let ff(~~a * ~x,x)
=> a * ff(x,x) when freeof (a,x) and a neq 1;

ff(z,z);
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ff(z,z)

ff(3*z,z);
3*ff(z,z)

Displaying Rules Associated with an Operator

The operator SHOWRULES takes a single identifier as argument, and returns in
rule-list form the operator rules associated with that argument. For example:

showrules log;

{LOG(E) => 1,

LOG(1) => 0,

~X
LOG(E ) => ~X,

1
DF(LOG(~X),~X) => ----}

~X

Such rules can then be manipulated further as with any list. For example rhs
first ws; has the value 1. Note that an operator may have other properties that
cannot be displayed in such a form, such as the fact it is an odd function, or has a
definition defined as a procedure.

Order of Application of Rules

If rules have overlapping domains, their order of application is important. In gen-
eral, it is very difficult to specify this order precisely, so that it is best to assume
that the order is arbitrary. However, if only one operator is involved, the order of
application of the rules for this operator can be determined from the following:

1. Rules containing at least one free variable apply before all rules without free
variables.

2. Rules activated in the most recent LET command are applied first.

3. LET with several entries generate the same order of application as a corre-
sponding sequence of commands with one rule or rule set each.
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4. Within a rule set, the rules containing at least one free variable are applied in
their given order. In other words, the first member of the list is applied first.

5. Consistent with the first item, any rule in a rule list that contains no free
variables is applied after all rules containing free variables.

Example: The following rule set enables the computation of exact values of the
Gamma function:

operator gamma,gamma_error;
gamma_rules :=
{gamma(~x)=>sqrt(pi)/2 when x=1/2,
gamma(~n)=>factorial(n-1) when fixp n and n>0,
gamma(~n)=>gamma_error(n) when fixp n,
gamma(~x)=>(x-1)*gamma(x-1) when fixp(2*x) and x>1,
gamma(~x)=>gamma(x+1)/x when fixp(2*x)};

Here, rule by rule, cases of known or definitely uncomputable values are sorted out;
e.g. the rule leading to the error expression will be applied for negative integers
only, since the positive integers are caught by the preceding rule, and the last rule
will apply for negative odd multiples of 1/2 only. Alternatively the first rule could
have been written as

gamma(1/2) => sqrt(pi)/2,

but then the case x = 1/2 should be excluded in the WHEN part of the last rule
explicitly because a rule without free variables cannot take precedence over the
other rules.

11.4 Asymptotic Commands

In expansions of polynomials involving variables that are known to be small, it is
often desirable to throw away all powers of these variables beyond a certain point
to avoid unnecessary computation. The command LET may be used to do this. For
example, if only powers of X up to x^7 are needed, the command

let x^8 = 0;

will cause the system to delete all powers of X higher than 7.

CAUTION: This particular simplification works differently from most substitu-
tion mechanisms in REDUCE in that it is applied during polynomial manipulation
rather than to the whole evaluated expression. Thus, with the above rule in effect,
x^10/x^5would give the result zero, since the numerator would simplify to zero.
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Similarly x^20/x^10 would give a Zero divisor error message, since both
numerator and denominator would first simplify to zero.

The method just described is not adequate when expressions involve several vari-
ables having different degrees of smallness. In this case, it is necessary to supply
an asymptotic weight to each variable and count up the total weight of each product
in an expanded expression before deciding whether to keep the term or not. There
are two associated commands in the system to permit this type of asymptotic con-
straint. The command WEIGHT takes a list of equations of the form

〈kernel form〉 = 〈number〉

where 〈number〉 must be a positive integer (not just evaluate to a positive integer).
This command assigns the weight 〈number〉 to the relevant kernel form. A check
is then made in all algebraic evaluations to see if the total weight of the term is
greater than the weight level assigned to the calculation. If it is, the term is deleted.
To compute the total weight of a product, the individual weights of each kernel
form are multiplied by their corresponding powers and then added.

The weight level of the system is initially set to 1. The user may change this setting
by the command

wtlevel <number>;

which sets 〈number〉 as the new weight level of the system. meta must evaluate to
a positive integer. WTLEVEL will also allow NIL as an argument, in which case
the current weight level is returned.
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File Handling Commands

In many applications, it is desirable to load previously prepared REDUCE files
into the system, or to write output on other files. REDUCE offers four commands
for this purpose, namely, IN, OUT, SHUT, LOAD, and LOAD_PACKAGE. The first
three operators are described here; LOAD and LOAD_PACKAGE are discussed in
Section 19.2.

12.1 IN Command

This command takes a list of file names as argument and directs the system to
input each file (that should contain REDUCE statements and commands) into the
system. File names can either be an identifier or a string. The explicit format of
these will be system dependent and, in many cases, site dependent. The explicit
instructions for the implementation being used should therefore be consulted for
further details. For example:

in f1,"ggg.rr.s";

will first load file f1, then ggg.rr.s. When a semicolon is used as the terminator
of the IN statement, the statements in the file are echoed on the terminal or written
on the current output file. If $ is used as the terminator, the input is not shown.
Echoing of all or part of the input file can be prevented, even if a semicolon was
used, by placing an off echo; command in the input file.

Files to be read using IN should end with ;END;. Note the two semicolons! First
of all, this is protection against obscure difficulties the user will have if there are,
by mistake, more BEGINs than ENDs on the file. Secondly, it triggers some file
control book-keeping which may improve system efficiency. If END is omitted, an
error message "End-of-file read" will occur.
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While a file is being loaded, the special identifier !__LINE__ is replaced by the
number of the current line in the file currently being read. Similarly, !__FILE__
is replaced by the name of the file currently being read.

12.2 OUT Command

This command takes a single file name as argument, and directs output to that
file from then on, until another OUT changes the output file, or SHUT closes it.
Output can go to only one file at a time, although many can be open. If the file
has previously been used for output during the current job, and not SHUT, the new
output is appended to the end of the file. Any existing file is erased before its first
use for output in a job, or if it had been SHUT before the new OUT.

To output on the terminal without closing the output file, the reserved file name T
(for terminal) may be used. For example, out ofile; will direct output to the
file OFILE and out t; will direct output to the user’s terminal.

The output sent to the file will be in the same form that it would have on the
terminal. In particular x^2 would appear on two lines, an X on the lower line and
a 2 on the line above. If the purpose of the output file is to save results to be read
in later, this is not an appropriate form. We first must turn off the NAT switch that
specifies that output should be in standard mathematical notation.

Example: To create a file ABCD from which it will be possible to read – using IN
– the value of the expression XYZ:

off echo$ % needed if your input is from a file.
off nat$ % output in IN-readable form. Each expression

% printed will end with a $ .
out abcd$ % output to new file
linelength 72$ % for systems with fixed input line length.
xyz:=xyz; % will output "XYZ := " followed by the value

% of XYZ
write ";end"$ % standard for ending files for IN
shut abcd$ % save ABCD, return to terminal output
on nat$ % restore usual output form

12.3 SHUT Command

This command takes a list of names of files that have been previously opened via
an OUT statement and closes them. Most systems require this action by the user
before he ends the REDUCE job (if not sooner), otherwise the output may be lost.
If a file is shut and a further OUT command issued for the same file, the file is
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erased before the new output is written.

If it is the current output file that is shut, output will switch to the terminal. At-
tempts to shut files that have not been opened by OUT, or an input file, will lead to
errors.

12.4 REDUCE startup file

At the start of a REDUCE session, the system checks for the existence of a user’s
startup file, and executes the REDUCE statements in it. This is equivalent to in-
putting the file with the IN command.

To find the directory/folder where the file resides, the system checks the existence
of the following environment variables:

1. HOME,

2. HOMEDRIVE and HOMEPATH together (Windows).

If none of these are set, the current directory is used. The file itself must be named
either .reducerc or reduce.rc1.

1If none of these exist, the system checks for a file called reduce.INI in the current directory.
This is historical and may be removed in future.
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Chapter 13

Commands for Interactive Use

REDUCE is designed as an interactive system, but naturally it can also operate in
a batch processing or background mode by taking its input command by command
from the relevant input stream. There is a basic difference, however, between in-
teractive and batch use of the system. In the former case, whenever the system
discovers an ambiguity at some point in a calculation, such as a forgotten type as-
signment for instance, it asks you for the correct interpretation. In batch operation,
it is not practical to terminate the calculation at such points and require resubmis-
sion of the job, so the system makes the most obvious guess of your intentions and
continues the calculation.

13.1 Error Handling: ERRCONT, RETRY

There is also a difference in the handling of errors. In the former case, the compu-
tation can continue since you have the opportunity to correct the mistake. In batch
mode, the error may lead to consequent erroneous (and possibly time consuming)
computations. So in the default case, no further evaluation occurs, although the
remainder of the input is checked for syntax errors. A message "Continuing
with parsing only" informs you that this is happening. On the other hand,
the switch ERRCONT, if on, will cause the system to continue evaluating expres-
sions after such errors occur.

When a syntactical error occurs, the place where the system detected the error is
marked with three dollar signs ($$$). In interactive mode, you can then use ED to
correct the error, or retype the command. When a non-syntactical error occurs in
interactive mode, the command being evaluated at the time the last error occurred
is saved, and may later be reevaluated by the command RETRY.
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13.2 Referencing Previous Results: INPUT, WS, DISPLAY

It is often useful to be able to reference results of previous computations during
a REDUCE session; see also 8.2. For this purpose, REDUCE maintains a his-
tory of all interactive inputs and the results of all interactive computations during a
given session. These results are referenced by the command number that REDUCE
prints automatically in interactive mode. To use a previous input expression in a
new computation, write INPUT(n), where n is the command number. To use a
previous output expression, write WS(n) (where WS stands for WorkSpace). WS
used as a variable (rather than a function) references the previous output expres-
sion. For example:

1: int(x-1, x);

x*(x - 2)
-----------

2

...

7: (x^2-1)/(x+1);

x - 1

...

15: 2*input(1)-ws(7)^2;

-1

16: 2*ws(1)-ws(7)^2;

-1

17: x := 101;

x := 101

18: ws(7);

100

Inputs 15 and 16 above yield the same result, but input 16 does so without re-



13.2. REFERENCING PREVIOUS RESULTS: INPUT, WS, DISPLAY 181

computing the integral. However, an output expression referenced using WS is
re-evaluated in the current context, as shown by the last two statements above.

Note that input that causes an error, and some commands such as LET statements,
file handling and mode changing, do not produce an output expression, so the out-
put from such input cannot be accessed. WS used as a variable returns the last
output expression, which does not necessarily correspond to the last input, and WS
used as a function reports an error if you try to access non-existent output. For
example:

1: 6*7;

42

2: 0/0;

***** 0/0 formed

3: ws;

42

4: ws 2;

***** Entry 2 not found

5: let x => 0;

6: ws;

42

7: ws 5;

***** Entry 5 not found

The operator DISPLAY is available to display previous inputs. If its argument
is a positive integer, n say, then the previous n inputs are displayed. If its argu-
ment is ALL (or in fact any non-numerical expression), then all previous inputs are
displayed.
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13.3 Interactive Editing: ED, EDITDEF

It is possible when working interactively to edit any REDUCE input that comes
from your terminal, and also some user-defined procedure definitions. At the top
level, you can access any previous command string by the command ED(n), where
n is the desired command number as prompted by the system in interactive mode.
The command ED (with no argument) accesses the previous command.

After ED has been called, you can now edit the displayed string using a string editor
with the following commands:

B move pointer to beginning
C〈character〉 replace next character by 〈character〉
D delete next character
E end editing and reread text
F〈character〉 move pointer to next occurrence of

〈character〉
I〈string〉〈escape〉 insert 〈string〉 in front of pointer
K〈character〉 delete all characters until 〈character〉
P print string from current pointer
Q give up with error exit
S〈string〉〈escape〉 search for first occurrence of 〈string〉, po-

sitioning pointer just before it
space or X move pointer right one character.

The above table can be displayed online by typing a question mark followed by a
carriage return to the editor. The editor prompts with an angle bracket. Commands
can be combined on a single line, and all command sequences must be followed by
a carriage return to become effective.

Thus, to change the command x := a+1; to x := a+2; and cause it to be
executed, the following edit command sequence could be used:

f1c2e<return>

You can also use the interactive editor to edit a user-defined procedure that has not
been compiled. To do this, use:

editdef 〈id〉;

where 〈id〉 is the name of the procedure. The procedure definition will then be
displayed in editing mode, and may then be edited and redefined on exiting from
the editor.

Some versions of REDUCE include input editing that uses the capabilities of mod-
ern window systems. Please consult your system dependent documentation to see
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if this is possible. Such editing techniques are usually much easier to use then ED
or EDITDEF.

13.4 Interactive File Control: INT, PAUSE, CONT

If input is coming from an external file, the system treats it as a batch processed
calculation. If you desire interactive response in this case, you can include the
command ON INT; in the file. Likewise, you can issue the command OFF INT;
in the main program if you do not desire continual questioning from the system.
Regardless of the setting of the switch INT, input commands from a file are not
kept in the system, and so cannot be referenced using INPUT or WS, or edited using
ED. However, an implementation of REDUCE may provide a link to an external
system editor that can be used for such editing. The specific instructions for the
particular implementation should be consulted for information on this.

Two commands are available in REDUCE for interactive use of files. PAUSE; may
be inserted at any point in an input file. When this command is encountered on
input, the system prints the message CONT? (Y or N) on your terminal and
halts. If you respond Y (for yes), the calculation continues from that point in the
file. If you respond N (for no), control is returned to the terminal, and you can input
further statements and commands. Later on you can use the command CONT; to
transfer control back to the point in the file following the last PAUSE; encountered.
A top-level PAUSE; from the terminal has no effect.
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Chapter 14

Matrix Calculations

A very powerful feature of REDUCE is the ease with which matrix calculations
can be performed. To extend our syntax to this class of calculations we need to
add another prefix operator, MAT, and a further variable and expression type as
follows:

14.1 MAT Operator

This prefix operator is used to represent n × m matrices. MAT has n arguments
interpreted as rows of the matrix, each of which is a list of m expressions repre-
senting elements in that row. For example, the matrix(

a b c
d e f

)
would be written as mat((a,b,c),(d,e,f)).

Note that the single column matrix (
x
y

)
becomes mat((x),(y)). The inside parentheses are required to distinguish it
from the single row matrix (

x y
)

that would be written as mat((x,y)).

14.2 Matrix Variables

An identifier may be declared a matrix variable by the declaration MATRIX. The
size of the matrix may be declared explicitly in the matrix declaration, or by default
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in assigning such a variable to a matrix expression. For example,

matrix x(2,1),y(3,4),z;

declares X to be a 2 x 1 (column) matrix, Y to be a 3 x 4 matrix and Z a matrix
whose size is to be declared later.

Matrix declarations can appear anywhere in a program. Once a symbol is declared
to name a matrix, it can not also be used to name an array, operator or a procedure,
or used as an ordinary variable. It can however be redeclared to be a matrix, and
its size may be changed at that time. Note however that matrices once declared
are global in scope, and so can then be referenced anywhere in the program. In
other words, a declaration within a block (or a procedure) does not limit the scope
of the matrix to that block, nor does the matrix go away on exiting the block (use
CLEAR instead for this purpose). An element of a matrix is referred to in the
expected manner; thus x(1,1) gives the first element of the matrix X defined
above. References to elements of a matrix whose size has not yet been declared
leads to an error. All elements of a matrix whose size is declared are initialized to
0. As a result, a matrix element has an instant evaluation property and cannot stand
for itself. If this is required, then an operator should be used to name the matrix
elements as in:

matrix m; operator x; m := mat((x(1,1),x(1,2));

14.3 Matrix Expressions

These follow the normal rules of matrix algebra as defined by the following syntax:

〈matrix expression〉 −→ MAT〈matrix description〉 | 〈matrix variable〉 |
〈scalar expression〉*〈matrix expression〉 |
〈matrix expression〉*〈matrix expression〉 |
〈matrix expression〉+〈matrix expression〉 |
〈matrix expression〉^〈integer〉 |
〈matrix expression〉/〈matrix expression〉

Sums and products of matrix expressions must be of compatible size; otherwise an
error will result during their evaluation. Similarly, only square matrices may be
raised to a power. A negative power is computed as the inverse of the matrix raised
to the corresponding positive power. a/b is interpreted as a*b^(-1).

Examples:

Assuming X and Y have been declared as matrices, the following are matrix ex-
pressions
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y
y^2*x-3*y^(-2)*x
y + mat((1,a),(b,c))/2

The computation of the quotient of two matrices normally uses a two-step elimina-
tion method due to Bareiss. An alternative method using Cramer’s method is also
available. This is usually less efficient than the Bareiss method unless the matrices
are large and dense, although we have no solid statistics on this as yet. To use
Cramer’s method instead, the switch CRAMER should be turned on.

14.4 Operators with Matrix Arguments

The operator LENGTH applied to a matrix returns a list of the number of rows and
columns in the matrix. Other operators useful in matrix calculations are defined in
the following subsections. Attention is also drawn to the LINALG (section 16.39)
and NORMFORM (section 16.45) packages.

14.4.1 DET Operator

Syntax:

DET(EXPRN:matrix_expression):algebraic.

The operator DET is used to represent the determinant of a square matrix expres-
sion. E.g.,

det(y^2)

is a scalar expression whose value is the determinant of the square of the matrix Y,
and

det mat((a,b,c),(d,e,f),(g,h,j));

is a scalar expression whose value is the determinant of the matrix a b c
d e f
g h j


Determinant expressions have the instant evaluation property. In other words, the
statement

let det mat((a,b),(c,d)) = 2;
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sets the value of the determinant to 2, and does not set up a rule for the determinant
itself.

14.4.2 MATEIGEN Operator

Syntax:

MATEIGEN(EXPRN:matrix_expression,ID):list.

MATEIGEN calculates the eigenvalue equation and the corresponding eigenvectors
of a matrix, using the variable ID to denote the eigenvalue. A square free decom-
position of the characteristic polynomial is carried out. The result is a list of lists
of 3 elements, where the first element is a square free factor of the characteristic
polynomial, the second its multiplicity and the third the corresponding eigenvector
(as an n by 1 matrix). If the square free decomposition was successful, the product
of the first elements in the lists is the minimal polynomial. In the case of degener-
acy, several eigenvectors can exist for the same eigenvalue, which manifests itself
in the appearance of more than one arbitrary variable in the eigenvector. To extract
the various parts of the result use the operations defined on lists.

Example: The command

mateigen(mat((2,-1,1),(0,1,1),(-1,1,1)),eta);

gives the output

{{ETA - 1,2,

[ARBCOMPLEX(1)]
[ ]
[ARBCOMPLEX(1)]
[ ]
[ 0 ]

},

{ETA - 2,1,

[ 0 ]
[ ]
[ARBCOMPLEX(2)]
[ ]
[ARBCOMPLEX(2)]
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}}

14.4.3 TP Operator

Syntax:

TP(EXPRN:matrix_expression):matrix.

This operator takes a single matrix argument and returns its transpose.

14.4.4 Trace Operator

Syntax:

TRACE(EXPRN:matrix_expression):algebraic.

The operator TRACE is used to represent the trace of a square matrix.

14.4.5 Matrix Cofactors

Syntax:

COFACTOR(EXPRN:matrix_expression,ROW:integer,COLUMN:integer):
algebraic

The operator COFACTOR returns the cofactor of the element in row ROW and col-
umn COLUMN of the matrix MATRIX. Errors occur if ROW or COLUMN do not
simplify to integer expressions or if MATRIX is not square.

14.4.6 NULLSPACE Operator

Syntax:

NULLSPACE(EXPRN:matrix_expression):list

NULLSPACE calculates for a matrix A a list of linear independent vectors (a basis)
whose linear combinations satisfy the equation Ax = 0. The basis is provided in a
form such that as many upper components as possible are isolated.

Note that with b := nullspace a the expression length b is the nullity of
A, and that second length a - length b calculates the rank of A. The
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rank of a matrix expression can also be found more directly by the RANK operator
described below.

Example: The command

nullspace mat((1,2,3,4),(5,6,7,8));

gives the output

{
[ 1 ]
[ ]
[ 0 ]
[ ]
[ - 3]
[ ]
[ 2 ]
,
[ 0 ]
[ ]
[ 1 ]
[ ]
[ - 2]
[ ]
[ 1 ]
}

In addition to the REDUCE matrix form, NULLSPACE accepts as input a matrix
given as a list of lists, that is interpreted as a row matrix. If that form of input
is chosen, the vectors in the result will be represented by lists as well. This addi-
tional input syntax facilitates the use of NULLSPACE in applications different from
classical linear algebra.

14.4.7 RANK Operator

Syntax:

RANK(EXPRN:matrix_expression):integer

RANK calculates the rank of its argument, that, like NULLSPACE can either be a
standard matrix expression, or a list of lists, that can be interpreted either as a row
matrix or a set of equations.

Example:
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rank mat((a,b,c),(d,e,f));

returns the value 2.

14.5 Matrix Assignments

Matrix expressions may appear in the right-hand side of assignment statements. If
the left-hand side of the assignment, which must be a variable, has not already been
declared a matrix, it is declared by default to the size of the right-hand side. The
variable is then set to the value of the right-hand side.

Such an assignment may be used very conveniently to find the solution of a set of
linear equations. For example, to find the solution of the following set of equations

a11*x(1) + a12*x(2) = y1
a21*x(1) + a22*x(2) = y2

we simply write

x := 1/mat((a11,a12),(a21,a22))*mat((y1),(y2));

14.6 Evaluating Matrix Elements

Once an element of a matrix has been assigned, it may be referred to in standard
array element notation. Thus y(2,1) refers to the element in the second row and
first column of the matrix Y.
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Chapter 15

Procedures

It is often useful to name a statement for repeated use in calculations with varying
parameters, or to define a complete evaluation procedure for an operator. REDUCE
offers a procedural declaration for this purpose. Its general syntax is:

[〈procedural type〉] PROCEDURE 〈name〉[〈varlist〉]; 〈statement〉;

where

〈varlist〉 −→ (〈variable〉, . . ., 〈variable〉)

This will be explained more fully in the following sections.

In the algebraic mode of REDUCE the 〈procedural type〉 can be omitted, since
the default is ALGEBRAIC. Procedures of type INTEGER or REAL may also be
used. In the former case, the system checks that the value of the procedure is
an integer. At present, such checking is not done for a real procedure, although
this will change in the future when a more complete type checking mechanism is
installed. Users should therefore only use these types when appropriate. An empty
variable list may also be omitted.

All user-defined procedures are automatically declared to be operators.

In order to allow users relatively easy access to the whole REDUCE source pro-
gram, system procedures are not protected against user redefinition. If a procedure
is redefined, a message

*** <procedure name> REDEFINED

is printed. If this occurs, and the user is not redefining his own procedure, he is
well advised to rename it, and possibly start over (because he has already redefined
some internal procedure whose correct functioning may be required for his job!)
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All required procedures should be defined at the top level, since they have global
scope throughout a program. In particular, an attempt to define a procedure within
a procedure will cause an error to occur.

15.1 Procedure Heading

Each procedure has a heading consisting of the word PROCEDURE (optionally
preceded by the word ALGEBRAIC), followed by the name of the procedure to be
defined, and followed by its formal parameters – the symbols that will be used in
the body of the definition to illustrate what is to be done. There are three cases:

1. No parameters. Simply follow the procedure name with a terminator (semi-
colon or dollar sign).

procedure abc;

When such a procedure is used in an expression or command, abc(), with
empty parentheses, must be written.

2. One parameter. Enclose it in parentheses or just leave at least one space,
then follow with a terminator.

procedure abc(x);

or

procedure abc x;

3. More than one parameter. Enclose them in parentheses, separated by com-
mas, then follow with a terminator.

procedure abc(x,y,z);

Referring to the last example, if later in some expression being evaluated the sym-
bols abc(u,p*q,123) appear, the operations of the procedure body will be
carried out as if X had the same value as U does, Y the same value as p*q does,
and Z the value 123. The values of X, Y, Z, after the procedure body operations are
completed are unchanged. So, normally, are the values of U, P, Q, and (of course)
123. (This is technically referred to as call by value.)

The reader will have noted the word normally a few lines earlier. The call by value
protections can be bypassed if necessary, as described elsewhere.
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15.2 Procedure Body

Following the delimiter that ends the procedure heading must be a single statement
defining the action to be performed or the value to be delivered. A terminator must
follow the statement. If it is a semicolon, the name of the procedure just defined is
printed. It is not printed if a dollar sign is used.

If the result wanted is given by a formula of some kind, the body is just that for-
mula, using the variables in the procedure heading.

Simple Example:

If f(x) is to mean (x+5)*(x+6)/(x+7), the entire procedure definition could
read

procedure f x; (x+5)*(x+6)/(x+7);

Then f(10) would evaluate to 240/17, f(a-6) to A*(A-1)/(A+1), and so
on.

More Complicated Example:

Suppose we need a function p(n,x) that, for any positive integer N, is the Legen-
dre polynomial of order n. We can define this operator using the textbook formula
defining these functions:

pn(x) =
1

n!

dn

dyn
1

(y2 − 2xy + 1)
1
2

∣∣∣∣∣
y=0

Put into words, the Legendre polynomial pn(x) is the result of substituting y = 0
in the nth partial derivative with respect to y of a certain fraction involving x and
y, then dividing that by n!.

This verbal formula can easily be written in REDUCE:

procedure p(n,x);
sub(y=0,df(1/(y^2-2*x*y+1)^(1/2),y,n))

/(for i:=1:n product i);

Having input this definition, the expression evaluation

2p(2,w);

would result in the output

2
3*W - 1 .
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If the desired process is best described as a series of steps, then a group or com-
pound statement can be used.

Example:

The above Legendre polynomial example can be rewritten as a series of steps in-
stead of a single formula as follows:

procedure p(n,x);
begin scalar seed,deriv,top,fact;

seed:=1/(y^2 - 2*x*y +1)^(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

Procedures may also be defined recursively. In other words, the procedure body can
include references to the procedure name itself, or to other procedures that them-
selves reference the given procedure. As an example, we can define the Legendre
polynomial through its standard recurrence relation:

procedure p(n,x);
if n<0 then rederr "Invalid argument to P(N,X)"
else if n=0 then 1
else if n=1 then x
else ((2*n-1)*x*p(n-1,x)-(n-1)*p(n-2,x))/n;

The operator REDERR in the above example provides for a simple error exit from
an algebraic procedure (and also a block). It can take a string as argument.

It should be noted however that all the above definitions of p(n,x) are quite
inefficient if extensive use is to be made of such polynomials, since each call ef-
fectively recomputes all lower order polynomials. It would be better to store these
expressions in an array, and then use say the recurrence relation to compute only
those polynomials that have not already been derived. We leave it as an exercise
for the reader to write such a definition.

15.3 Matrix-valued Procedures

Normally, procedures can only return scalar values. In order for a procedure to
return a matrix, it has to be declared of type MATRIXPROC:

matrixproc SkewSym1 (w);
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mat((0,-w(3,1),w(2,1)),
(w(3,1),0,-w(1,1)),
(-w(2,1), w(1,1), 0));

Following this declaration, the call to SkewSym1 can be used as a matrix, e.g.

X := SkewSym1(mat((qx),(qy),(qz)));

[ 0 - qz qy ]
[ ]

x := [ qz 0 - qx]
[ ]
[ - qy qx 0 ]

X * mat((rx),(ry),(rz));

[ qy*rz - qz*ry ]
[ ]
[ - qx*rz + qz*rx]
[ ]
[ qx*ry - qy*rx ]

15.4 Using LET Inside Procedures

By using LET instead of an assignment in the procedure body it is possible to
bypass the call-by-value protection. If X is a formal parameter or local variable
of the procedure (i.e. is in the heading or in a local declaration), and LET is used
instead of := to make an assignment to X, e.g.

let x = 123;

then it is the variable that is the value of X that is changed. This effect also occurs
with local variables defined in a block. If the value of X is not a variable, but a
more general expression, then it is that expression that is used on the left-hand side
of the LET statement. For example, if X had the value p*q, it is as if let p*q =
123 had been executed.
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15.5 LET Rules as Procedures

The LET statement offers an alternative syntax and semantics for procedure defi-
nition.

In place of

procedure abc(x,y,z); <procedure body>;

one can write

for all x,y,z let abc(x,y,z) = <procedure body>;

There are several differences to note.

If the procedure body contains an assignment to one of the formal parameters, e.g.

x := 123;

in the PROCEDURE case it is a variable holding a copy of the first actual argument
that is changed. The actual argument is not changed.

In the LET case, the actual argument is changed. Thus, if ABC is defined using
LET, and abc(u,v,w) is evaluated, the value of U changes to 123. That is, the
LET form of definition allows the user to bypass the protections that are enforced
by the call by value conventions of standard PROCEDURE definitions.

Example: We take our earlier FACTORIAL procedure and write it as a LET state-
ment.

for all n let factorial n =
begin scalar m,s;
m:=1; s:=n;

l1: if s=0 then return m;
m:=m*s;
s:=s-1;
go to l1

end;

The reader will notice that we introduced a new local variable, S, and set it equal
to N. The original form of the procedure contained the statement n:=n-1;. If the
user asked for the value of factorial(5) then N would correspond to, not just
have the value of, 5, and REDUCE would object to trying to execute the statement
5 := 5− 1.

If PQR is a procedure with no parameters,
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procedure pqr;
<procedure body>;

it can be written as a LET statement quite simply:

let pqr = <procedure body>;

To call procedure PQR, if defined in the latter form, the empty parentheses would
not be used: use PQR not PQR() where a call on the procedure is needed.

The two notations for a procedure with no arguments can be combined. PQR can
be defined in the standard PROCEDURE form. Then a LET statement

let pqr = pqr();

would allow a user to use PQR instead of PQR() in calling the procedure.

A feature available with LET-defined procedures and not with procedures defined
in the standard way is the possibility of defining partial functions.

for all x such that numberp x let uvw(x)=<procedure body>;

Now UVW of an integer would be calculated as prescribed by the procedure body,
while UVW of a general argument, such as Z or p+q (assuming these evaluate to
themselves) would simply stay uvw(z) or uvw(p+q) as the case may be.

15.6 REMEMBER Statement

Setting the remember option for an algebraic procedure by

REMEMBER (PROCNAME:procedure);

saves all intermediate results of such procedure evaluations, including recursive
calls. Subsequent calls to the procedure can then be determined from the saved
results, and thus the number of evaluations (or the complexity) can be reduced.
This mode of evalation costs extra memory, of course. In addition, the procedure
must be free of side–effects.

The following examples show the effect of the remember statement on two well–
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known examples.

procedure H(n); % Hofstadter’s function
if numberp n then
<< cnn := cnn +1; % counts the calls
if n < 3 then 1 else H(n-H(n-1))+H(n-H(n-2))>>;

remember h;

<< cnn := 0; H(100); cnn>>;

100

% H has been called 100 times only.

procedure A(m,n); % Ackermann function

if m=0 then n+1 else
if n=0 then A(m-1,1) else
A(m-1,A(m,n-1));

remember a;

A(3,3);



Chapter 16

User Contributed Packages

The complete REDUCE system includes a number of packages contributed by
users that are provided as a service to the user community. Questions regarding
these packages should be directed to their individual authors.

All such packages have been precompiled as part of the installation process. How-
ever, many must be specifically loaded before they can be used. (Those that are
loaded automatically are so noted in their description.) You should also consult the
user notes for your particular implementation for further information on whether
this is necessary. If it is, the relevant command is LOAD_PACKAGE, which takes a
list of one or more package names as argument, for example:

load_package algint;

although this syntax may vary from implementation to implementation.

Nearly all these packages come with separate documentation and test files (except
those noted here that have no additional documentation), which is included, along
with the source of the package, in the REDUCE system distribution. These items
should be studied for any additional details on the use of a particular package.

The packages available in the current release of REDUCE are as follows:

201
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16.1 ALGINT: Integration of square roots

This package, which is an extension of the basic integration package distributed
with REDUCE, will analytically integrate a wide range of expressions involving
square roots where the answer exists in that class of functions. It is an implemen-
tation of the work described in J.H. Davenport, “On the Integration of Algebraic
Functions", LNCS 102, Springer Verlag, 1981. Both this and the source code
should be consulted for a more detailed description of this work.

The ALGINT package is loaded automatically when the switch ALGINT is turned
on. One enters an expression for integration, as with the regular integrator, for
example:

int(sqrt(x+sqrt(x**2+1))/x,x);

If one later wishes to integrate expressions without using the facilities of this pack-
age, the switch ALGINT should be turned off.

The switches supported by the standard integrator (e.g., TRINT) are also sup-
ported by this package. In addition, the switch TRA, if on, will give further tracing
information about the specific functioning of the algebraic integrator.

There is no additional documentation for this package.

Author: James H. Davenport.
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16.2 APPLYSYM: Infinitesimal symmetries of differen-
tial equations

This package provides programs APPLYSYM, QUASILINPDE and DETRAFO
for applying infinitesimal symmetries of differential equations, the generalization
of special solutions and the calculation of symmetry and similarity variables.

Author: Thomas Wolf.

In this paper the programs APPLYSYM, QUASILINPDE and DETRAFO are de-
scribed which aim at the utilization of infinitesimal symmetries of differential
equations. The purpose of QUASILINPDE is the general solution of quasilinear
PDEs. This procedure is used by APPLYSYM for the application of point symme-
tries for either

• calculating similarity variables to perform a point transformation which low-
ers the order of an ODE or effectively reduces the number of explicitly oc-
curing independent variables in a PDE(-system) or for

• generalizing given special solutions of ODEs / PDEs with new constant pa-
rameters.

The program DETRAFO performs arbitrary point- and contact transformations of
ODEs / PDEs and is applied if similarity and symmetry variables have been found.
The program APPLYSYM is used in connection with the program LIEPDE for
formulating and solving the conditions for point- and contact symmetries which is
described in [Wol93]. The actual problem solving is done in all these programs
through a call to the package CRACK for solving overdetermined PDE-systems.

16.2.1 Introduction and overview of the symmetry method

The investigation of infinitesimal symmetries of differential equations (DEs) with
computer algebra programs attrackted considerable attention over the last years.
Corresponding programs are available in all major computer algebra systems. In
a review article by W. Hereman [Her95] about 200 references are given, many of
them describing related software.

One reason for the popularity of the symmetry method is the fact that Sophus Lie’s
method [Lie75, Lie67] is the most widely used method for computing exact solu-
tions of non-linear DEs. Another reason is that the first step in this method, the
formulation of the determining equation for the generators of the symmetries, can
already be very cumbersome, especially in the case of PDEs of higher order and/or
in case of many dependent and independent variables. Also, the formulation of
the conditions is a straight forward task involving only differentiations and basic
algebra - an ideal task for computer algebra systems. Less straight forward is the
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automatic solution of the symmetry conditions which is the strength of the program
LIEPDE (for a comparison with another program see [Wol93]).

The novelty described in this paper are programs aiming at the final third step:
Applying symmetries for

• calculating similarity variables to perform a point transformation which low-
ers the order of an ODE or effectively reduces the number of explicitly oc-
curing independent variables of a PDE(-system) or for

• generalizing given special solutions of ODEs/PDEs with new constant pa-
rameters.

Programs which run on their own but also allow interactive user control are indis-
pensible for these calculations. On one hand the calculations can become quite
lengthy, like variable transformations of PDEs (of higher order, with many vari-
ables). On the other hand the freedom of choosing the right linear combination
of symmetries and choosing the optimal new symmetry- and similarity variables
makes it necessary to ‘play’ with the problem interactively.

The focus in this paper is directed on questions of implementation and efficiency,
no principally new mathematics is presented.

In the following subsections a review of the first two steps of the symmetry method
is given as well as the third, i.e. the application step is outlined. Each of the re-
maining sections is devoted to one procedure.

The first step: Formulating the symmetry conditions

To obey classical Lie-symmetries, differential equations

HA = 0 (16.1)

for unknown functions yα, 1 ≤ α ≤ p of independent variables xi, 1 ≤ i ≤ q
must be forminvariant against infinitesimal transformations

x̃i = xi + εξi, ỹα = yα + εηα (16.2)

in first order of ε. To transform the equations (16.1) by (16.2), derivatives of yα

must be transformed, i.e. the part linear in ε must be determined. The correspond-
ing formulas are (see e.g. [Olv86, Ste89])

ỹαj1...jk = yαj1...jk + εηαj1...jk +O(ε2)

ηαj1...jk−1jk
=

Dηαj1...jk−1

Dxk
− yαij1...jk−1

Dξi

Dxk
(16.3)
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where D/Dxk means total differentiation w.r.t. xk and from now on lower latin
indices of functions yα, (and later uα) denote partial differentiation w.r.t. the inde-
pendent variables xi, (and later vi). The complete symmetry condition then takes
the form

XHA = 0 mod HA = 0 (16.4)

X = ξi
∂

∂xi
+ ηα

∂

∂yα
+ ηαm

∂

∂yαm
+ ηαmn

∂

∂yαmn
+ . . .+ ηαmn...p

∂

∂yαmn...p
.(16.5)

where mod HA = 0 means that the original PDE-system is used to replace some
partial derivatives of yα to reduce the number of independent variables, because
the symmetry condition (16.4) must be fulfilled identically in xi, yα and all partial
derivatives of yα.

For point symmetries, ξi, ηα are functions of xj , yβ and for contact symmetries
they depend on xj , yβ and yβk . We restrict ourself to point symmetries as those are
the only ones that can be applied by the current version of the program APPLYSYM
(see below). For literature about generalized symmetries see [Her95].

Though the formulation of the symmetry conditions (16.4), (16.5), (16.3) is
straightforward and handled in principle by all related programs [Her95], the com-
putational effort to formulate the conditions (16.4) may cause problems if the num-
ber of xi and yα is high. This can partially be avoided if at first only a few condi-
tions are formulated and solved such that the remaining ones are much shorter and
quicker to formulate.

A first step in this direction is to investigate one PDE HA = 0 after another, as
done in [CHW91]. Two methods to partition the conditions for a single PDE are
described by Bocharov/Bronstein [BB89] and Stephani [Ste89].

In the first method only those terms of the symmetry condition XHA = 0 are
calculated which contain at least a derivative of yα of a minimal order m. Setting
coefficients of these u-derivatives to zero provides symmetry conditions. Lowering
the minimal orderm successively then gradually provides all symmetry conditions.

The second method is even more selective. If HA is of order n then only terms of
the symmetry condition XHA = 0 are generated which contain n′th order deriva-
tives of yα. Furthermore these derivatives must not occur in HA itself. They can
therefore occur in the symmetry condition (16.4) only in ηαj1...jn , i.e. in the terms

ηαj1...jn
∂HA

∂yαj1...jn
.

If only coefficients of n′th order derivatives of yα need to be accurate to formulate
preliminary conditions then from the total derivatives to be taken in (16.3) only
that part is performed which differentiates w.r.t. the highest yα-derivatives. This
means, for example, to form only yαmnk∂/∂y

α
mn if the expression, which is to be

differentiated totally w.r.t. xk, contains at most second order derivatives of yα.
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The second method is applied in LIEPDE. Already the formulation of the remain-
ing conditions is speeded up considerably through this iteration process. These
methods can be applied if systems of DEs or single PDEs of at least second order
are investigated concerning symmetries.

The second step: Solving the symmetry conditions

The second step in applying the whole method consists in solving the determining
conditions (16.4), (16.5), (16.3) which are linear homogeneous PDEs for ξi, ηα.
The complete solution of this system is not algorithmic any more because the so-
lution of a general linear PDE-system is as difficult as the solution of its non-linear
characteristic ODE-system which is not covered by algorithms so far.

Still algorithms are used successfully to simplify the PDE-system by calculating its
standard normal form and by integrating exact PDEs if they turn up in this simpli-
fication process [Wol93]. One problem in this respect, for example, concerns the
optimization of the symbiosis of both algorithms. By that we mean the ranking of
priorities between integrating, adding integrability conditions and doing simplifi-
cations by substitutions - all depending on the length of expressions and the overall
structure of the PDE-system. Also the extension of the class of PDEs which can be
integrated exactly is a problem to be pursuit further.

The program LIEPDE which formulates the symmetry conditions calls the pro-
gram CRACK to solve them. This is done in a number of successive calls in order
to formulate and solve some first order PDEs of the overdetermined system first and
use their solution to formulate and solve the next subset of conditions as described
in the previous subsection. Also, LIEPDE can work on DEs that contain paramet-
ric constants and parametric functions. An ansatz for the symmetry generators can
be formulated. For more details see [Wol93] or [BW92].

The procedure LIEPDE is called through
LIEPDE(problem,symtype,flist,inequ);
All parameters are lists.

The first parameter specifies the DEs to be investigated:
problem has the form {equations, ulist, xlist} where

equations is a list of equations, each has the form df(ui,..)=... where the
LHS (left hand side) df(ui,..) is selected such that

• The RHS (right h.s.) of an equations must not include the derivative on
the LHS nor a derivative of it.
• Neither the LHS nor any derivative of it of any equation may occur in

any other equation.
• Each of the unknown functions occurs on the LHS of exactly one equat-

ion.
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ulist is a list of function names, which can be chosen freely.

xlist is a list of variable names, which can be chosen freely.

Equations can be given as a list of single differential expressions and then the
program will try to bring them into the ‘solved form’ df(ui,..)=... auto-
matically. If equations are given in the solved form then the above conditions are
checked and execution is stopped it they are not satisfied. An easy way to get the
equations in the desired form is to use

FIRST SOLVE({eq1,eq2,...},{one highest derivative for each function
u})
(see the example of the Karpman equations in LIEPDE.TST). The example of the
Burgers equation in LIEPDE.TST demonstrates that the number of symmetries
for a given maximal order of the infinitesimal generators depends on the derivative
chosen for the LHS.

The second parameter symtype of LIEPDE is a list { } that specifies the symmetry
to be calculated. symtype can have the following values and meanings:

{"point"} Point symmetries with ξi = ξi(xj , uβ), ηα = ηα(xj , uβ) are deter-
mined.

{"contact"} Contact symmetries with ξi = 0, η = η(xj , u, uk) are deter-
mined (uk = ∂u/∂xk), which is only applicable if a single equation (16.1)
with an order > 1 for a single function u is to be investigated. (The sym-
type {"contact"} is equivalent to {"general", 1} (see below) apart
from the additional checks done for {"contact"}.)

{"general", order} where order is an integer > 0. Generalized symmetries
ξi = 0, ηα = ηα(xj , uβ, . . . , uβK) of a specified order are determined (where
K is a multiple index representing order many indices.)
NOTE: Characteristic functions of generalized symmetries (= ηα if ξi =
0) are equivalent if they are equal on the solution manifold. Therefore, all
dependences of characteristic functions on the substituted derivatives and
their derivatives are dropped. For example, if the heat equation is given as
ut = uxx (i.e. ut is substituted by uxx) then {"general", 2} would not
include characteristic functions depending on utx or uxxx.
THEREFORE:
If you want to find all symmetries up to a given order then either

• avoid using HA = 0 to substitute lower order derivatives by expres-
sions involving higher derivatives, or

• increase the order specified in symtype.

For an illustration of this effect see the two symmetry determinations of the
Burgers equation in the file LIEPDE.TST.
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{xi!_x1 =...,..., eta!_u1 =...,...} It is possible to specify an
ansatz for the symmetry. Such an ansatz must specify all ξi for all indepen-
dent variables and all ηα for all dependent variables in terms of differential
expressions which may involve unknown functions/constants. The depen-
dences of the unknown functions have to be declared in advance by using
the DEPEND command. For example,

DEPEND f, t, x, u$
specifies f to be a function of t, x, u. If one wants to have f as a function of
derivatives of u(t, x), say f depending on utxx, then one cannot write

DEPEND f, df(u,t,x,2)$
but instead must write

DEPEND f, u!‘1!‘2!‘2$
assuming xlist has been specified as {t,x}. Because t is the first variable
and x is the second variable in xlist and u is differentiated oncs wrt. t and
twice wrt. xwe therefore use u!‘1!‘2!‘2. The character ! is the escape
character to allow special characters like ‘ to occur in an identifier.

For generalized symmetries one usually sets all ξi = 0. Then the ηα are
equal to the characteristic functions.

The third parameter flist of LIEPDE is a list { } that includes

• all parameters and functions in the equations which are to be determined
such that symmetries exist (if any such parameters/functions are specified in
flist then the symmetry conditions formulated in LIEPDE become non-linear
conditions which may be much harder for CRACK to solve with many cases
and subcases to be considered.)

• all unknown functions and constants in the ansatz xi!_.. and eta!_..
if that has been specified in symtype.

The fourth parameter inequ of LIEPDE is a list { } that includes all non-vanishing
expressions which represent inequalities for the functions in flist.

The result of LIEPDE is a list with 3 elements, each of which is a list:

{{con1, con2, . . .}, {xi_... = . . . , . . . ,eta_... = . . . , . . .}, {flist}}.

The first list contains remaining unsolved symmetry conditions coni. It is the empty
list {} if all conditions have been solved. The second list gives the symmetry
generators, i.e. expressions for ξi and ηj . The last list contains all free constants
and functions occuring in the first and second list.

The third step: Application of infinitesimal symmetries

If infinitesimal symmetries have been found then the program APPLYSYM can use
them for the following purposes:
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1. Calculation of one symmetry variable and further similarity variables. After
transforming the DE(-system) to these variables, the symmetry variable will
not occur explicitly any more. For ODEs this has the consequence that their
order has effectively been reduced.

2. Generalization of a special solution by one or more constants of integration.

Both methods are described in the following section.

16.2.2 Applying symmetries with APPLYSYM

The first mode: Calculation of similarity and symmetry variables

In the following we assume that a symmetry generatorX , given in (16.5), is known
such that ODE(s)/PDE(s) HA = 0 satisfy the symmetry condition (16.4). The aim
is to find new dependent functions uα = uα(xj , yβ) and new independent variables
vi = vi(xj , yβ), 1 ≤ α, β ≤ p, 1 ≤ i, j ≤ q such that the symmetry generator
X = ξi(xj , yβ)∂xi + ηα(xj , yβ)∂yα transforms to

X = ∂v1 . (16.6)

Inverting the above transformation to xi = xi(vj , uβ), yα = yα(vj , uβ) and setting
HA(xi(vj , uβ), yα(vj , uβ), . . .) = hA(vj , uβ, . . .) this means that

0 = XHA(xi, yα, yβj , . . .) mod HA = 0

= XhA(vi, uα, uβj , . . .) mod hA = 0

= ∂v1hA(vi, uα, uβj , . . .) mod hA = 0.

Consequently, the variable v1 does not occur explicitly in hA. In the case of
an ODE(-system) (v1 = v) the new equations 0 = hA(v, uα, duβ/dv, . . .) are
then of lower total order after the transformation z = z(u1) = du1/dv with now
z, u2, . . . up as unknown functions and u1 as independent variable.

The new form (16.6) of X leads directly to conditions for the symmetry variable
v1 and the similarity variables vi|i 6=1, u

α (all functions of xk, yγ):

Xv1 = 1 = ξi(xk, yγ)∂xiv
1 + ηα(xk, yγ)∂yαv

1 (16.7)

Xvj |j 6=1 = Xuβ = 0 = ξi(xk, yγ)∂xiu
β + ηα(xk, yγ)∂yαu

β (16.8)

The general solutions of (16.7), (16.8) involve free functions of p+q−1 arguments.
From the general solution of equation (16.8), p + q − 1 functionally independent
special solutions have to be selected (v2, . . . , vp and u1, . . . , uq), whereas from
(16.7) only one solution v1 is needed. Together, the expressions for the symmetry
and similarity variables must define a non-singular transformation x, y → u, v.
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Different special solutions selected at this stage will result in different resulting
DEs which are equivalent under point transformations but may look quite differ-
ently. A transformation that is more difficult than another one will in general only
complicate the new DE(s) compared with the simpler transformation. We therefore
seek the simplest possible special solutions of (16.7), (16.8). They also have to be
simple because the transformation has to be inverted to solve for the old variables
in order to do the transformations.

The following steps are performed in the corresponding mode of the program
APPLYSYM:

• The user is asked to specify a symmetry by selecting one symmetry from all
the known symmetries or by specifying a linear combination of them.

• Through a call of the procedure QUASILINPDE (described in a later sec-
tion) the two linear first order PDEs (16.7), (16.8) are investigated and, if
possible, solved.

• From the general solution of (16.7) 1 special solution is selected and from
(16.8) p+ q − 1 special solutions are selected which should be as simple as
possible.

• The user is asked whether the symmetry variable should be one of the inde-
pendent variables (as it has been assumed so far) or one of the new functions
(then only derivatives of this function and not the function itself turn up in
the new DE(s)).

• Through a call of the procedure DETRAFO the transformation xi, yα →
vj , uβ of the DE(s) HA = 0 is finally done.

• The program returns to the starting menu.

The second mode: Generalization of special solutions

A second application of infinitesimal symmetries is the generalization of a known
special solution given in implicit form through 0 = F (xi, yα). If one knows a
symmetry variable v1 and similarity variables vr, uα, 2 ≤ r ≤ p then v1 can
be shifted by a constant c because of ∂v1HA = 0 and therefore the DEs 0 =
HA(vr, uα, uβj , . . .) are unaffected by the shift. Hence from

0 = F (xi, yα) = F (xi(vj , uβ), yα(vj , uβ)) = F̄ (vj , uβ)

follows that

0 = F̄ (v1 + c, vr, uβ) = F̄ (v1(xi, yα) + c, vr(xi, yα), uβ(xi, yα))

defines implicitly a generalized solution yα = yα(xi, c).
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This generalization works only if ∂v1F̄ 6= 0 and if F̄ does not already have a
constant additive to v1.

The method above needs to know xi = xi(uβ, vj), yα = yα(uβ, vj) and uα =
uα(xj , yβ), vα = vα(xj , yβ) which may be practically impossible. Better is, to
integrate xi, yα along X:

dx̄i

dε
= ξi(x̄j(ε), ȳβ(ε)),

dȳα

dε
= ηα(x̄j(ε), ȳβ(ε)) (16.9)

with initial values x̄i = xi, ȳα = yα for ε = 0. (This ODE-system is the character-
istic system of (16.8).)

Knowing only the finite transformations

x̄i = x̄i(xj , yβ, ε), ȳα = ȳα(xj , yβ, ε) (16.10)

gives immediately the inverse transformation x̄i = x̄i(xj , yβ, ε), ȳα =
ȳα(xj , yβ, ε) just by ε→ −ε and renaming xi, yα ↔ x̄i, ȳα.

The special solution 0 = F (xi, yα) is generalized by the new constant ε through

0 = F (xi, yα) = F (xi(x̄j , ȳβ, ε), yα(x̄j , ȳβ, ε))

after dropping the .̄

The steps performed in the corresponding mode of the program APPLYSYM show
features of both techniques:

• The user is asked to specify a symmetry by selecting one symmetry from all
the known symmetries or by specifying a linear combination of them.

• The special solution to be generalized and the name of the new constant have
to be put in.

• Through a call of the procedure QUASILINPDE, the PDE (16.7) is solved
which amounts to a solution of its characteristic ODE system (16.9) where
v1 = ε.

• QUASILINPDE returns a list of constant expressions

ci = ci(x
k, yβ, ε), 1 ≤ i ≤ p+ q (16.11)

which are solved for xj = xj(ci, ε), yα = yα(ci, ε) to obtain the general-
ized solution through

0 = F (xj , yα) = F (xj(ci(x
k, yβ, 0), ε), yα(ci(x

k, yβ, 0), ε)).

• The new solution is availabe for further generalizations w.r.t. other symme-
tries.
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If one would like to generalize a given special solution with m new constants be-
cause m symmetries are known, then one could run the whole program m times,
each time with a different symmetry or one could run the program once with a lin-
ear combination of m symmetry generators which again is a symmetry generator.
Running the program once adds one constant but we have in addition m − 1 arbi-
trary constants in the linear combination of the symmetries, som new constants are
added. Usually one will generalize the solution gradually to make solving (16.9)
gradually more difficult.

Syntax

The call of APPLYSYM is APPLYSYM({de, fun, var}, {sym, cons});

• de is a single DE or a list of DEs in the form of a vanishing expression or in
the form . . . = . . . .

• fun is the single function or the list of functions occuring in de.

• var is the single variable or the list of variables in de.

• sym is a linear combination of all symmetries, each with a different constant
coefficient, in form of a list of the ξi and ηα: {xi_. . . =. . . ,. . . ,eta_. . . =. . . ,. . . },
where the indices after ‘xi_’ are the variable names and after ‘eta_’ the func-
tion names.

• cons is the list of constants in sym, one constant for each symmetry.

The list that is the first argument of APPLYSYM is the same as the first argument of
LIEPDE and the second argument is the list that LIEPDE returns without its first
element (the unsolved conditions). An example is given below.

What APPLYSYM returns depends on the last performed modus. After modus 1
the return is
{{newde, newfun, newvar}, trafo}
where

• newde lists the transformed equation(s)

• newfun lists the new function name(s)

• newvar lists the new variable name(s)

• trafo lists the transformations xi = xi(vj , uβ), yα = yα(vj , uβ)

After modus 2, APPLYSYM returns the generalized special solution.
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Example: A second order ODE

Weyl’s class of solutions of Einsteins field equations consists of axialsymmetric
time independent metrics of the form

ds2 = e−2U
[
e2k
(
dρ2 + dz2

)
+ ρ2dϕ2

]
− e2Udt2, (16.12)

where U and k are functions of ρ and z. If one is interested in generalizing these
solutions to have a time dependence then the resulting DEs can be transformed such
that one longer third order ODE for U results which contains only ρ derivatives
[Kub]. Because U appears not alone but only as derivative, a substitution

g = dU/dρ (16.13)

lowers the order and the introduction of a function

h = ρg − 1 (16.14)

simplifies the ODE to

0 = 3ρ2hh′′ − 5ρ2 h′2 + 5ρ hh′ − 20ρ h3h′ − 20h4 + 16h6 + 4h2. (16.15)

where ′ = d/dρ. Calling LIEPDE through

depend h,r;
prob:={{-20*h**4+16*h**6+3*r**2*h*df(h,r,2)+5*r*h*df(h,r)

-20*h**3*r*df(h,r)+4*h**2-5*r**2*df(h,r)**2},
{h}, {r}};

sym:=liepde(prob, {"point"},{},{});
end;

gives

3 2
sym := {{}, {xi_r= - c10*r - c11*r, eta_h=c10*h*r }, {c10,c11}}.

All conditions have been solved because the first element of sym is {}. The two
existing symmetries are therefore

− ρ3∂ρ + hρ2 ∂h and ρ∂ρ. (16.16)

Corresponding finite transformations can be calculated with APPLYSYM through

newde:=applysym(prob,rest sym);

The interactive session is given below with the user input following the prompt
‘Input:3:’ or following ‘?’. (Empty lines have been deleted.)
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Do you want to find similarity and symmetry variables (enter ‘1;’)
or generalize a special solution with new parameters (enter ‘2;’)
or exit the program (enter ‘;’)
Input:3: 1;

We enter ‘1;’ because we want to reduce dependencies by finding similarity vari-
ables and one symmetry variable and then doing the transformation such that the
symmetry variable does not explicitly occur in the DE.

---------------------- The 1. symmetry is:
3

xi_r= - r
2

eta_h=h*r
---------------------- The 2. symmetry is:
xi_r= - r
----------------------
Which single symmetry or linear combination of symmetries
do you want to apply?
Enter an expression with ‘sy_(i)’ for the i’th symmetry.
sy_(1);

We could have entered ‘sy_(2);’ or a combination of both as well with the calcula-
tion running then differently.

The symmetry to be applied in the following is
3 2

{xi_r= - r ,eta_h=h*r }
Enter the name of the new dependent variables:
Input:3: u;
Enter the name of the new independent variables:
Input:3: v;

This was the input part, now the real calculation starts.

The ODE/PDE (-system) under investigation is :
2 2 2 3

0 = 3*df(h,r,2)*h*r - 5*df(h,r) *r - 20*df(h,r)*h *r
6 4 2

+ 5*df(h,r)*h*r + 16*h - 20*h + 4*h
for the function(s) : h.
It will be looked for a new dependent variable u
and an independent variable v such that the transformed
de(-system) does not depend on u or v.
1. Determination of the similarity variable

2
The quasilinear PDE: 0 = r *(df(u_,h)*h - df(u_,r)*r).
The equivalent characteristic system:

3
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0= - df(u_,r)*r
2

0= - r *(df(h,r)*r + h)
for the functions: h(r) u_(r).

The PDE is equation (16.8).

The general solution of the PDE is given through
0 = ff(u_,h*r)
with arbitrary function ff(..).
A suggestion for this function ff provides:
0 = - h*r + u_
Do you like this choice? (Y or N)
?y

For the following calculation only a single special solution of the PDE is neces-
sary and this has to be specified from the general solution by choosing a special
function ff. (This function is called ff to prevent a clash with names of user
variables/functions.) In principle any choice of ff would work, if it defines a non-
singular coordinate transformation, i.e. here r must be a function of u_. If we have
q independent variables and p functions of them then ff has p + q arguments.
Because of the condition 0 =ff one has essentially the freedom of choosing a
function of p + q − 1 arguments freely. This freedom is also necessary to select
p+ q − 1 different functions ff and to find as many functionally independent so-
lutions u_ which all become the new similarity variables. q of them become the
new functions uα and p − 1 of them the new variables v2, . . . , vp. Here we have
p = q = 1 (one single ODE).

Though the program could have done that alone, once the general solution ff(..)
is known, the user can interfere here to enter a simpler solution, if possible.

2. Determination of the symmetry variable
2 3

The quasilinear PDE: 0 = df(u_,h)*h*r - df(u_,r)*r - 1.
The equivalent characteristic system:

3
0=df(r,u_) + r

2
0=df(h,u_) - h*r
for the functions: r(u_) h(u_) .
New attempt with a different independent variable
The equivalent characteristic system:

2
0=df(u_,h)*h*r - 1

2
0=r *(df(r,h)*h + r)
for the functions: r(h) u_(h) .
The general solution of the PDE is given through
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2 2 2
- 2*h *r *u_ + h

0 = ff(h*r,--------------------)
2

with arbitrary function ff(..).
A suggestion for this function ff(..) yields:

2 2
h *( - 2*r *u_ + 1)

0 = ---------------------
2

Do you like this choice? (Y or N)
?y

Similar to above.

The suggested solution of the algebraic system which will
do the transformation is:

sqrt(v)*sqrt(2)
{h=sqrt(v)*sqrt(2)*u,r=-----------------}

2*v
Is the solution ok? (Y or N)
?y
In the intended transformation shown above the dependent
variable is u and the independent variable is v.
The symmetry variable is v, i.e. the transformed expression
will be free of v.
Is this selection of dependent and independent variables ok? (Y or N)
?n

We so far assumed that the symmetry variable is one of the new variables, but,
of course we also could choose it to be one of the new functions. If it is one
of the functions then only derivatives of this function occur in the new DE, not
the function itself. If it is one of the variables then this variable will not occur
explicitly.

In our case we prefer (without strong reason) to have the function as symmetry vari-
able. We therefore answered with ‘no’. As a consequence, u and v will exchange
names such that still all new functions have the name u and the new variables have
name v:

Please enter a list of substitutions. For example, to
make the variable, which is so far call u1, to an
independent variable v2 and the variable, which is
so far called v2, to an dependent variable u1,
enter: ‘{u1=v2, v2=u1};’
Input:3: {u=v,v=u};

The transformed equation which should be free of u:
3 6 2 3
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0=3*df(u,v,2)*v - 16*df(u,v) *v - 20*df(u,v) *v + 5*df(u,v)
Do you want to find similarity and symmetry variables (enter ‘1;’)
or generalize a special solution with new parameters (enter ‘2;’)
or exit the program (enter ‘;’)
Input:3: ;

We stop here. The following is returned from our APPLYSYM call:

3 6 2 3
{{{3*df(u,v,2)*v - 16*df(u,v) *v - 20*df(u,v) *v + 5*df(u,v)},
{u},
{v}},

sqrt(u)*sqrt(2)
{r=-----------------, h=sqrt(u)*sqrt(2)*v }}

2*u

The use of APPLYSYM effectively provided us the finite transformation

ρ = (2u)−1/2, h = (2u)1/2 v. (16.17)

and the new ODE

0 = 3u′′v − 16u′3v6 − 20u′2v3 + 5u′ (16.18)

where u = u(v) and ′ = d/dv. Using one symmetry we reduced the 2. order ODE
(16.15) to a first order ODE (16.18) for u′ plus one integration. The second symme-
try can be used to reduce the remaining ODE to an integration too by introducing
a variable w through v3d/dv = d/dw, i.e. w = −1/(2v2). With

p = du/dw (16.19)

the remaining ODE is

0 = 3w
dp

dw
+ 2 p (p+ 1)(4 p+ 1)

with solution

c̃w−2/4 = c̃v4 =
p3(p+ 1)

(4 p+ 1)4
, c̃ = const.

Writing (16.19) as p = v3(du/dp)/(dv/dp) we get u by integration and with
(16.17) further a parametric solution for ρ, h:

ρ =

(
3c2

1(2p− 1)

p1/2(p+ 1)1/2
+ c2

)−1/2

(16.20)

h =
(c2p

1/2(p+ 1)1/2 + 6c2
1p− 3c2

1)1/2p1/2

c1(4p+ 1)
(16.21)

where c1, c2 = const. and c1 = c̃1/4. Finally, the metric function U(p) is obtained
as an integral from (16.13),(16.14).



218 CHAPTER 16. USER CONTRIBUTED PACKAGES

Limitations of APPLYSYM

Restrictions of the applicability of the program APPLYSYM result from limita-
tions of the program QUASILINPDE described in a section below. Essentially this
means that symmetry generators may only be polynomially non-linear in xi, yα.
Though even then the solvability can not be guaranteed, the generators of Lie-
symmetries are mostly very simple such that the resulting PDE (16.22) and the
corresponding characteristic ODE-system have good chances to be solvable.

Apart from these limitations implied through the solution of differential equations
with CRACK and algebraic equations with SOLVE the program APPLYSYM itself
is free of restrictions, i.e. if once new versions of CRACK, SOLVEwould be avail-
able then APPLYSYM would not have to be changed.

Currently, whenever a computational step could not be performed the user is in-
formed and has the possibility of entering interactively the solution of the unsolved
algebraic system or the unsolved linear PDE.

16.2.3 Solving quasilinear PDEs

The content of QUASILINPDE

The generalization of special solutions of DEs as well as the computation of sim-
ilarity and symmetry variables involve the general solution of single first order
linear PDEs. The procedure QUASILINPDE is a general procedure aiming at the
general solution of PDEs

a1(wi, φ)φw1 + a2(wi, φ)φw2 + . . .+ an(wi, φ)φwn = b(wi, φ) (16.22)

in n independent variables wi, i = 1 . . . n for one unknown function φ = φ(wi).

1. The first step in solving a quasilinear PDE (16.22) is the formulation of the
corresponding characteristic ODE-system

dwi
dε

= ai(wj , φ) (16.23)

dφ

dε
= b(wj , φ) (16.24)

for φ,wi regarded now as functions of one variable ε.

Because the ai and b do not depend explicitly on ε, one of the equations
(16.23),(16.24) with non-vanishing right hand side can be used to divide all
others through it and by that having a system with one less ODE to solve. If
the equation to divide through is one of (16.23) then the remaining system
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would be

dwi
dwk

=
ai
ak
, i = 1, 2, . . . k − 1, k + 1, . . . n (16.25)

dφ

dwk
=

b

ak
(16.26)

with the independent variable wk instead of ε. If instead we divide through
equation (16.24) then the remaining system would be

dwi
dφ

=
ai
b
, i = 1, 2, . . . n (16.27)

with the independent variable φ instead of ε.

The equation to divide through is chosen by a subroutine with a heuristic to
find the “simplest” non-zero right hand side (ak or b), i.e. one which

• is constant or

• depends only on one variable or

• is a product of factors, each of which depends only on one variable.

One purpose of this division is to reduce the number of ODEs by one. Sec-
ondly, the general solution of (16.23), (16.24) involves an additive constant
to ε which is not relevant and would have to be set to zero. By dividing
through one ODE we eliminate ε and lose the problem of identifying this
constant in the general solution before we would have to set it to zero.

2. To solve the system (16.25), (16.26) or (16.27), the procedure CRACK is
called. Although being designed primarily for the solution of overdeter-
mined PDE-systems, CRACK can also be used to solve simple not overdeter-
mined ODE-systems. This solution process is not completely algorithmic.
Improved versions of CRACK could be used, without making any changes of
QUASILINPDE necessary.

If the characteristic ODE-system can not be solved in the form (16.25),
(16.26) or (16.27) then successively all other ODEs of (16.23), (16.24) with
non-vanishing right hand side are used for division until one is found such
that the resulting ODE-system can be solved completely. Otherwise the PDE
can not be solved by QUASILINPDE.

3. If the characteristic ODE-system (16.23), (16.24) has been integrated com-
pletely and in full generality to the implicit solution

0 = Gi(φ,wj , ck, ε), i, k = 1, . . . , n+ 1, j = 1, . . . , n (16.28)

then according to the general theory for solving first order PDEs, ε has to be
eliminated from one of the equations and to be substituted in the others to
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have left n equations. Also the constant that turns up additively to ε is to be
set to zero. Both tasks are automatically fulfilled, if, as described above, ε is
already eliminated from the beginning by dividing all equations of (16.23),
(16.24) through one of them.

On either way one ends up with n equations

0 = gi(φ,wj , ck), i, j, k = 1 . . . n (16.29)

involving n constants ck.

The final step is to solve (16.29) for the ci to obtain

ci = ci(φ,w1, . . . , wn) i = 1, . . . n. (16.30)

The final solution φ = φ(wi) of the PDE (16.22) is then given implicitly
through

0 = F (c1(φ,wi), c2(φ,wi), . . . , cn(φ,wi))

where F is an arbitrary function with n arguments.

Syntax

The call of QUASILINPDE is
QUASILINPDE(de, fun, varlist);

• de is the differential expression which vanishes due to the PDE de = 0 or,
de may be the differential equation itself in the form . . . = . . . .

• fun is the unknown function.

• varlist is the list of variables of fun.

The result of QUASILINPDE is a list of general solutions

{sol1, sol2, . . .}.

If QUASILINPDE can not solve the PDE then it returns {}. Each solution soli is a
list of expressions

{ex1, ex2, . . .}

such that the dependent function (φ in (16.22)) is determined implicitly through an
arbitrary function F and the algebraic equation

0 = F (ex1, ex2, . . .).
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Examples

Example 1:
To solve the quasilinear first order PDE

1 = xu,x +uu,y −zu,z

for the function u = u(x, y, z), the input would be

depend u,x,y,z;
de:=x*df(u,x)+u*df(u,y)-z*df(u,z) - 1;
varlist:={x,y,z};
QUASILINPDE(de,u,varlist);

In this example the procedure returns

{{x/eu, zeu, u2 − 2y}},

i.e. there is one general solution (because the outer list has only one element which
itself is a list) and u is given implicitly through the algebraic equation

0 = F (x/eu, zeu, u2 − 2y)

with arbitrary function F.
Example 2:
For the linear inhomogeneous PDE

0 = yz,x +xz,y −1, for z = z(x, y)

QUASILINPDE returns the result that for an arbitrary function F, the equation

0 = F

(
x+ y

ez
, ez(x− y)

)
defines the general solution for z.
Example 3:
For the linear inhomogeneous PDE (3.8) from [Kam59]

0 = xw,x +(y + z)(w,y −w,z ), for w = w(x, y, z)

QUASILINPDE returns the result that for an arbitrary function F, the equation

0 = F (w, y + z, ln(x)(y + z)− y)

defines the general solution for w, i.e. for any function f

w = f (y + z, ln(x)(y + z)− y)

solves the PDE.
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Limitations of QUASILINPDE

One restriction on the applicability of QUASILINPDE results from the program
CRACK which tries to solve the characteristic ODE-system of the PDE. So far
CRACK can be applied only to polynomially non-linear DE’s, i.e. the characteristic
ODE-system (16.25),(16.26) or (16.27) may only be polynomially non-linear, i.e.
in the PDE (16.22) the expressions ai and b may only be rational in wj , φ.

The task of CRACK is simplified as (16.28) does not have to be solved forwj , φ. On
the other hand (16.28) has to be solved for the ci. This gives a second restriction
coming from the REDUCE function SOLVE. Though SOLVE can be applied to
polynomial and transzendential equations, again no guarantee for solvability can
be given.

16.2.4 Transformation of DEs

The content of DETRAFO

Finally, after having found the finite transformations, the program APPLYSYM calls
the procedure DETRAFO to perform the transformations. DETRAFO can also be
used alone to do point- or higher order transformations which involve a consid-
erable computational effort if the differential order of the expression to be trans-
formed is high and if many dependent and independent variables are involved. This
might be especially useful if one wants to experiment and try out different coordi-
nate transformations interactively, using DETRAFO as standalone procedure.

To run DETRAFO, the old functions yα and old variables xi must be known explic-
itly in terms of algebraic or differential expressions of the new functions uβ and
new variables vj . Then for point transformations the identity

dyα =
(
yα,vi +yα,uβ u

β,vi
)
dvi (16.31)

= yα,xj dx
j (16.32)

= yα,xj
(
xj ,vi +xj ,uβ u

β,vi
)
dvi (16.33)

provides the transformation

yα,xj =
dyα

dvi
·
(
dxj

dvi

)−1

(16.34)

with det
(
dxj/dvi

)
6= 0 because of the regularity of the transformation which is

checked by DETRAFO. Non-regular transformations are not performed.

DETRAFO is not restricted to point transformations. In the case of contact- or
higher order transformations, the total derivatives dyα/dvi and dxj/dvi then only
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include all vi− derivatives of uβ which occur in

yα = yα(vi, uβ, uβ,vj , . . .)

xk = xk(vi, uβ, uβ,vj , . . .).

Syntax

The call of DETRAFO is

DETRAFO({ex1, ex2, . . . , exm},
{ofun1 =fex1, ofun2 =fex2, . . . ,ofunp =fexp},
{ovar1 =vex1, ovar2 =vex2, . . . , ovarq =vexq},
{nfun1, nfun2, . . . , nfunp},
{nvar1, nvar2, . . . , nvarq});

where m, p, q are arbitrary.

• The exi are differential expressions to be transformed.

• The second list is the list of old functions ofun expressed as expressions fex
in terms of new functions nfun and new independent variables nvar.

• Similarly the third list expresses the old independent variables ovar as ex-
pressions vex in terms of new functions nfun and new independent variables
nvar.

• The last two lists include the new functions nfun and new independent vari-
ables nvar.

Names for ofun, ovar, nfun and nvar can be arbitrarily chosen.

As the result DETRAFO returns the first argument of its input, i.e. the list

{ex1, ex2, . . . , exm}

where all exi are transformed.

Limitations of DETRAFO

The only requirement is that the old independent variables xi and old functions
yα must be given explicitly in terms of new variables vj and new functions uβ

as indicated in the syntax. Then all calculations involve only differentiations and
basic algebra.
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16.3 ARNUM: An algebraic number package

This package provides facilities for handling algebraic numbers as polynomial co-
efficients in REDUCE calculations. It includes facilities for introducing indetermi-
nates to represent algebraic numbers, for calculating splitting fields, and for factor-
ing and finding greatest common divisors in such domains.

Author: Eberhard Schrüfer.

Algebraic numbers are the solutions of an irreducible polynomial over some
ground domain. The algebraic number i (imaginary unit), for example, would
be defined by the polynomial i2 + 1. The arithmetic of algebraic number s can be
viewed as a polynomial arithmetic modulo the defining polynomial.

Given a defining polynomial for an algebraic number a

an + pn−1a
n−1 + ... + p0

All algebraic numbers which can be built up from a are then of the form:

rn−1a
n−1 + rn−2a

n−2 + ... + r0

where the rj’s are rational numbers.

The operation of addition is defined by

(rn−1a
n−1 + rn−2a

n−2 + ...) + (sn−1a
n−1 + sn−2a

n−2 + ...) =

(rn−1 + sn−1)an−1 + (rn−2 + sn−2)an−2 + ...

Multiplication of two algebraic numbers can be performed by normal polynomial
multiplication followed by a reduction of the result with the help of the defining
polynomial.

(rn−1a
n−1 + rn−2a

n−2 + ...) × (sn−1a
n−1 + sn−2a

n−2 + ...) =

rn−1s
n−1a2n−2 + ... modulo an + pn−1a

n−1 + ... + p0

= qn−1a
n−1 + qn−2a

n−2 + ...

Division of two algebraic numbers r and s yields another algebraic number q.
r
s = q or r = qs.

The last equation written out explicitly reads

(rn−1a
n−1 + rn−2a

n−2 + . . .)

= (qn−1a
n−1 + qn−2a

n−2 + . . .)× (sn−1a
n−1 + sn−2a

n−2 + . . .)

modulo(an + pn−1a
n−1 + . . .)

= (tn−1a
n−1 + tn−2a

n−2 + . . .)
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The ti are linear in the qj . Equating equal powers of a yields a linear system for
the quotient coefficients qj .

With this, all field operations for the algebraic numbers are available. The transla-
tion into algorithms is straightforward. For an implementation we have to decide
on a data structure for an algebraic number. We have chosen the representation
REDUCE normally uses for polynomials, the so-called standard form. Since our
polynomials have in general rational coefficients, we must allow for a rational num-
ber domain inside the algebraic number.

< algebraic number> ::=
:ar: . < univariate polynomial over the rationals>

< univariate polynomial over the rationals> ::=
< variable> .** < ldeg> .* < rational> .+ < reductum>

< ldeg> ::= integer

< rational> ::=
:rn: . < integer numerator> . < integer denominator> : integer

< reductum> ::= < univariate polynomial> : < rational> : nil

This representation allows us to use the REDUCE functions for adding and multi-
plying polynomials on the tail of the tagged algebraic number. Also, the routines
for solving linear equations can easily be used for the calculation of quotients.
We are still left with the problem of introducing a particular algebraic number. In
the current version this is done by giving the defining polynomial to the statement
defpoly. The algebraic number sqrt(2), for example, can be introduced by

defpoly sqrt2**2 - 2;

This statement associates a simplification function for the translation of the vari-
able in the defining polynomial into its tagged internal form and also generates a
power reduction rule used by the operations times and quotient for the reduction
of their result modulo the defining polynomial. A basis for the representation of
an algebraic number is also set up by the statement. In the working version, the
basis is a list of powers of the indeterminate of the defining polynomial up to one
less then its degree. Experiments with integral bases, however, have been very
encouraging, and these bases might be available in a later version. If the defining
polynomial is not monic, it will be made so by an appropriate substitution.

Example 1

defpoly sqrt2**2-2;
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1/(sqrt2+1);

sqrt2 - 1

(x**2+2*sqrt2*x+2)/(x+sqrt2);

x + sqrt2

on gcd;

(x**3+(sqrt2-2)*x**2-(2*sqrt2+3)*x-3*sqrt2)/(x**2-2);

2
(x - 2*x - 3)/(x - sqrt2)

off gcd;

sqrt(x**2-2*sqrt2*x*y+2*y**2);

abs(x - sqrt2*y)

Until now we have dealt with only a single algebraic number. In practice this is not
sufficient as very often several algebraic numbers appear in an expression. There
are two possibilities for handling this: one can use multivariate extensions [Dav81]
or one can construct a defining polynomial that contains all specified extensions.
This package implements the latter case (the so called primitive representation).
The algorithm we use for the construction of the primitive element is the same as
given by Trager [Tra76]. In the implementation, multiple extensions can be given
as a list of equations to the statement defpoly, which, among other things, adds
the new extension to the previously defined one. All algebraic numbers are then
expressed in terms of the primitive element.

Example 2

defpoly sqrt2**2-2,cbrt5**3-5;

*** defining polynomial for primitive element:

6 4 3 2
a1 - 6*a1 - 10*a1 + 12*a1 - 60*a1 + 17

sqrt2;

5 4 3 2
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48/1187*a1 + 45/1187*a1 - 320/1187*a1 - 780/1187*a1 +

735/1187*a1 - 1820/1187

sqrt2**2;

2

We can provide factorization of polynomials over the algebraic number domain by
using Trager’s algorithm. The polynomial to be factored is first mapped to a poly-
nomial over the integers by computing the norm of the polynomial, which is the
resultant with respect to the primitive element of the polynomial and the defining
polynomial. After factoring over the integers, the factors over the algebraic number
field are recovered by GCD calculations.

Example 3

defpoly a**2-5;

on factor;

x**2 + x - 1;

(x + (1/2*a + 1/2))*(x - (1/2*a - 1/2))

We have also incorporated a function split_field for the calculation of a primitive
element of minimal degree for which a given polynomial splits into linear factors.
The algorithm as described in Trager’s article is essentially a repeated primitive
element calculation.

Example 4

split_field(x**3-3*x+7);

*** Splitting field is generated by:

6 4 2
a2 - 18*a2 + 81*a2 + 1215

4 2
{1/126*a2 - 5/42*a2 - 1/2*a2 + 2/7,
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4 2
- (1/63*a2 - 5/21*a2 + 4/7),

4 2
1/126*a2 - 5/42*a2 + 1/2*a2 + 2/7}

for each j in ws product (x-j);

3
x - 3*x + 7

A more complete description can be found in [BHPS86].
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16.4 ASSERT: Dynamic Verification of Assertions on Func-
tion Types

ASSERT admits to add to symbolic mode RLISP code assertions (partly) specify-
ing types of the arguments and results of RLISP expr procedures. These types can
be associated with functions testing the validity of the respective arguments during
runtime.

Author: Thomas Sturm.

16.4.1 Loading and Using

The package is loaded using load_package or load!-package in algebraic
or symbolic mode, resp. There is a central switch assert, which is off by default.
With assert off, all type definitions and assertions described in the sequel are
ignored and have the status of comments. For verification of the assertions it most
be turned on (dynamically) before the first relevant type definition or assertion.

ASSERT aims at the dynamic analysis of RLISP expr procedure in symbolic mode.
All uses of typedef and assert discussed in the following have to take place
in symbolic mode. There is, in contrast, a final print routine assert_analyze
that is available in both symbolic and algebraic mode.

16.4.2 Type Definitions

Here are some examples for definitions of types:

typedef any;
typedef number checked by numberp;
typedef sf checked by sfpx;
typedef sq checked by sqp;

The first one defines a type any, which is not possibly checked by any function.
This is useful, e.g., for functions which admit any argument at one position but at
others rely on certain types or guarantee certain result types, e.g.,

procedure cellcnt(a);
% a is any, returns a number.
if not pairp a then 0 else cellcnt car a + cellcnt cdr a + 1;

The other ones define a type number, which can be checked by the RLISP func-
tion numberp, a type sf for standard forms, which can be checked by the function
sfpx provided by ASSERT, and similarly a type for standard quotients.
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All type checking functions take one argument and return extended Boolean, i.e.,
non-nil iff their argument is of the corresponding type.

16.4.3 Assertions

Having defined types, we can formulate assertions on expr procedures in terms of
these types:

assert cellcnt: (any) -> number;
assert addsq: (sq,sq) -> sq;

Note that on the argument side parenthesis are mandatory also with only one argu-
ment. This notation is inspired by Haskell but avoids the intuition of currying.1

Assertions can be dynamically checked only for expr procedures. When making
assertions for other types of procedures, a warning is issued and the assertion has
the status of a comment.

It is important that assertions via assert come after the definitions of the used types
via typedef and also after the definition of the procedures they make assertions
on.

A natural order for adding type definitions and assertions to the source code files
would be to have all typedefs at the beginning of a module and assertions immedi-
ately after the respective functions. Fig. 16.1 illustrates this. Note that for dynamic
checking of the assertions the switch assert has to be on during the translation
of the module; i.e., either when reading it with in or during compilation. For com-
pilation this can be achieved by commenting in the on assert at the beginning
or by parameterizing the Lisp-specific compilation scripts in a suitable way.

An alternative option is to have type definitions and assertions for specific packages
right after load_package in batch files as illustrated in Fig. 16.2.

16.4.4 Dynamic Checking of Assertions

Recall that with the switch assert off at translation time, all type definitions and
assertions have the status of comments. We are now going to discuss how these
statements are processed with assert on.

typedefmarks the type identifier as a valid type and possibly associates the given
typechecking function with it. Technically, the property list of the type identifier is
used for both purposes.

assert encapsulates the procedure that it asserts on into another one, which
1This notation has benn suggested by C. Zengler
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module sizetools;

load!-package ’assert;

% on assert;

typedef any;
typedef number checked by number;

procedure cellcnt(a);
% a is any, returns a number.
if not pairp a then 0 else cellcnt car a + cellcnt cdr a + 1;

assert cellcnt: (any) -> number;

% ...

endmodule;

end; % of file

Figure 16.1: Assertions in the source code.

load_package sizetools;
load_package assert;

on assert;

lisp <<
typedef any;
typedef number checked by numberp;

assert cellcnt: (any) -> number
>>;

% ... computations ...

assert_analyze();

end; % of file

Figure 16.2: Assertions in a batch file.
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checks the types of the arguments and of the result to the extent that there are
typechecking functions given. Whenever some argument does not pass the test by
the typechecking function, there is a warning message issued. Furthermore, the
following numbers are counted for each asserted function:

1. The number of overall calls,

2. the number of calls with at least one assertion violation,

3. the number of assertion violations.

These numbers can be printed anytime in either symbolic or algebraic mode using
the command assert_analyze(). This command at the same time resets all
the counters.

Fig. 16.3 shows an interactive sample session.

16.4.5 Switches

As discussed above, the switch assert controls at translation time whether or not
assertions are dynamically checked.

There is a switch assertbreak, which is off by default. When on, there are not
only warnings issued for assertion violations but the computations is interrupted
with a corresponding error.

The statistical counting of procedure calls and assertion violations is toggled by
the switch assertstatistics, which is on by default.

16.4.6 Efficiency

The encapsulating functions introduced with assertions are automatically com-
piled.

We have experimentally checked assertions on the standard quotient arithmetic
addsq, multsq, quotsq, invsq, negsq for the test file taylor.tst of the
TAYLOR package. For CSL we observe a slowdown of factor 3.2, and for PSL
we observe a slowdown of factor 1.8 in this particular example, where there are
323 750 function calls checked altogether.

The ASSERT package is considered an analysis and debugging tool. Production
system should as a rule not run with dynamic assertion checking. For critical ap-
plications, however, the slowdown might be even acceptable.
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1: symbolic$

2* load_package assert$

3* on assert$

4* typedef sq checked by sqp;
sqp

5* assert negsq: (sq) -> sq;
+++ negsq compiled, 13 + 20 bytes

(negsq)

6* assert addsq: (sq,sq) -> sq;
+++ addsq compiled, 14 + 20 bytes

(addsq)

7* addsq(simp ’x,negsq simp ’y);

((((x . 1) . 1) ((y . 1) . -1)) . 1)

8* addsq(simp ’x,negsq numr simp ’y);

*** assertion negsq: (sq) -> sq violated by arg1 (((y . 1) . 1))

*** assertion negsq: (sq) -> sq violated by result (((y . -1) . -1))

*** assertion addsq: (sq,sq) -> sq violated by arg2 (((y . -1) . -1))

*** assertion addsq: (sq,sq) -> sq violated by result (((y . -1) . -1))

(((y . -1) . -1))

9* assert_analyze()$
------------------------------------------------------------------------
function #calls #bad calls #assertion violations
------------------------------------------------------------------------
addsq 2 1 2
negsq 2 1 2
------------------------------------------------------------------------
sum 4 2 4
------------------------------------------------------------------------

Figure 16.3: An interactive sample session.
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16.4.7 Possible Extensions

Our assertions could be used also for a static type analysis of source code. In
that case, the type checking functions become irrelevant. On the other hand, the
introduction of variouse unchecked types becomes meaningful.

In a model, where the source code is systematically annotated with assertions, it
is technically no problem to generalize the specification of procedure definitions
such that assertions become implicit. For instance, one could optionally admit
procedure definitions like the following:

procedure cellcnt(a:any):number;
if not pairp a then 0 else cellcnt car a + cellcnt cdr a + 1;
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16.5 ASSIST: Useful utilities for various applications

ASSIST contains a large number of additional general purpose functions that allow
a user to better adapt REDUCE to various calculational strategies and to make the
programming task more straightforward and more efficient.

Author: Hubert Caprasse.

16.5.1 Introduction

The package ASSIST contains an appreciable number of additional general pur-
pose functions which allow one to better adapt REDUCE to various calculational
strategies, to make the programming task more straightforward and, sometimes,
more efficient.

In contrast with all other packages, ASSIST does not aim to provide either a new
facility to compute a definite class of mathematical objects or to extend the base of
mathematical knowledge of REDUCE. The functions it contains should be useful
independently of the nature of the application which is considered. They were ini-
tially written while applying REDUCE to specific problems in theoretical physics.
Most of them were designed in such a way that their applicability range is broad.
Though it was not the primary goal, efficiency has been sought whenever possible.

The source code in ASSIST contains many comments concerning the meaning
and use of the supplementary functions available in the algebraic mode. These
comments, hopefully, make the code transparent and allow a thorough exploitation
of the package. The present documentation contains a non-technical description of
it and describes the various new facilities it provides.

16.5.2 Survey of the Available New Facilities

An elementary help facility is available both within the MS-DOS and Windows
environments. It is independent of the help facility of REDUCE itself. It includes
two functions:

ASSIST is a function which takes no argument. If entered, it returns the informa-
tions required for a proper use of ASSISTHELP.
ASSISTHELP takes one argument.

i. If the argument is the identifier assist, the function returns the information
necessary to retrieve the names of all the available functions.

ii. If the argument is an integer equal to one of the section numbers of the
present documentation. The names of the functions described in that section
are obtained.



236 CHAPTER 16. USER CONTRIBUTED PACKAGES

There is, presently, no possibility to retrieve the number and the type of the
arguments of a given function.

The package contains several modules. Their content reflects closely the various
categories of facilities listed below. Some functions do already exist inside the
KERNEL of REDUCE. However, their range of applicability is extended.

• Control of Switches:

SWITCHES SWITCHORG

• Operations on Lists and Bags:

MKLIST KERNLIST ALGNLIST LENGTH
POSITION FREQUENCY SEQUENCES SPLIT
INSERT INSERT_KEEP_ORDER MERGE_LIST
FIRST SECOND THIRD REST REVERSE LAST
BELAST CONS ( . ) APPEND APPENDN
REMOVE DELETE DELETE_ALL DELPAIR
MEMBER ELMULT PAIR DEPTH MKDEPTH_ONE
REPFIRST REPREST ASFIRST ASLAST ASREST
ASFLIST ASSLIST RESTASLIST SUBSTITUTE
BAGPROP PUTBAG CLEARBAG BAGP BAGLISTP
ALISTP ABAGLISTP LISTBAG

• Operations on Sets:

MKSET SETP UNION INTERSECT DIFFSET SYMDIFF

• General Purpose Utility Functions:

LIST_TO_IDS MKIDN MKIDNEW DELLASTDIGIT DETIDNUM
ODDP FOLLOWLINE == RANDOMLIST MKRANDTABL
PERMUTATIONS CYCLICPERMLIST PERM_TO_NUM NUM_TO_PERM
COMBNUM COMBINATIONS SYMMETRIZE REMSYM
SORTNUMLIST SORTLIST ALGSORT EXTREMUM GCDNL
DEPATOM FUNCVAR IMPLICIT EXPLICIT REMNONCOM
KORDERLIST SIMPLIFY CHECKPROPLIST EXTRACTLIST

• Properties and Flags:

PUTFLAG PUTPROP DISPLAYPROP DISPLAYFLAG
CLEARFLAG CLEARPROP

• Control Statements, Control of Environment:

NORDP DEPVARP ALATOMP ALKERNP PRECP
SHOW SUPPRESS CLEAROP CLEARFUNCTIONS
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• Handling of Polynomials:

ALG_TO_SYMB SYMB_TO_ALG
DISTRIBUTE LEADTERM REDEXPR MONOM
LOWESTDEG DIVPOL SPLITTERMS SPLITPLUSMINUS

• Handling of Transcendental Functions:

TRIGEXPAND HYPEXPAND TRIGREDUCE HYPREDUCE

• Coercion from Lists to Arrays and converse:

LIST_TO_ARRAY ARRAY_TO_LIST

• Handling of n-dimensional Vectors:

SUMVECT MINVECT SCALVECT CROSSVECT MPVECT

• Handling of Grassmann Operators:

PUTGRASS REMGRASS GRASSP GRASSPARITY GHOSTFACTOR

• Handling of Matrices:

UNITMAT MKIDM BAGLMAT COERCEMAT
SUBMAT MATSUBR MATSUBC RMATEXTR RMATEXTC
HCONCMAT VCONCMAT TPMAT HERMAT
SETELTMAT GETELTMAT

• Control of the HEPHYS package:

REMVECTOR REMINDEX MKGAM

In the following all these functions are described.

16.5.3 Control of Switches

The two available functions i.e. SWITCHES, SWITCHORG have no argument and
are called as if they were mere identifiers.

SWITCHES displays the actual status of the most frequently used switches when
manipulating rational functions. The chosen switches are

EXP, ALLFAC, EZGCD, GCD, MCD, LCM, DIV, RAT,
INTSTR, RATIONAL, PRECISE, REDUCED, RATIONALIZE,
COMBINEEXPT, COMPLEX, REVPRI, DISTRIBUTE.
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The selection is somewhat arbitrary but it may be changed in a trivial fashion by
the user.

The new switch DISTRIBUTE allows one to put polynomials in a distributed form
(see the description below of the new functions for manipulating them).

Most of the symbolic variables !*EXP, !*DIV, . . .which have either the value
T or the value NIL are made available in the algebraic mode so that it becomes
possible to write conditional statements of the kind

IF !*EXP THEN DO ......

IF !*GCD THEN OFF GCD;

SWITCHORG resets the switches enumerated above to the status they had when
starting REDUCE.

16.5.4 Manipulation of the List Structure

Additional functions for list manipulations are provided and some already defined
functions in the kernel of REDUCE are modified to properly generalize them to
the available new structure BAG.

i. Generation of a list of length n with all its elements initialized to 0 and
possibility to append to a list l a certain number of zero’s to make it of length
n:

MKLIST n ; n is an INTEGER

MKLIST(l,n); l is List-like, n is an INTEGER

ii. Generation of a list of sublists of length n containing p elements equal to 0
and q elements equal to 1 such that

p+ q = n.

The function SEQUENCES works both in algebraic and symbolic modes.
Here is an example in the algebraic mode:

SEQUENCES 2 ; ==> {{0,0},{0,1},{1,0},{1,1}}

An arbitrary splitting of a list can be done. The function SPLIT generates a
list which contains the splitted parts of the original list.

SPLIT({a,b,c,d},{1,1,2}) ==> {{a},{b},{c,d}}
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The function ALGNLIST constructs a list which contains n copies of a list
bound to its first argument.

ALGNLIST({a,b,c,d},2); ==> {{a,b,c,d},{a,b,c,d}}

The function KERNLIST transforms any prefix of a kernel into the list
prefix. The output list is a copy:

KERNLIST (<kernel>); ==> {<kernel arguments>}

Four functions to delete elements are DELETE, REMOVE, DELETE_ALL
and DELPAIR. The first two act as in symbolic mode, and the third elimi-
nates from a given list all elements equal to its first argument. The fourth
acts on a list of pairs and eliminates from it the first pair whose first element
is equal to its first argument :

DELETE(x,{a,b,x,f,x}); ==> {a,b,f,x}

REMOVE({a,b,x,f,x},3); ==> {a,b,f,x}

DELETE_ALL(x,{a,b,x,f,x}); ==> {a,b,f}

DELPAIR(a,{{a,1},{b,2},{c,3}}; ==> {{b,2},{c,3}}

iv. The function ELMULT returns an integer which is the multiplicity of its
first argument inside the list which is its second argument. The function
FREQUENCY gives a list of pairs whose second element indicates the num-
ber of times the first element appears inside the original list:

ELMULT(x,{a,b,x,f,x}) ==> 2

FREQUENCY({a,b,c,a}); ==> {{a,2},{b,1},{c,1}}

v. The function INSERT allows one to insert a given object into a list at the
desired position.

The functions INSERT_KEEP_ORDER and MERGE_LIST allow one to
keep a given ordering when inserting one element inside a list or when merg-
ing two lists. Both have 3 arguments. The last one is the name of a binary
boolean ordering function:

ll:={1,2,3}$

INSERT(x,ll,3); ==> {1,2,x,3}



240 CHAPTER 16. USER CONTRIBUTED PACKAGES

INSERT_KEEP_ORDER(5,ll,lessp); ==> {1,2,3,5}

MERGE_LIST(ll,ll,lessp); ==> {1,1,2,2,3,3}

Notice that MERGE_LIST will act correctly only if the two lists are well
ordered themselves.

vi. Algebraic lists can be read from right to left or left to right. They look sym-
metrical. One would like to dispose of manipulation functions which reflect
this. So, to the already defined functions FIRST and REST are added the
functions LAST and BELAST. LAST gives the last element of the list while
BELAST gives the list without its last element.
Various additional functions are provided. They are:

. (“dot”), POSITION, DEPTH, MKDEPTH_ONE,
PAIR, APPENDN, REPFIRST, REPREST

The token “dot” needs a special comment. It corresponds to several different
operations.

1. If one applies it on the left of a list, it acts as the CONS function. Note
however that blank spaces are required around the dot:

4 . {a,b}; ==> {4,a,b}

2. If one applies it on the right of a list, it has the same effect as the PART
operator:

{a,b,c}.2; ==> b

3. If one applies it to a 4-dimensional vectors, it acts as in the HEPHYS
package.

POSITION returns the POSITION of the first occurrence of x in a list or a
message if x is not present in it.

DEPTH returns an integer equal to the number of levels where a list is found
if and only if this number is the same for each element of the list otherwise
it returns a message telling the user that the list is of unequal depth. The
function MKDEPTH_ONE allows to transform any list into a list of depth
equal to 1.

PAIR has two arguments which must be lists. It returns a list whose ele-
ments are lists of two elements. The nth sublist contains the nth element of
the first list and the nth element of the second list. These types of lists are
called association lists or ALISTS in the following. To test for these type of
lists a boolean function ABAGLISTP is provided. It will be discussed below.
APPENDN has any fixed number of lists as arguments. It generalizes the al-
ready existing function APPEND which accepts only two lists as arguments.
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It may also be used for arbitrary kernels but, in that case, it is important to
notice that the concatenated object is always a list.
REPFIRST has two arguments. The first one is any object, the second one
is a list. It replaces the first element of the list by the object. It works like the
symbolic function REPLACA except that the original list is not destroyed.
REPREST has also two arguments. It replaces the rest of the list by its first
argument and returns the new list without destroying the original list. It is
analogous to the symbolic function REPLACD. Here are examples:

ll:={{a,b}}$
ll1:=ll.1; ==> {a,b}
ll.0; ==> list
0 . ll; ==> {0,{a,b}}

DEPTH ll; ==> 2

PAIR(ll1,ll1); ==> {{a,a},{b,b}}

REPFIRST{new,ll); ==> {new}

ll3:=APPENDN(ll1,ll1,ll1); ==> {a,b,a,b,a,b}

POSITION(b,ll3); ==> 2

REPREST(new,ll3); ==> {a,new}

vii. The functions ASFIRST, ASLAST, ASREST, ASFLIST, ASSLIST,
RESTASLIST act on ALISTS or on lists of lists of well defined depths and
have two arguments. The first is the key object which one seeks to associate
in some way with an element of the association list which is the second argu-
ment.
ASFIRST returns the pair whose first element is equal to the first argument.
ASLAST returns the pair whose last element is equal to the first argument.
ASREST needs a list as its first argument. The function seeks the first sublist
of a list of lists (which is its second argument) equal to its first argument and
returns it.
RESTASLIST has a list of keys as its first argument. It returns the collection
of pairs which meet the criterium of ASREST.
ASFLIST returns a list containing all pairs which satisfy the criteria of the
function ASFIRST. So the output is also an association list.
ASSLIST returns a list which contains all pairs which have their second
element equal to the first argument.
Here are a few examples:

lp:={{a,1},{b,2},{c,3}}$
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ASFIRST(a,lp); ==> {a,1}

ASLAST(1,lp); ==> {a,1}

ASREST({1},lp); ==> {a,1}

RESTASLIST({a,b},lp); ==> {{1},{2}}

lpp:=APPEND(lp,lp)$

ASFLIST(a,lpp); ==> {{a,1},{a,1}}

ASSLIST(1,lpp); ==> {{a,1},{a,1}}

vii. The function SUBSTITUTE has three arguments. The first is the object to
be substituted, the second is the object which must be replaced by the first,
and the third is the list in which the substitution must be made. Substitution
is made to all levels. It is a more elementary function than SUB but its
capabilities are less. When dealing with algebraic quantities, it is important
to make sure that all objects involved in the function have either the prefix
lisp or the standard quotient representation otherwise it will not properly
work.

16.5.5 The Bag Structure and its Associated Functions

The LIST structure of REDUCE is very convenient for manipulating groups of ob-
jects which are, a priori, unknown. This structure is endowed with other properties
such as “mapping” i.e. the fact that if OP is an operator one gets, by default,

OP({x,y}); ==> {OP(x),OP(y)}

It is not permitted to submit lists to the operations valid on rings so that, for exam-
ple, lists cannot be indeterminates of polynomials.
Very frequently too, procedure arguments cannot be lists. At the other extreme,
so to say, one has the KERNEL structure associated with the algebraic declaration
operator . This structure behaves as an “unbreakable” one and, for that reason,
behaves like an ordinary identifier. It may generally be bound to all non-numeric
procedure parameters and it may appear as an ordinary indeterminate inside poly-
nomials.
The BAG structure is intermediate between a list and an operator. From the operator
it borrows the property of being a KERNEL and, therefore, may be an indetermi-
nate of a polynomial. From the list structure it borrows the property of being a
composite object.
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Definition:

A bag is an object endowed with the following properties:

1. It is a KERNEL i.e. it is composed of an atomic prefix (its envelope) and its
content (miscellaneous objects).

2. Its content may be handled in an analogous way as the content of a list. The
important difference is that during these manipulations the name of the bag
is kept.

3. Properties may be given to the envelope. For instance, one may declare it
NONCOM or SYMMETRIC etc. . . .

Available Functions:

i. A default bag envelope BAG is defined. It is a reserved identifier. An iden-
tifier other than LIST or one which is already associated with a boolean
function may be defined as a bag envelope through the command PUTBAG.
In particular, any operator may also be declared to be a bag. When and only
when the identifier is not an already defined function does PUTBAG put on
it the property of an OPERATOR PREFIX. The command:

PUTBAG id1,id2,....idn;

declares id1,.....,idn as bag envelopes. Analogously, the command

CLEARBAG id1,...idn;

eliminates the bag property on id1,...,idn.

ii. The boolean function BAGP detects the bag property. Here is an example:

aa:=bag(x,y,z)$

if BAGP aa then "ok"; ==> ok

iii. The functions listed below may act both on lists or bags. Moreover, functions
subsequently defined for SETS also work for a bag when its content is a set.
Here is a list of the main ones:

FIRST, SECOND, LAST, REST, BELAST, DEPTH, LENGTH,
REVERSE,
MEMBER, APPEND, . (“dot”), REPFIRST, REPREST
. . .
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However, since they keep track of the envelope, they act somewhat differ-
ently. Remember that

the NAME of the ENVELOPE is KEPT by the functions

FIRST, SECOND and LAST.

Here are a few examples (more examples are given inside the test file):

PUTBAG op; ==> T

aa:=op(x,y,z)$

FIRST op(x,y,z); ==> op(x)

REST op(x,y,z); ==> op(y,z)

BELAST op(x,y,z); ==> op(x,y)

APPEND(aa,aa); ==> op(x,y,z,x,y,z)

APPENDN(aa,aa,aa); ==> {x,y,z,x,y,z,x,y,z}

LENGTH aa; ==> 3

DEPTH aa; ==> 1

MEMBER(y,aa); ==> op(y,z)

When “appending” two bags with different envelopes, the resulting bag
gets the name of the one bound to the first parameter of APPEND. When
APPENDN is used, the output is always a list.
The function LENGTH gives the number of objects contained in the bag.

iv. The connection between the list and the bag structures is made easy thanks
to KERNLIST which transforms a bag into a list and thanks to the coercion
function LISTBAG which transforms a list into a bag. This function has 2
arguments and is used as follows:

LISTBAG(<list>,<id>); ==> <id>(<arg_list>)

The identifier <id>, if allowed, is automatically declared as a bag envelope
or an error message is generated.

Finally, two boolean functions which work both for bags and lists are pro-
vided. They are BAGLISTP and ABAGLISTP. They return t or nil (in a
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conditional statement) if their argument is a bag or a list for the first one, or
if their argument is a list of sublists or a bag containing bags for the second
one.

16.5.6 Sets and their Manipulation Functions

Functions for sets exist at the level of symbolic mode. The package makes them
available in algebraic mode but also generalizes them so that they can be applied
to bag-like objects as well.

i. The constructor MKSET transforms a list or bag into a set by eliminating
duplicates.

MKSET({1,a,a}); ==> {1,a}
MKSET bag(1,a,1,a); ==> bag(1,a)

SETP is a boolean function which recognizes set–like objects.

if SETP {1,2,3} then ... ;

ii. The available functions are

UNION, INTERSECT, DIFFSET, SYMDIFF.

They have two arguments which must be sets otherwise an error message
is issued. Their meaning is transparent from their name. They respectively
give the union, the intersection, the difference and the symmetric difference
of two sets.

16.5.7 General Purpose Utility Functions

Functions in this sections have various purposes. They have all been used many
times in applications in some form or another. The form given to them in this
package is adjusted to maximize their range of applications.

i. The functions MKIDNEW DELLASTDIGIT DETIDNUM LIST_TO_IDS
handle identifiers.

MKIDNEW has either 0 or 1 argument. It generates an identifier which has
not yet been used before.

MKIDNEW(); ==> g0001

MKIDNEW(a); ==> ag0002
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DELLASTDIGIT takes an integer as argument and strips it from its last digit.

DELLASTDIGIT 45; ==> 4

DETIDNUM deletes the last digit from an identifier. It is a very convenient
function when one wants to make a do loop starting from a set of indices
a1, . . . , an.

DETIDNUM a23; ==> 23

LIST_to_IDS generalizes the function MKID to a list of atoms. It creates
and intern an identifier from the concatenation of the atoms. The first atom
cannot be an integer.

LIST_TO_IDS {a,1,id,10}; ==> a1id10

The function ODDP detects odd integers.

The function FOLLOWLINE is convenient when using the function PRIN2.
It allows one to format output text in a much more flexible way than with the
function WRITE.
Try the following examples :

<<prin2 2; prin2 5>>$ ==> ?

<<prin2 2; followline(5); prin2 5;>>; ==> ?

The function == is a short and convenient notation for the SET function. In
fact it is a generalization of it to allow one to deal also with KERNELS:

operator op;

op(x):=abs(x)$

op(x) == x; ==> x

op(x); ==> x

abs(x); ==> x

The function RANDOMLIST generates a list of random numbers. It takes two
arguments which are both integers. The first one indicates the range inside
which the random numbers are chosen. The second one indicates how many
numbers are to be generated. Its output is the list of generated numbers.
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RANDOMLIST(10,5); ==> {2,1,3,9,6}

MKRANDTABL generates a table of random numbers. This table is either a
one or two dimensional array. The base of random numbers may be either an
integer or a decimal number. In this last case, to work properly, the switch
rounded must be ON. It has three arguments. The first is either a one
integer or a two integer list. The second is the base chosen to generate the
random numbers. The third is the chosen name for the generated array. In
the example below a two-dimensional table of random integers is generated
as array elements of the identifier ar.

MKRANDTABL({3,4},10,ar); ==>

*** array ar redefined

{3,4}

The output is the dimension of the constructed array.

PERMUTATIONS gives the list of permutations of n objects. Each permuta-
tion is itself a list. CYCLICPERMLIST gives the list of cyclic permutations.
For both functions, the argument may also be a bag.

PERMUTATIONS {1,2} ==> {{1,2},{2,1}}

CYCLICPERMLIST {1,2,3} ==>

{{1,2,3},{2,3,1},{3,1,2}}

PERM_TO_NUM and NUM_TO_PERM allow to associate to a given permu-
tation of n numbers or identifiers a number between 0 and n! − 1. The first
function has the two permutated lists as its arguments and it returns an in-
teger. The second one has an integer as its first argument and a list as its
second argument. It returns the list of permutated objects.

PERM_TO_NUM({4,3,2,1},{1,2,3,4}) ==> 23

NUM_TO_PERM(23,{1,2,3,4}); ==> {4,3,2,1}

COMBNUM gives the number of combinations of n objects taken p at a time.
It has the two integer arguments n and p.

COMBINATIONS gives a list of combinations on n objects taken p at a time.
It has two arguments. The first one is a list (or a bag) and the second one is
the integer p.
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COMBINATIONS({1,2,3},2) ==> {{2,3},{1,3},{1,2}}

REMSYM is a command that suppresses the effect of the REDUCE com-
mands symmetric or antisymmetric .

SYMMETRIZE is a powerful function which generates a symmetric expres-
sion. It has 3 arguments. The first is a list (or a list of lists) containing the
expressions which will appear as variables for a kernel. The second argu-
ment is the kernel-name and the third is a permutation function which exists
either in algebraic or symbolic mode. This function may be constructed
by the user. Within this package the two functions PERMUTATIONS and
CYCLICPERMLIST may be used. Examples:

ll:={a,b,c}$

SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(A,B,C) + OP(B,C,A) + OP(C,A,B)

SYMMETRIZE(list ll,op,cyclicpermlist); ==>

OP({A,B,C}) + OP({B,C,A}) + OP({C,A,B})

Notice that, taking for the first argument a list of lists gives rise to an ex-
pression where each kernel has a list as argument. Another peculiarity of
this function is the fact that, unless a pattern matching is made on the oper-
ator OP, it needs to be reevaluated. This peculiarity is convenient when OP
is an abstract operator if one wants to control the subsequent simplification
process. Here is an illustration:

op(a,b,c):=a*b*c$

SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(A,B,C) + OP(B,C,A) + OP(C,A,B)

REVAL ws; ==>

OP(B,C,A) + OP(C,A,B) + A*B*C

for all x let op(x,a,b)=sin(x*a*b);

SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(B,C,A) + SIN(A*B*C) + OP(A,B,C)
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The functions SORTNUMLIST and SORTLIST are functions which sort
lists. They use the bubblesort and the quicksort algorithms.

SORTNUMLIST takes as argument a list of numbers. It sorts it in increasing
order.

SORTLIST is a generalization of the above function. It sorts the list accord-
ing to any well defined ordering. Its first argument is the list and its second
argument is the ordering function. The content of the list need not necessar-
ily be numbers but must be such that the ordering function has a meaning.
ALGSORT exploits the PSL SORT function. It is intended to replace the two
functions above.

l:={1,3,4,0}$ SORTNUMLIST l; ==> {0,1,3,4}

ll:={1,a,tt,z}$ SORTLIST(ll,ordp); ==> {a,z,tt,1}

l:={-1,3,4,0}$ ALGSORT(l,>); ==> {4,3,0,-1}

It is important to realise that using these functions for kernels or bags may
be dangerous since they are destructive. If it is necessary, it is recommended
to first apply KERNLIST to them to act on a copy.

The function EXTREMUM is a generalization of the already defined functions
MIN, MAX to include general orderings. It is a 2 argument function. The
first is the list and the second is the ordering function. With the list ll
defined in the last example, one gets

EXTREMUM(ll,ordp); ==> 1

GCDNL takes a list of integers as argument and returns their gcd.

iii. There are four functions to identify dependencies. FUNCVAR takes any ex-
pression as argument and returns the set of variables on which it depends.
Constants are eliminated.

FUNCVAR(e+pi+sin(log(y)); ==> {y}

DEPATOM has an atom as argument. It returns it if it is a number or if no
dependency has previously been declared. Otherwise, it returns the list of
variables which the prevoius DEPEND declarations imply.

depend a,x,y;

DEPATOM a; ==> {x,y}

The functions EXPLICIT and IMPLICIT make explicit or implicit the de-
pendencies. This example shows how they work:
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depend a,x; depend x,y,z;

EXPLICIT a; ==> a(x(y,z))

IMPLICIT ws; ==> a

These are useful when one wants to trace the names of the independent vari-
ables and (or) the nature of the dependencies.

KORDERLIST is a zero argument function which displays the actual order-
ing.

korder x,y,z;

KORDERLIST; ==> (x,y,z)

iv. A command REMNONCOM to remove the non-commutativity of operators
previously declared non-commutative is available. Its use is like the one of
the command NONCOM.

v. Filtering functions for lists.

CHECKPROPLIST is a boolean function which checks if the elements of a
list have a definite property. Its first argument is the list, its second argument
is a boolean function (FIXP NUMBERP . . .) or an ordering function (as
ORDP).

EXTRACTLIST extracts from the list given as its first argument the elements
which satisfy the boolean function given as its second argument. For exam-
ple:

if CHECKPROPLIST({1,2},fixp) then "ok"; ==> ok

l:={1,a,b,"st")$

EXTRACTLIST(l,fixp); ==> {1}

EXTRACTLIST(l,stringp); ==> {st}

vi. Coercion.

Since lists and arrays have quite distinct behaviour and storage properties,
it is interesting to coerce lists into arrays and vice-versa in order to fully
exploit the advantages of both datatypes. The functions ARRAY_TO_LIST
and LIST_TO_ARRAY are provided to do that easily. The first function has
the array identifier as its unique argument. The second function has three
arguments. The first is the list, the second is the dimension of the array
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and the third is the identifier which defines it. If the chosen dimension is
not compatible with the the list depth, an error message is issued. As an
illustration suppose that ar is an array whose components are 1,2,3,4. then

ARRAY_TO_LIST ar; ==> {1,2,3,4}

LIST_TO_ARRAY({1,2,3,4},1,arr}; ==>

generates the array arr with the components 1,2,3,4.

vii. Control of the HEPHYS package.

The commands REMVECTOR and REMINDEX remove the property of being
a 4-vector or a 4-index respectively.

The function MKGAM allows to assign to any identifier the property of a Dirac
gamma matrix and, eventually, to suppress it. Its interest lies in the fact that,
during a calculation, it is often useful to transform a gamma matrix into an
abstract operator and vice-versa. Moreover, in many applications in basic
physics, it is interesting to use the identifier g for other purposes. It takes
two arguments. The first is the identifier. The second must be chosen equal
to t if one wants to transform it into a gamma matrix. Any other binding for
this second argument suppresses the property of being a gamma matrix the
identifier is supposed to have.

16.5.8 Properties and Flags

In spite of the fact that many facets of the handling of property lists is easily acces-
sible in algebraic mode, it is useful to provide analogous functions genuine to the
algebraic mode. The reason is that, altering property lists of objects, may easily
destroy the integrity of the system. The functions, which are here described, do
ignore the property list and flags already defined by the system itself. They gen-
erate and track the addtional properties and flags that the user issues using them.
They offer him the possibility to work on property lists so that he can design a
programming style of the “conceptual” type.

i. We first consider “flags”.
To a given identifier, one may associate another one linked to it “in
the background”. The three functions PUTFLAG, DISPLAYFLAG and
CLEARFLAG handle them.

PUTFLAG has 3 arguments. The first one is the identifier or a list of iden-
tifiers, the second one is the name of the flag, and the third one is T (true)
or 0 (zero). When the third argument is T, it creates the flag, when it is 0 it
destroys it. In this last case, the function does return nil (not seen inside the
algebraic mode).
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PUTFLAG(z1,flag_name,t); ==> flag_name

PUTFLAG({z1,z2},flag1_name,t); ==> t

PUTFLAG(z2,flag1_name,0) ==>

DISPLAYFLAG allows one to extract flags. The previous actions give:

DISPLAYFLAG z1; ==>{flag_name,flag1_name}

DISPLAYFLAG z2 ; ==> {}

CLEARFLAG is a command which clears all flags associated with the iden-
tifiers id1, . . . , idn.

ii. Properties are handled by similar functions. PUTPROP has four arguments.
The second argument is, here, the indicator of the property. The third argu-
ment may be any valid expression. The fourth one is also T or 0.

PUTPROP(z1,property,x^2,t); ==> z1

In general, one enters

PUTPROP(LIST(idp1,idp2,..),<propname>,<value>,T);

To display a specific property, one uses DISPLAYPROP which takes two
arguments. The first is the name of the identifier, the second is the indicator
of the property.

2
DISPLAYPROP(z1,property); ==> {property,x }

Finally, CLEARPROP is a nary commmand which clears all properties of the
identifiers which appear as arguments.

16.5.9 Control Functions

Here we describe additional functions which improve user control on the environ-
ment.

i. The first set of functions is composed of unary and binary boolean functions.
They are:
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ALATOMP x; x is anything.
ALKERNP x; x is anything.
DEPVARP(x,v); x is anything.

(v is an atom or a kernel)

ALATOMP has the value T iff x is an integer or an identifier after it has been
evaluated down to the bottom.

ALKERNP has the value T iff x is a kernel after it has been evaluated down
to the bottom.

DEPVARP returns T iff the expression x depends on v at any level.

The above functions together with PRECP have been declared operator func-
tions to ease the verification of their value.

NORDP is equal to NOT ORDP.

ii. The next functions allow one to analyze and to clean the environment of
REDUCE created by the user while working interactively. Two functions
are provided:
SHOW allows the user to get the various identifiers already assigned and to
see their type. SUPPRESS selectively clears the used identifiers or clears
them all. It is to be stressed that identifiers assigned from the input of files
are ignored. Both functions have one argument and the same options for this
argument:

SHOW (SUPPRESS) all
SHOW (SUPPRESS) scalars
SHOW (SUPPRESS) lists
SHOW (SUPPRESS) saveids (for saved expressions)
SHOW (SUPPRESS) matrices
SHOW (SUPPRESS) arrays
SHOW (SUPPRESS) vectors

(contains vector, index and tvector)
SHOW (SUPPRESS) forms

The option all is the most convenient for SHOW but, with it, it may takes
some time to get the answer after one has worked several hours. When en-
tering REDUCE the option all for SHOW gives:

SHOW all; ==>

scalars are: NIL
arrays are: NIL
lists are: NIL
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matrices are: NIL
vectors are: NIL
forms are: NIL

It is a convenient way to remind the various options. Here is an example
which is valid when one starts from a fresh environment:

a:=b:=1$

SHOW scalars; ==> scalars are: (A B)

SUPPRESS scalars; ==> t

SHOW scalars; ==> scalars are: NIL

iii. The CLEAR function of the system does not do a complete cleaning of
OPERATORS and FUNCTIONS. The following two functions do a more
complete cleaning and, also, automatically takes into account the user flag
and properties that the functions PUTFLAG and PUTPROP may have intro-
duced.

Their names are CLEAROP and CLEARFUNCTIONS. CLEAROP takes one
operator as its argument.
CLEARFUNCTIONS is a nary command. If one issues

CLEARFUNCTIONS a1,a2, ... , an $

The functions with names a1,a2, ... ,an are cleared. One should
be careful when using this facility since the only functions which cannot be
erased are those which are protected with the lose flag.

16.5.10 Handling of Polynomials

The module contains some utility functions to handle standard quotients and sev-
eral new facilities to manipulate polynomials.

i. Two functions ALG_TO_SYMB and SYMB_TO_ALG allow one to change
an expression which is in the algebraic standard quotient form into a prefix
lisp form and vice-versa. This is done in such a way that the symbol list
which appears in the algebraic mode disappears in the symbolic form (there
it becomes a parenthesis “()” ) and it is reintroduced in the translation from
a symbolic prefix lisp expression to an algebraic one. Here, is an exam-
ple, showing how the wellknown lisp function FLATTENS can be trivially
transposed inside the algebraic mode:
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algebraic procedure ecrase x;
lisp symb_to_alg flattens1 alg_to_symb algebraic x;

symbolic procedure flattens1 x;
% ll; ==> ((A B) ((C D) E))
% flattens1 ll; (A B C D E)

if atom x then list x else
if cdr x then

append(flattens1 car x, flattens1 cdr x)
else flattens1 car x;

gives, for instance,

ll:={a,{b,{c},d,e},{{{z}}}}$

ECRASE ll; ==> {A, B, C, D, E, Z}

The function MKDEPTH_ONE described above implements that functional-
ity.

ii. LEADTERM and REDEXPR are the algebraic equivalent of the symbolic
functions LT and RED. They give, respectively, the leading term and the
reductum of a polynomial. They also work for rational functions. Their in-
terest lies in the fact that they do not require one to extract the main variable.
They work according to the current ordering of the system:

pol:=x++y+z$

LEADTERM pol; ==> x

korder y,x,z;

LEADTERM pol; ==> y

REDEXPR pol; ==> x + z

By default, the representation of multivariate polynomials is recursive. It
is justified since it is the one which takes the least memory. With such a
representation, the function LEADTERM does not necessarily extract a true
monom. It extracts a monom in the leading indeterminate multiplied by a
polynomial in the other indeterminates. However, very often, one needs to
handle true monoms separately. In that case, one needs a polynomial in dis-
tributive form. Such a form is provided by the package GROEBNER (H.
Melenk et al.). The facility there is, however, much too involved in many
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applications and the necessity to load the package makes it interesting to
construct an elementary facility to handle the distributive representation of
polynomials. A new switch has been created for that purpose. It is called
DISTRIBUTE and a new function DISTRIBUTE puts a polynomial in dis-
tributive form. With that switch set to on, LEADTERM gives true monoms.

MONOM transforms a polynomial into a list of monoms. It works whatever
the position of the switch DISTRIBUTE.

SPLITTERMS is analoguous to MONOM except that it gives a list of two lists.
The first sublist contains the positive terms while the second sublist contains
the negative terms.

SPLITPLUSMINUS gives a list whose first element is the positive part of
the polynomial and its second element is its negative part.

iii. Two complementary functions LOWESTDEG and DIVPOL are provided. The
first takes a polynomial as its first argument and the name of an indeterminate
as its second argument. It returns the lowest degree in that indeterminate.
The second function takes two polynomials and returns both the quotient
and its remainder.

16.5.11 Handling of Transcendental Functions

The functions TRIGREDUCE and TRIGEXPAND and the equivalent ones for hy-
perbolic functions HYPREDUCE and HYPEXPAND make the transformations to
multiple arguments and from multiple arguments to elementary arguments. Here
is a simple example:

aa:=sin(x+y)$

TRIGEXPAND aa; ==> SIN(X)*COS(Y) + SIN(Y)*COS(X)

TRIGREDUCE ws; ==> SIN(Y + X)

When a trigonometric or hyperbolic expression is symmetric with respect to the in-
terchange of SIN (SINH) and COS (COSH), the application of
TRIG(HYP)-REDUCE may often lead to great simplifications. However, if it is
highly asymmetric, the repeated application of TRIG(HYP)-REDUCE followed
by the use of TRIG(HYP)-EXPAND will lead to more complicated but more sym-
metric expressions:

aa:=(sin(x)^2+cos(x)^2)^3$

TRIGREDUCE aa; ==> 1
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bb:=1+sin(x)^3$

TRIGREDUCE bb; ==>

- SIN(3*X) + 3*SIN(X) + 4
---------------------------

4

TRIGEXPAND ws; ==>

3 2
SIN(X) - 3*SIN(X)*COS(X) + 3*SIN(X) + 4
-------------------------------------------

4

16.5.12 Handling of n-dimensional Vectors

Explicit vectors in EUCLIDEAN space may be represented by list-like or bag-like
objects of depth 1. The components may be bags but may not be lists. Funct-
ions are provided to do the sum, the difference and the scalar product. When the
space-dimension is three there are also functions for the cross and mixed prod-
ucts. SUMVECT, MINVECT, SCALVECT, CROSSVECT have two arguments.
MPVECT has three arguments. The following example is sufficient to explain how
they work:

l:={1,2,3}$

ll:=list(a,b,c)$

SUMVECT(l,ll); ==> {A + 1,B + 2,C + 3}

MINVECT(l,ll); ==> { - A + 1, - B + 2, - C + 3}

SCALVECT(l,ll); ==> A + 2*B + 3*C

CROSSVECT(l,ll); ==> { - 3*B + 2*C,3*A - C, - 2*A + B}

MPVECT(l,ll,l); ==> 0
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16.5.13 Handling of Grassmann Operators

Grassman variables are often used in physics. For them the multiplication oper-
ation is associative, distributive but anticommutative. The KERNEL of REDUCE
does not provide it. However, implementing it in full generality would almost cer-
tainly decrease the overall efficiency of the system. This small module together
with the declaration of antisymmetry for operators is enough to deal with most cal-
culations. The reason is, that a product of similar anticommuting kernels can easily
be transformed into an antisymmetric operator with as many indices as the number
of these kernels. Moreover, one may also issue pattern matching rules to imple-
ment the anticommutativity of the product. The functions in this module represent
the minimum functionality required to identify them and to handle their specific
features.

PUTGRASS is a (nary) command which give identifiers the property of being the
names of Grassmann kernels. REMGRASS removes this property.

GRASSP is a boolean function which detects grassmann kernels.

GRASSPARITY takes a monom as argument and gives its parity. If the monom is
a simple grassmann kernel it returns 1.

GHOSTFACTOR has two arguments. Each one is a monom. It is equal to

(-1)**(GRASSPARITY u * GRASSPARITY v)

Here is an illustration to show how the above functions work:

PUTGRASS eta; ==> t

if GRASSP eta(1) then "grassmann kernel"; ==>

grassmann kernel

aa:=eta(1)*eta(2)-eta(2)*eta(1); ==>

AA := - ETA(2)*ETA(1) + ETA(1)*ETA(2)

GRASSPARITY eta(1); ==> 1

GRASSPARITY (eta(1)*eta(2)); ==> 0

GHOSTFACTOR(eta(1),eta(2)); ==> -1

grasskernel:=
{eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
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(~x)*(~x) => 0 when grassp x};

exp:=eta(1)^2$

exp where grasskernel; ==> 0

aa where grasskernel; ==> - 2*ETA(2)*ETA(1)

16.5.14 Handling of Matrices

This module provides functions for handling matrices more comfortably.

i. Often, one needs to construct some UNIT matrix of a given dimension. This
construction is done by the system thanks to the function UNITMAT. It is a
nary function. The command is

UNITMAT M1(n1), M2(n2), .....Mi(ni) ;

where M1,...Mi are names of matrices and n1, n2, ..., ni are
integers.

MKIDM is a generalization of MKID. It allows one to connect two or several
matrices. If u and u1 are two matrices, one can go from one to the other:

matrix u(2,2);$ unitmat u1(2)$

u1; ==>

[1 0]
[ ]
[0 1]

mkidm(u,1); ==>

[1 0]
[ ]
[0 1]

This function allows one to make loops on matrices like in the following
illustration. If U, U1, U2,.., U5 are matrices:

FOR I:=1:5 DO U:=U-MKIDM(U,I);

can be issued.
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ii. The next functions map matrices on bag-like or list-like objects and con-
versely they generate matrices from bags or lists.

COERCEMAT transforms the matrix U into a list of lists. The entry is

COERCEMAT(U,id)

where id is equal to list othewise it transforms it into a bag of bags whose
envelope is equal to id.

BAGLMAT does the opposite job. The first argument is the bag-like or list-
like object while the second argument is the matrix identifier. The entry is

BAGLMAT(bgl,U)

bgl becomes the matrix U . The transformation is not done if U is already
the name of a previously defined matrix. This is to avoid ACCIDENTAL
redefinition of that matrix.

ii. The functions SUBMAT, MATEXTR, MATEXTC take parts of a given ma-
trix.

SUBMAT has three arguments. The entry is

SUBMAT(U,nr,nc)

The first is the matrix name, and the other two are the row and column num-
bers. It gives the submatrix obtained from U by deleting the row nr and the
column nc. When one of them is equal to zero only column nc or row nr
is deleted.

MATEXTR and MATEXTC extract a row or a column and place it into a list-
like or bag-like object. The entries are

MATEXTR(U,VN,nr)

MATEXTC(U,VN,nc)

where U is the matrix, VN is the “vector name”, nr and nc are integers. If
VN is equal to list the vector is given as a list otherwise it is given as a
bag.

iii. Functions which manipulate matrices. They are MATSUBR, MATSUBC,
HCONCMAT, VCONCMAT, TPMAT, HERMAT

MATSUBR MATSUBC substitute rows and columns. They have three argu-
ments. Entries are:
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MATSUBR(U,bgl,nr)

MATSUBC(U,bgl,nc)

The meaning of the variables U, nr, nc is the same as above while bgl
is a list-like or bag-like vector. Its length should be compatible with the
dimensions of the matrix.

HCONCMAT VCONCMAT concatenate two matrices. The entries are

HCONCMAT(U,V)

VCONCMAT(U,V)

The first function concatenates horizontally, the second one concatenates
vertically. The dimensions must match.

TPMAT makes the tensor product of two matrices. It is also an infix function.
The entry is

TPMAT(U,V) or U TPMAT V

HERMAT takes the hermitian conjuguate of a matrix. The entry is

HERMAT(U,HU)

where HU is the identifier for the hermitian matrix of U. It should be unas-
signed for this function to work successfully. This is done on purpose to
prevent accidental redefinition of an already used identifier.

iv. SETELMAT GETELMAT are functions of two integers. The first one resets
the element (i,j) while the second one extracts an element identified by
(i,j). They may be useful when dealing with matrices inside procedures.
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16.6 AVECTOR: A vector algebra and calculus package

This package provides REDUCE with the ability to perform vector algebra using
the same notation as scalar algebra. The basic algebraic operations are supported,
as are differentiation and integration of vectors with respect to scalar variables,
cross product and dot product, component manipulation and application of scalar
functions (e.g. cosine) to a vector to yield a vector result.

Author: David Harper.

16.6.1 Introduction

This package 2 is written in RLISP (the LISP meta-language) and is intended for
use with REDUCE 3.4. It provides REDUCE with the ability to perform vector
algebra using the same notation as scalar algebra. The basic algebraic operations
are supported, as are differentiation and integration of vectors with respect to scalar
variables, cross product and dot product, component manipulation and application
of scalar functions (e.g. cosine) to a vector to yield a vector result.

A set of vector calculus operators are provided for use with any orthogonal curvi-
linear coordinate system. These operators are gradient, divergence, curl and del-
squared (Laplacian). The Laplacian operator can take scalar or vector arguments.

Several important coordinate systems are pre-defined and can be invoked by name.
It is also possible to create new coordinate systems by specifying the names of the
coordinates and the values of the scale factors.

16.6.2 Vector declaration and initialisation

Any name may be declared to be a vector, provided that it has not previously been
declared as a matrix or an array. To declare a list of names to be vectors use the
VEC command:

VEC A,B,C;

declares the variables A, B and C to be vectors. If they have already been assigned
(scalar) values, these will be lost.

When a vector is declared using the VEC command, it does not have an initial
value.

If a vector value is assigned to a scalar variable, then that variable will automati-
cally be declared as a vector and the user will be notified that this has happened.

2Reference: Computer Physics Communications, 54, 295-305 (1989)
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A vector may be initialised using the AVEC function which takes three scalar argu-
ments and returns a vector made up from those scalars. For example

A := AVEC(A1, A2, A3);

sets the components of the vector A to A1, A2 and A3.

16.6.3 Vector algebra

(In the examples which follow, V, V1, V2, etc. are assumed to be vectors while S,
S1, S2, etc. are scalars.)

The scalar algebra operators +,-,* and / may be used with vector operands accord-
ing to the rules of vector algebra. Thus multiplication and division of a vector by
a scalar are both allowed, but it is an error to multiply or divide one vector by
another.

V := V1 + V2 - V3; Addition and subtraction
V := S1*3*V1; Scalar multiplication
V := V1/S; Scalar division
V := -V1; Negation

Vector multiplication is carried out using the infix operators DOT and CROSS.
These are defined to have higher precedence than scalar multiplication and divi-
sion.

V := V1 CROSS V2; Cross product
S := V1 DOT V2; Dot product
V := V1 CROSS V2 + V3;
V := (V1 CROSS V2) + V3;

The last two expressions are equivalent due to the precedence of the CROSS oper-
ator.

The modulus of a vector may be calculated using the VMOD operator.

S := VMOD V;

A unit vector may be generated from any vector using the VMOD operator.

V1 := V/(VMOD V);

Components may be extracted from any vector using index notation in the same
way as an array.
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V := AVEC(AX, AY, AZ);
V(0); yields AX
V(1); yields AY
V(2); yields AZ

It is also possible to set values of individual components. Following from above:

V(1) := B;

The vector V now has components AX, B, AZ.

Vectors may be used as arguments in the differentiation and integration routines in
place of the dependent expression.

V := AVEC(X**2, SIN(X), Y);
DF(V,X); yields (2*X, COS(X), 0)
INT(V,X); yields (X**3/3, -COS(X), Y*X)

Vectors may be given as arguments to monomial functions such as SIN, LOG and
TAN. The result is a vector obtained by applying the function component-wise to
the argument vector.

V := AVEC(A1, A2, A3);
SIN(V); yields (SIN(A1), SIN(A2), SIN(A3))

16.6.4 Vector calculus

The vector calculus operators div, grad and curl are recognised. The Laplacian
operator is also available and may be applied to scalar and vector arguments.

V := GRAD S; Gradient of a scalar field
S := DIV V; Divergence of a vector field
V := CURL V1; Curl of a vector field
S := DELSQ S1; Laplacian of a scalar field
V := DELSQ V1; Laplacian of a vector field

These operators may be used in any orthogonal curvilinear coordinate system. The
user may alter the names of the coordinates and the values of the scale factors.
Initially the coordinates are X, Y and Z and the scale factors are all unity.

There are two special vectors : COORDS contains the names of the coordinates in
the current system and HFACTORS contains the values of the scale factors.

The coordinate names may be changed using the COORDINATES operator.

COORDINATES R,THETA,PHI;

This command changes the coordinate names to R, THETA and PHI.
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The scale factors may be altered using the SCALEFACTORS operator.

SCALEFACTORS(1,R,R*SIN(THETA));

This command changes the scale factors to 1, R and R SIN(THETA).

Note that the arguments of SCALEFACTORS must be enclosed in parentheses.
This is not necessary with COORDINATES.

When vector differential operators are applied to an expression, the current set of
coordinates are used as the independent variables and the scale factors are em-
ployed in the calculation. (See, for example, Batchelor G.K. ’An Introduction to
Fluid Mechanics’, Appendix 2.)

Several coordinate systems are pre-defined and may be invoked by name. To see a
list of valid names enter

SYMBOLIC !*CSYSTEMS;

and REDUCE will respond with something like

(CARTESIAN SPHERICAL CYLINDRICAL)

To choose a coordinate system by name, use the command GETCSYSTEM.

To choose the Cartesian coordinate system :

GETCSYSTEM ’CARTESIAN;

Note the quote which prefixes the name of the coordinate system. This is required
because GETCSYSTEM (and its complement PUTCSYSTEM) is a SYMBOLIC pro-
cedure which requires a literal argument.

REDUCE responds by typing a list of the coordinate names in that coordinate
system. The example above would produce the response

(X Y Z)

whilst

GETCSYSTEM ’SPHERICAL;

would produce

(R THETA PHI)

Note that any attempt to invoke a coordinate system is subject to the same restric-



266 CHAPTER 16. USER CONTRIBUTED PACKAGES

tions as the implied calls to COORDINATES and SCALEFACTORS. In particular,
GETCSYSTEM fails if any of the coordinate names has been assigned a value and
the previous coordinate system remains in effect.

A user-defined coordinate system can be assigned a name using the command
PUTCSYSTEM. It may then be re-invoked at a later stage using GETCSYSTEM.

Example 5

We define a general coordinate system with coordinate names X,Y,Z and scale fac-
tors H1,H2,H3 :

COORDINATES X,Y,Z;
SCALEFACTORS(H1,H2,H3);
PUTCSYSTEM ’GENERAL;

This system may later be invoked by entering

GETCSYSTEM ’GENERAL;

16.6.5 Volume and Line Integration

Several functions are provided to perform volume and line integrals. These operate
in any orthogonal curvilinear coordinate system and make use of the scale factors
described in the previous section.

Definite integrals of scalar and vector expressions may be calculated using the
DEFINT function.

Example 6

To calculate the definite integral of sin(x)2 between 0 and 2π we enter

DEFINT(SIN(X)**2,X,0,2*PI);

This function is a simple extension of the INT function taking two extra arguments,
the lower and upper bounds of integration respectively.

Definite volume integrals may be calculated using the VOLINTEGRAL function
whose syntax is as follows :

VOLINTEGRAL(integrand, vector lower-bound, vector upper-bound);

Example 7

In spherical polar coordinates we may calculate the volume of a sphere by integrat-
ing unity over the range r=0 to RR, θ=0 to PI, φ=0 to 2*π as follows :
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VLB := AVEC(0,0,0); Lower bound
VUB := AVEC(RR,PI,2*PI); Upper bound in r, θ, φ respectively
VOLINTORDER := (0,1,2); The order of integration
VOLINTEGRAL(1,VLB,VUB);

Note the use of the special vector VOLINTORDER which controls the order in
which the integrations are carried out. This vector should be set to contain the
number 0, 1 and 2 in the required order. The first component of VOLINTORDER
contains the index of the first integration variable, the second component is the
index of the second integration variable and the third component is the index of the
third integration variable.

Example 8

Suppose we wish to calculate the volume of a right circular cone. This is equivalent
to integrating unity over a conical region with the bounds:

z = 0 to H (H = the height of the cone)
r = 0 to pZ (p = ratio of base diameter to height)
phi = 0 to 2*PI

We evaluate the volume by integrating a series of infinitesimally thin circular disks
of constant z-value. The integration is thus performed in the order : d(φ) from 0 to
2π, dr from 0 to p*Z, dz from 0 to H. The order of the indices is thus 2, 0, 1.

VOLINTORDER := AVEC(2,0,1);
VLB := AVEC(0,0,0);
VUB := AVEC(P*Z,H,2*PI);
VOLINTEGRAL(1,VLB,VUB);

(At this stage, we replace P*H by RR, the base radius of the cone, to obtain the
result in its more familiar form.)

Line integrals may be calculated using the LINEINT and DEFLINEINT funct-
ions. Their general syntax is

LINEINT(vector-function, vector-curve, variable);

DEFLINENINT(vector-function, vector-curve, variable, lower-bound,
upper-bound);

where

vector-function is any vector-valued expression;

vector-curve is a vector expression which describes the path of integration in
terms of the independent variable;

variable is the independent variable;

lower-bound
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upper-bound are the bounds of integration in terms of the independent variable.

Example 9

In spherical polar coordinates, we may integrate round a line of constant theta
(‘latitude’) to find the length of such a line. The vector function is thus the tangent
to the ‘line of latitude’, (0,0,1) and the path is (0,LAT,PHI) where PHI is the
independent variable. We show how to obtain the definite integral i.e. from φ = 0
to 2π :

DEFLINEINT(AVEC(0,0,1),AVEC(0,LAT,PHI),PHI,0,2*PI);

16.6.6 Defining new functions and procedures

Most of the procedures in this package are defined in symbolic mode and are in-
voked by the REDUCE expression-evaluator when a vector expression is encoun-
tered. It is not generally possible to define procedures which accept or return vector
values in algebraic mode. This is a consequence of the way in which the REDUCE
interpreter operates and it affects other non-scalar data types as well : arrays cannot
be passed as algebraic procedure arguments, for example.

16.6.7 Acknowledgements

This package was written whilst the author was the U.K. Computer Algebra Sup-
port Officer at the University of Liverpool Computer Laboratory.
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16.7 BIBASIS: A Package for Calculating Boolean Invo-
lutive Bases

Authors: Yuri A. Blinkov and Mikhail V. Zinin

16.7.1 Introduction

Involutive polynomial bases are redundant Gröbner bases of special structure with
some additional useful features in comparison with reduced Gröbner bases [GB98].
Apart from numerous applications of involutive bases [Sei10] the involutive algo-
rithms [Ger05] provide an efficient method for computing reduced Gröbner bases.
A reduced Gröbner basis is a well-determined subset of an involutive basis and can
be easily extracted from the latter without any extra reductions. All this takes place
not only in rings of commutative polynomials but also in Boolean rings.

Boolean Gröbner basis already have already revealed their value and usability in
practice. The first impressive demonstration of practicability of Boolean Gröbner
bases was breaking the first HFE (Hidden Fields Equations) challenge in the pub-
lic key cryptography done in [FJ03] by computing a Boolean Gröbner basis for
the system of quadratic polynomials in 80 variables. Since that time the Boolean
Gröbner bases application area has widen drastically and nowadays there is also
a number of quite successful examples of using Gröbner bases for solving SAT
problems.

During our research we had developed [GZ08b, GZ08a, GZB10] Boolean involu-
tive algorithms based on Janet and Pommaret divisions and applied them to com-
putation of Boolean Gröbner bases. Our implementation of both divisions has
experimentally demonstrated computational superiority of the Pommaret division
implementation. This package BIBASIS is the result of our thorough research in
the field of Boolean Gröbner bases. BIBASIS implements the involutive algorithm
based on Pommaret division in a multivariate Boolean ring.

In section 2 the Boolean ring and its peculiarities are shortly introduced. In section
3 we briefly argue why the involutive algorithm and Pommaret division are good
for Boolean ring while the Buhberger’s algorithm is not. And finally in section 4
we give the full description of BIBASIS package capabilities and illustrate it by
examples.

16.7.2 Boolean Ring

Boolean ring perfectly goes with its name, it is a ring of Boolean functions of n
variables, i.e mappings from {0, 1}n to {0, 1}n. Considering these variables are
X := {x1, . . . , xn} and F2 is the finite field of two elements {0, 1}, Boolean ring
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can be regarded as the quotient ring

B [X] := F2[X] / < x2
1 + x1, . . . , x

2
n + xn > .

Multiplication in B [X] is idempotent and addition is nilpotent

∀ b ∈ B [X] : b2 = b , b+ b = 0.

Elements in B [X] are Boolean polynomials and can be represented as finite sums∑
j

∏
x∈Ωj⊆X

x

of Boolean monomials. Each monomial is a conjunction. If set Ω is empty, then
the corresponding monomial is the unity Boolean function 1. The sum of zero
monomials corresponds to zero polynomial, i.e. is zero Boolean function 0.

16.7.3 Pommaret Involutive Algorithm

Detailed description of involutive algorithm can found in [Ger05]. Here we note
that result of both involutive and Buhberger’s algorithms depend on chosen mono-
mial ordering. At that the ordering must be admissible, i.e.

m 6= 1⇐⇒ m � 1, m1 � m2 ⇐⇒ m1m � m2m ∀m,m1,m2.

But as one can easily check the second condition of admissibility does not hold for
any monomial ordering in Boolean ring:

x1 � x2
∗x1−−−−→ x1 ∗ x1 � x2 ∗ x2 −−→ x1 ≺ x1x2

Though B [X] is a principal ideal ring, boolean singleton {p} is not necessarily a
Gröbner basis of ideal < p >, for example:

x1, x2 ∈< x1x2 + x1 + x2 >⊂ B [x1, x2].

That the reason why one cannot apply the Buhberger’s algorithm directly in a
Boolean ring, using instead a ring F2[X] and the field binomials x2

1 +x1, . . . , x
2
n+

xn.

The involutive algorithm based on Janet division has the same disadvantage unlike
the Pommaret division algorithm as shown in [GZ08b]. The Pommaret division
algorithm can be applied directly in a Boolean ring and admits effective data struc-
tures for monomial representation.
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16.7.4 BIBASIS Package

The package BIBASIS implements the Pommaret division algorithm in a Boolean
ring. The first step to using the package is to load it:

1: load_package bibasis;

The current version of the BIBASIS user interface consists only of 2 functions:
bibasis and bibasis_print_statistics.

The bibasis is the function that performs all the computation and has the fol-
lowing syntax:

bibasis(initial_polynomial_list, variables_list,
monomial_ordering, reduce_to_groebner);

Input:

• initial_polynomial_list is the list of polynomials containing the
known basis of initial Boolean ideal. All given polynomials are treated mod-
ulo 2. See Example 1.

• variables_list is the list of independent variables in decreasing order.

• monomial_ordering is a chosen monomial ordering and the supported
ones are:

lex – pure lexicographical ordering;

deglex – degree lexicographic ordering;

degrevlex – degree reverse lexicographic.

See Examples 2–4 to check that Gröbner (as well as involutive) basis de-
pends on monomial ordering.

• reduce_to_groebner is a Boolean value, if it is t the output is the
reduced Boolean Gröbner basis, if nil, then the reduced Boolean Pommaret
basis. Examples 5,6 show distinctions between these two outputs.

Output:

• The list of polynomials which constitute the reduced Boolean Gröbner or
Pommaret basis.

The syntax of bibasis_print_statistics is simple:

bibasis_print_statistics();



272 CHAPTER 16. USER CONTRIBUTED PACKAGES

This function prints out a brief statistics for the last invocation of bibasis func-
tion. See Example 7.

16.7.5 Examples

Example 1:

1: load_package bibasis;
2: bibasis({x+2*y}, {x,y}, lex, t);
{x}

Example 2:

1: load_package bibasis;
2: variables :={x0,x1,x2,x3,x4}$
3: polynomials := {x0*x3+x1*x2,x2*x4+x0}$
4: bibasis(polynomials, variables, lex, t);
{x0 + x2*x4,x2*(x1 + x3*x4)}

Example 3:

1: load_package bibasis;
2: variables :={x0,x1,x2,x3,x4}$
3: polynomials := {x0*x3+x1*x2,x2*x4+x0}$
4: bibasis(polynomials, variables, deglex, t);
{x1*x2*(x3 + 1),
x1*(x0 + x2),
x0*(x2 + 1),
x0*x3 + x1*x2,
x0*(x4 + 1),
x2*x4 + x0}

Example 4:

1: load_package bibasis;
2: variables :={x0,x1,x2,x3,x4}$
3: polynomials := {x0*x3+x1*x2,x2*x4+x0}$
4: bibasis(polynomials, variables, degrevlex, t);
{x0*(x1 + x3),
x0*(x2 + 1),
x1*x2 + x0*x3,
x0*(x4 + 1),
x2*x4 + x0}
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Example 5:

1: load_package bibasis;
2: variables :={x,y,z}$
3: polinomials := {x, z}$
4: bibasis(polinomials, variables, degrevlex, t);
{x,z}

Example 6:

1: load_package bibasis;
2: variables :={x,y,z}$
3: polinomials := {x, z}$
4: bibasis(polinomials, variables, degrevlex, nil);
{x,z,y*z}

Example 7:

1: load_package bibasis;
2: variables :={u0,u1,u2,u3,u4,u5,u6,u7,u8,u9}$
3: polinomials := {u0*u1+u1*u2+u1+u2*u3+u3*u4+u4*u5+u5*u6+u6*u7+u7*u8+u8*u9,
3: u0*u2+u1+u1*u3+u2*u4+u2+u3*u5+u4*u6+u5*u7+u6*u8+u7*u9,
3: u0*u3+u1*u2+u1*u4+u2*u5+u3*u6+u3+u4*u7+u5*u8+u6*u9,
3: u0*u4+u1*u3+u1*u5+u2+u2*u6+u3*u7+u4*u8+u4+u5*u9,
3: u0*u5+u1*u4+u1*u6+u2*u3+u2*u7+u3*u8+u4*u9+u5,
3: u0*u6+u1*u5+u1*u7+u2*u4+u2*u8+u3+u3*u9+u6,
3: u0*u7+u1*u6+u1*u8+u2*u5+u2*u9+u3*u4+u7,
3: u0*u8+u1*u7+u1*u9+u2*u6+u3*u5+u4+u8,
3: u0+u1+u2+u3+u4+u5+u6+u7+u8+u9+1}$
4: bibasis(polinomials, variables, degrevlex, t);
{u3*u6,
u3*u7,
u7*(u6 + 1),
u3*u8,
u6*u8 + u6 + u7,
u7*u8,
u3*(u9 + 1),
u6*u9 + u7,
u7*(u9 + 1),
u8*u9 + u6 + u7 + u8,
u0 + u3 + u6 + u9 + 1,
u1 + u7,
u2 + u7 + u8,
u4 + u6 + u8,
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u5 + u6 + u7 + u8}
5: bibasis_print_statistics();

Variables order = u0 > u1 > u2 > u3 > u4 > u5 > u6 > u7 > u8 > u9
Normal forms calculated = 216

Non-zero normal forms = 85
Reductions made = 4488

Time: 270 ms
GC time: 0 ms
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16.8 BOOLEAN: A package for boolean algebra

This package supports the computation with boolean expressions in the proposi-
tional calculus. The data objects are composed from algebraic expressions con-
nected by the infix boolean operators and, or, implies, equiv, and the unary prefix
operator not. Boolean allows you to simplify expressions built from these oper-
ators, and to test properties like equivalence, subset property etc.

Author: Herbert Melenk.

16.8.1 Introduction

The package Boolean supports the computation with boolean expressions in the
propositional calculus. The data objects are composed from algebraic expressions
(“atomic parts”, “leafs”) connected by the infix boolean operators and, or, im-
plies, equiv, and the unary prefix operator not. Boolean allows you to simplify
expressions built from these operators, and to test properties like equivalence, sub-
set property etc. Also the reduction of a boolean expression by a partial evaluation
and combination of its atomic parts is supported.

16.8.2 Entering boolean expressions

In order to distinguish boolean data expressions from boolean expressions in the
REDUCE programming language (e.g. in an if statement), each expression must
be tagged explicitly by an operator boolean. Otherwise the boolean operators
are not accepted in the REDUCE algebraic mode input. The first argument of
boolean can be any boolean expression, which may contain references to other
boolean values.

boolean (a and b or c);
q := boolean(a and b implies c);
boolean(q or not c);

Brackets are used to override the operator precedence as usual. The leafs or atoms
of a boolean expression are those parts which do not contain a leading boolean
operator. These are considered as constants during the boolean evaluation. There
are two pre-defined values:

• true, t or 1

• false, nil or 0

These represent the boolean constants. In a result form they are used only as 1 and
0.
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By default, a boolean expression is converted to a disjunctive normal form, that is
a form where terms are connected by or on the top level and each term is set of
leaf expressions, eventually preceded by not and connected by and. An operators
or or and is omitted if it would have only one single operand. The result of the
transformation is again an expression with leading operator boolean such that the
boolean expressions remain separated from other algebraic data. Only the boolean
constants 0 and 1 are returned untagged.

On output, the operators and and or are represented as /\ and \/, respectively.

boolean(true and false); -> 0
boolean(a or not(b and c)); -> boolean(not(b) \/ not(c) \/ a)
boolean(a equiv not c); -> boolean(not(a)/\c \/ a/\not(c))

16.8.3 Normal forms

The disjunctive normal form is used by default. It represents the “natural” view
and allows us to represent any form free or parentheses. Alternatively a conjunc-
tive normal form can be selected as simplification target, which is a form with
leading operator and. To produce that form add the keyword and as an additional
argument to a call of boolean.

boolean (a or b implies c);
->

boolean(not(a)/\not(b) \/ c)

boolean (a or b implies c, and);
->

boolean((not(a) \/ c)/\(not(b) \/ c))

Usually the result is a fully reduced disjunctive or conjuntive normal form, where
all redundant elements have been eliminated following the rules

a ∧ b ∨ ¬a ∧ b←→ b

a ∨ b ∧ ¬a ∨ b←→ b

Internally the full normal forms are computed as intermediate result; in these forms
each term contains all leaf expressions, each one exactly once. This unreduced
form is returned when you set the additional keyword full:

boolean (a or b implies c, full);
->

boolean(a/\b/\c \/ a/\not(b)/\c \/ not(a)/\b/\c \/ not(a)/\not(b)/\c
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\/ not(a)/\not(b)/\not(c))

The keywords full and and may be combined.

16.8.4 Evaluation of a boolean expression

If the leafs of the boolean expression are algebraic expressions which may eval-
uate to logical values because the environment has changed (e.g. variables have
been bound), you can re–investigate the expression using the operator testbool
with the boolean expression as argument. This operator tries to evaluate all leaf
expressions in REDUCE boolean style. As many terms as possible are replaced
by their boolean values; the others remain unchanged. The resulting expression is
contracted to a minimal form. The result 1 (= true) or 0 (=false) signals that the
complete expression could be evaluated.

In the following example the leafs are built as numeric greater test. For using > in
the expressions the greater sign must be declared operator first. The error messages
are meaningless.

operator >;
fm:=boolean(x>v or not (u>v));

->
fm := boolean(not(u>v) \/ x>v)

v:=10$

testbool fm;

***** u - 10 invalid as number

***** x - 10 invalid as number

->
boolean(not(u>10) \/ x>10)

x:=3$
testbool fm;

***** u - 10 invalid as number

->
boolean(not(u>10))

x:=17$
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testbool fm;

***** u - 10 invalid as number

->
1
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16.9 CALI: A package for computational commutative
algebra

Author: Hans-Gert Gräbe.

Key words: affine and projective monomial curves, affine and projective sets of
points, analytic spread, associated graded ring, blowup, border bases, construc-
tive commutative algebra, dual bases, elimination, equidimensional part, extended
Gröbner factorizer, free resolution, Gröbner algorithms for ideals and module,
Gröbner factorizer, ideal and module operations, independent sets, intersections,
lazy standard bases, local free resolutions, local standard bases, minimal gen-
erators, minors, normal forms, pfaffians, polynomial maps, primary decomposi-
tion, quotients, symbolic powers, symmetric algebra, triangular systems, weighted
Hilbert series, primality test, radical, unmixed radical.

16.9.1 Introduction

This package contains algorithms for computations in commutative algebra closely
related to the Gröbner algorithm for ideals and modules. Its heart is a new imple-
mentation of the Gröbner algorithm3 that allows the computation of syzygies, too.
This implementation is also applicable to submodules of free modules with gener-
ators represented as rows of a matrix.

Moreover CALI contains facilities for local computations, using a modern imple-
mentation of Mora’s standard basis algorithm, see [MPT92] and [Grä94b], that
works for arbitrary term orders. The full analogy between modules over the lo-
cal ring k[xv : v ∈ H]m and homogeneous (in fact H-local) modules over
k[xv : v ∈ H] is reflected through the switch . Turn it on (Gröbner basis, the
default) or off (local standard basis) to choose appropriate algorithms automati-
cally. In v. 2.2 we present an unified approach to both cases, using reduction with
bounded ecart for non Noetherian term orders, see [Grä95a] for details. This allows
to have a common driver for the Gröbner algorithm in both cases.

CALI extends also the restricted term order facilities of the groebner package,
defining term orders by degree vector lists, and the rigid implementation of the
sugar idea, by a more flexible ecart vector, in particular useful for local computa-
tions, see [Grä94b].

The package was designed mainly as a symbolic mode programming environment
extending the build-in facilities of REDUCE for the computational approach to
problems arising naturally in commutative algebra. An algebraic mode interface
accesses (in a more rigid frame) all important features implemented symbolically

3The data representation even for polynomials is different from that given in the groebner
package distributed with REDUCE (and rests on ideas used in the dipoly package).
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and thus should be favored for short sample computations.

On the other hand, tedious computations are strongly recommended to be done
symbolically since this allows considerably more flexibility and avoids unneces-
sary translations of intermediate results from CALI’s internal data representation
to the algebraic mode and vice versa. Moreover, one can easily extend the package
with new symbolic mode scripts, or do more difficult interactive computations. For
all these purposes the symbolic mode interface offers substantially more facilities
than the algebraic one.

For a detailed description of special symbolic mode procedures one should consult
the source code and the comments therein. In this manual we can give only a brief
description of the main ideas incorporated into the package CALI. We concentrate
on the data structure design and the description of the more advanced algorithms.
For sample computations from several fields of commutative algebra the reader
may consult also the cali.tst file.

As main topics CALI contains facilities for

• defining rings, ideals and modules,

• computing Gröbner bases and local standard bases,

• computing syzygies, resolutions and (graded) Betti numbers,

• computing (now also weighted) Hilbert series, multiplicities, independent
sets, and dimensions,

• computing normal forms and representations,

• computing sums, products, intersections, quotients, stable quotients, elimi-
nation ideals etc.,

• primality tests, computation of radicals, unmixed radicals, equidimensional
parts, primary decompositions etc. of ideals and modules,

• advanced applications of Gröbner bases (blowup, associated graded ring,
analytic spread, symmetric algebra, monomial curves etc.),

• applications of linear algebra techniques to zero dimensional ideals, as e.g.
the FGLM change of term orders, border bases and affine and projective
ideals of sets of points,

• splitting polynomial systems of equations mixing factorization and the Gröb-
ner algorithm, triangular systems, and different versions of the extended
Gröbner factorizer.
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Below we will use freely without further explanation the notions common for text
books and papers about constructive commutative algebra, assuming the reader to
be familiar with the corresponding ideas and concepts. For further references see
e.g. the text books [BWK93], [CLO92] and [Mis93] or the survey papers [Buc85],
[Buc88] and [Rob89].

Description of the Documents Distributed with CALI

The CALI package contains the following files:

cali.chg

a detailed report of changes from v. 2.1 to v. 2.2. and 2.2.1

cali.log

the output file, that cali.tst should produce with

load_package cali;

out "logfile"$

in "cali.tst";

shut "logfile"$

cali.red

the CALI source file.

cali.tex

this manual.

cali.tst

a test file with various examples and applications of CALI.

CALI should be precompiled as usual, i.e. either using the makefasl utility of RE-
DUCE or “by hand” via

faslout "cali"$
in "cali.red"$
faslend$

and then loaded via

load_package cali;
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Upon successful loading CALI responds with a message containing the version
number and the last update of the distribution.

Feel free to contact me by email if You have problems to get CALI started.
Also comments, hints, bug reports etc. are welcome.

CALI’s Language Concept

From a certain point of view one of the major disadvantage of the current RLISP
(and the underlying PSL) language is the fact that it supports modularity and data
encapsulation only in a rudimentary way. Since all parts of code loaded into a
session are visible all the time, name conflicts between different packages may
occur, will occur (even not issuing a warning message), and are hard to prevent,
since packages are developed (and are still developing) by different research groups
at different places and different time.

A (yet rudimentary) concept of REDUCE packages and modules indicates the di-
rection into what the REDUCE designers are looking for a solution for this general
problem.

CALI (2.0 and higher) follows a name concept for internal procedures to mimick
data encapsulation at a semantical level. We hope this way on the one hand to
resolve the conflicts described above at least for the internal part of CALI and on
the other hand to anticipate a desirable future and already foregoing development
of REDUCE towards a true modularity.

The package CALI is divided into several modules, each of them introducing either
a single new data type together with basic facilities, constructors, and selectors or
a collection of algorithms subject to a common problem. Each module contains in-
ternal procedures, conceptually hidden by this module, local procedures, designed
for a CALI wide use, and global procedures, exported by CALI into the general
(algebraic or symbolic) environment of REDUCE. A header module cali contains
all (fluid) global variables and switches defined by the pacakge CALI.

Along these lines the CALI procedures available in symbolic mode are divided into
three types with the following naming convention:

module!=procedure

internal to the given module.

module_procedure

exported by the given module into the local CALI environment.
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procedure!*

a global procedure usually having a semantically equivalent procedure (possi-
bly with another parameter list) without trailing asterisk in algebraic mode.

There are also symbolic mode equivalents without trailing asterisk, if the algebraic
procedure is not a psopfn, but a symbolic operator. They transfer data to CALI’s
internal structure and call the corresponding procedure with trailing asterisk. CALI
2.2 distinguishes between algebraic and symbolic calls of such a procedure. In
symbolic mode such a procedure calls the corresponding procedure with trailing
asterisk directly without data transfer.

CALI 2.2 follows also a more concise concept for global variables. There are three
types of them:

True fluid global variables,

that are part of the current data structure, as e.g. the current base ring and the
degree vector. They are often locally rebound to be restored after interrupts.

Global variables, stored on the property list of the package name
cali,

that reflect the state of the computational model as e.g. the trace level, the
output print level or the chosen version of the Gröbner basis algorithm. There
are several such parameters in the module dualbases to serve the common dual
basis driver with information for different applications.

Switches,

that allow to choose different branches of algorithms. Note that this concept
interferes with the second one. Different versions of algorithms, that apply
different functions in a common driver, are not implemented through switches.

New and Improved Facilities in v. 2.1

The major changes in v. 2.1 reflect the experience we’ve got from the use of CALI
2.0. The following changes are worth mentioning explicitely:

1. The algebraic rule concept was adapted to CALI. It allows to supply rule
based coefficient domains. This is a more efficient way to deal with (easy)
algebraic numbers than through the arnum package.

2. listtest and listminimize provide an unified concept for different list opera-
tions previously scattered in the source text.
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3. There are several new quotient algorithms at the symbolic level (both the
general element and the intersection approaches are available) and new fea-
tures for the computation of equidimensional hull and equidimensional rad-
ical.

4. A new module scripts offers advanced applications of Gröbner bases.

5. Several advanced procedures initialize a Gröbner basis computation over a
certain intermediate base ring or term order as e.g. eliminate, resolve, matin-
tersect or all primary decomposition procedures. Interrupting a computation
in v. 2.1 now restores the original values of CALI’s global variables, since
all intermediate procedures work with local copies of the global variables.4

This doesn’t apply to advanced procedures that change the current base ring
as e.g. blowup, preimage, sym etc.

New and Improved Facilities in v. 2.2

Version 2.2 (beside bug fixes) incorporates several new facilities of constructive
non linear algebra that we investigated the last two years, as e.g. dual bases, the
Gröbner factorizer, triangular systems, and local standard bases. Essential changes
concern the following topics:

1. The CALI modules red and groeb were rewritten and the module mora was
removed. This is due to new theoretical insight into standard bases theory
as e.g. described in [Grä94b] or [Grä95a]. The Gröbner basis algorithm
is reorganized as a Gröbner driver with simplifier and base lists, that in-
volves different versions of polynomial reduction according to the setting
via gbtestversion. It applies now to both noetherian and non noetherian term
orders in a unified way.

The switches and were removed.

2. The Gröbner factorizer was thoroughly revised, extended along the lines ex-
plained in [Grä94a], and collected into a separate module groebf . It now
allows a list of constraints also in algebraic mode. Two versions of an ex-
tended Gröbner factorizer produce triangular systems, i.e. a decomposition
into quasi prime components, see [Grä95b], that are well suited for further
(numerical) evaluation. There is also a version of the Gröbner factorizer that
allows a list of problems as input. This is especially useful, if a system is
splitted with respect to a “cheap” (e.g. degrevlex) term order and the pieces
are recomputed with respect to a “hard” (e.g. pure lex) term order.

The extended Gröbner factorizer involves, after change to dimension zero,
the computation of triangular systems. The corresponding module triang

4Note that recovering the base ring this way may cause some trouble since the intermediate ring,
installed with setring, changed possibly the internal variable order set by setkorder.
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extends the facilities for zero dimensional ideals and modules in the module
odim.

3. A new module lf implements the dual bases approach as described in
[MMM91]. On this basis there are new implementations of affine_points
and proj_points, that are significantly faster than the old ones. The linear
algebra change of term orders [FGLM93] is available, too. There are two
versions, one with precomputed border basis, the other with conventional
normal forms.

4. dpmats now have a gb-tag that indicates, whether the given ideal or module
basis is already a Gröbner basis. This avoids certain Gröbner basis recompu-
tations especially during advanced algorithms as e.g. prime decomposition.
In the algebraic interface Gröbner bases are computed automatically when
needed rather than to issue an error message as in v. 2.1. So one can call mod-
equalp or dim etc. not having computed Gröbner bases in advance. Note that
such automatic computation can be avoided with setgbasis.

5. Hilbert series are now weighted Hilbert series, since e.g. for blow up rings
the generating ideal is multigraded. Usual Hilbert series are computed as in
v. 2.1 with respect to the ecart vector. Weighted Hilbert series accept a list
of (integer) weight lists as second parameter.

6. There are some name and conceptual changes to existing procedures and
variables to have a more concise semantic concept. This concerns

tracing (the trace parameter is now stored on the property list of
cali and should be set with setcalitrace),
choosing different versions of the Gröbner algorithm (through
gbtestversion) and the Hilbert series computation (through hftestver-
sion),
some names (mat2list replaced flatten, HilbertSeries replaced
hilbseries) and
parameter lists of some local and internal procedures (consult
cali.chg for details).

7. The revlex term order is now the reverse lexicographic term order on the
reversely ordered variables. This is consistent with other computer algebra
systems (e.g. SINGULAR or AXIOM)5 and implies the same order on the
variables for deglex and degrevlex term orders (this was the main reason to
change the definition).

8. Ideals of minors, pfaffians and related stuff are now implemented as exten-
sion of the internal matrix package and collected into a separate module

5But different to the currently distibuted groebner package in REDUCE. Note that the compu-
tations in [Grä94a] were done before these changes.
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calimat. Thus they allow more general expressions, especially with vari-
able exponents, as general REDUCE matrices do. So one can define generic
ideals as e.g. ideals of minors or pfaffians of matrices, containing generic
expressions as elements. They must be specified for further use in CALI
substituting general exponents by integers.

New and Improved Facilities in v. 2.2.1

The main change concerns the primary decomposition algorithm, where I fixed a
serious bug for deciding, which embedded primes are really embedded6. During
that remake I incorporated also the Gröbner factorizer to compute isolated primes.
Since REDUCE has no multivariate modular factorizer, the switch factorprimes
may be turned off to switch to the former algorithm.

Some minor bugs are fixed, too, e.g. the bug that made radical crashing.

16.9.2 The Computational Model

This section gives a short introduction into the data type design of CALI at dif-
ferent levels. First (§1 and 2) we describe CALI’s way of algorithmic translation
of the abstract algebraic objects ring of polynomials, ideal and (finitely generated)
module. Then (§3 and 4) we describe the algebraic mode interface of CALI and
the switches and global variables to drive a session. In the next chapter we give a
more detailed overview of the basic (symbolic mode) data structures involved with
CALI. We refer to the appendix for a short summary of the commands available in
algebraic mode.

The Base Ring

A polynomial ring consists in CALI of the following data:

a list of variable names

All variables not occuring in the list of ring names are treated as parameters.
Computations are executed denominatorfree, but the results are valid only over
the corresponding parameter field extension.

6That there must be a bug was pointed out to me by Shimoyama Takeshi who compared different
p.d. implementations. The bug is due to an incorrect test for embedded primes: A (superfluous)
primary component may contain none of the isolated primary components, but their intersection!
Note that neither [GTZ88] nor [BWK93] comment on that. Details of the implementation will appear
in [Grä97].
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a term order and a term order tag

They describe the way in which the terms in each polynomial (and polynomial
vector) are ordered.

an ecart vector

A list of positive integers corresponding to the variable names.

A base ring may be defined (in algebraic mode) through the command

setring <ring>

with < ring > ::= { vars, tord, tag [, ecart ] } resp.

setring(vars, tord, tag [,ecart])

his sets the global (symbolic) variable cali!=basering. Here vars is the list of
variable names, tord a (possibly empty) list of weight lists, the degree vectors,
and tag the tag LEX or REVLEX. Optionally one can supply ecart, a list of
positive integers of the same length as vars, to set an ecart vector different from
the default one (see below).

The degree vectors must have the same length as vars. If (w1 . . . wk) is the list
of degree vectors then

xa < xb :⇔ either wj(x
a) = wj(x

b) for j < i and

wi(x
a) < wi(x

b)

or wj(x
a) = wj(x

b) for all j and

xa <lex x
b resp. xa <revlex xb

Here <lex resp. <revlex denote the lexicographic (tag=LEX) resp. reverse lexi-
cographic (tag=REVLEX) term orders7 with respect to the variable order given in
vars, i.e.

xa < xb :⇔ ∃ j ∀ i < j : ai = bi and aj < bj (lex.)

or
xa < xb :⇔ ∃ j ∀ i > j : ai = bi and aj > bj (revlex.)

Every term order can be represented in such a way, see [MR88].

During the ring setting the term order will be checked to be Noetherian (i.e. to fulfill
the descending chain condition) provided the switch is on (the default). The same

7The definition of the revlex term order changed for version 2.2.
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applies turning noetherian on: If the term order of the underlying base ring isn’t
Noetherian the switch can’t be turned over. Hence, starting from a non Noetherian
term order, one should define first a new ring and then turn the switch on.

Useful term orders can be defined by the procedures

degreeorder vars,

that returns tord = {{1, . . . , 1}}.

localorder vars,

that returns tord = {{−1, . . . ,−1}} (a non Noetherian term order for compu-
tations in local rings).

eliminationorder(vars,elimvars),

that returns a term order for elimination of the variables in elimvars, a sub-
set of all vars. It’s recommended to combine it with the tag REVLEX.

blockorder(vars,integerlist),

that returns the list of degree vectors for the block order with block lengths
given in the integerlist. Note that these numbers should sum up to the
length of the variable list supplied as the first argument.

Examples:

vars:={x,y,z};
tord:=degreeorder vars; % Returns {{1,1,1}}.
setring(vars,tord,lex); % GRADLEX in the groebner package.

% or

setring({a,b,c,d},{},lex); % LEX in the groebner package.

% or

vars:={a,b,c,x,y,z};
tord:=eliminationorder(vars,{x,y,z});
tord:=reverse blockorder(vars,{3,3});

% Return both {{0,0,0,1,1,1},{1,1,1,0,0,0}}.
setring(vars,tord,revlex);

The base ring is initialized with

{{t,x,y,z},{{1,1,1,1}},revlex,{1,1,1,1}},

i.e. S = k[t, x, y, z] supplied with the degree wise reverse lexicographic term order.
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getring m

returns the ring attached to the object with the identifier m. E.g.

setring getring m

(re)sets the base ring to the base ring of the formerly defined object (ideal or
module) m.

getring()

returns the currently active base ring.

CALI defines also an ecart vector, attaching to each variable a positive weight with
respect to that homogenizations and related algorithms are executed. It may be set
optionally by the user during the setring command. (Default: If the term order is a
(positive) degree order then the ecart is the first degree vector, otherwise each ecart
equals 1).

The ecart vector is used in several places for efficiency reason (Gröbner basis com-
putation with the sugar strategy) or for termination (local standard bases). If the
input is homogeneous the ecart vector should reflect this homogeneity rather than
the first degree vector to obtain the best possible performance. For a discussion of
local computations with encoupled ecart vector see [Grä94b]. In general the ecart
vector is recommended to be chosen in such a way that the input examples become
close to be homogeneous. Homogenizations and Hilbert series are computed with
respect to this ecart vector.

getecart() returns the ecart vector currently set.

Ideals and Modules

If S = k[xv, v ∈ H] is a polynomial ring, a matrix M of size r × c defines a map

f : Sr −→ Sc

by the following rule

f(v) := v ·M for v ∈ Sr.

There are two modules, connected with such a map, im f , the submodule of Sc

generated by the rows of M , and coker f (= Sc/im f). Conceptually we will
identify M with im f for the basic algebra, and with coker f for more advanced
topics of commutative algebra (Hilbert series, dimension, resolution etc.) follow-
ing widely accepted conventions.
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With respect to a fixed basis {e1, . . . , ec} one can define module term orders on Sc,
Gröbner bases of submodules of Sc etc. They generalize the corresponding notions
for ideal bases. See [Eis95] or [MM86] for a detailed introduction to this area of
computational commutative algebra. This allows to define joint facilities for both
ideals and submodules of free modules. Moreover computing syzygies the latter
come in in a natural way.

CALI handles ideal and module bases in a unique way representing them as rows
of a dpmat (distributive polynomial matrix). It attaches to each unit vector ei a
monomial xai , the i-th column degree and represents the rows of a dpmat M as
lists of module terms xaei, sorted with respect to a module term order, that may be
roughly8 described as

xaei < xbej :⇔ either xaxai < xbxaj in S

or xaxai = xbxaj

and
i < j (lex.) resp. i > j (revlex.)

Every dpmat M has its own column degrees (no default !). They are managed
through a global (symbolic) variable cali!=degrees.

getdegrees m

returns the column degrees of the object with identifier m.

getdegrees()

returns the current setting of cali!=degrees.

setdegrees <list of monomials>

sets cali!=degrees correspondingly. Use this command before executing set-
module to give a dpmat prescribed column degrees since cali!=degrees has no
default value and changes during computations. A good guess is to supply
the empty list (i.e. all column degrees are equal to x0). Be careful defining
modules without prescribed column degrees.

To distinguish between ideals and modules the former are represented as a dpmat
with c = 0 (and hence without column degrees). If I ⊂ S is such an ideal one has
to distinguish between the ideal I (with c = 0, allowing special ideal operations as
e.g. ideal multiplication) and the submodule I of the free one dimensional module

8The correct definition is even more difficult.
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S1 (with c = 1, allowing matrix operations as e.g. transposition, matrix multiplica-
tion etc.). ideal2mat converts an (algebraic) list of polynomials into an (algebraic)
matrix column whereas mat2list collects all matrix entries into a list.

The Algebraic Mode Interface

Corresponding to CALI’s general philosophy explained in the introduction the al-
gebraic mode interface translates algebraic input into CALI’s internal data repre-
sentation, calls the corresponding symbolic functions, and retranslates the result
back into algebraic mode. Since Gröbner basis computations may be very tedious
even on small examples, one should find a well balance between the storage of
results computed earlier and the unavoidable time overhead and memory request
associated with the management of these results.

Therefore CALI distinguishes between free and bounded identifiers. Free iden-
tifiers stand only for their value whereas to bounded identifiers several internal
information is attached to their property list for later use.

After the initialization of the base ring bounded identifiers for ideals or modules
should be declared via

setmodule(name,matrix value)

resp.

setideal(name,list of polynomials)

This way the corresponding internal representation (as dpmat) is attached to name
as the property basis, the prefix form as its value and the current base ring as the
property ring.

Performing any algebraic operation on objects defined this way their ring will be
compared with the current base ring (including the term order). If they are different
an error message occurs. If m is a valid name, after resetting the base ring

setmodule(m1,m)

reevaluates m with respect to the new base ring (since the value of m is its prefix
form) and assigns the reordered dpmat to m1 clearing all information previously
computed for m1 (m1 and m may coincide).

All computations are performed with respect to the ring S = k[xv ∈ vars] over
the field k. Nevertheless by efficiency reasons base coefficients are represented in
a denominator free way as standard forms. Hence the computational properties of
the base coefficient domain depend on the dmode and also on auxiliary variables,
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contained in the expressions, but not in the variable list. They are assumed to be
parameters.

Best performance will be obtained with integer or modular domain modes, but one
can also try algebraic numbers as coefficients as e.g. generated by sqrt or the
arnum package. To avoid an unnecessary slow-down connected with the man-
agement of simplified algebraic expressions there is a switch hardzerotest (default:
off) that may be turned on to force an additional simplification of algebraic coeffi-
cients during each zero test. It should be turned on only for domain modes without
canonical representations as e.g. mixtures of arnums and square roots. We remind
the general zero decision problem for such domains.

Alternatively, CALI offers the possibility to define a set of algebraic substitution
rules that will affect CALI’s base coefficient arithmetic only.

setrules <rule list>

transfers the (algebraic) rule list into the internal representation stored at the
cali value rules.
In particular, setrules {} clears the rules previously set.

getrules()

returns the internal CALI rules list in algebraic form.

We recommend to use setrules for computations with algebraic numbers since they
are better adapted to the data structure of CALI than the algebraic numbers pro-
vided by the arnum package. Note, that due to the zero decision problem compli-
cated setrules based computations may produce wrong results if base coefficient’s
pseudo division is involved (as e.g. with dp_pseudodivmod). In this case we rec-
ommend to enlarge the variable set and add the defining equations of the algebraic
numbers to the equations of the problem9.

The standard domain (Integer) doesn’t allow denominators for input. setideal
clears automatically the common denominator of each input expression whereas
a polynomial matrix with true rational coefficients will be rejected by setmodule.

One can save/initialize ideal and module bases together with their accompanying
data (base ring, degrees) to/from a file:

savemat(m,name)

resp.

initmat name
9A qring facility for the computation over quotient rings will be incorporated into future versions.
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execute the file transfer from/to disk files with the specified file name. e.g.

savemat(m,"myfile");

saves the base ring and the ideal basis of m to the file “myfile” whereas

setideal(m,initmat "myfile");

sets the current base ring (via a call to setring) to the base ring of m saved at
“myfile” and then recovers the basis of m from the same file.

Switches and Global Variables

There are several switches, (fluid) global variables, a trace facility, and global pa-
rameters on the property list of the package name cali to control CALI’s compu-
tations.

Switches

bcsimp

on: Cancel out gcd’s of base coefficients. (Default: on)

detectunits

on: replace polynomials of the form
〈monomial〉∗〈polynomial unit〉 by 〈monomial〉 during interreductions and
standard basis computations.
Affects only local computations. (Default: off)

factorprimes

on: Invoke the Gröbner factorizer during computation of isolated primes. (De-
fault: on). Note that REDUCE lacks a modular multivariate factorizer, hence
for modular prime decomposition computations this switch has to be turned
off.

factorunits

on: factor polynomials and remove polynomial unit factors during interreduc-
tions and standard basis computations.
Affects only local computations. (Default: off)

hardzerotest
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on: try an additional algebraic simplification of base coefficients at each base
coefficient’s zero test. Useful only for advanced base coefficient domains with-
out canonical REDUCE representation. May slow down the computation dras-
tically. (Default: off)

lexefgb

on: Use the pure lexicographic term order and zerosolve during reduction to di-
mension zero in the extended Gröbner factorizer. This is a single, but possibly
hard task compared to the degrevlex invocation of zerosolve1. See [Grä95b]
for a discussion of different zero dimensional solver strategies. (Default: off)

Noetherian

on: choose algorithms for Noetherian term orders.
off: choose algorithms for local term orders.
(Default: on)

red_total

on: compute total normal forms, i.e. apply reduction (Noetherian term orders)
or reduction with bounded ecart (non Noetherian term orders to tail terms of
polynomials, too.
off: Do only top reduction.
(Default: on)

Tracing

Different to v. 2.1 now intermediate output during the computations is controlled
by the value of the trace and printterms entries on the property list of the
package name cali. The former value controls the intensity of the intermedi-
ate output (Default: 0, no tracing), the latter the number of terms printed in such
intermediate polynomials (Default: all).

setcalitrace <n>

changes the trace intensity. Set n = 2 for a sparse tracing (a dot for each
reduction step). Other good suggestions are the values 30 or 40 for tracing
the Gröbner algorithm or n > 70 for tracing the normal form algorithm. The
higher n the more intermediate information will be given.

setcaliprintterms <n>

sets the number of terms that are printed in intermediate polynomials. Note
that this does not affect the output of whole dpmats. The output of polynomials
with more than n terms (n > 0) breaks off and continues with ellipses.
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clearcaliprintterms()

clears the printterms value forcing full intermediate output (according to
the current trace level).

Global Variables

cali!=basering

The currently active base ring initialized e.g. by setring.

cali!=degrees

The currently active module component degrees initialized e.g. by setdegrees.

cali!=monset

A list of variable names considered as non zero divisors during Gröbner ba-
sis computations initialized e.g. by setmonset. Useful e.g. for binomial ideals
defining monomial varieties or other prime ideals.

Entries on the Property List of cali

This approach is new for v. 2.2. Information concerning the state of the computa-
tional model as e.g. trace intensity, base coefficient rules, or algorithm versions are
stored as values on the property list of the package name cali. This concerns

trace and printterms

see above.

efgb

Changed by the switch lexefgb.

groeb!=rf

Reduction function invoked during the Gröbner algorithm. It can be changed
with gbtestversion < n > (n = 1, 2, 3, default is 1).

hf!=hf

Variant for the computation of the Hilbert series numerator. It can be changed
with hftestversion < n > (n = 1, 2, default is 1).

rules

Algebraic “replaceby” rules introduced to CALI with the setrules command.
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evlf , varlessp, sublist, varnames, oldborderbasis, oldring, oldbasis

see module lf , implementing the dual bases approach.

16.9.3 Basic Data Structures

In the following we describe the data structure layers underlying the dpmat rep-
resentation in CALI and some important (symbolic) procedures to handle them.
We refer to the source code and the comments therein for a more complete survey
about the procedures available for different data types.

The Coefficient Domain

Base coefficients as implemented in the module bcsf are standard forms in the vari-
ables outside the variable list of the current ring. All computations are executed
"denominator free" over the corresponding quotient field, i.e. gcd’s are canceled
out without request. To avoid this set the switch bcsimp off.10 In the given imple-
mentation we use the s.f. procedure qremf for effective divisibility test. We had
some trouble with it under on factor.

Additionally it is possible to supply the parameters occuring as base coefficients
with a (global) set of algebraic rules.11

setrules!* r

converts an algebraic mode rules list r as e.g. used in WHERE statements into
the internal CALI format.

The Base Ring

The base ring is defined by its name list, the degree matrix (a list of lists
of integers), the ring tag (LEX or REVLEX), and the ecart. The name list
contains a phantom name cali!=mk for the module component at place 0.

The module ring exports among others the selectors ring_names, ring_degrees,
ring_tag, ring_ecart, the test function ring_isnoetherian and the transfer pro-
cedures from/to an (appropriate, printable by mathprint) algebraic prefix form

10This induces a rapid base coefficient’s growth and doesn’t yield Z-Gröbner bases in the sense of
[GTZ88] since the S-pair criteria are different.

11This is different from the LET rule mechanism since they must be present in symbolic mode.
Hence for a simultaneous application of the same rules in algebraic mode outside CALI they must
additionally be declared in the usual way.
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ring_from_a (including extensive tests of the supplied parameters for consistency)
and ring_2a.

The following procedures allow to define a base ring:

ring_define(name list, degree matrix, ring tag, ecart)

combines the given parameters to a ring.

setring!* <ring>

sets cali!=basering and checks for consistency with the switch Noetherian. It
also sets through setkorder the current variable list as main variables. It is
strongly recommended to use setring!* . . . instead of cali!=basering:=. . . .

degreeorder!* , localorder!*, eliminationorder!*, and blockorder!*
define term order matrices in full analogy to algebraic mode.

There are three ring constructors for special purposes:

ring_sum(a,b)

returns a ring, that is constructed in the following way: Its variable list is the
union of the (disjoint) lists of the variables of the rings a and b (in this order)
whereas the degree list is the union of the (appropriately shifted) degree lists of
b and a (in this order). The ring tag is that of a. Hence it returns (essentially)
the ring b

⊕
a if b has a degree part (e.g. useful for elimination problems,

introducing “big” new variables) and the ring a
⊕
b if b has no degree part

(introducing “small” new variables).

ring_rlp(r,u)

u is a subset of the names of the ring r. Returns the ring r, but with a term
order “first degrevlex on u, then the order on r”.

ring_lp(r,u)

As rlp, but with a term order “first lex on u, then the order on r”.

Example:

vars:=’(x y z)
setring!* ring_define(vars,degreeorder!* vars,’lex,’(1 1 1));

% GRADLEX in the groebner package.
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Monomials

The current version uses a place-driven exponent representation closely related to
a vector model. This model handles term orders on S and module term orders
on Sc in a unique way. The zero component of the exponent list of a monomial
contains its module component (> 0) or 0 (ring element). All computations are
executed with respect to a current ring (cali!=basering) and current (monomial)
weights of the free generators ei, i = 1, . . . , c, of Sc (cali!=degrees). For efficiency
reasons every monomial has a precomputed degree part that should be reevaluated
if cali!=basering (i.e. the term order) or cali!=degrees were changed.
cali!=degrees contains the list of column degrees of the current module as
an assoc. list and will be set automatically by (almost) all dpmat procedure calls.
Since monomial operations use the degree list that was precomputed with respect
to fixed column degrees (and base ring)

watch carefully for cali!=degrees programming at the mono-
mial or dpoly level !

As procedures there are selectors for the module component, the exponent and
the degree parts, comparison procedures, procedures for the management of the
module component and the degree vector, monomial arithmetic, transfer from/to
prefix form, and more special tools.

Polynomials and Polynomial Vectors

CALI uses a distributive representation as a list of terms for both polynomials and
polynomial vectors, where a term is a dotted pair

(< monomial > . < base coefficient >).

The ecart of a polynomial (vector) f =
∑
ti with (module) terms ti is defined as

max(ec(ti))− ec(lt(ti)),

see [Grä94b]. Here ec(ti) denotes the ecart of the term ti, i.e. the scalar product of
the exponent vector of ti (including the monomial weight of the module generator)
with the ecart vector of the current base ring.

As procedures there are selectors, dpoly arithmetic including the management of
the module component, procedures for reordering (and reevaluating) polynomials
wrt. new term order degrees, for extracting common base coefficient or monomial
factors, for transfer from/to prefix form and for homogenization and dehomoge-
nization (wrt. the current ecart vector).

Two advanced procedures use ideal theory ingredients:
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dp_pseudodivmod(g,f)

returns a dpoly list {q, r, z} such that z · g = q · f + r and z is a dpoly unit
(i.e. a scalar for Noetherian term orders). For non Noetherian term orders the
necessary modifications are described in [Grä95a].
g, f and r belong to the same free module or ideal.

dpgcd(a,b)

computes the gcd of two dpolys a and b by the syzygy method: The syzygy
module of {a, b} is generated by a single element [−b0 a0] with a = ga0, b =
gb0, where g is the gcd of a and b. Since it uses dpoly pseudodivision it may
work not properly with setrules.

Base Lists

Ideal bases are one of the main ingredients for dpmats. They are represented as
lists of base elements and contain together with each dpoly entry the following
information:

• a number (the row number of the polynomial vector in the corresponding
dpmat).

• the dpoly, its ecart (as the main sort criterion), and length.

• a representation part, that may contain a representation of the given dpoly in
terms of a certain fixed basis (default: empty).

The representation part is managed during normal form computations and other
row arithmetic of dpmats appropriately with the following procedures:

bas_setrelations b

sets the relation part of the base element i in the base list b to ei.

bas_removerelations b

removes all relations, i.e. replaces them with the zero polynomial vector.

bas_getrelations b

gets the relation part of b as a separate base list.

Further there are procedures for selection and construction of base elements and for
the manipulation of lists of base elements as e.g. sorting, renumbering, reordering,
simplification, deleting zero base elements, transfer from/to prefix form, homoge-
nization and dehomogenization.
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Dpoly Matrices

Ideals and matrices, represented as dpmats, are the central data type of the CALI
package, as already explained above. Every dpmat m combines the following in-
formation:

• its size (dpmat_rows m,dpmat_cols m),

• its base list (dpmat_list m) and

• its column degrees as an assoc. list of monomials (dpmat_coldegs m). If this
list is empty, all degrees are assumed to be equal to x0.

• New in v. 2.2 there is a gb-tag (dpmat_gbtag m), indicating that the given
base list is already a Gröbner basis (under the given term order).

The module dpmat contains selectors, constructors, and the algorithms for the basic
management of this data structure as e.g. file transfer, transfer from/to algebraic
prefix forms, reordering, simplification, extracting row degrees and leading terms,
dpmat matrix arithmetic, homogenization and dehomogenization.

The modules matop and quot collect more advanced procedures for the algebraic
management of dpmats.

Extending the REDUCE Matrix Package

In v. 2.2 minors, Jacobian matrix, and Pfaffians are available for general REDUCE
matrices. They are collected in the module calimat and allow to define procedures
in more generality, especially allowing variable exponents in polynomial expres-
sions. Such a generalization is especially useful for the investigation of whole
classes of examples that may be obtained from a generic one by specialization. In
the following m is a matrix given in algebraic prefix form.

matjac(m,l)

returns the Jacobian matrix of the ideal m (given as an algebraic mode list)
with respect to the variable list l.

minors(m,k)

returns the matrix of k-minors of the matrix m.

ideal_of_minors(m,k)

returns the ideal of the k-minors of the matrix m.
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pfaffian m

returns the pfaffian of a skewsymmetric matrix m.

ideal_of_pfaffians(m,k)

returns the ideal of the 2k-pfaffians of the skewsymmetric matrix m.

random_linear_form(vars,bound)

returns a random linear form in algebraic prefix form in the supplied variables
vars with integer coefficients bounded by the supplied bound.

singular_locus!*(m,c)

returns the singular locus of m (as dpmat). m must be an ideal of codimension
c given as a list of polynomials in prefix form. Singular_locus computes
the ideal generated by the corresponding Jacobian and m itself.

16.9.4 About the Algorithms Implemented in CALI

Below we give a short explanation of the main algorithmic ideas of CALI and the
way they are implemented and may be accessed (symbolically).

Normal Form Algorithms

For v. 2.2 we completely revised the implementation of normal form algorithms
due to the insight obtained from our investigations of normal form procedures
for local term orders in [Grä95a] and [Grä94b]. It allows a common handling
of Noetherian and non Noetherian term orders already on this level thus making
superfluous the former duplication of reduction procedures in the modules red and
mora as in v. 2.1.

Normal form algorithms reduce polynomials (or polynomial vectors) with respect
to a given finite set of generators of an ideal or module. The result is not unique ex-
cept for a total normal form with respect to a Gröbner basis. Furthermore different
reduction strategies may yield significant differences in computing time.

CALI reduces by first matching, usually keeping base lists sorted with respect to
the sort predicate red_better. In v. 2.2 we sort solely by the dpoly length, since
the introduction of red_TopRedBE, i.e. reduction with bounded ecart, guarantees
termination also for non Noetherian term orders. Overload red_better for other
reduction strategies.

Reduction procedures produce for a given ideal basis B ⊂ S and a polynomial
f ∈ S a (pseudo) normal form h ∈ S such that h ≡ u · f mod B where u ∈ S
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is a polynomial unit, i.e. a (polynomially represented) non zero domain element in
the Noetherian case (pseudodivision of f by B) or a polynomial with a scalar as
leading term in the non Noetherian case. Following up the reduction steps one can
even produce a presentation of h − u · f as a polynomial combination of the base
elements in B.

More general, given for fi ∈ B and f representations fi =
∑
rikek = Ri · ET

and f = R ·ET as polynomial combinations wrt. a fixed basis E one can produce
such a presentation also for h. For this purpose the dpoly f and its representation
are collected into a base element and reduced simultaneously by the base list B,
that collects the base elements and their representations.

The main procedures of the newly designed reduction package are the following:

red_TopRedBE(bas,model)

Top reduction with bounded ecart of the base element model by the base list
bas, i.e. only reducing the top term and only with base elements with ecart
bounded by that of model.

red_TopRed(bas,model)

Top reduction of model, but without restrictions.

red_TailRed(bas,model)

Make tail reduction on model, i.e. top reduction on the tail terms. For conver-
gence this uses reduction with bounded ecart for non Noetherian term orders
and full reduction otherwise.

There is a common red_TailRedDriver that takes a top reduction func-
tion as parameter. It can be used for experiments with other top reduc-
tion procedure combinations.

red_TotalRed(bas,model)

A terminating total reduction, i.e. for Noetherian term orders the classical one
and for local term orders using tail reduction with bounded ecart.

red_Straight bas

Reduce (with red_TailRed) the tails of the polynomials in the base list bas.

red_TopInterreduce bas

Reduces the base list bas with red_TopRed until it has pairwise incompa-
rable leading terms, computes correct representation parts, but does no tail
reduction.
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red_Interreduce bas

Does top and, if on red_total, also tail interreduction on the base list bas.

Usually, e.g. for ideal generation problems, there is no need to care about the mul-
tiplier u. If nevertheless one needs its value, the base element f may be prepared
with red_prepare to collect this information in the 0-slot of its representation part.
Extract this information with red_extract.

red_redpol(bas,model)

combines this tool with a total reduction of the base elementmodel and returns
a dotted pair

(< reduced model > . < dpoly unit multiplier >).

Advanced applications call the interfacing procedures

interreduce!* m

that returns an interreduced basis of the dpmat m.

mod!*(f,m)

that returns the dotted pair (h.u) where h is the pseudo normal form of the
dpoly f modulo the dpmat m and u the corresponding polynomial unit multi-
plier.

normalform!*(a,b)

that returns {a1, r, z} with a1 = z ∗ a− r ∗ b where the rows of the dpmat a1

are the normalforms of the rows of the dpmat a with respect to the dpmat b.

For local standard bases the ideal generated by the basic polynomials may have
components not passing through the origin. Although they do not contribute to the
ideal in Loc(S) = Sm they usually heavily increase the necessary computational
effort. Hence for local term orders one should try to remove polynomial units
as soon as they are detected. To remove them from base elements in an early
stage of the computation one can either try the (cheap) test, whether f ∈ S is of
the form 〈monomial〉 ∗ 〈polynomial unit〉 or factor f completely and remove
polynomial unit factors. For base elements this may be done with bas_detectunits
or bas_factorunits.

Moreover there are two switches detectunits and factorunits, both off by default,
that force such automatic simplifications during more advanced computations.

The procedure deleteunits!* tries explicitely to factor the basis polynomials of a
dpmat and to remove polynomial units occuring as one of the factors.
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The Gröbner and Standard Basis Algorithms

There is now a unique module groeb that contains the Gröbner resp. standard basis
algorithms with syzygy computation facility and related topics. There are common
procedures (working for both Noetherian and non Noetherian term orders)

gbasis!* m

that returns a minimal Gröbner or standard basis of the dpmat m,

syzygies!* m

that returns an interreduced basis of the first syzygy module of the dpmat m
and

syzygies1!* m

that returns a (not yet interreduced) basis of the syzygy module of the dpmat
m.

These procedures start the outer Gröbner engine (now also common for both
Noetherian and non Noetherian term orders)

groeb_stbasis(m,mgb,ch,syz)

that returns, applied to the dpmat m, three dpmats g, c, s with

g — the minimal reduced Gröbner basis of m if mgb = t,

c — the transition matrix g = c ·m if ch = t, and

s — the (not yet interreduced) syzygy matrix of m if syz = t.

The next layer manages the preparation of the representation parts of the base el-
ements to carry the syzygy information, calls the general internal driver, and ex-
tracts the relevant information from the result of that computation. The general
internal driver branches according to different reduction functions into several ver-
sions. Upto now there are three different strategies for the reduction procedures for
the S-polynomial reduction (different versions may be chosen via gbtestversion):

1. Total reduction with local simplifier lists. For local term orders this is (al-
most) Mora’s first version for the tangent cone (the default).

2. Total reduction with global simplifier list. For local term orders this is (al-
most) Mora’s SimpStBasis, see [MPT92].

3. Total reduction with bounded ecart.
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The first two versions (almost) coincide for Noetherian term orders. The third
version reduces only with bounded ecart, thus forcing more pairs to be treated than
necessary, but usually less expensive to be reduced. It is not yet well understood,
whether this idea is of practical importance.

groeb_lazystbasis calls the lazy standard basis driver instead, that implements
Mora’s lazy algorithm, see [MPT92]. As groeb_homstbasis, the computation of
Gröbner and standard bases via homogenization (Lazard’s approach), it is not fully
integrated into the algebraic interface. Use

homstbasis!* m

for the invocation of the homogenization approach to compute a standard basis
of the dpmat m and

lazystbasis!* m

for the lazy algorithm.

Experts commonly agree that the classical approach is better for “computable”
examples, but computations done by the author on large examples indicate, that
both approaches are in fact independent.

The pair list management uses the sugar strategy, see [GMN+91], with respect to
the current ecart vector. If the input is homogeneous and the ecart vector reflects
this homogeneity then pairs are sorted by ascending degree. Hence no superfluous
base elements will be computed in this case. In general the sugar strategy performs
best if the ecart vector is chosen to make the input close to be homogeneous.

There is another global variable cali!=monset that may contain a list of vari-
able names (a subset of the variable names of the current base ring). During the
“pure” Gröbner algorithm (without syzygy and representation computations) com-
mon monomial factors containing only these variables will be canceled out. This
shortcut is useful if some of the variables are known to be non zero divisors as e.g.
in most implicitation problems.

setmonset!* vars

initializes cali!=monset with a given list of variables vars.

The Gröbner tools as e.g. pair criteria, pair list update, pair management and S-
polynomial construction are available.

groeb_mingb m

extracts a minimal Gröbner basis from the dpmat m, removing base elements
with leading terms, divisible by other leading terms.
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groeb_minimize(bas,syz)

minimizes the dpmat pair (bas, syz) deleting superfluous base elements from
bas using syzygies from syz containing unit entries.

The Gröbner Factorizer

If k̄ is the algebraic closure of k, B := {f1, . . . , fm} ⊂ S a finite system of
polynomials, and C := {g1, . . . , gk} a set of side conditions define the relative set
of zeroes

Z(B,C) := {a ∈ k̄n : ∀ f ∈ B f(a) = 0 and ∀g ∈ C g(a) 6= 0}.

Its Zariski closure is the zero set of I(B) :<
∏
C >.

The Gröbner factorizer solves the following problem:

Find a collection (Bα, Cα) of Gröbner bases Bα and side conditions
Cα such that

Z(B,C) =
⋃
α

Z(Bα, Cα).

The module groebf and the module triang contain algorithms related to that prob-
lem, triangular systems, and their generalizations as described in [Grä94a] and
[Grä95b]. V. 2.2 thus heavily extends the algorithmic possibilities that were imple-
mented in former releases of CALI.

Note that, different to v. 2.1, we work with constraint lists.

0 groebfactor!*(bas,con)

returns for the dpmat ideal bas and the constraint list con (of dpolys) a minimal
list of (dpmat, constraint list) pairs with the desired property.

During a preprocessing it splits the submitted basis bas by a recursive factorization
of polynomials and interreduction of bases into a (reduced) list of smaller subprob-
lems consisting of a partly computed Gröbner basis, a constraint list, and a list
of pairs not yet processed. The main procedure forces the next subproblem to be
processed until another factorization is possible. Then the subproblem splits into
subsubproblems, and the subproblem list will be updated. Subproblems are kept
sorted with respect to their expected dimension easydim forcing this way a depth
first recursion. Returned and not yet interreduced Gröbner bases are, after interre-
duction, subject to another call of the preprocessor since interreduced polynomials
may factor anew.

listgroebfactor!* l

proceeds a whole list of dpmats (without constraints) at once and strips off
constraints at the end.
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Using the (ordinary) Gröbner factorizer even components of different dimension
may keep gluing together. The extended Gröbner factorizer involves a postpro-
cessing, that guarantees a decomposition into puredimensional components, given
by triangular systems instead of Gröbner bases. Triangular systems in positive
dimension must not be Gröbner bases of the underlying ideal. They should be
preferred, since they are more simple but contain all information about the (quasi)
prime component that they represent. The complete Gröbner basis of the corre-
sponding component can be obtained by an easy stable quotient computation, see
[Grä95b]. We refer to the same paper for the definition of triangular systems in
positive dimension, that is consistent with our approach.

extendedgroebfactor!*(bas,c) and extendedgroebfactor1!*(bas,c)

return a list of results {bi, ci, vi} in algebraic prefix form such that bi is a
triangular set wrt. the variables vi and ci is a list of constraints, such that
bi :<

∏
ci > is the (puredimensional) recontraction of the zerodimensional

ideal bi
⊗

k k(vi). For the first version the recontraction is not computed,
hence the output may be not minimal. The second version computes recon-
tractions to decide superfluous components already during the algorithm. Note
that the stable quotient computation involved for that purpose may drastically
slow down the whole attempt.

The postprocessing involves a change to dimension zero and invokes (zero dimen-
sional) triangular system computations from the module triang. In a first step
groebf_zeroprimes1 incorporates the square free parts of certain univariate poly-
nomials into these systems and strips off the constraints (since relative sets of ze-
roes in dimension zero are Zariski closed), using a splitting approach analogous
to the Gröbner factorizer. In a second step, according to the switch lexefgb, either
zerosolve!* or zerosolve1!* converts these intermediate results into lists of trian-
gular systems in prefix form. If lexefgb is off (the default), the zero dimensional
term order is degrevlex and zerosolve1!*, the “slow turn to lex” is involved, for
on lexefgb the pure lexicographic term order and zerosolve!*, Möllers original
approach, see [M9̈3], are used. Note that for this term order we need only a single
Gröbner basis computation at this level.

A third version, zerosolve2!*, mixes the first approach with the FGLM change of
term orders. It is not incorporated into the extended Gröbner factorizer.

Basic Operations on Ideals and Modules

Gröbner and local standard bases are the heart of several basic algorithms in ideal
theory, see e.g. [BWK93, 6.2.]. CALI offers the following facilities:

submodulep!*(m,n)



308 CHAPTER 16. USER CONTRIBUTED PACKAGES

tests the dpmat m for being a submodule of the dpmat n reducing the basis
elements of m with respect to n. The result will be correct provided n is a
Gröbner basis.

modequalp!*(m,n)

= submodulep!*(m,n) and submodulep!*(n,m).

eliminate!*(m,<variable list>)

computes the elimination ideal/module eliminating the variables in the given
variable list (a subset of the variables of the current base ring). Changes tem-
porarily the term order to degrevlex.

matintersect!* l 12

computes the intersection of the dpmats in the dpmat list l along [BWK93,
6.20].

CALI offers several quotient algorithms. They rest on the computation of quotients
by a single element of the following kind: Assume M ⊂ Sc, v ∈ Sc, f ∈ S. Then
there are

the module quotient M : (v) = {g ∈ S | gv ∈M},
the ideal quotient M : (f) = {w ∈ Sc | fw ∈M}, and

the stable quotient M : (f)∞ = {w ∈ Sc | ∃n : fnw ∈M}.

CALI uses the elimination approach [CLO92, 4.4.] and [BWK93, 6.38] for their
computation:

matquot!*(M,f)

returns the module or ideal quotient M : (f) depending on f .

matqquot!*(M,f)

returns the stable quotient M : (f)∞.

matquot!* calls the pseudo division with remainder

dp_pseudodivmod(g,f)

that returns a dpoly list {q, r, z} such that z · g = q · f + r with a dpoly unit
z. (g, f and r must belong to the same free module). This is done uniformly
for noetherian and local term orders with an extended normal form algorithm
as described in [Grä95a].

12This can be done for ideals and modules in an unique way. Hence idealintersect!* has been
removed in v. 2.1.
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In the same way one defines the quotient of a module by another module (both
embedded in a common free module Sc), the quotient of a module by an ideal,
and the stable quotient of a module by an ideal. Algorithms for their computation
can be obtained from the corresponding algorithms for a single element as divisor
either by the generic element method [Eis95] or as an intersection [BWK93, 6.31].
CALI offers both approaches (X=1 or 2 below) at the symbolic level, but for true
quotients only the latter one is integrated into the algebraic mode interface.

idealquotientX!*(M,I)

returns the ideal quotient M : I of the dpmat M by the dpmat ideal I .

modulequotientX!*(M,N)

returns the module quotient M : N of the dpmat M by the dpmat N .

annihilatorX!* M

returns the annihilator of coker M , i.e. the module quotient Sc : M , if M is a
submodule of Sc.

matstabquot!*(M,I)

returns the stable quotient M : I∞ (only by the general element method).

Monomial Ideals

Monomial ideals occur as ideals of leading terms of (ideal’s) Gröbner bases and
also as components of leading term modules of submodules of free modules, see
[Grä93], and reflect some properties of the original ideal/module. Several parame-
ters of the original ideal or module may be read off from it as e.g. dimension and
Hilbert series.

The module moid contains the corresponding algorithms on monomial ideals.
Monomial ideals are lists of monomials, kept sorted by descending lexicographic
order as proposed in [BS92].

moid_primes u

returns the minimal primes (as a list of lists of variable names) of the mono-
mial ideal u using an adaption of the algorithm, proposed in [BS92] for the
computation of the codimension.

indepvarsets!* m

returns (based on moid_primes) the list of strongly independent sets of m, see
[KW88] and [Grä93] for definitions.
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dim!* m

returns the dimension of coker m as the size of the largest independent set.

codim!* m

returns the codimension of coker m.

easyindepset!* m

returns a maximal with respect to inclusion independent set of m.

easydim!* m

is a fast dimension algorithm (based on easyindepset), that will be correct if m
is (radically) unmixed. Since it is significantly faster than the general dimen-
sion algorithm13, it should be used, if all maximal independent sets are known
to be of equal cardinality (as e.g. for prime or unmixed ideals, see [Grä93]).

Hilbert Series

CALI v. 2.2 now offers also weighted Hilbert series, i.e. series that may reflect
multihomogeneity of ideals and modules. For this purpose a weighted Hilbert se-
ries has a list of (integer) degree vectors as second parameter, and the ideal(s) of
leading terms are evaluated wrt. these weights. For the output and polynomial
arithmetic, involved during the computation of the Hilbert series numerator, the
different weight levels are mapped onto the first variables of the current ring. If
w is such a weight vector list and I is a monomial ideal in the polynomial ring
S = k[xv : v ∈ V ] we get (using multi exponent notation)

H(S/I, t) :=
∑
α

|{xa 6∈ I : w(a) = α}| · tα =
Q(t)∏

v∈V
(
1− tw(xv)

)
for a certain polynomial Hilbert series numerator Q(t). H(R/I, t) is known to be
a rational function with pole order at t = 1 equal to dim R/I . Note that Weighted-
HilbertSeries returns a reduced rational function where the gcd of numerator and
denominator is canceled out.

(Non weighted) Hilbert series call the weighted Hilbert series procedure with a
single weight vector, the ecart vector of the current ring.

The Hilbert series numerator Q(t) is computed using (the obvious generalizations
to the weighted case of) the algorithms in [BS92] and [BCRT93]. Experiments
suggest that the former is better for few generators of high degree whereas the

13This algorithm is of linear time as opposed to the problem to determine the dimension of an
arbitrary monomial ideal, that is known to be NP-hard in the number of variables, see [BS92].



311

latter has to be preferred for many generators of low degree. Choose the version
with hftestversion n, n = 1, 2. Bayer/Stillman’s approach (n = 1) is the default.
In the following m is a dpmat and Gröbner basis.

hf_whilb(m,w)

returns the weighted Hilbert series numerator Q(t) of m according to the ver-
sion chosen with hftestversion.

WeightedHilbertSeries!*(m,w)

returns the weighted Hilbert series reduced rational function of m as s.q.

HilbertSeries!*(m,w)

returns the Hilbert series reduced rational function of m wrt. the ecart vector
of the current ring as s.q.

hf_whilb3(u,w) and hf_whs_from_resolution(u,w)

compute the weighted Hilbert series numerator and the corresponding reduced
rational function from (the column degrees of) a given resolution u.

degree!* m

returns the value of the numerator of the reduced Hilbert series of m at t = 1.
i.e. the sum of its coefficients. For the standard ecart this is the degree of
coker m.

Resolutions

Resolutions of ideals and modules, represented as lists of dpmats, are computed
via repeated syzygy computation with minimization steps between them to get
minimal bases and generators of syzygy modules. Note that the algorithms apply
simultaneously to both Noetherian and non Noetherian term orders. For compati-
bility reasons with further releases v. 2.2 introduces a second parameter to bound
the number of syzygy modules to be computed, since Hilbert’s syzygy theorem
applies only to regular rings.

Resolve!*(m,d)

computes a minimal resolution of the dpmat m, i.e. a list of dpmats
{s0, s1, s2, . . .}, where sk is the k-th syzygy module of m, upto part sd.

BettiNumbers!* c and GradedBettiNumbers!* c

returns the Betti numbers resp. the graded Betti numbers of the resolution c, i.e.
the list of the lengths resp. the degree lists (according to the ecart) themselves
of the dpmats in c.
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Zero Dimensional Ideals and Modules

There are several algorithms that either force the reduction of a given problem to
dimension zero or work only for zero dimensional ideals or modules. The module
odim offers such algorithms. It contains, e.g.

dimzerop!* m

that tests a dpmat m for being zero dimensional.

getkbase!* m

that returns a (monomial) k-vector space basis of Coker m provided m is a
Gröbner basis.

odim_borderbasis m

that returns a border basis, see [MMM91], of the zero dimensional dpmat m
as a list of base elements.

odim_parameter m

that returns a parameter of the dpmat m, i.e. a variable x ∈ vars such that
k[x]

⋂
Ann Sc/m = (0), or nil if m is zero dimensional.

odim_up(a,m)

that returns an univariate polynomial (of smallest possible degree if m is a
gbasis) in the variable a, that belongs to the zero dimensional dpmat ideal m,
using Buchberger’s approach [Buc85].

Primary Decomposition and Related Algorithms

The algorithms of the module prime implement the ideas of [GTZ88] with modifi-
cations along [Kre87] and their natural generalizations to modules as e.g. explained
in [Rut92]. Version 2.2.1 fixes a serious bug detecting superfluous embedded pri-
mary components, see section 16.9.1, and contains now a second primary decom-
position algorithm, based on ideal separation, as standard. For a discussion about
embedded primes and the ideal separation approach, see [Grä97].

CALI contains also algorithms for the computation of the unmixed part of a given
module and the unmixed radical of a given ideal (along the same lines). We fol-
lowed the stepwise recursion decreasing dimension in each step by 1 as proposed
in (the final version of) [GTZ88] rather than the “one step” method described in
[BWK93] since handling leading coefficients, i.e. standard forms, depending on
several variables is a quite hard job for REDUCE14.

In the following procedures m must be a Gröbner basis.
14prime!=decompose2 implements this strategy in the symbolic mode layer.
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zeroradical!* m

returns the radical of the zero dimensional ideal m, using squarefree decom-
position of univariate polynomials.

zeroprimes!* m

computes as in [GTZ88] the list of prime ideals of Ann F/M if m is zero
dimensional, using the (sparse) general position argument from [KW88].

zeroprimarydecomposition!* m

computes the primary components of the zero dimensional dpmat m using
prime splitting with the prime ideals of Ann F/M . It returns a list of pairs
with first entry the primary component and second entry the corresponding
associated prime ideal.

isprime!* m

a (one step) primality test for ideals, extracted from [GTZ88].

isolatedprimes!* m

computes (only) the isolated prime ideals of Ann F/M .

radical!* m

computes the radical of the dpmat ideal m, reducing as in [GTZ88] to the zero
dimensional case.

easyprimarydecomposition!* m

computes the primary components of the dpmat m, if it has no embedded
components. The algorithm uses prime splitting with the isolated prime ideals
of Ann F/M . It returns a list of pairs as in zeroprimarydecomposition!*.

primarydecomposition!* m

computes the primary components of the dpmatm along the lines of [GTZ88].
It returns a list of two-element lists as in zeroprimarydecomposition!*.

unmixedradical!* m

returns the unmixed radical, i.e. the intersection of the isolated primes of top
dimension, associated to the dpmat ideal m.

eqhull!* m

returns the equidimensional hull, i.e. the intersection of the top dimensional
primary components of the dpmat m.
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Advanced Algorithms

The module scripts just under further development offers some advanced topics of
the Gröbner bases theory. It introduces the new data structure of a map between
base rings:

A ring map
φ : R −→ S

for R = k[ri], S = k[sj ] is represented in symbolic mode as a list

{preimage_ring R, image_ring S, subst_list},

where subst_list is a substitution list {r1 = φ1(s), r2 = φ2(s), . . .} in alge-
braic prefix form, i.e. looks like (list (equal var image) ...).

The central tool for several applications is the computation of the preimage
φ−1(I) ⊂ R of an ideal I ⊂ S either under a polynomial map φ or its closure
in R under a rational map φ, see [BWK93, 7.69 and 7.71].

preimage!*(m,map)

computes the preimage of the ideal m in algebraic prefix form under the given
polynomial map and sets the current base ring to the preimage ring. Returns
the result also in algebraic prefix form.

ratpreimage!*(m,map)

computes the closure of the preimage of the ideal m in algebraic prefix form
under the given rational map and sets the current base ring to the preimage
ring. Returns the result also in algebraic prefix form.

Derived applications are

affine_monomial_curve!*(l,vars)

l is a list of integers, vars a list of variable names of the same length as l. The
procedure sets the current base ring and returns the defining ideal of the affine
monomial curve with generic point (ti : i ∈ l) computing the corresponding
preimage.

analytic_spread!* M

Computes the analytic spread of M , i.e. the dimension of the exceptional fiber
R(M)/mR(M) of the blowup along M over the irrelevant ideal m of the
current base ring.



315

assgrad!*(M,N,vars)

Computes the associated graded ring

grR(N) := (R/N ⊕N/N2 ⊕ . . .) = R(N)/NR(N)

over the ringR = S/M , whereM andN are dpmat ideals defined over the cur-
rent base ring S. vars is a list of new variable names one for each generator
ofN . They are used to create a second ring T with degree order corresponding
to the ecart of the row degrees of N and a ring map

φ : S ⊕ T −→ S.

It returns a dpmat ideal J such that (S ⊕ T )/J is a presentation of the desired
associated graded ring over the new current base ring S ⊕ T .

blowup!*(M,N,vars)

Computes the blow upR(N) := R[N · t] ofN over the ringR = S/M , where
M and N are dpmat ideals defined over the current base ring S. vars is a list
of new variable names one for each generator of N . They are used to create a
second ring T with degree order corresponding to the ecart of the row degrees
of N and a ring map

φ : S ⊕ T −→ S.

It returns a dpmat ideal J such that (S ⊕ T )/J is a presentation of the desired
blowup ring over the new current base ring S ⊕ T .

proj_monomial_curve!*(l,vars)

l is a list of integers, vars a list of variable names of the same length as l.
The procedure set the current base ring and returns the defining ideal of the
projective monomial curve with generic point (sd−i · ti : i ∈ l) in R, where
d = max{x : x ∈ l}, computing the corresponding preimage.

sym!*(M,vars)

Computes the symmetric algebra Sym(M) where M is a dpmat ideal defined
over the current base ring S. vars is a list of new variable names one for each
generator of M . They are used to create a second ring R with degree order
corresponding to the ecart of the row degrees of N and a ring map

φ : S ⊕R −→ S.

It returns a dpmat ideal J such that (S⊕R)/J is the desired symmetric algebra
over the new current base ring S ⊕R.

There are several other applications:

minimal_generators!* m
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returns a set of minimal generators of the dpmat m inspecting the first syzygy
module.

nzdp!*(f,m)

tests whether the dpoly f is a non zero divisor on coker m. m must be a
Gröbner basis.

symbolic_power!*(m,d)

returns the dth symbolic power of the prime dpmat ideal m as the equidimen-
sional hull of the dth true power. (Hence applies also to unmixed ideals.)

varopt!* m

finds a heuristically optimal variable order by the approach in [BGK86] and
returns the corresponding list of variables.

Dual Bases

For the general ideas underlying the dual bases approach see e.g. [MMM91]. This
paper explains, that constructive problems from very different areas of commuta-
tive algebra can be formulated in a unified way as the computation of a basis for
the intersection of the kernels of a finite number of linear functionals generating
a dual S-module. Our implementation honours this point of view, presenting two
general drivers dualbases and dualhbases for the computation of such bases (even
as submodules of a free module M = Sm) with affine resp. projective dimension
zero.

Such a collection of N linear functionals

L : M = Sm −→ kN

should be given through values {[ei, L(ei)], i = 1, . . . ,m} on the generators ei of
M and an evaluation function evlf([p,L(p)],x), that evaluates L(p ·x) from
L(p) for p ∈M and the variable x ∈ S.

dualbases starts with a list of such generator/value constructs generating M and
performs Gaussian reduction on expressions [p · x, L(p · x)], where p was already
processed, L(p) 6= 0, and x ∈ S is a variable. These elements are processed in
ascending order wrt. the term order on M . This guarantees both termination and
that the resulting basis of ker L is a Gröbner basis. TheN values of L are attached
to N variables, that are ordered linearly. Gaussian elimination is executed wrt. this
variable order.

To initialize the dual bases driver one has to supply the basic generator/value list
(through the parameter list; for ideals just the one element list containing the gen-
erator [1 ∈ S,L(1)]), the evaluation function, and the linear algebra variable or-
der. The latter are supplied via the property list of cali as properties evlf and
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varlessp. Different applications need more entries on the property list of cali
to manage the communication between the driver and the calling routine.

dualhbases realizes the same idea for (homogeneous) ideals and modules of (pro-
jective) dimension zero. It produces zerodimensional “slices” with ascending de-
gree until it reaches a supremum supplied by the user, see [MMM91] for details.

Applications concern affine and projective defining ideals of a finite number
of points15 and two versions (with and without precomputed border basis) of
term order changes for zerodimensional ideals and modules as first described in
[FGLM93].

affine_points!* m

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns the
defining ideal of the collection of points in affine space with coordinates given
by the rows ofm. Note thatmmay contain parameters. In this case k is treated
as rational function field.

change_termorder!*(m,r) and change_termorder1!*(m,r)

m is a Gröbner basis of a zero dimensional ideal wrt. the current base ring.
These procedures change the current ring to r and compute the Gröbner basis
of m wrt. the new ring r. The former uses a precomputed border basis.

proj_points!* m

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns
the defining ideal of the collection of points in projective space with ho-
mogeneous coordinates given by the rows of m. Note that m may as for
affine_points contain parameters.

16.9.5 A Short Description of Procedures Available in Algebraic
Mode

Here we give a short description, ordered alphabetically, of algebraic procedures
offered by CALI in the algebraic mode interface16.

If not stated explicitely procedures take (algebraic mode) polynomial matrices (c >
0) or polynomial lists (c = 0) m,m1,m2, . . . as input and return results of the

15This substitutes the “brute force” method computing the corresponding intersections directly as
it was implemented in v. 2.1. The new approach is significantly faster. The old stuff is available as
affine_points1!* and proj_points1!*.

16It does not contain switches, get. . . procedures, setting trace level and related stuff.
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same type. gb stands for a bounded identifier17, gbr for one with precomputed
resolution. For the mechanism of bounded identifier see the section “Algebraic
Mode Interface”.

affine_monomial_curve(l,vars)

l is a list of integers, vars a list of variable names of the same length as l. The
procedure sets the current base ring and returns the defining ideal of the affine
monomial curve with generic point (ti : i ∈ l).

affine_points m

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns the
defining ideal of the collection of points in affine space with coordinates given
by the rows ofm. Note thatmmay contain parameters. In this case k is treated
as rational function field.

analytic_spread m

Computes the analytic spread of m.

annihilator m

returns the annihilator of the dpmat m ⊆ Sc, i.e. Ann Sc/M .

assgrad(M,N,vars)

Computes the associated graded ring grR(N) over R = S/M , where S is the
current base ring. vars is a list of new variable names, one for each generator
of N . They are used to create a second ring T to return an ideal J such that
(S⊕T )/J is the desired associated graded ring over the new current base ring
S ⊕ T .

bettiNumbers gbr

extracts the list of Betti numbers from the resolution of gbr.

blowup(M,N,vars)

Computes the blow up R(N) of N over the ring R = S/M , where S is the
current base ring. vars is a list of new variable names, one for each generator
of N . They are used to create a second ring T to return an ideal J such that
(S ⊕ T )/J is the desired blowup ring over the new current base ring S ⊕ T .

17Different to v. 2.1 a Gröbner basis will be computed automatically, if necessary.
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change_termorder(m,r) and change_termorder1(m,r)

Change the current ring to r and compute the Gröbner basis of m wrt. the
new ring r by the FGLM approach. The former uses internally a precomputed
border basis.

codim gb

returns the codimension of Sc/gb.

degree gb

returns the multiplicity of gb as the sum of the coefficients of the (classical)
Hilbert series numerator.

degsfromresolution gbr

returns the list of column degrees from the minimal resolution of gbr.

deleteunits m

factors each basis element of the dpmat ideal m and removes factors that are
polynomial units. Applies only to non Noetherian term orders.

dim gb

returns the dimension of Sc/gb.

dimzerop gb

tests whether Sc/gb is zerodimensional.

directsum(m1,m2,...)

returns the direct sum of the modules m1,m2, . . ., embedded into the direct
sum of the corresponding free modules.

dpgcd(f,g)

returns the gcd of two polynomials f and g, computed by the syzygy method.

easydim m and easyindepset m

If the given ideal or module is unmixed (e.g. prime) then all maximal strongly
independent sets are of equal size and one can look for a maximal with respect
to inclusion rather than size strongly independent set. These procedures don’t
test the input for being a Gröbner basis or unmixed, but construct a maximal
with respect to inclusion independent set of the basic leading terms resp. detect
from this (an approximation for) the dimension.
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easyprimarydecomposition m

a short primary decomposition using ideal separation of isolated primes of
m, that yields true results only for modules without embedded components.
Returns a list of {component, associated prime} pairs.

eliminate(m,<variable list>)

computes the elimination ideal/module eliminating the variables in the given
variable list (a subset of the variables of the current base ring). Changes tem-
porarily the term order to degrevlex.

eqhull m

returns the equidimensional hull of the dpmat m.

extendedgroebfactor(m,c) and extendedgroebfactor1(m,c)

return for a polynomial idealm and a list of (polynomial) constraints c a list of
results {bi, ci, vi}, where bi is a triangular set wrt. the variables vi and ci is a list
of constraints, such that Z(m, c) =

⋃
Z(bi, ci). For the first version the output

may be not minimal. The second version decides superfluous components
already during the algorithm.

gbasis gb

returns the Gröbner resp. local standard basis of gb.

getkbase gb

returns a k-vector space basis of Sc/gb, consisting of module terms, provided
gb is zerodimensional.

getleadterms gb

returns the dpmat of leading terms of a Gröbner resp. local standard basis of
gb.

GradedBettinumbers gbr

extracts the list of degree lists of the free summands in a minimal resolution of
gbr.

groebfactor(m[,c])

returns for the dpmat ideal m and an optional constraint list c a (reduced) list
of dpmats such that the union of their zeroes is exactly Z(m, c). Factors all
polynomials involved in the Gröbner algorithms of the partial results.

HilbertSeries gb

returns the Hilbert series of gb with respect to the current ecart vector.
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homstbasis m

computes the standard basis of m by Lazard’s homogenization approach.

ideal2mat m

converts the ideal (=list of polynomials) m into a column vector.

ideal_of_minors(mat,k)

computes the generators for the ideal of k-minors of the matrix mat.

ideal_of_pfaffians(mat,k)

computes the generators for the ideal of the 2k-pfaffians of the skewsymmetric
matrix mat.

idealpower(m,n)

returns the interreduced basis of the ideal power mn with respect to the integer
n ≥ 0.

idealprod(m1,m2,...)

returns the interreduced basis of the ideal product m1 ·m2 · . . . of the ideals
m1,m2, . . ..

idealquotient(m1,m2)

returns the ideal quotient m1 : m2 of the module m1 ⊆ Sc by the ideal m2.

idealsum(m1,m2,...)

returns the interreduced basis of the ideal sum m1 +m2 + . . ..

indepvarsets gb

returns the list of strongly independent sets of gb with respect to the current
term order, see [KW88] for a definition in the case of ideals and [Grä93] for
submodules of free modules.

initmat(m,<file name>

initializes the dpmat m together with its base ring, term order and column
degrees from a file.

interreduce m

returns the interreduced module basis given by the rows of m, i.e. a basis with
pairwise indivisible leading terms.
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isolatedprimes m

returns the list of isolated primes of the dpmat m, i.e. the isolated primes of
Ann Sc/M .

isprime gb

tests the ideal gb to be prime.

iszeroradical gb

tests the zerodimensional ideal gb to be radical.

lazystbasis m

computes the standard basis of m by the lazy algorithm, see e.g. [MPT92].

listgroebfactor in

computes for the list in of ideal bases a list out of Gröbner bases by the Gröb-
ner factorization method, such that

⋃
m∈in Z(m) =

⋃
m∈out Z(m).

mat2list m

converts the matrix m into a list of its entries.

matappend(m1,m2,...)

collects the rows of the dpmats m1,m2, . . . to a common matrix. m1,m2, . . .
must be submodules of the same free module, i.e. have equal column degrees
(and size).

mathomogenize(m,var) 18

returns the result obtained by homogenization of the rows of m with respect to
the variable var and the current ecart vector.

matintersect(m1,m2,...)

returns the interreduced basis of the intersection m1
⋂
m2
⋂
. . ..

matjac(m,<variable list>)

returns the Jacobian matrix of the ideal m with respect to the supplied variable
list

matqquot(m,f)

returns the stable quotient m : (f)∞ of the dpmat m by the polynomial f ∈ S.

18Dehomogenize with sub(z=1,m) if z is the homogenizing variable.
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matquot(m,f)

returns the quotient m : (f) of the dpmat m by the polynomial f ∈ S.

matstabquot(m1,id)

returns the stable quotient m1 : id∞ of the dpmat m1 by the ideal id.

matsum(m1,m2,...)

returns the interreduced basis of the module sum m1 +m2 + . . . in a common
free module.

minimal_generators m

returns a set of minimal generators of the dpmat m.

minors(m,b)

returns the matrix of minors of size b× b of the matrix m.

a mod m

computes the (true) normal form(s), i.e. a standard quotient representation, of
a modulo the dpmat m. a may be either a polynomial or a polynomial list
(c = 0) or a matrix (c > 0) of the correct number of columns.

modequalp(gb1,gb2)

tests, whether gb1 and gb2 are equal (returns YES or NO).

modulequotient(m1,m2)

returns the module quotientm1 : m2 of two dpmatsm1,m2 in a common free
module.

normalform(m1,m2)

returns a list of three dpmats {m3, r, z}, where m3 is the normalform of m1
modulo m2, z a scalar matrix of polynomial units (i.e. polynomials of degree
0 in the noetherian case and polynomials with leading term of degree 0 in the
tangent cone case), and r the relation matrix, such that

m3 = z ∗m1 + r ∗m2.

nzdp(f,m)

tests whether the dpoly f is a non zero divisor on coker m.
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pfaffian mat

returns the pfaffian of a skewsymmetric matrix mat.

preimage(m,map)

computes the preimage of the ideal m under the given polynomial map and
sets the current base ring to the preimage ring.

primarydecomposition m

returns the primary decomposition of the dpmat m as a list of
{component, associated prime} pairs.

proj_monomial_curve(l,vars)

l is a list of integers, vars a list of variable names of the same length as l.
The procedure sets the current base ring and returns the defining ideal of the
projective monomial curve with generic point (sd−i · ti : i ∈ l) in R where
d = max{x : x ∈ l}.

proj_points m

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns
the defining ideal of the collection of points in projective space with ho-
mogeneous coordinates given by the rows of m. Note that m may as for
affine_points contain parameters.

radical m

returns the radical of the dpmat ideal m.

random_linear_form(vars,bound)

returns a random linear form in the variables vars with integer coefficients
less than the supplied bound.

ratpreimage(m,map)

computes the closure of the preimage of the ideal m under the given rational
map and sets the current base ring to the preimage ring.

resolve(m[,d])

returns the first d members of the minimal resolution of the bounded identifier
m as a list of matrices. If the resolution has less than d non zero members,
only those are collected. (Default: d = 100)

savemat(m,<file name>)

save the dpmat m together with the settings of it base ring, term order and
column degrees to a file.
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setgbasis m

declares the rows of the bounded identifier m to be already a Gröbner resp. lo-
cal standard basis thus avoiding a possibly time consuming Gröbner or stand-
ard basis computation.

sieve(m,<variable list>)

sieves out all base elements with leading terms having a factor contained in
the specified variable list (a subset of the variables of the current base ring).
Useful for elimination problems solved “by hand”.

singular_locus(M,c)

returns the defining ideal of the singular locus of Spec S/M where M is an
ideal of codimension c, adding toM the generators of the ideal of the c-minors
of the Jacobian of M .

submodulep(m,gb)

tests, whether m is a submodule of gb (returns YES or NO).

sym(M,vars)

Computes the symmetric algebra Sym(M) where M is an ideal defined over
the current base ring S. vars is a list of new variable names, one for each
generator of M . They are used to create a second ring R to return an ideal
J such that (S ⊕ R)/J is the desired symmetric algebra over the new current
base ring S ⊕R.

symbolic_power(m,d)

returns the dth symbolic power of the prime dpmat ideal m.

syzygies m

returns the first syzygy module of the bounded identifier m.

tangentcone gb

returns the tangent cone part, i.e. the homogeneous part of highest degree with
respect to the first degree vector of the term order from the Gröbner basis
elements of the dpmat gb. The term order must be a degree order.

unmixedradical m

returns the unmixed radical of the dpmat ideal m.
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varopt m

finds a heuristically optimal variable order, see [BGK86].

vars := varopt m; setring(vars, {}, lex); setideal(m, m);

changes to the lexicographic term order with heuristically best performance
for a lexicographic Gröbner basis computation.

WeightedHilbertSeries(m,w)

returns the weighted Hilbert series of the dpmat m. Note that m is not a
bounded identifier and hence not checked to be a Gröbner basis. w is a list
of integer weight vectors.

zeroprimarydecomposition m

returns the primary decomposition of the zerodimensional dpmat m as a list of
{component, associated prime} pairs.

zeroprimes m

returns the list of primes of the zerodimensional dpmat m.

zeroradical gb

returns the radical of the zerodimensional ideal gb.

zerosolve m, zerosolve1 m and zerosolve2 m

Returns for a zerodimensional ideal a list of triangular systems that cover
Z(m). Zerosolve needs a pure lex. term order for the “fast” turn to lex.
as described in [M9̈3], Zerosolve1 is the “slow” turn to lex. as described in
[Grä95b], and Zerosolve2 incorporated the FGLM term order change into
Zerosolve1.
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16.9.6 The CALI Module Structure

name subject data type representation
cali Header module, contains

global variables, switches etc.
— —

bcsf Base coefficient arithmetic base coeff. standard forms
ring Base ring setting, definition of the

term order
base ring special type RING

mo monomial arithmetic monomials (exp. list . degree list)
dpoly Polynomial and vector arithmetic dpolys list of terms
bas Operations on base lists base list list of base elements
dpmat Operations on polynomial matrices,

the central data type of CALI
dpmat special type DPMAT

red Normal form algorithms — —
groeb Gröbner basis algorithm and related

ones
— —

groebf the Gröbner factorizer and its exten-
sions

— —

matop Operations on (lists of)
dpmats that correspond to
ideal/module operations

— —

quot Different quotient algorithms — —
moid Monomial ideal algorithms monomial

ideal
list of monomials

hf weighted Hilbert series – –
res Resolutions of dpmats resolution list of dpmats
intf Interface to algebraic mode — —
odim Algorithms for zerodimensional

ideals and modules
— —

prime Primary decomposition and related
questions

— —

scripts Advanced applications — —
calimat Extension of the matrix package — —
lf The dual bases approach — —
triang (Zero dimensional) triangular sys-

tems
— —
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16.10 CAMAL: Calculations in celestial mechanics

This packages implements in REDUCE the Fourier transform procedures of the
CAMAL package for celestial mechanics.

Author: John P. Fitch.

It is generally accepted that special purpose algebraic systems are more efficient
than general purpose ones, but as machines get faster this does not matter. An
experiment has been performed to see if using the ideas of the special purpose
algebra system CAMAL(F) it is possible to make the general purpose system RE-
DUCE perform calculations in celestial mechanics as efficiently as CAMAL did
twenty years ago. To this end a prototype Fourier module is created for REDUCE,
and it is tested on some small and medium-sized problems taken from the CAMAL
test suite. The largest calculation is the determination of the Lunar Disturbing
Function to the sixth order. An assessment is made as to the progress, or lack of
it, which computer algebra has made, and how efficiently we are using modern
hardware.

16.10.1 Introduction

A number of years ago there emerged the divide between general-purpose algebra
systems and special purpose one. Here we investigate how far the improvements
in software and more predominantly hardware have enabled the general systems
to perform as well as the earlier special ones. It is similar in some respects to
the Possion program for MACSYMA [Fat74] which was written in response to a
similar challenge.

The particular subject for investigation is the Fourier series manipulator which had
its origins in the Cambridge University Institute for Theoretical Astronomy, and
later became the F subsystem of CAMAL [Bar67a, Fit83]. In the late 1960s this
system was used for both the Delaunay Lunar Theory [Del86, Bar67b] and the Hill
Lunar Theory [Bou72], as well as other related calculations. Its particular area of
application had a number of peculiar operations on which the general speed de-
pended. These are outlined below in the section describing how CAMAL worked.
There have been a number of subsequent special systems for celestial mechanics,
but these tend to be restricted to the group of the originator.

The main body of the paper describes an experiment to create within the REDUCE
system a sub-system for the efficient manipulation of Fourier series. This prototype
program is then assessed against both the normal (general) REDUCE and the extant
CAMAL results. The tests are run on a number of small problems typical of those
for which CAMAL was used, and one medium-sized problem, the calculation of
the Lunar Disturbing Function. The mathematical background to this problem is
also presented for completeness. It is important as a problem as it is the first stage
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in the development of a Delaunay Lunar Theory.

The paper ends with an assessment of how close the performance of a modern
REDUCE on modern equipment is to the (almost) defunct CAMAL of eighteen
years ago.

16.10.2 How CAMAL Worked

The Cambridge Algebra System was initially written in assembler for the Titan
computer, but later was rewritten a number of times, and matured in BCPL, a ver-
sion which was ported to IBM mainframes and a number of microcomputers. In
this section a brief review of the main data structures and special algorithms is
presented.

CAMAL Data Structures

CAMAL is a hierarchical system, with the representation of polynomials being
completely independent of the representations of the angular parts.

The angular part had to represent a polynomial coefficient, either a sine or cosine
function and a linear sum of angles. In the problems for which CAMAL was
designed there are 6 angles only, and so the design restricted the number, initially
to six on the 24 bit-halfword TITAN, and later to eight angles on the 32-bit IBM
370, each with fixed names (usually u through z). All that is needed is to remember
the coefficients of the linear sum. As typical problems are perturbations, it was
reasonable to restrict the coefficients to small integers, as could be represented in a
byte with a guard bit. This allowed the representation to pack everything into four
words.

[ NextTerm, Coefficient, Angles0-3, Angles4-7 ]

The function was coded by a single bit in the Coefficient field. This gives a
particularly compact representation. For example the Fourier term sin(u − 2v +
w − 3x) would be represented as

[ NULL, "1"|0x1, 0x017e017d, 0x00000000 ]
or

[ NULL, "1"|0x1, 1:-2:1:-3, 0:0:0:0 ]

where "1" is a pointer to the representation of the polynomial 1. In all this rep-
resentation of the term took 48 bytes. As the complexity of a term increased the
store requirements to no grow much; the expression (7/4)ae3f5 cos(u−2v+3w−
4x+ 5y + 6z) also takes 48 bytes. There is a canonicalisation operation to ensure
that the leading angle is positive, and sin(0) gets removed. It should be noted that
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cos(0) is a valid and necessary representation.

The polynomial part was similarly represented, as a chain of terms with packed
exponents for a fixed number of variables. There is no particular significance in this
except that the terms were held in increasing total order, rather than the decreasing
order which is normal in general purpose systems. This had a number of important
effects on the efficiency of polynomial multiplication in the presence of a truncation
to a certain order. We will return to this point later. Full details of the representation
can be found in [Fit75].

The space administration system was based on explicit return rather than garbage
collection. This meant that the system was sometimes harder to write, but it did
mean that much attention was focussed on efficient reuse of space. It was possible
for the user to assist in this by marking when an expression was needed no longer,
and the compiler then arranged to recycle the space as part of the actual opera-
tion. This degree of control was another assistance in running of large problems on
relatively small machines.

Automatic Linearisation

In order to maintain Fourier series in a canonical form it is necessary to apply the
transformations for linearising products of sine and cosines. These will be familiar
to readers of the REDUCE test program as

cos θ cosφ ⇒ (cos(θ + φ) + cos(θ − φ))/2, (16.35)

cos θ sinφ ⇒ (sin(θ + φ)− sin(θ − φ))/2, (16.36)

sin θ sinφ ⇒ (cos(θ − φ)− cos(θ + φ))/2, (16.37)

cos2 θ ⇒ (1 + cos(2θ))/2, (16.38)

sin2 θ ⇒ (1− cos(2θ))/2. (16.39)

In CAMAL these transformations are coded directly into the multiplication rou-
tines, and no action is necessary on the part of the user to invoke them. Of course
they cannot be turned off either.

Differentiation and Integration

The differentiation of a Fourier series with respect to an angle is particularly sim-
ple. The integration of a Fourier series is a little more interesting. The terms like
cos(nu + . . .) are easily integrated with respect to u, but the treatment of terms
independent of the angle would normally introduce a secular term. By convention
in Fourier series these secular terms are ignored, and the constant of integration is
taken as just the terms independent of the angle in the integrand. This is equivalent



331

to the substitution rules

sin(nθ) ⇒ −(1/n) cos(nθ)

cos(nθ) ⇒ (1/n) sin(nθ)

In CAMAL these operations were coded directly, and independently of the differ-
entiation and integration of the polynomial coefficients.

Harmonic Substitution

An operation which is of great importance in Fourier operations is the harmonic
substitution. This is the substitution of the sum of some angles and a general ex-
pression for an angle. In order to preserve the format, the mechanism uses the
translations

sin(θ +A) ⇒ sin(θ) cos(A) + cos(θ) sin(A)

cos(θ +A) ⇒ cos(θ) cos(A)− sin(θ) sin(A)

and then assuming that the value A is small it can be replaced by its expansion:

sin(θ +A) ⇒ sin(θ){1−A2/2! +A4/4! . . .}+

cos(θ){A−A3/3! +A5/5! . . .}
cos(θ +A) ⇒ cos(θ){1−A2/2! +A4/4! . . .} −

sin(θ){A−A3/3! +A5/5! . . .}

If a truncation is set for large powers of the polynomial variables then the series
will terminate. In CAMAL the HSUB operation took five arguments; the original
expression, the angle for which there is a substitution, the new angular part, the
expression part (A in the above), and the number of terms required.

The actual coding of the operation was not as expressed above, but by the use of
Taylor’s theorem. As has been noted above the differentiation of a harmonic series
is particularly easy.

Truncation of Series

The main use of Fourier series systems is in generating perturbation expansions,
and this implies that the calculations are performed to some degree of the small
quantities. In the original CAMAL all variables were assumed to be equally small
(a restriction removed in later versions). By maintaining polynomials in increasing
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maximum order it is possible to truncate the multiplication of two polynomials.
Assume that we are multiplying the two polynomials

A = a0 + a1 + a2 + . . .

B = b0 + b1 + b2 + . . .

If we are generating the partial answer

ai(b0 + b1 + b2 + . . .)

then if for some j the product aibj vanishes, then so will all products aibk for
k > j. This means that the later terms need not be generated. In the product of
1 + x+ x2 + x3 + . . .+ x10 and 1 + y+ y2 + y3 + . . .+ y10 to a total order of 10
instead of generating 100 term products only 55 are needed. The ordering can also
make the merging of the new terms into the answer easier.

16.10.3 Towards a CAMAL Module

For the purposes of this work it was necessary to reproduce as many of the ideas
of CAMAL as feasible within the REDUCE framework and philosophy. It was not
intended at this stage to produce a complete product, and so for simplicity a number
of compromises were made with the “no restrictions” principle in REDUCE and
the space and time efficiency of CAMAL. This section describes the basic design
decisions.

Data Structures

In a fashion similar to CAMAL a two level data representation is used. The coef-
ficients are the standard quotients of REDUCE, and their representation need not
concern us further. The angular part is similar to that of CAMAL, but the ability to
pack angle multipliers and use a single bit for the function are not readily available
in Standard LISP, so instead a longer vector is used. Two versions were written.
One used a balanced tree rather than a linear list for the Fourier terms, this being a
feature of CAMAL which was considered but never coded. The other uses a simple
linear representation for sums. The angle multipliers are held in a separate vector
in order to allow for future flexibility. This leads to a representation as a vector of
length 6 or 4;

Version1: [ BalanceBits, Coeff, Function, Angles, LeftTree, RightTree ]
Version2: [ Coeff, Function, Angles, Next ]

where the Angles field is a vector of length 8, for the multipliers. It was decided
to forego packing as for portability we do not know how many to pack into a small
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integer. The tree system used is AVL, which needs 2 bits to maintain balance infor-
mation, but these are coded as a complete integer field in the vector. We can expect
the improvements implicit in a binary tree to be advantageous for large expressions,
but the additional overhead may reduce its utility for smaller expressions.

A separate vector is kept relating the position of an angle to its print name, and
on the property list of each angle the allocation of its position is kept. So long as
the user declares which variables are to be treated as angles this mechanism gives
flexibility which was lacking in CAMAL.

Linearisation

As in the CAMAL system the linearisation of products of sines and cosines is done
not by pattern matching but by direct calculation at the heart of the product func-
tion, where the transformations (1) through (3) are made in the product of terms
function. A side effect of this is that there are no simple relations which can be used
from within the Fourier multiplication, and so a full addition of partial products is
required. There is no need to apply linearisations elsewhere as a special case. Ad-
dition, differentiation and integration cannot generate such products, and where
they can occur in substitution the natural algorithm uses the internal multiplication
function anyway.

Substitution

Substitution is the main operation of Fourier series. It is useful to consider three
different cases of substitutions.

1. Angle Expression for Angle:

2. Angle Expression + Fourier Expression for Angle:

3. Fourier Expression for Polynomial Variable.

The first of these is straightforward, and does not require any further comment.
The second substitution requires a little more care, but is not significantly difficult
to implement. The method follows the algorithm used in CAMAL, using TAYLOR
series. Indeed this is the main special case for substitution.

The problem is the last case. Typically many variables used in a Fourier series
program have had a WEIGHT assigned to them. This means that substitution must
take account of any possible WEIGHTs for variables. The standard code in RE-
DUCE does this in effect by translating the expression to prefix form, and recal-
culating the value. A Fourier series has a large number of coefficients, and so this
operations are repeated rather too often. At present this is the largest problem area
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with the internal code, as will be seen in the discussion of the Disturbing Function
calculation.

16.10.4 Integration with REDUCE

The Fourier module needs to be seen as part of REDUCE rather than as a separate
language. This can be seen as having internal and external parts.

Internal Interface

The Fourier expressions need to co-exist with the normal REDUCE syntax and
semantics. The prototype version does this by (ab)using the module method, based
in part on the TPS code [PB90]. Of course Fourier series are not constant, and so
are not really domain elements. However by asserting that Fourier series form a
ring of constants REDUCE can arrange to direct basic operations to the Fourier
code for addition, subtraction, multiplication and the like.

The main interface which needs to be provided is a simplification function for
Fourier expressions. This needs to provide compilation for linear sums of angles,
as well as constructing sine and cosine functions, and creating canonical forms.

User Interface

The creation of HDIFF and HINT functions for differentiation disguises this. An
unsatisfactory aspect of the interface is that the tokens SIN and COS are already in
use. The prototype uses the operator form

fourier sin(u)

to introduce harmonically represented sine functions. An alternative of using the
tokens F_SIN and F_COS is also available.

It is necessary to declare the names of the angles, which is achieved with the dec-
laration

harmonic theta, phi;

At present there is no protection against using a variable as both an angle and a
polynomial varaible. This will nooed to be done in a user-oriented version.
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16.10.5 The Simple Experiments

The REDUCE test file contains a simple example of a Fourier calculation, deter-
mining the value of (a1 cos(wt) + a3 cos(3wt) + b1 sin(wt) + b3 sin(3wt))3. For
the purposes of this system this is too trivial to do more than confirm the correct
answers.

The simplest non-trivial calculation for a Fourier series manipulator is to solve
Kepler’s equation for the eccentric anomoly E in terms of the mean anomoly u,
and the eccentricity of an orbit e, considered as a small quantity

E = u+ e sinE

The solution procedes by repeated approximation. Clearly the initial approxima-
tion is E0 = u. The nth approximation can be written as u + An, and so An can
be calculated by

Ak = e sin(u+Ak−1)

This is of course precisely the case for which the HSUB operation is designed, and
so in order to calculate En − u all one requires is the code

bige := fourier 0;
for k:=1:n do <<

wtlevel k;
bige:=fourier e * hsub(fourier(sin u), u, u, bige, k);

>>;
write "Kepler Eqn solution:", bige$

It is possible to create a regular REDUCE program to simulate this (as is done for
example in Barton and Fitch[BF72], page 254). Comparing these two programs
indicates substantial advantages to the Fourier module, as could be expected.
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Solving Kepler’s Equation
Order REDUCE Fourier Module

5 9.16 2.48
6 17.40 4.56
7 33.48 8.06
8 62.76 13.54
9 116.06 21.84

10 212.12 34.54
11 381.78 53.94
12 692.56 82.96
13 1247.54 125.86
14 2298.08 187.20
15 4176.04 275.60
16 7504.80 398.62
17 13459.80 569.26
18 *** 800.00
19 *** 1116.92
20 *** 1536.40

These results were with the linear representation of Fourier series. The tree rep-
resentation was slightly slower. The ten-fold speed-up for the 13th order is most
satisfactory.

16.10.6 A Medium-Sized Problem

Fourier series manipulators are primarily designed for large-scale calculations, but
for the demonstration purposes of this project a medium problem is considered.
The first stage in calculating the orbit of the Moon using the Delaunay theory (of
perturbed elliptic motion for the restricted 3-body problem) is to calculate the en-
ergy of the Moon’s motion about the Earth — the Hamiltonian of the system. This
is the calculation we use for comparisons.

Mathematical Background

The full calculation is described in detail in [Bro96], but a brief description is given
here for completeness, and to grasp the extent of the calculation.
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Referring to the figure 1 which gives the cordinate system, the basic equations are

S = (1− γ2) cos(f + g + h− f ′ − g′ − h′) + γ2 cos(f + g − h+ f ′ + g′ + h′)(16.40)

r = a(1− e cosE) (16.41)

l = E − e sinE (16.42)

a =
rdE

dl
(16.43)

r2df

dl
= a2(1− e2)

1
2 (16.44)
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P3(S) + . . .

}
(16.45)

There are similar equations to (7) to (10) for the quantities r′, a′, e′, l′, E′ and f ′

which refer to the position of the Sun rather than the Moon. The problem is to
calculate the expression R as an expansion in terms of the quantities e, e′, γ, a/a′,
l, g, h, l′, g′ and h′. The first three quantities are small quantities of the first order,
and a/a′ is of second order.

The steps required are

1. Solve the Kepler equation (8)

2. Substiture into (7) to give r/a in terms of e and l.

3. Calculate a/r from (9) and f from (10)

4. Substitute for f and f ′ into S using (6)

5. Calculate R from S, a′/r′ and r/a

The program is given in the Appendix.

Results

The Lunar Disturbing function was calculated by a direct coding of the previous
sections’ mathematics. The program was taken from Barton and Fitch [BF72] with
just small changes to generalise it for any order, and to make it acceptable for
Reduce3.4. The Fourier program followed the same pattern, but obviously used
the HSUB operation as appropriate and the harmonic integration. It is very similar
to the CAMAL program in [BF72].

The disturbing function was calculated to orders 2, 4 and 6 using Cambridge LISP
on an HLH Orion 1/05 (Intergraph Clipper), with the three programs α) Reduce3.4,
β) Reduce3.4 + Camal Linear Module and γ) Reduce3.4 + Camal AVL Module.
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The timings for CPU seconds (excluding garbage collection time) are summarised
the following table:

Order of DDF Reduce Camal Linear Camal Tree
2 23.68 11.22 12.9
4 429.44 213.56 260.64
6 >7500 3084.62 3445.54

If these numbers are normalised so REDUCE calculating the DDF is 100 units for
each order the table becomes

Order of DDF Reduce Camal Linear Camal Tree
2 100 47.38 54.48
4 100 49.73 60.69
6 100 <41.13 <45.94

From this we conclude that a doubling of speed is about correct, and although the
balanced tree system is slower as the problem size increases the gap between it and
the simpler linear system is narrowing.

It is disappointing that the ratio is not better, nor the absolute time less. It is worth
noting in this context that Jefferys claimed that the sixth order DDF took 30s on
a CDC6600 with TRIGMAN in 1970 [Jef70], and Barton and Fitch took about
1s for the second order DDF on TITAN with CAMAL [BF72]. A closer look at
the relative times for individual sections of the program shows that the substitution
case of replacing a polynomial variable by a Fourier series is only marginally faster
than the simple REDUCE program. In the DDF program this operation is only used
once in a major form, substituting into the Legendre polynomials, which have been
previously calculated by Rodrigues formula. This suggests that we replace this
with the recurrence relationship.

Making this change actually slows down the normal REDUCE by a small amount
but makes a significant change to the Fourier module; it reduces the run time for
the 6th order DDF from 3084.62s to 2002.02s. This gives some indication of the
problems with benchmarks. What is clear is that the current implementation of
substitution of a Fourier series for a polynomial variable is inadequate.

16.10.7 Conclusion

The Fourier module is far from complete. The operations necessary for the solution
of Duffing’s and Hill’s equations are not yet written, although they should not
cause much problem. The main defficiency is the treatment of series truncation;
at present it relies on the REDUCE WTLEVEL mechanism, and this seems too
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coarse for efficient truncation. It would be possible to re-write the polynomial
manipulator as well, while retaining the REDUCE syntax, but that seems rather
more than one would hope.

The real failure so far is the large time lag between the REDUCE-based system on a
modern workstation against a mainframe of 25 years ago running a special system.
The CAMAL Disturbing function program could calculate the tenth order with a
maximum of 32K words (about 192Kbytes) whereas this system failed to calculate
the eigth order in 4Mbytes (taking 2000s before failing). I have in my archives
the output from the standard CAMAL test suite, which includes a sixth order DDF
on an IBM 370/165 run on 2 June 1978, taking 22.50s and using a maximum of
15459 words of memory for heap — or about 62Kbytes. A rough estimate is that
the Orion 1/05 is comparable in speed to the 360/165, but with more real memory
and virtual memory.

However, a simple Fourier manipulator has been created for REDUCE which per-
forms between twice and three times the speed of REDUCE using pattern match-
ing. It has been shown that this system is capable of performing the calculations of
celestial mechanics, but it still seriously lags behind the efficiency of the specialist
systems of twenty years before. It is perhaps fortunate that it was not been possible
to compare it with a modern specialist system.

There is still work to do to provide a convenient user interface, but it is intended to
develop the system in this direction. It would be pleasant to have again a system of
the efficiency of CAMAL(F).

I would like to thank Codemist Ltd for the provision of computing resources for
this project, and David Barton who taught be so much about Fourier series and
celstial mechanics. Thank are also due to the National Health Service, without
whom this work and paper could not have been produced.

Appendix: The DDF Function

array p(n/2+2);
harmonic u,v,w,x,y,z;
weight e=1, b=1, d=1, a=1;

%% Generate Legendre Polynomials to sufficient order
for i:=2:n/2+2 do <<

p(i):=(h*h-1)^i;
for j:=1:i do p(i):=df(p(i),h)/(2j)

>>;

%%%%%%%%%%%%%%%% Step1: Solve Kepler equation
bige := fourier 0;
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for k:=1:n do <<
wtlevel k;
bige:=fourier e * hsub(fourier(sin u), u, u, bige, k);

>>;

%% Ensure we do not calculate things of too high an order
wtlevel n;

%%%%%%%%%%%%%%%% Step 2: Calculate r/a in terms of e and l
dd:=-e*e; hh:=3/2; j:=1; cc := 1;
for i:=1:n/2 do <<

j:=i*j; hh:=hh-1; cc:=cc+hh*(dd^i)/j
>>;
bb:=hsub(fourier(1-e*cos u), u, u, bige, n);
aa:=fourier 1+hdiff(bige,u); ff:=hint(aa*aa*fourier cc,u);

%%%%%%%%%%%%%%%% Step 3: a/r and f
uu := hsub(bb,u,v); uu:=hsub(uu,e,b);
vv := hsub(aa,u,v); vv:=hsub(vv,e,b);
ww := hsub(ff,u,v); ww:=hsub(ww,e,b);

%%%%%%%%%%%%%%%% Step 4: Substitute f and f’ into S
yy:=ff-ww; zz:=ff+ww;
xx:=hsub(fourier((1-d*d)*cos(u)),u,u-v+w-x-y+z,yy,n)+

hsub(fourier(d*d*cos(v)),v,u+v+w+x+y-z,zz,n);

%%%%%%%%%%%%%%%% Step 5: Calculate R
zz:=bb*vv; yy:=zz*zz*vv;

on fourier;
for i := 2:n/2+2 do <<

wtlevel n+4-2i; p(i) := hsub(p(i), h, xx) >>;

wtlevel n;
for i:=n/2+2 step -1 until 3 do

p(n/2+2):=fourier(a*a)*zz*p(n/2+2)+p(i-1);
yy*p(n/2+2);
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16.11 CANTENS: A Package for Manipulations and Sim-
plifications of Indexed Objects

This package creates an environment which allows the user to manipulate and sim-
plify expressions containing various indexed objects like tensors, spinors, fields
and quantum fields.

Author: Hubert Caprasse.

16.11.1 Introduction

CANTENS is a package that creates an environment inside REDUCE which allows
the user to manipulate and simplify expressions containing various indexed objects
like tensors, spinors, fields and quantum fields. Briefly said, it allows him

- to define generic indexed quantities which can eventually depend implicitly
or explicitly on any number of variables;

- to define one or several affine or metric (sub-)spaces, and to work within
them without difficulty;

- to handle dummy indices and simplify adequatly expressions which contain
them.

Beside the above features, it offers the user:

1. Several invariant elementary tensors which are always used in the applica-
tions involving the use of indexed objects like delta, epsilon, eta
and the generalized delta function.

2. The possibility to define any metric and to make it bloc-diagonal if he wishes
to.

3. The capability to symmetrize or antisymmetrize any expression.

4. The possibility to introduce any kind of symmetry (even partial symmetries)
for the indexed objects.

5. The choice to work with commutative, non-commutative or anticommutative
indexed objects.

In this package, one cannot find algorithms or even specific objects (i.e. like the
covariant derivative or the SU(3) group structure constants) which are of used either
in nuclear and particle physics. The objective of the package is simply to allow the
user to easily formulate his algorithms in the notations he likes most. The package
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is also conceived so as to minimize the number of new commands. However, the
large number of new capabilities inherently implies that quite a substantial number
of new functions and commands must be used. On the other hand, in order to
avoid too many error or warning messages the package assumes, in many cases,
that the user is reponsible of the consistency of its inputs. The author is aware that
the package is still perfectible and he will be grateful to all people who shall spare
some time to communicate bugs or suggest improvements.

The documentation below is separated into four sections. In the first one, the
space(s) properties and definitions are described.

In the second one, the commands to geberate and handle generic indexed quantities
(called abusively tensors) are illustrated. The manipulation and control of free and
dummy indices is discussed.

In the third one, the special tensors are introduced and their properties discussed
especially with respect to their ability to work simultaneously within several sub-
spaces.

The last section, which is also the most important, is devoted entirely to the simpli-
fication function CANONICAL. This function originates from the package DUMMY
and has been substantially extended . It takes account of all symmetries, make
dummy summations and seeks a “canonical” form for any tensorial expression.
Without it, the present package would be much less useful.

Finally, an index has been created. It contains numerous references to the text.
Different typings have been adopted to make a clear distinction between them.
The conventions are the following:

• Procedure keywords are typed in capital roman letters.

• Package keywords are typed in typewriter capital letters.

• Cantens package keywords are in small typewriter letters.

• All other keywords are typed in small roman letters.

When CANTENS is loaded, the packages ASSIST and DUMMY are also loaded.

16.11.2 Handling of space(s)

One can work either in a single space environment or in a multiple space environ-
ment. After the package is loaded, the single space environment is set and a unique
space is defined. It is euclidian, and has a symbolic dimension equal to dim. The
single space environment is determined by the switch ONESPACE which is turned
on. One can verify the above assertions as follows :
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onespace ?; => yes

wholespace_dim ?; => dim

signature ?; => 0

One can introduce a pseudoeuclidian metric for the above space by the command
SIGNATURE and verify that the signature is indeed 1:

signature 1;

signature ?; => 1

In principle the signature may be set to any positive integer. However, presently,
the package cannot handle signatures larger than 1. One gets the Minkowski-like
space metric 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


which corresponds to the convention of high energy physicists. It is possible to
change it into the astrophysicists convention using the command GLOBAL_SIGN:

global_sign ?; => 1

global_sign (-1);

global_sign ?; => -1

This means that the actual metric is now (−1, 1, 1, 1). The space dimension may,
of course, be assigned at will using the function WHOLESPACE_DIM. Below, it is
assigned to 4:

wholespace_dim 4; ==> 4

When the switch ONESPACE is turned off, the system assumes that this default
space is non-existent and, therefore, that the user is going to define the space(s) in
which he wants to work. Unexpected error messages will occur if it is not done.
Once the switch is turned off many more functions become active. A few of them
are available in the algebraic mode to allow the user to properly conctruct and
control the properties of the various (sub-)spaces he is going to define and, also, to
assign symbolic indices to some of them.

DEFINE_SPACES is the space constructor and wholespace is a reserved identi-
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fier which is meant to be the name of the global space if subspaces are introduced.
Suppose we want to define a unique space, we can choose for its any name but
choosing wholespace will be more efficient. On the other hand, it leaves open
the possibility to introduce subspaces in a more transparent way. So one writes, for
instance,:

define_spaces wholespace=

{6,signature=1,indexrange=0 .. 5}; ==>t

The arguments inside the list, assign respectively the dimension, the signature and
the range of the numeric indices which is allowed. Notice that the range starts from
0 and not from 1. This is made to conform with the usual convention for spaces of
signature equal to 1. However, this is not compulsory. Notice that the declaration
of the indexrange may be omitted if this is the only defined space. There are two
other options which may replace the signature option, namely euclidian and
affine. They have both an obvious significance.

In the subsequent example, an eleven dimension global space is defined and two
subspaces of this space are specified. Notice that no indexrange has been declared
for the entire space. However, the indexrange declaration is compulsory for sub-
spaces otherwise the package will improperly work when dealing with numeric
indices.

define_spaces wholespace={11,signature=1}; ==> t

define_spaces mink=

{4,signature=1,indexrange=0 .. 3}; ==> t

define_spaces eucl=

{6,euclidian,indexrange=4 .. 9}; ==> t

To remind ones the space context in which one is working, the use of the func-
tion SHOW_SPACES is required. Its output is an algebraic value from which the
user can retrieve all the informations displayed. After the declarations above, this
function gives:

show_spaces(); ==>

{{wholespace,11,signature=1}

{mink,4,signature=1,indexrange=0..3},
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{eucl,6,euclidian,indexrange=4..9}}

If an input error is made or if one wants to change the space framework, one cannot
directly redefine the relevant space(s). For instance, the input

define_spaces eucl=

{7,euclidian,indexrange=4 .. 9}; ==>

*** Warning: eucl cannot be (or is already)
defined as space identifier

t

whih aims to fill all dimensions present in wholespace tells that the space eucl
cannot be redefined. To redefine it effectively, one is to remove the existing defini-
tion first using the function REM_SPACESwhich takes any number of space-names
as its argument. Here is the illustration:

rem_spaces eucl; ==> t

show_spaces(); ==>

{{wholespace,11,signature=1},

{mink,4,signature=1,indexrange=0..3}}

define_spaces eucl=

{7,euclidian,indexrange=4 .. 10}; ==> t

show_spaces(); ==>

{{wholespace,11,signature=1},

{mink,4,signature=1,indexrange=0..3},

{eucl,7,euclidian,indexrange=4..10}}

Here, the user is entirely responsible of the coherence of his construction. The
system does NOT verify it but will incorrectly run if there is a mistake at this level.

When two spaces are direct product of each other (as the color and Minkowski
spaces in quantum chromodynamics), it is not necessary to introduce the global



346 CHAPTER 16. USER CONTRIBUTED PACKAGES

space wholespace.

“Tensors” and symbolic indices can be declared to belong to a specific space or
subspace. It is in fact an essential ingredient of the package and make it able
to handle expressions which involve quantities belonging to several (sub-)spaces
or to handle bloc-diagonal “tensors”. This will be discussed in the next section.
Here, we just mention how to declare that some set of symbolic indices belong to
a specific (sub-)space or how to declare them to belong to any space. The relevant
command is MK_IDS_BELONG_SPACE whose syntax is

mk_ids_belong_space(<list of indices>,
<space | subspace identifier>)

For example, within the above declared spaces one could write:

mk_ids_belong_space({a0,a1,a2,a3},mink); ==> t

mk_ids_belong_space({x,y,z,u,v},eucl); ==> t

The command MK_IDS_BELONG_ANYSPACE allows to remake them usable ei-
ther in wholespace if it is defined or in anyone among the defined spaces. For
instance, the declaration:

mk_ids_belong_anyspace a1,a2; ==> t

tells that a1 and a2 belong either to mink or to eucl or to wholespace.

16.11.3 Generic tensors and their manipulation

Definition

The generic tensors handled by CANTENS are objects much more general than
usual tensors. The reason is that they are not supposed to obey well defined trans-
formation properties under a change of coordinates. They are only indexed quan-
tities. The indices are either contravariantly (upper indices) or covariantly (lower
indices) placed. They can be symbolic or numeric. When a given index is found
both in one upper and in one lower place, it is supposed to be summed over all
space-coordinates it belongs to viz. it is a dummy index and automatically recog-
nized as such. So they are supposed to obey the summation rules of tensor calcu-
lus. This why and only why they are called tensors. Moreover, aside from indices
they may also depend implicitly or explicitly on any number of variables. Within
this definition, tensors may also be spinors, they can be non-commutative or anti-
commutative, they may also be algebra generators and represent fields or quantum
fields.



347

Implications of TENSOR declaration

The procedure TENSOR which takes an arbitrary number of identifiers as argument
defines them as operator-like objects which admit an arbitrary number of indices.
Each component has a formal character and may or may not belong to a specific
(sub-)space. Numeric indices are also allowed. The way to distinguish upper and
lower indices is the same as the one in the package EXCALC e.g. −a is a lower
index and a is an upper index. A special printing function has been created so as
to mimic as much as possible the way of writing such objects on a sheet of paper.
Let us illustrate the use of TENSOR:

tensor te; ==> t

te(3,a,-4,b,-c,7); ==>
3 a b 7

te
4 c

te(3,a,{x,y},-4,b,-c,7); ==>

3 a b 7
te (x,y)

4 c

te(3,a,-4,b,{u,v},-c,7); ==>

3 a b 7
te (u,v)

4 c

te({x,y}); ==> te(x,y)

Notice that the system distinguishes indices from variables on input solely on the
basis that the user puts variables inside a list.

The dependence can also be declared implicit through the REDUCE command
DEPEND which is generalized so as to allow to declare a tensor to depend on

another tensor irrespective of its components. It means that only one declaration
is enough to express the dependence with respect to all its components. A simple
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example:

tensor te,x;

depend te,x;

df(te(a,-b),x(c)); ==>

a c
df(te ,x )

b

Therefore, when all objects are tensors, the dependence declaration is valid for all
indices.

One can also avoid the trouble to place the explicit variables inside a list if one de-
clare them as variables through the command MAKE_VARIABLES. This property
can also be removed19 using REMOVE_VARIABLES:

make_variables x,y; ==> t

te(x,y); ==> te(x,y)

te(x,y,a); ==>

a
te (x,y)

remove_variables x; ==> t

te(x,y,a); ==>

x a
te (y)

If one does that one must be careful not to substitute a number to such declared
variables because this number would be considered as an index and no longer as a
variable. So it is only useful for formal variables.

19One important feature of this package is its reversibility viz. it gives the user the means to erase
its previous operations at any time. So, most functions described below do possess “removing” action
companions.
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A tensor can be easily eliminated using the function REM_TENSOR. It has the
syntax

rem_tensor t1,t2,t3 ....;

Dummy indices recognition

For all individual tensors met by the evaluator, the system will analyse the writ-
ten indices and will detect those which must be considered dummy according to
the usual rules of tensor calculus. Those indices will be given the dummy prop-
erty and will no longer be allowed to play the role of free indices unless the user
removes this dummy property. In that way, the system checks immediately the
consistency of an input. Three functions are at the disposal of the user to con-
trol dummy indices. They are DUMMY_INDICES, REM_DUMMY_INDICES and
REM_DUMMY_IDS. The following illustrates their use as well as the behaviour of
the system:

dummy_indices(); ==> {} % In a fresh environment

te(a,b,-c,-a); ==>

a b
te

c a

dummy_indices(); ==> {a}

te(a,b,-c,a); ==>

***** ((c)(a b a)) are inconsistent lists of indices

% a cannot be found twice as an upper index

te(a,b,-b,-a); ==>

a b
te

b a

dummy_indices(); ==> {b,a}

te(d,-d,d); ==>
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***** ((d)(d d)) are inconsistent lists of indices

dummy_indices(); ==> {d,b,a}

rem_dummy_ids d; ==> t

dummy_indices(); ==> {b,a}

te(d,d); ==>

d d
te % This is allowed again.

dummy_indices(); ==> {b,a}

rem_dummy_indices(); ==> t

dummy_indices(); ==> {}

Other verifications of coherence are made when space specifications are introduced
both in the ON and OFF onespace environment. We shall discuss them later.

Substitutions, assignements and rewriting rules

The user must be able to manipulate and give specific characteristics to the generic
tensors he has introduced. Since tensors are essentially REDUCE operators, the
usual commands of the system are available. However, some limitations are im-
plied by the fact that indices and, especially numeric indices, must always be prop-
erly recognized before any substitution or manipulation is done. We have gathered
below a set of examples which illustrate all the “delicate” points. First, the substi-
tutions:

sub(a=-c,te(a,b)); ==>

b
te

c

sub(a=-1,te(a,b)); ==>

b
te

1
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sub(a=-0,te(a,b)); ==>

0 b
te % sub has replaced -0 by 0. wrong!

sub(a=-!0,te(a,b)); ==>

b
te % right
0

The substitution of an index by -0 is the only one case where there is a problem.
The function SUB replaces -0 by 0 because it does not recognize 0 as an index of
course. Such a recognition is context dependent and implies a modification of SUB
for this single exceptional case. Therefore,we have opted, not do do so and to use
the index 0 which is simply !0 instead of 0.

Second, the assignments. Here, we advise the user to rely on the operator==20

instead of the operator :=. Again, the reason is to avoid the problem raised above
in the case of substitutions. := does not evaluate its left hand side so that -0 is not
recognized as an index and simplified to 0 while the == operator evaluates both
its left and right hand sides and does recognize it. The disadvantage of == is that
it demands that a second assignement on a given component be made only after
having suppressed explicitly the first assignement. This is done by the function
REM_VALUE_TENS which can be applied on any component. We stress, however,
that if one is willing to use -!0 instead of -0 as the lower 0 index, the use of := is
perfectly legitimate:

te({x,y},a,-0)==x*y*te(a,-0); ==>

a
te *x*y

0

te({x,y},a,-0); ==>

a
te *x*y

0

te({x,y},a,0); ==>

20See the ASSIST documentation for its description.
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a 0
te (x,y)

te({x,y},a,-0)==x*y*te(a,-0); ==>

a

***** te *x*y invalid as setvalue kernel
0

rem_value_tens te({x,y},a,-0);

te({x,y},a,-0); ==>

a
te (x,y)

0

te({x,y},a,-0)==(x+y)*te(a,-0); ==>

a
te *(x + y)

0

In the elementary application below, the use of a tensor avoids the introduction of
two different operators and makes the calculation more readable.

te(1)==sin th * cos phi; ==> cos(phi)*sin(th)

te(-1)==sin th * cos phi; ==> cos(phi)*sin(th)

te(2)==sin th * sin phi; ==> sin(phi)*sin(th)

te(-2)==sin th * sin phi; ==> sin(phi)*sin(th)

te(3)==cos th ; ==> cos(th)

te(-3)==cos th ; ==> cos(th)

for i:=1:3 sum te(i)*te(-i); ==>

2 2 2 2 2
cos(phi) *sin(th) + cos(th) + sin(phi) *sin(th)
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rem_value_tens te;

te(2); ==>

2
te

There is no difference in the manipulation of numeric indices and numeric tensor
indices. The function REM_VALUE_TENS when applied to a tensor prefix sup-
presses the value of all its components. Finally, there is no “interference” with i as
a dummy index and i as a numeric index in a loop.

Third, rewriting rules. They are either global or local and can be used as in RE-
DUCE. Again, here, the -0 index problem exists each time a substitution by the
index -0 must be made in a template.

% LET:

let te({x,y},-0)=x*y;

te({x,y},-0); ==> x*y

te({x,y},+0); ==>

0
te (x,y)

te({x,u},-0); ==>

te (x,u)
0

% FOR ALL .. LET:

for all x,a let te({x},a,-b)=x*te(a,-b);

te({u},1,-b); ==>

1
te *u

b
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te({u},c,-b); ==>

c
te *u

b

te({u},b,-b); ==>

b
te *u

b

te({u},a,-a); ==>

a
te (u)

a

for all x,a clear te({x},a,-b);

te({u},c,-b); ==>

c
te (u)

b

for all a,b let te({x},a,-b)=x*te(a,-b);

te({x},c,-b); ==>

c
te *x

b

te({x},a,-a); ==>

a
te *x

a

% The index -0 problem:

te({x},a,-0); ==> % -0 becomes +0 in the template
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a
te (x) % the rule does not apply.

0

te({x},0,-!0); ==>

0
te *x % here it applies.

0

% WHERE:

rul:={te(~a) => sin a}; ==>

a
rul := {te => sin(a)}

te(1) where rul; ==> sin(1)

te(1); ==>

1
te

% with variables:

rul1:={te(~a,{~x,~y}) => x*y*sin(a)}; ==>

~a
rul1 := {te (~x,~y) => x*y*sin(a)}

te(a,{x,y}) where rul1; ==> sin(a)*x*y

te({x,y},a) where rul1; ==> sin(a)*x*y

rul2:={te(-~a,{~x,~y}) => x*y*sin(-a)};
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rul2 := {te (~x,~y) => x*y*sin(-a)}
~a

te(-a,{x,y}) where rul2; ==> -sin(a)*x*y

te({x,y},-a) where rul2; ==> -sin(a)*x*y

Notice that the position of the list of variables inside the rule may be chosen at will.
It is an irrelevant feature of the template. This may be confusing, so, we advise to
write the rules not as above but placing the list of variables in front of all indices
since it is in that canonical form which it is written by the simplification function
of individual tensors.

Behaviour under space specifications

The characteristics and the behaviour of generic tensors described up to now are
independent of all space specifications. They are complete as long as we confine
to the default space which is active when starting CANTENS. However, as soon as
some space specification is introduced, it has some consequences one the generic
tensor properties. This is true both when ONESPACE is switched ON or OFF. Here
we shall describe how to deal with these features.

When onespace is ON, if the space dimension is set to an integer, numeric in-
dices of any generic tensors are forced to be less or equal that integer if the sig-
nature is 0 or less than that integer if the signature is equal to 1. The following
illustrates what happens.

on onespace;

wholespace_dim 4; ==> 4

signature 0; ==> 0

te(3,a,-b,7); ==> ***** numeric indices out of range

te(3,a,-b,3); ==>

3 a 3
te
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b

te(4,a,-b,4); ==>

4 a 4
te

b

sub(a=5,te(3,a,-b,3));

==> ***** numeric indices out of range

signature 1; ==> 1

% Now indices range from 0 to 3:

te(4,a,-b,4);

==> ***** numeric indices out of range

te(0,a,-b,3); ==>

0 a 3
te

b

When onespace is OFF, many more possibilities to control the input or to give
specific properties to tensors are open. For instance, it is possible to declare that
a tensor belongs to one of them. It is also possible to declare that some indices
belongs to one of them. It is even possible to do that for numeric indices thanks
to the declaration indexrange included optionally in the space definition generated
by DEFINE_SPACES. First, when onespace is OFF, the run equivalent to the
previous one is like the following:

off onespace;

define_spaces wholespace={6,signature=1); ==> t

show_spaces(); ==> {{wholespace,6,signature=1}}
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make_tensor_belong_space(te,wholespace);

==> wholespace

te(4,a,-b,6); ==>

***** numeric indices out of range

te(4,a,-b,5); ==>

4 a 5
te

b

rem_spaces wholespace;

define_spaces wholespace={4,euclidean}; ==> t

te(a,5,-b); ==> ***** numeric indices out of range

te(a,4,-b); ==>

a 4
te

b

define_spaces eucl={1,signature=0}; ==> t

show_spaces(); ==>

{{wholespace,5,signature=1},

{eucl,1,signature=0}}

make_tensor_belong_space(te,eucl); ==> eucl

te(1); ==>

1
te

te(2); ==> ***** numeric indices out of range
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te(0); ==>

0
te

In the run, the new function MAKE_TENSOR_BELONG_SPACE has been used.
One may be surprised that te(0) is allowed in the end of the previous run and,
indeed, it is incorrect that the system allows two different components to te. This
is due to an incomplete definition of the space. When one deals with spaces of inte-
ger dimensions, if one wants to control numeric indices correctly when onespace
is switched off one must also give the indexrange. So the previous run must be cor-
rected to

define_spaces eucl=

{1,signature=0,indexrange=1 .. 1}; ==> t

make_tensor_belong_space(te,eucl); ==> eucl

te(0); ==>

***** numeric indices do not belong to (sub)-space

te(1); ==>

1
te

te(2); ==>

***** numeric indices do not belong to (sub)-space

Notice that the error message has also changed accordingly. So, now one can even
constrain the 0 component to belong to an euclidian space.

Let us go back to symbolic indices. By default, any symbolic index belongs
to the global space or to all defined partial spaces. In many cases, this is, of
course, not consistent. So, the possibility exists to declare that one or several
indices belong to a specific (sub-)space. To this end, one is to use the function
MK_IDS_BELONG_SPACE. Its syntax is

mk_ids_belong_space(<list of indices>,
<(sub-)space identifier>)
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The function MK_IDS_BELONG_ANYSPACE whose syntax is the same do the
reverse operation.

Combined with the declaration MAKE_TENSOR_BELONG_SPACE, it allows to
express all problems which involve tensors belonging to different spaces and do
the dummy summations correctly. One can also define a tensor which has a “bloc-
diagonal” structure. All these features are illustrated in the next sections which
describe specific tensors and the properties of the extended function CANONICAL.

16.11.4 Specific tensors

The means provided in the two previous subsection to handle generic tensors al-
ready allow to construct any specific tensor we may need. That the package con-
tains a certain number of them is already justified on the level of conviviality. How-
ever, a more important justification is that some basic tensors are so universaly and
frequently used that a careful programming of these improves considerably the ro-
bustness and the efficiency of most calculations. The choice of the set of specific
tensors is not clearcut. We have tried to keep their number to a minimum but, ex-
perience, may lead us extend it without dificulty. So, up to now, the list of specific
tensors is:

- delta tensor,
- eta Minkowski tensor,
- epsilon tensor,
- del generalised delta tensor,
- metric generic tensor metric.

It is important to realize that the typewriter font names in the list are keywords for
the corresponding tensors and do not necessarily correspond to their actual names.
Indeed, the choice of the names of particular tensors is left to the user. When
startting CANTENS specific tensors are NOT available. They must be activated by
the user using the function MAKE_PARTIC_TENS whose syntax is:

make_partic_tens(<tensor name> , <keyword>);

The name chosen may be the same as the keyword. As we shall see, it is never
needed to define more than one delta tensor but it is often needed to define
several epsilon tensors. Hereunder, we describe each of the above tensors espe-
cially their behaviour in a multi-space environment.
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DELTA tensor

It is the simplest example of a bloc-diagonal tensor we mentioned in the previous
section. It can also work in a space which is a direct product of two spaces. There-
fore, one never needs to introduce more than one such tensor. If one is working
in a graphic environment, it is advantageous to choose the keyword as its name.
Here we choose DELT. We illustrate how it works when the switch onespace is
successively switched ON and OFF.

on onespace;

make_partic_tens(delt,delta); ==> t

delt(a,b); ==>

***** bad choice of indices for DELTA tensor

% order of upper and lower indices irrelevant:

delt(a,-b); ==>

a
delt

b

delt(-b,a); ==>

a
delt

b

delt(-a,b); ==>

b
delt

a

wholespace_dim ?; ==> dim

delt(1,-5); ==> 0

% dummy summation done:
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delt(-a,a); ==> dim

wholespace_dim 4; ==> 4

delt(1,-5); ==> ***** numeric indices out of range

wholespace_dim 3; ==> 3

delt(-a,a); ==> 3

There is a peculiarity of this tensor, viz. it can serve to represent the Dirac delta
function when it has no indices and an explicit variable dependency as hereunder

delt({x-y}) ==> delt(x-y)

Next we work in the context of several spaces:

off onespace;

define_spaces wholespace={5,signature=1}; ==> t

% we need to assign delta to wholespace when it exists:

make_tensor_belong_space(delt,wholespace);

delt(a,-a); ==> 5

delt(0,-0); ==>1

rem_spaces wholespace; ==> t

define_spaces wholespace={5,signature=0}; ==> t

delt(a,-a); ==> 5

delt(0,-a); ==>

***** bad value of indices for DELTA tensor

The checking of consistency of chosen indices is made in the same way as for
generic tensor. In fact, all the previous functions which act on generic tensors may
also affect, in the same way, a specific tensor. For instance, it was compulsory to
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explicitly tell that we want DELT to belong to the wholespace overwise, DELT
would remain defined on the default space. In the next sample run, we display the
bloc-diagonal property of the delta tensor.

onespace ?; ==> no

rem_spaces wholespace; ==> t

define_spaces wholespace={10,signature=1}$

define_spaces d1={5,euclidian}$

define_spaces d2={2,euclidian}$

mk_ids_belong_space({a},d1); ==> t

mk_ids_belong_space({b},d2); ==> t

% c belongs to wholespace so:

delt(c,-b); ==>

c
delt

b

delt(c,-c); ==> 10

delt(b,-b); ==> 2

delt(a,-a); ==> 5

% this is especially important:

delt(a,-b); ==> 0

The bloc-diagonal property of delt is made active under two conditions. The first
is that the system knows to which space it belongs, the second is that indices must
be declared to belong to a specific space. To enforce the same property on a generic
tensor, we have to make the MAKE_BLOC_DIAGONAL declaration:

make_bloc_diagonal t1,t2, ...;
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and to make it active, one proceeds as in the above run. Starting from a fresh
environment, the following sample run is illustrative:

off onespace;

define_spaces wholespace={6,signature=1}$

define_spaces mink={4,signature=1,indexrange=0 .. 3}$

define_spaces eucl={3,euclidian,indexrange=4 .. 6}$

tensor te;

make_tensor_belong_space(te,eucl); ==> eucl

% the key declaration:

make_bloc_diagonal te; ==> t

% bloc-diagonal property activation:

mk_ids_belong_space({a,b,c},eucl); ==> t

mk_ids_belong_space({m1,m2},mink); ==> t

te(a,b,m1); ==> 0

te(a,b,m2); ==> 0

% bloc-diagonal property suppression:

mk_ids_belong_anyspace a,b,c,m1,m2; ==> t

te(a,b,m2); ==>

a b m2
te
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ETA Minkowski tensor

The use of MAKE_PARTIC_TENS with the keyword eta allows to create a
Minkowski diagonal metric tensor in a one or multi-space context either with the
convention of high energy physicists or in the convention of astrophysicists. Any
eta-like tensor is assumed to work within a space of signature 1. Therefore, if the
space whose metric, it is supposed to describe has a signature 0, an error message
follows if one is working in an ON onespace context and a warning when in an
OFF onespace context. Illustration:

on onespace;

make_partic_tens(et,eta); ==> t

signature 0; ==> 0;

et(-b,-a); ==>

***** signature must be equal to 1 for ETA tensor

off onespace;

et(a,b); ==>

*** ETA tensor not properly assigned to a space

% it is then evaluated to zero:

0

on onespace;

signature 1; ==> 1

et(-b,-a); ==>

et
a b

Since et(a,-a) is evaluated to the corresponding delta tensor, one cannot
define properly an eta tensor without a simultaneous introduction of a delta
tensor. Otherwise one gets the following message:
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et(a,-a); ==> ***** no name found for (delta)

So we need to issue, for instance,

make_partic_tens(delta,delta); ==> t

The value of its diagonal elements depends on the chosen global sign. The next
run illustrates this:

global_sign ?; ==> 1

et(0,0); ==> 1

et(3,3); ==> - 1

global_sign(-1); ==> -1

et(0,0); ==> - 1

et(3,3); ==> 1

The tensor is of course symmetric . Its indices are checked in the same way as for
a generic tensor. In a multi_space context, the eta tensor must belong to a well
defined space of signature 1:

off onespace;

define_spaces wholespace={4,signature=1}$

make_tensor_belong_space(et,wholespace)$

et(a,-a); ==> 4

If the space to which et belongs to is a subspace, one must also take care to give
a space-identity to dummy indices which may appear inside it. In the following
run, the index a belongs to wholespace if it is not told to the system that it is a
dummy index of the space mink:

make_tensor_belong_anyspace et; ==> t

rem_spaces wholespace; ==> t

define_spaces wholespace={8,signature=1}; ==> t
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define_spaces mink={5,signature=1}; ==> t

make_tensor_belong_space(et,mink); ==> mink

% a sits in wholespace:

et(a,-a); ==> 8

mk_ids_belong_space({a},mink); ==> t

% a sits in mink:

et(a,-a); ==> 5

EPSILON tensors

It is an antisymmetric tensor which is the invariant tensor for the unitary group
transformations in n-dimensional complex space which are continuously connected
to the identity transformation. The number of their indices are always stricty equal
to the number of space dimensions. So, to each specific space is associated a
specific epsilon tensor. Its properties are also dependent on the signature of the
space. We describe how to define and manipulate it in the context of a unique space
and, next, in a multi-space context.

ONESPACE is ON

The use of MAKE_PARTIC_TENS places it, by default, in an euclidian space if
the signature is 0 and in a Minkowski-type space if the signature is 1. For higher
signatures it is not constructed. For a space of symbolic dimension, the number
of its indices is not constrained. When it appears inside an expression, its indices
are all currently upper or lower indices. However, the system allows for mixed
positions of the indices. In that case, the output of the system is changed compared
to the input only to place all contravariant indices to the left of the covariant ones.

make_partic_tens(eps,epsilon); ==> t

eps(a,d,b,-g,e,-f); ==>

a d b e
- eps

g f
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eps(a,d,b,-f,e,-f); ==> 0

% indices have all the same variance:

eps(-b,-a); ==>

- eps
a b

signature ?; ==> 0

eps(1,2,3,4); ==> 1

eps(-1,-2,-3,-4); ==> 1

wholespace_dim 3; ==> 3

eps(-1,-2,-3); ==> 1

eps(-1,-2,-3,-4); ==>

***** numeric indices out of range

eps(-1,-2,-3,-3); ==>

***** bad number of indices for (eps) tensor

eps(a,b); ==>

***** bad number of indices for (eps) tensor

eps(a,b,c); ==>

a b c
eps

eps(a,b,b); ==> 0

When the signature is equal to 1, it is known that there exists two conventions
which are linked to the chosen value 1 or -1 of the (0, 1, . . . , n) component. So,
the sytem does evaluate all components in terms of the (0, 1, . . . , n) upper index
component. It is left to the user to assign it to 1 or -1.
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signature 1; ==> 1

eps(0,1,2); ==>

0 1 2
eps

eps(-0,-1,-2); ==>

0 1 2
eps

wholespace_dim 4; ==> 4

eps(0,1,2,3); ==>

0 1 2 3
eps

eps(-0,-1,-2,-3); ==>

0 1 2 3
- eps

% change of the global_sign convention:

global_sign(-1);

wholespace_dim 3; ==> 3

% compare with second input:

eps(-0,-1,-2); ==>

0 1 2
- eps

ONESPACE is OFF

As already said, several epsilon tensors may be defined. They must be assigned to a
well defined (sub-)space otherwise the simplifying function CANONICAL will not
properly work. The set of epsilon tensors defined associated to their space-name
may be retrieved using the function SHOW_EPSILONS. An important word of cau-



370 CHAPTER 16. USER CONTRIBUTED PACKAGES

tion here. The output of this function does NOT show the epsilon tensor one may
have defined in the ON onespace context. This is so because the default space
has NO name. Starting from a fresh environment, the following run illustrates this
point:

show_epsilons(); ==> {}

onespace ?; ==> yes

make_partic_tens(eps,epsilon); ==> t

show_epsilons(); ==> {}

To make the epsilon tensor defined in the single space environment visible in
the multi-space environment, one needs to associate it to a space. For example:

off onespace;

define_spaces wholespace={7,signature=1}; ==> t

show_epsilons(); ==> {} % still invisible

make_tensor_belong_space(eps,wholespace); ==>

wholespace

show_epsilons(); ==> {{eps,wholespace}}

Next, let us define an additional epsilon-type tensor:

define_spaces eucl={3,euclidian}; ==> t

make_partic_tens(ep,epsilon); ==>

*** Warning: ep MUST belong to a space
t

make_tensor_belong_space(ep,eucl); ==> eucl

show_epsilons(); ==> {{ep,eucl},{eps,wholespace}}

% We show that it is indeed working inside eucl:
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ep(-1,-2,-3); ==> 1

ep(1,2,3); ==> 1

ep(a,b,c,d); ==>

***** bad number of indices for (ep) tensor

ep(1,2,4); ==>

***** numeric indices out of range

As previously, the discrimation between symbolic indices may be introduced by
assigning them to one or another space :

rem_spaces wholespace;

define_spaces wholespace={dim,signature=1}; ==> t

mk_ids_belong_space({e1,e2,e3},eucl); ==> t

mk_ids_belong_space({a,b,c},wholespace); ==> t

ep(e1,e2,e3); ==>

e1 e2 e3
ep % accepted

ep(e1,e2,z); ==>

e1 e2 z
ep % accepted because z

% not attached to a space.

ep(e1,e2,a);==>

***** some indices are not in the space of ep

eps(a,b,c); ==>

a b c
eps % accepted because *symbolic*

% space dimension.
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epsilon-like tensors can also be defined on disjoint spaces. The subsequent
sample run starts from the environment of the previous one. It suppresses the space
wholespace as well as the space-assignment of the indices a,b,c. It defines
the new space mink. Next, the previously defined eps tensor is attached to this
space. ep remains unchanged and e1,e2,e3 still belong to the space eucl.

rem_spaces wholespace; ==> t

make_tensor_belong_anyspace eps; ==> t

show_epsilons(); ==> {{ep,eucl}}

show_spaces(); ==> {{eucl,3,signature=0}}

mk_ids_belong_anyspace a,b,c; ==> t

define_spaces mink={4,signature=1}; ==> t

show_spaces(); ==>

{{eucl,3,signature=0},

{mink,4,signature=1}}

make_tensor_belong_space(eps,mink); ==> mink

show_epsilons(); ==> {{eps,mink},{ep,eucl}}

eps(a,b,c,d); ==>

a b c d
eps

eps(e1,b,c,d); ==>

***** some indices are not in the space of eps

ep(e1,b,c,d); ==>

***** bad number of indices for (ep) tensor

ep(e1,b,c); ==>

b c e1
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ep

ep(e1,e2,e3); ==>

e1 e2 e3
ep

DEL generalized delta tensor

The generalized delta function comes from the contraction of two epsilons. It is
totally antisymmetric. Suppose its name has been chosen to be gd, that the space
to which it is attached has dimension n while the name of the chosen delta tensor
is δ, then one can define it as follows:

gda1,a2,...,anb1,b2,...,bn
=

∣∣∣∣∣∣∣∣∣
δa1b1 δa1b2 . . . δa1bn
δa2b1 δa2b2 . . . δa2bn

...
...

. . .
...

δanb1 δanb1 . . . δanb1

∣∣∣∣∣∣∣∣∣
It is, in general uneconomical to explicitly write that determinant except for par-
ticular numeric values of the indices or when almost all upper and lower indices
are recognized as dummy indices. In the sample run below, gd is defined as the
generalized delta function in the default space. The main automatic evaluations are
illustrated. The indices which are summed over are always simplified:

onespace ? ==> yes

make_partic_tens(delta,delta); ==> t

make_partic_tens(gd,del); ==> t

% immediate simplifications:

gd(1,2,-3,-4); ==> 0

gd(1,2,-1,-2); ==> 1

gd(1,2,-2,-1); ==> -1 % antisymmetric

gd(a,b,-a,-b);

==> dim*(dim - 1) % summed over dummy indices
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gd(a,b,c,-a,-d,-e); ==>

b c
gd *(dim - 2)

d e

gd(a,b,c,-a,-d,-c); ==>

b 2
delta *(dim - 3*dim + 2)

d

% no simplification:

gd(a,b,c,-d,-e,-f); ==>

a b c
gd

d e f

One can force evaluation in terms of the determinant in all cases. To this end, the
switch EXDELT is provided. It is initially OFF. Switching it ON will most often
give inconveniently large outputs:

on exdelt;

gd(a,b,c,-d,-e,-f); ==>

a b c a b c
delta *delta *delta - delta *delta *delta

d e f d f e

a b c a b c
- delta *delta *delta + delta *delta *delta

e d f e f d

a b c a b c
+ delta *delta *delta - delta *delta *delta

f d e f e d

In a multi-space environment, it is never necessary to define several such tensor.
The reason is that CANONICAL uses it always from the contraction of a pair of
epsilon-like tensors. Therefore the control of indices is already done, the space-
dimension in which del is working is also well defined.
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METRIC tensors

Very often, one has to define a specific metric. The metric-type of tensors in-
clude all generic properties. The first one is their symmetry, the second one is
their equality to the delta tensor when they get mixed indices, the third one is
their optional bloc-diagonality. So, a metric (generic) tensor is generated by the
declaration

make_partic_tens(<tensor-name>,metric);

By default, when one is working in a multi-space environment, it is defined in
wholespace One uses the usual means of REDUCE to give it specific values. In
particular, the metric ’delta’ tensor of the euclidian space can be defined that way.
Implicit or explicit dependences on variables are allowed. Here is an illustration in
the single space environment:

make_partic_tens(g,metric); ==> t

make_partic_tens(delt,delta); ==> t

onespace ?; ==> yes

g(a,b); ==>

a b
g

g(b,a); ==>

a b
g

g(a,b,c); ==>

***** bad choice of indices for a METRIC tensor

g(a,b,{x,y}); ==>

a b
g (x,y)

g(a,-b,{x,z}); ==>
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a
delt

b

let g({x,y},1,1)=1/2(x+y);

g({x,y},1,1); ==>

x + y
-------

2

rem_value_tens g({x,y},1,1);

g({x,y},1,1); ==>

1 1
g (x,y)

16.11.5 The simplification function CANONICAL

Tensor expressions

Up to now, we have described the behaviour of individual tensors and how they
simplify themselves whenever possible. However, this is far from being sufficient.
In general, one is to deal with objects which involve several tensors together with
various dummy summations between them. We define a tensor expression as an
arbitrary multivariate polynomial. The indeterminates of such a polynomial may
be either an indexed object, an operator, a variable or a rational number. A tensor-
type indeterminate cannot appear to a degree larger than one except if it is a trace.
The following is a tensor expression:

aa:= delt({x - y})*delt(a, - g)*delt(d, - g)*delt(g, -r)

*eps( - d, - e, - f)*eps(a,b,c)*op(x,y) + 1; ==>

a d g
aa := delt(x - y)*delt *delt *delt *eps
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g g r d e f

a b c

*eps *op(x,y) + 1

In the above expression, delt and eps are, respectively, the delta and the
epsilon tensors, op is an operator. and delt(x-y) is the Dirac delta func-
tion. Notice that the above expression is not cohérent since the first term has a
variance while the second term is a scalar. Moreover, the dummy index g appears
three times in the first term. In fact, on input, each factor is simplified and each fac-
tor is checked for coherence not more. Therefore, if a dummy summation appears
inside one factor, it will be done whenever possible. Hereunder delt(a,-a) is
summed over:

sub(g=a,aa); ==>

a d a b c
delt(x - y)*delt *delt *eps *eps

r a d e f

*op(x,y)*dim + 1

The use of CANONICAL

CANONICAL is an offspring of the function with the same name of the package
DUMMY. It applies to tensor expressions as defined above. When it acts, this funct-
ions has several features which are worth to realise:

1. It tracks the free indices in each term and checks their identity. It identifies
and verify the coherence of the various dummy index summations.

2. Dummy indices summations are done on tensor products whenever possible
since it recognises the particular tensors defined above or defined by the user.

3. It seeks a canonical form for the various simplified terms, makes the compar-
ison between them. In that way it maximises simplifications and generates a
canonical form for the output polynomial.

Its capabilities have been extended in four directions:

• It is able to work within several spaces.

• It manages correctly expressions where formal tensor derivatives are present21.
21In DUMMY it does not take them into account
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• It takes into account all symmetries even if partial.

• As its parent function, it can deal with non-commutative and anticommuta-
tive indexed objects. So, Indexed objects may be spinors or quantum fields.

We describe most of these features in the rest of this documentation.

Check of tensor indices

Dummy indices for individual tensors are kept in the memory of the system. If
they are badly distributed over several tensors, it is CANONICAL which gives an
error message:

tensor te,tf; ==> t

bb:=te(a,b,b)*te(-b); ==>

a b b
bb := te *te

b

canonical bb; ==>

***** ((b)(a b b)) are inconsistent lists of indices

aa:=te(b,-c)*tf(b,-c); ==>

b b
aa := te *tf % b and c are free.

c c

canonical aa; ==>

b b
te *tf

c c

bb:=te(a,c,b)*te(-b)*tf(a)$

canonical bb; ==>
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a c b a
te *te *tf

b

delt(a,-a); ==> dim % a is now a dummy index

canonical bb; ==>

***** wrong use of indices (a)

The message of canonical is clear, the first sublist contains the list of all lower in-
dices, and the second one the list of all upper indices. The index b is repeated three
times. In the second example, b and c are considered as free indices, so they may
be repeated. The last example shows the interference between the check on indi-
vidual tensors and the one of canonical. The use of a as dummy index inside delt
does no longer allow a to be used as a free index in expression bb. To be usable,
one must explicitly remove it as dummy index using REM_DUMMY_INDICES.
Dans le quatrième cas, il n’y a pas de problème puisque b et c sont tous les deux
des indices libres. CANONICAL checks that in a tensor polynomial all do possess
the same variance:

aa:=te(a,c)+x^2; ==>

a c 2
aa := te + x

canonical aa; ==>

***** scalar added with tensor(s)

aa:=te(a,b)+tf(a,c); ==>

a b a c
aa := te + tf

canonical aa; ==>

***** mismatch in free indices : ((a c) (a b))

In the message the first two lists of incompatible indices are explicitly indicated.
So, it is not an exhaustive message and a more complete correction may be needed.
Of course, no message of that kind appears if the indices are inside ordinary oper-
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ators22

dummy_names b; ==> t

cc:=op(b)*op(a,b,b); ==> cc := op(a,b,b)*op(b)

canonical cc; ==> op(a,b,b)*op(b)

clear_dummy_names; ==> t

Position and renaming of dummy indices

For a specific tensor, contravariant dummy indices are place in front of covariant
ones. This already leads to some useful simplifications. For instance:

pp:=te(a,-a)+te(-a,a)+1; ==>

a a
pp := te + te + 1

a a

canonical pp; ==>

a
2*te + 1

a

pp:=te(a,-a)+te(-b,b); ==>

b a
pp := te + te

b a

canonical pp; ==>

a
2*te

a

pp:=te(r,a,c,d,-a,f)+te(r,-b,c,d,b,f); ==>

22This is the case inside the DUMMY package.
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r c d b f r a c d f
pp := te + te

b a

canonical pp; ==>

r a c d f
2*te

a

In the second and third example, there is also a renaming of the dummy variable
b whih becomes a. There is a loophole at this point. For some expressions one
will never reach a stable expression. This is the case for the following very simple
monom:

tensor nt; ==> t

a1:=nt(-a,d)*nt(-c,a); ==>

d a
nt *nt

a c

canonical a1; ==>

a d
nt *nt

c a

a12:=a1-canonical a1; ==>

d a a d
a12 := nt *nt - nt *nt

a c c a

canonical a12; ==>

d a a d
- nt *nt + nt *nt % changes sign.
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a c c a

In the above example, no canonical form can be reached. When applied twice on
the tensor monom a1 it gives back a1!

No change of dummy index position is allowed if a tensor belongs to an AFFINE
space. With the tensor polynomial pp introduced above one has:

off onespace;

define_spaces aff={dd,affine}; ==> t

make_tensor_belong_space(te,aff); ==> aff

mk_ids_belong_space({a,b},aff); ==> t

canonical pp; ==>

r c d a f r a c d f
te + te

a a

The renaming of b has been made however.

Contractions and summations with particular tensors

This is a central part of the extension of CANONICAL. The required contractions
and summations can be done in a multi-space environment as well in a single space
environment.

The case of DELTA

Dummy indices are recognized contracted and summed over whenever possible:

aa:=delt(a,-b)*delt(b,-c)*delt(c,-a) + 1; ==>

a b c
aa := delt *delt *delt + 1

b c a

canonical aa; ==> dim + 1

aa:=delt(a,-b)*delt(b,-c)*delt(c,-d)*te(d,e)$
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canonical aa; ==>

a e
te

CANONICAL will not attempt to make contraction with dummy indices included
inside ordinary operators:

operator op;

aa:=delt(a,-b)*op(b,b)$

canonical aa; ==>

a
delt *op(b,b)

b

dummy_names b; ==> t

canonical aa; ==>

a
delta *op(b,b)

b

The case of ETA

First, we introduce ETA:

make_partic_tens(eta,eta); ==> t

signature 1; ==> 1 % necessary

aa:=delta(a,-b)*eta(b,c); ==>

a b c
aa := delt *eta

b

canonical aa; ==>

a c
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eta

canonical(eta(a,b)*eta(-b,c)); ==>

a c
eta

canonical(eta(a,b)*eta(-b,-c)); ==>

a
delt

c

canonical(eta(a,b)*eta(-b,-a)); ==> dim

canonical (eta(-a,-b)*te(d,-e,f,b)); ==>

d f
te

e a

aa:=eta(a,b)*eta(-b,-c)*te(-a,c)+1; ==>

a b c
aa := eta *eta *te + 1

b c a

canonical aa; ==>

a
te + 1

a

aa:=eta(a,b)*eta(-b,-c)*delta(-a,c)+

1+eta(a,b)*eta(-b,-c)*te(-a,c)$

canonical aa; ==>

a
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te + dim + 1
a

Let us add a generic metric tensor:

aa:=g(a,b)*g(-b,-d); ==>

a b
aa := g *g

b d

canonical aa; ==>

a
delt

d

aa:=g(a,b)*g(c,d)*eta(-c,-e)*eta(e,f)*te(-f,g); ==>

e f a b c d g
aa := eta *eta *g *g *te

c e f

canonical aa; ==>

a b d g
g *te

The case of EPSILON

The epsilon tensor plays an important role in many contexts. CANONICAL realises
the contraction of two epsilons if and only if they belong to the same space. The
proper use of CANONICAL on expressions which contains it requires a prelimi-
nary definition of the tensor DEL. When the signature is 0; the contraction of two
epsilons gives a DEL-like tensor. When the signature is equal to 1, it is equal to
minus a DEL-like tensor. Here we choose 1 for the signature and we work in a
single space. We define the DEL tensor:

on onespace;

wholespace_dim dim; ==> dim

make_partic_tens(gd,del); ==> t
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signature 1; ==> 1

We define the EPSILON tensor and show how CANONICAL contracts expression
containing two23 of them:

aa:=eps(a,b)*eps(-c,-d); ==>

a b
aa := eps *eps

c d

canonical aa; ==>

a b
- gd

c d

aa:=eps(a,b)*eps(-a,-b); ==>

a b
aa := eps *eps

a b

canonical aa; ==> dim*( - dim + 1)

on exdelt;

gd(-a,-b,a,b); ==> dim*(dim - 1)

aa:=eps(a,b,c)*eps(-b,-d,-e)$

canonical aa; ==>

a c a c
delt *delt *dim - 2*delt *delt -

d e d e

a c a c
- delt *delt *dim + 2*delt * delt

e d e d
23No contractions are done on expressions containing three or more epsilons which sit in the same

space. We are not sure whether it is useful to be more general than we are presently.
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Several expressions which contain the epsilon tensor together with other special
tensors are given below as examples to treat with CANONICAL:

aa:=eps( - b, - c)*eta(a,b)*eta(a,c); ==>

a b a c
eps *eta *eta

b c

canonical aa; ==> 0

aa:=eps(a,b,c)*te(-a)*te(-b); ==> % te is generic.

a b c
aa := eps *te *te

a b

canonical aa; ==> 0

tensor tf,tg;

aa:=eps(a,b,c)*te(-a)*tf(-b)*tg(-c)

+ eps(d,e,f)*te(-d)*tf(-e)*tg(-f); ==>

canonical aa; ==>

a b c
2*eps *te *tf *tg

a b c

aa:=eps(a,b,c)*te(-a)*tf(-c)*tg(-b)

+ eps(d,e,f)*te(-d)*tf(-e)*tg(-f)$

canonical aa; ==> 0

Since CANONICAL is able to work inside several spaces, we can introduce also
several epsilons and make the relevant simplifications on each (sub)-spaces. This
is the goal of the next illustration.

off onespace;

define_spaces wholespace=
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{dim,signature=1}; ==> t

define_spaces subspace=

{3,signature=0}; ==> t

show_spaces(); ==>

{{wholespace,dim,signature=1},

{subspace,3,signature=0}}

make_partic_tens(eps,epsilon); ==> t

make_partic_tens(kap,epsilon); ==> t

make_tensor_belong_space(eps,wholespace);

==> wholespace

make_tensor_belong_space(kap,subspace);

==> subspace

show_epsilons(); ==>

{{eps,wholespace},{kap,subspace}}

off exdelt;

aa:=kap(a,b,c)*kap(-d,-e,-f)*eps(i,j)*eps(-k,-l)$

canonical aa; ==>

a b c i j
- gd *gd

d e f k l

If there are no index summation, as in the expression above, one can develop both
terms into the delta tensor with EXDELT switched ON. In fact, the previous calcu-
lation is correct only if there are no dummy index inside the two gd’s. If some of
the indices are dummy, then we must take care of the respective spaces in which
the two gd tensors are considered. Since, the tensor themselves do not belong to
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a given space, the space identification can only be made through the indices. This
is enough since the DELTA-like tensor is bloc-diagonal. With aa the result of the
above illustration, one gets, for example,:

mk_ids_belong_space({a,b,c,d,e,f},wholespace)$

mk_ids_belong_space({i,j,k,l},subspace)$

sub(d=a,e=b,k=i,aa); ==>

c j 2
2*delt *delt *( - dim + 3*dim - 2)

f l

sub(k=i,l=j,aa); ==>
a b c

- 6*gd
d e f

CANONICAL and symmetries

Most of the time, indexed objects have some symmetry property. When this prop-
erty is either full symmetry or antisymmetry, there is no difficulty to implement it
using the declarations SYMMETRIC or ANTISYMMETRIC of REDUCE. However,
most often, indexed objects are neither fully symmetric nor fully antisymmetric:
they have partial or mixed symmetries . In the DUMMY package, the declaration
SYMTREE allows to impose such type of symmetries on operators. This command
has been improved and extended to apply to tensors. In order to illustrate it, we
shall take the example of the wellknown Riemann tensor in general relativity. Let
us remind the reader that this tensor has four indices. It is separately antisymmet-
ric with respect to the interchange of the first two indices and with respect to the
interchange of the last two indices. It is symmetric with respect to the interchange
of the first two and the last two indices. In the illustration below, we show how to
express this and how CANONICAL is able to recognize mixed symmetries:

tensor r; ==> t

symtree(r,{!+,{!-,1,2},{!-,3,4}});

rem_dummy_indices a,b,c,d; % free indices

ra:=r(b,a,c,d); ==>
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b a c d
ra := r

canonical ra; ==>

a b c d
- r

ra:=r(c,d,a,b); ==>
c d a b

ra := r

canonical ra; ==>

a b c d
r

canonical r(-c,-d,a,b); ==>

a b
r

c d

r(-c,-c,a,b); ==> 0

ra:=r(-c,-d,c,b); ==>

c b
ra := r

c d

canonical ra; ==>

b c
- r

c d

In the last illustration, contravariant indices are placed in front of covariant indices
and the contravariant indices are transposed. The superposition of the two partial
symmetries gives a minus sign.

There exists an important (though natural) restriction on the use of SYMTREE
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which is linked to the algorithm itself: Integer used to localize indices must start
from 1, be contiguous and monotoneously increasing. For instance, one is not
allow to introduce

symtree(r,{!*,{!+,1,3},{!*,2,4}});

symtree(r,{!*,{!+,1,2},{!*,4,5}};

symtree(r,{!*,{!-,1,3},{!*,2}});

but the subsequent declarations are allowed:

symtree(r,{!*,{!+,1,2},{!*,3,4}});

symtree(r,{!*,{!+,1,2},{!*,3,4,5}});

symtree(r,{!*,{!-,1,2},{!*,3}});

The first declaration endows r with a partial symmetry with respect to the first two
indices.

A side effect of SYMTREE is to restrict the number of indices of a generic tensor.
For instance, the second declaration in the above illustrations makes r depend on
5 indices as illustrated below:

symtree(r,{!*,{!+,1,2},{!*,3,4,5}});

canonical r(-b,-a,d,c); ==>

***** Index ‘5’ out of range for

((minus b) (minus a) d c) in nth

canonical r(-b,-a,d,c,e); ==>

d c e
r % correct
a b

canonical r(-b,-a,d,c,e,g); ==>

d c e
r % The sixth index is forgotten!
a b
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Finally, the function REMSYM applied on any tensor identifier removes all symme-
try properties.

Another related question is the frequent need to symmetrize a tensor polynomial.
To fulfill it, the function SYMMETRIZE of the package ASSIST has been im-
proved and generalised. For any kernel (which may be either an operator or a
tensor) that function generates

- the sum over the cyclic permutations of indices,

- the symetric or antisymetric sums over all permutations of the indices.

Moreover, if it is given a list of indices, it generates a new list which contains
sublists which contain the relevant permutations of these indices

symmetrize(te(x,y,z,{v}),te,cyclicpermlist); ==>

x y z y z x z x y
te (v) + te (v) + te (v)

symmetrize(te(x,y),te,permutations); ==>

x y y x
te + te

symmetrize(te(x,y),te,permutations,perm_sign); ==>

x y y x
te - te

symmetrize(te(y,x),te,permutations,perm_sign); ==>

x y y x
- te + te

If one wants to symmetrise an expression which is not a kernel, one can also use
SYMMETRIZE to obtain the desired result as the next example shows:

ex:=te(a,-b,c)*te1(-a,-d,-e); ==>

a c
ex := te *te1

b a d e
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ll:=list(b,c,d,e)$ % the chosen relevant indices

lls:=symmetrize(ll,list,cyclicpermlist); ==>

lls := {{b,c,d,e},{c,d,e,b},{d,e,b,c},{e,b,c,d}}

% The sum over the cyclic permutations is:

excyc:=for each i in lls sum

sub(b=i.1,c=i.2,d=i.3,e=i.4,ex); ==>

a c a d
excyc := te *te1 + te *te1

b a d e c a e b

a e a b
+ te *te1 + te *te1

d a b c e a c d

CANONICAL and tensor derivatives

Only ordinary (partial) derivatives are fully correctly handled by CANONICAL.
This is enough, to explicitly construct covariant derivatives. We recognize here
that extensions should still be made. The subsequent illustrations show how
CANONICAL does indeed manage to find the canonical form and simplify ex-
pressions which contain derivatives. Notice, the use of the (modified) DEPEND
declaration.

on onespace;

tensor te,x; ==> t

depend te,x;

aa:=df(te(a,-b),x(-b))-df(te(a,-c),x(-c))$

canonical aa; ==> 0

make_partic_tens(eta,eta); ==> t
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signature 1;

aa:=df(te(a,-b),x(-b))$

aa:=aa*eta(-a,-d);

a
aa := df(te ,x )*eta

b b a d

canonical aa; ==>

a a
df(te ,x )

d

In the last example, after contraction, the covariant dummy index b has been
changed into the contravariant dummy index a. This is allowed since the space
is metric.
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16.12 CDE: A package for integrability of PDEs

Author: Raffaele Vitolo

We describe CDE, a REDUCE package devoted to differential-geometric compu-
tations on Differential Equations (DEs, for short).

We will give concrete recipes for computations in the geometry of differential
equations: higher symmetries, conservation laws, Hamiltonian operators and their
Schouten bracket, recursion operators. All programs discussed here are shipped
together with the CDE sources, inside the REDUCE sources. The mathematical
theory on which computations are based can be found in refs. [BCD+99, KKV04].
We invite the interested reader to have a look at the website [gde] which contains
useful resources in the above mathematical area. There is also a book on integrable
systems and CDE [KVV18] with more examples and more detailed explanations
about the mathematical part.

16.12.1 Introduction: why CDE?

CDE is a REDUCE package for differential-geometric computations for DEs. The
package aims at defining differential operators in total derivatives and computing
with them. Such operators are called C-differential operators (see [BCD+99]).

CDE depends on the REDUCE package CDIFF for constructing total derivatives.
CDIFF was developed by Gragert and Kersten for symmetry computations in DEs,
and later extended by Roelofs and Post.

There are many software packages that can compute symmetries and conserva-
tion laws; many of them run on Mathematica or Maple. Those who run on RE-
DUCE were written by M. C. Nucci [Nuc92, Nuc96], F. Oliveri (RELIE, [Oli]),
F. Schwartz (SPDE, 16.67), T. Wolf (APPLYSYM (16.2) and CONLAW in the
official REDUCE distribution, [Wol02, Wol95, BW95, BW92]).

The development of CDE started from the idea that a computer algebra tool for
the investigation of integrability-related structures of PDEs still does not exist in
the public domain. We are only aware of a Mathematica package that may find
recursion operators under quite restrictive hypotheses [BH10].

CDE is especially designed for computations of integrability-related structures
(such as Hamiltonian, symplectic and recursion operators) for systems of differ-
ential equations with an arbitrary number of independent or dependent variables.
On the other hand CDE is also capable of (generalized) symmetry and conservation
laws computations. The aim of this guide is to introduce the reader to computations
of integrability related structures using CDE.

The current version of CDE, 3.0, has the following features:
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1. It is able to do standard computations in integrable systems like determining
systems for generalized symmetries and conservation laws. However, CDE
has not been programmed with this purpose in mind.

2. CDE is able to compute linear overdetermined systems of partial differential
equations whose solutions are Hamiltonian, symplectic or recursion oper-
ators. Such equations may be solved by different techniques; one of the pos-
sibilities is to use CRACK, a REDUCE package for solving overdetermined
systems of PDEs [WB].

3. CDE can compute linearization (or Fréchet derivatives) of vector functions
and adjoints of differential operators.

4. CDE can do calculations on supermanifolds. In particular it can compute
variational derivatives of superdensities, linearization of superfunctions, ad-
joint of superdifferential operators. Some of the features are still undocu-
mented as they will be published in forthcoming papers.

5. CDE is able to compute Schouten brackets between local multivectors. This
can be used eg to check Hamiltonianity of an operator or to check their com-
patibility.

6. CDE can calculate the Schouten bracket of weakly nonlocal differential
operators; these are distinguished pseudodifferential operators in one inde-
pendent variable. The algorithm has been published in [CLV20], while a
user guide is being written and will appear soon (interested readers can ask
the author of CDE for details).

At the moment the papers [FPV14, FPV16, KKVV09, KVV12, PV15, SV14] have
been written using CDE, and more research by CDE on integrable systems is in
progress.

The readers are warmly invited to send questions, comments, etc., both on the
computations and on the technical aspects of installation and configuration of RE-
DUCE, to the author of this document.

Acknowledgements. I’d like to thank Paul H.M. Kersten, who explained to me
how to use the original CDIFF package for several computations of interest in the
Geometry of Differential Equations. When I started writing CDE I was substan-
tially helped by A.C. Norman in understanding many features of Reduce which
were deeply hidden in the source code and not well documented. This also led to
writing a manual of Reduce’s internals for programmers [NV]. Moreover, I’d like
to thank the developers of the REDUCE mailing list for their prompt replies with
solutions to my problems. On the mathematical side, I would like to thank J.S.
Krasil’shchik and A.M. Verbovetsky for constant support and stimulating discus-
sions which led me to write the software. Thanks are also due to B.A. Dubrovin,
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M. Casati, E.V. Ferapontov, P. Lorenzoni, M. Marvan, V. Novikov, A. Savoldi, A.
Sergyeyev, M.V. Pavlov for many interesting discussions.

16.12.2 Jet space of even and odd variables, and total derivatives

The mathematical theory for jets of even (ie standard) variables and total deriva-
tives can be found in [BCD+99, Olv93].

Let us consider the space Rn×Rm, with coordinates (xλ, ui), 1 ≤ λ ≤ n, 1 ≤ i ≤
m. We say xλ to be independent variables and ui to be dependent variables. Let
us introduce the jet space Jr(n,m). This is the space with coordinates (xλ, uiσ),
where uiσ is defined as follows. If s : Rn → Rm is a differentiable function, then

uiσ ◦ s(x) =
∂|σ|(ui ◦ s)

(∂x1)σ1 · · · (∂xn)σn
.

Here σ = (σ1, . . . , σn) ∈ Nn is a multiindex. We set |σ| = σ1 + · · · + σn. If
σ = (0, . . . , 0) we set uiσ = ui.

CDE is first of all a program which is able to create a finite order jet space inside
REDUCE. To this aim, issue the command

load_package cde;

Then, CDE needs to know the variables and the maximal order of derivatives. The
input can be organized as in the following example:

indep_var:={x,t}$
dep_var:={u,v}$
total_order:=10$

Here

• indep_var is the list of independent variables;

• dep_var is the list of dependent variables;

• total_order is the maximal order of derivatives.

Two more parameters can be set for convenience:

statename:="jetuv_state.red"$
resname:="jetuv_res.red"$

These are the name of the output file for recording the internal state of the program
cde.red (and for debugging purposes), and the name of the file containing results
of the computation.



398 CHAPTER 16. USER CONTRIBUTED PACKAGES

The main routine in cde.red is called as follows:

cde({indep_var,dep_var,{},total_order},{})$

Here the two empty lists are placeholders; they are of interest for computations with
odd variables/differential equations. The function cde defines derivative symbols
of the type:

u_x,v_t,u_2xt,v_xt,v_2x3t,...

Note that the symbol v_tx does not exist in the jet space. Indeed, introducing
all possible permutations of independent variables in indices would increase the
complexity and slow down every computation.

Two lists generated by CDE can be useful: all_der_id and all_odd_id,
which are, respectively, the lists of identifiers of all even and odd variables.

Other lists are generated by CDE, but they are accessible in REDUCE symbolic
mode only. Please check the file global.txt to know the names of the lists.

It can be useful to inspect the output generated by the function cde and the above
lists in particular. All that data can be saved by the function:

save_cde_state(statename)$

CDE has a few procedures involving the jet space, namely:

• jet_fiber_dim(jorder) returns the number of derivative coordinates
uiσ with |σ| equal to jorder;

• jet_dim(jorder) returns the number of derivative coordinates uiσ with
0 ≤ |σ| and |σ| equal to jorder;

• selectvars(par,orderofder,depvars,vars) returns all deriva-
tive coordinates (even if par=0, odd if par=1) of order orderofder of
the list of dependent variables depvars which belong to the set of deriva-
tive coordinates vars.

The function cde defines total derivatives truncated at the order total_order.
Their coordinate expressions are of the form

Dλ =
∂

∂xλ
+ uiσλ

∂

∂uiσ
, (16.46)

where σ is a multiindex.

The total derivative of an argument ϕ is invoked as follows:
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td(phi,x,2);
td(phi,x,t,3);

the syntax closely follows REDUCE’s syntax for standard derivatives df; the
above expression translates to DxDxϕ, or D{2,0}ϕ in multiindex notation.

When in total derivatives there is a coefficient of order higher than maximal this is
replaced by the identifier letop, which is a function that depends on independent
variables. If such a function (or its derivatives) appears during computations it is
likely that we went too close to the highest order variables that we defined in the
file. All results of computations are scanned for the presence of such variables by
default, and if the presence of letop is detected the computation is stopped with
an error message. This usually means that we need to extend the order of the jet
space, just by increasing the number total_order.

Note that in the folder containing all examples there is also a shell script, rrr.sh
(works only under bash, a GNU/Linux command interpreter) which can be used
to run reduce on a given CDE program. When an error message about letop is
issued the script reruns the computation with a new value of total_order one
unity higher than the previous one.

The function that checks an expression for the presence of letop is check_letop.
If you wish to switch off this kind of check in order to increase the speed, the switch
checkord must be set off:

off checkord;

The computation of total derivatives of a huge expression can be extremely time
and resources consuming. In some cases it is a good idea to disable the expansion
of the total derivative and leave an expression of the type Dσϕ as indicated. This
is achieved by the command

noexpand_td();

If you wish to restore the default behaviour, do

expand_td();

CDE can also compute on jets of supermanifolds. The theory can be found in
[IVV04, KKV04, KV11]. The input can be organized as follows:

indep_var:={x,t}$
dep_var:={u,v}$
odd_var:={p,q}
total_order:=10$
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Here odd_var is the list of odd variables. The call

cde({indep_var,dep_var,odd_var,total_order},{})$

will create the jet space of the supermanifold described by the independent vari-
ables and the even and odd dependent variables, up to the order total_order.
Total derivatives truncated at the order total_order will also include odd
derivatives:

Dλ =
∂

∂xλ
+ uiσλ

∂

∂uiσ
+ piσλ

∂

∂piσ
, (16.47)

where σ is a multiindex. The considerations on expansion and letop apply in this
case too.

Odd variables can appear in anticommuting products; this is represented as

ext(p,p_2xt),ext(p_x,q_t,q_x2t),...

where ext(p_2xt,p) = - ext(p,p_2xt) and the variables are arranged
in a unique way terms of an internal ordering. Indeed, the internal representation
of odd variables and their products (not intended for normal users!) is

ext(3,23),ext(1,3,5),...

as all odd variables and their derivatives are indexed by integers. Note that p
and ext(p) are just the same. The odd product of two expressions ϕ and ψ is
achieved by the CDIFF function

super_product(phi,psi);

The derivative of an expression ϕ with respect to an odd variable p is achieved by

df_odd(phi,p);

16.12.3 Differential equations in even and odd variables

We now give the equation in the form of one or more derivatives equated to right-
hand side expressions. The left-hand side derivatives are called principal, and the
remaining derivatives are called parametric24. Parametric coordinates are coor-
dinates on the equation manifold and its differential consequences, and principal
coordinates are determined by the differential equation and its differential conse-
quences. For scalar evolutionary equations with two independent variables para-
metric derivatives are of the type (u, ux, uxx, . . .). Note that the system must be

24This terminology dates back to Riquier, see [Mar09]
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in passive orthonomic form; this also means that there will be no nontrivial inte-
grability conditions between parametric derivatives. (Lines beginning with % are
comments for REDUCE.) The input is formed as follows (Burger’s equation).

% left-hand side of the differential equation
principal_der:={u_t}$
% right-hand side of the differential equation
de:={u_2x+2*u*u_x}$

Systems of PDEs are input in the same way: of course, the above two lists must
have the same length. See 16.12.11 for an example.

The main routine in cde.red is called as follows:

cde({indep_var,dep_var,{},total_order},
{principal_der,de,{},{}})$

Here the three empty lists are placeholders; they are important for computations
with odd variables. The function cde computes principal and parametric deriva-
tives of even and odd variables, they are stored in the lists all_parametric_der,
all_principal_der, all_parametric_odd, all_principal_odd.

The function cde also defines total derivatives truncated at the order total_order
and restricted on the (even and odd) equation; this means that total derivatives are
tangent to the equation manifold. Their coordinate expressions are of the form

Dλ =
∂

∂xλ
+

∑
uiσ parametric

uiσλ
∂

∂uiσ
+

∑
piσ parametric

piσλ
∂

∂piσ
, (16.48)

where σ is a multiindex. It can happen that uiσλ (or piσλ) is principal and must be
replaced with differential consequences of the equation. Such differential conse-
quences are called primary differential consequences, and are computed; in general
they will depend on other, possibly new, differential consequences, and so on. Such
newly appearing differential consequences are called secondary differential conse-
quences. If the equation is in passive orthonomic form, the system of all differential
consequences (up to the maximal order total_order) must be solvable in terms
of parametric derivatives only. The function cde automatically computes all neces-
sary and sufficient differential consequences which are needed to solve the system.
The solved system is available in the form of REDUCE let-rules in the variables
repprincparam_der and repprincparam_odd.

The syntax and properties (expansion and letop) of total derivatives remain the
same. For exmaple:

td(u,t);
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returns

u_2x+2*u*u_x;

It is possible to deal with mixed systems on eve and odd variables. For example,
in the case of Burgers equation we can input the linearized equation as a PDE on
a new odd variable as follows (of course, in addition to what has been defined
before):

odd_var:={q}$
principal_odd:={q_t}$
de_odd:={q_2x + 2*u_x*q + 2*u*q_x}$

The main routine in cde.red is called as follows:

cde({indep_var,dep_var,odd_var,total_order},
{principal_der,de,principal_odd,de_odd})$

16.12.4 Calculus of variations

CDE can compute variational derivatives of any function (usually a Lagrangian
density) or superfunction L. We have the following coordinate expression

δL
δui

= (−1)|σ|Dσ
∂L
∂uiσ

,
δL
δpi

= (−1)|σ|Dσ
∂L
∂piσ

(16.49)

which translates into the CDE commands

pvar_df(0,lagrangian_dens,ui);
pvar_df(1,lagrangian_dens,pi);

where

• the first argument can be 0 or 1 and is the parity of the variable ui or pi;

• lagrangian_dens is L;

• ui or pi are the given dependent variables.

The Euler operator computes variational derivatives with respect to all even and
odd variables in the jet space, and arranges them in a list of two lists, the list of even
variational derivatives and the list of odd variational derivatives. The command is

euler_df(lagrangian_dens);

All the above is used in the definition of Schouten brackets, as we will see in
Subsection 16.12.6.
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16.12.5 C-differential operators

Linearizing (or taking the Fréchet derivative) of a vector function that defines a dif-
ferential equation yields a differential operator in total derivatives. This operator
can be restricted to the differential equation, which may be regarded as a differen-
tial constraint; the kernel of the restricted operator is the space of all symmetries
(including higher or generalized symmetries) [BCD+99, Olv93].

The formal adjoint of the linearization operator yields by restriction to the cor-
responding differential equation a differential operator whose kernel contains all
characteristic vectors or generating functions of conservation laws [BCD+99,
Olv93].

Such operators are examples of C-differential operators. The (still incomplete)
REDUCE implementation of the calculus of C-differential operators is the subject
of this section.

C-differential operators

Let us consider the spaces

P = {ϕ : Jr(n,m)→ Rk}, Q = {ψ : Jr(n,m)→ Rs}.

A C-differential operator ∆: P → Q is defined to be a map of the type

∆(ϕ) = (
∑
σ,i

aσji Dσϕ
i), (16.50)

where aσji are differentiable functions on Jr(n,m), 1 ≤ i ≤ k, 1 ≤ j ≤ s. The
order of δ is the highest length of σ in the above formula.

We may consider a generalization to k-C-differential operators of the type

∆: P1 × · · · × Ph → Q

∆(ϕ1, . . . , ϕh) = (
∑

σ1,...,σh,i1,...,ih

aσ1,...,σh, ji1···ih Dσ1ϕ
i1
1 · · ·Dσhϕ

ih
h ), (16.51)

where the enclosing parentheses mean that the value of the operator is a vector
function in Q.

A C-differential operator in CDE must be declared as follows:

mk_cdiffop(opname,num_arg,length_arg,length_target)

where

• opname is the name of the operator;
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• num_arg is the number of arguments eg k in (16.51);

• length_arg is the list of lengths of the arguments: eg the length of the
single argument of ∆ (16.50) is k, and the corresponding list is {k}, while in
(16.51) one needs a list of k items {k_1,...,k_h}, each corresponding
to number of components of the vector functions to which the operator is
applied;

• length_target is the numer of components of the image vector function.

The syntax for one component of the operator opname is

opname(j,i1,...,ih,phi1,...,phih)

The above operator will compute

∆(ϕ1, . . . , ϕh) =
∑

σ1,...,σh

aσ1,...,σh, ji1···ih Dσ1ϕ
i1
1 · · ·Dσhϕ

ih
h , (16.52)

for fixed integer indices i1,. . . ,ih and j.

There are several operations which involve differential operators. Obviously they
can be summed and multiplied by scalars.

An important example of C-differential operator is that of linearization, or Fréchet
derivative, of a vector function

F : Jr(n,m)→ Rk.

This is the operator

`F : κ → P, ϕ 7→
∑
σ,i

∂F k

∂uiσ
Dσϕ

i,

where κ = {ϕ : Jr(n,m)→ Rm} is the space of generalized vector fields on jets
[BCD+99, Olv93].

Linearization can be extended to an operation that, starting from a k-C-differential
operator, generates a k + 1-C-differential operator as follows:

`∆(p1, . . . , pk, ϕ) = (
∑

σ,σ1,...,σk,i,i1,...,ik

∂aσ1,...,σk, ji1···ik
∂uiσ

Dσϕ
iDσ1p

i1
1 · · ·Dσkp

ik
k )

(The above operation is also denoted by `∆,p1,...,pk(ϕ).)

At the moment, CDE is only able to compute the linearization of a vector function
(Section 16.12.8).
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Given a C-differential operator ∆ like in (16.50) we can define its adjoint as

∆∗((qj)) = (
∑
σ,i

(−1)|σ|Dσ(aσji qj)). (16.53)

Note that the matrix of coefficients is transposed. Again, the coefficients of the
adjoint operator can be found by computing ∆∗(xσej) for every basis vector ej and
every count xσ, where |σ| ≤ r, and r is the order of the operator. This operation
can be generalized to C-differential operators with h arguments.

At the moment, CDE can compute the adjoint of an operator with one argument
(Section 16.12.8).

Now, consider two operators ∆: P → Q and ∇ : Q → R. Then the composition
∇ ◦∆ is again a C-differential operator. In particular, if

∆(p) = (
∑
σ,i

aσji Dσp
i), ∇(q) = (

∑
τ,j

bτkj Dτq
j),

then
∇ ◦∆(p) = (

∑
τ,j

bτkj Dτ (
∑
σ,i

aσji Dσp
i))

This operation can be generalized to C-differential operators with h arguments.

There is another important operation between C-differential operators with h argu-
ments: the Schouten bracket [BCD+99]. We will discuss it in next Subsection, in
the context of another formalism, where it takes an easier form [KKV04].

16.12.6 C-differential operators as superfunctions

In the papers [IVV04, KKV04] (and independently in [Get02]) a scheme for deal-
ing with (skew-adjoint) variational multivectors was devised. The idea was that
operators of the type (16.51) could be represented by homogeneous vector super-
functions on a supermanifold, where odd coordinates qiσ would correspond to total
derivatives Dσϕ

i.

The isomorphism between the two languages is given by( ∑
σ1,...,σh,i1,...,ih

aσ1,...,σh, ji1···ih Dσ1ϕ
i1
1 · · ·Dσhϕ

ih
h

)
−→

( ∑
σ1,...,σh,i1,...,ih

aσ1,...,σh, ji1···ih qi1σ1 · · · q
ih
σh

) (16.54)

where qiσ is the derivative of an odd dependent variable (and an odd variable itself).

A superfunction in CDE must be declared as follows:
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mk_superfun(sfname,num_arg,length_arg,length_target)

where

• sfname is the name of the superfunction;

• num_arg is the degree of the superfunction eg h in (16.54);

• length_arg is the list of lengths of the arguments: eg the length of the
single argument of ∆ (16.50) is k, and the corresponding list is {k}, while in
(16.51) one needs a list of k items {k_1,...,k_h}, each corresponding
to number of components of the vector functions to which the operator is
applied;

• length_target is the numer of components of the image vector function.

The above parameters of the operator opname are stored in the property list25

of the identifier opname. This means that if one would like to know how many
arguments has the operator opname the answer will be the output of the command

get(’cdnarg,cdiff_op);

and the same for the other parameters.

The syntax for one component of the superfunction sfname is

sfname(j)

CDE is able to deal with C-differential operators in both formalisms, and provides
conversion utilities:

• conv_cdiff2superfun(cdop,superfun)

• conv_superfun2cdiff(superfun,cdop)

where in the first case a C-differential operator cdop is converted into a vector
superfunction superfun with the same properties, and conversely.

16.12.7 The Schouten bracket

We are interested in the operation of Schouten bracket between variational mul-
tivectors [IVV04]. These are differential operators with h arguments in κ with

25The property list is a lisp concept, see [NV] for details.



407

values in densities, and whose image is defined up to total divergencies:

∆: κ × · · · × κ →
{Jr(n,m)→ λnT ∗Rn}/d̄({Jr(n,m)→ λn−1T ∗Rn}) (16.55)

It is known [Get02, KKV04] that the Schouten bracket between two variational
multivectorsA1,A2 can be computed in terms of their corresponding superfunction
by the formula

[A1, A2] =
[δA1

δuj
δA2

δpj
+
δA2

δuj
δA1

δpj

]
(16.56)

where δ/δui, δ/δpj are the variational derivatives and the square brackets at the
right-hand side should be understood as the equivalence class up to total divergen-
cies.

If the operators A1, A2 are compatible, ie [A1, A2] = 0, the expression (16.56)
must be a total derivative. This means that:

[A1, A2] = 0 ⇔ E
(
δA1

δuj
δA2

δpj
+
δA2

δuj
δA1

δpj

)
= 0. (16.57)

IfA1 is an h-vector andA2 is a k-vector the formula (16.56) produces a (h+k−1)-
vector, or a C-differential operator with h + k − 1 arguments. If we would like to
check that this multivector is indeed a total divergence, we should apply the Euler
operator, and check that it is zero. This procedure is considerably simpler than the
analogue formula with operators (see for example [KKV04]). All this is computed
by CDE:

schouten_bracket(biv1,biv2,tv12),

where biv1 and biv2 are bivectors, or C-differential operators with 2 arguments,
and tv12 is the result of the computation, which is a three-vector (it is automat-
ically declared to be a superfunction). Examples of this computation are given in
Section 16.12.12.

16.12.8 Computing linearization and its adjoint

Currently, CDE supports linearization of a vector function, or a C-differential op-
erator with 0 arguments. The computation is performed in odd coordinates.

Suppose that we would like to linearize the vector function that defines the (disper-
sionless) Boussinesq equation [KKV06]:{

ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

(16.58)
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where σ is a constant. Then a jet space with independent variables x,t, dependent
variables u,v and odd variables in the same number as dependent variables p,q
must be created:

indep_var:={x,t}$
dep_var:={u,v}$
odd_var:={p,q}$
total_order:=8$
cde({indep_var,dep_var,odd_var,total_order},{})$

The linearization of the above system and its adjoint are, respectively

`Bou =

(
Dt − vDx − vx −ux − uDx − σDxxx

−Dx Dt − vx − vDx

)
,

`∗Bou =

(
−Dt + vDx Dx

uDx + σDxxx −Dt + vDx

)
Let us introduces the vector function whose zeros are the Boussinesq equation:

f_bou:={u_t - (u_x*v + u*v_x + sig*v_3x),
v_t - (u_x + v*v_x)};

The following command assigns to the identifier lbou the linearization C-
differential operator `Bou of the vector function f_bou

ell_function(f_bou,lbou);

moreover, a superfunction lbou_sf is also defined as the vector superfunction
corresponding to `Bou. Indeed, the following sequence of commands:

2: lbou_sf(1);

- p*v_x + p_t - p_x*v - q*u_x - q_3x*sig - q_x*u

3: lbou_sf(2);

- p_x - q*v_x + q_t - q_x*v

shows the vector superfunction corresponding to `Bou. To compute the value of the
(1, 1) component of the matrix `Bou applied to an argument psi do

lbou(1,1,psi);

In order to check that the result is correct one could define the linearization as a
C-differential operator and then check that the corresponding superfunctions are
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the same:

mk_cdiffop(lbou2,1,{2},2);
for all phi let lbou2(1,1,phi)

= td(phi,t) - v*td(phi,x) - v_x*phi;
for all phi let lbou2(1,2,phi)

= - u_x*phi - u*td(phi,x) - sig*td(phi,x,3);
for all phi let lbou2(2,1,phi)

= - td(phi,x);
for all phi let lbou2(2,2,phi)

= td(phi,t) - v*td(phi,x) - v_x*phi;

conv_cdiff2superfun(lbou2,lbou2_sf);
lbou2_sf(1) - lbou_sf(1);
lbou2_sf(2) - lbou_sf(2);

the result of the two last commands must be zero.

The formal adjoint of lbou can be computed and assigned to the identifier
lbou_star by the command

adjoint_cdiffop(lbou,lbou_star);

Again, the associated vector superfunction lbou_star_sf is computed, with
values

4: lbou_star_sf(1);

- p_t + p_x*v + q_x

5: lbou_star_sf(2);

p_3x*sig + p_x*u - q_t + q_x*v

Again, the above operator can be checked for correctness.

Once the linearization and its ajdoint are computed, in order to do computations
with symmetries and conservation laws such operator must be restricted to the
corresponding equation. This can be achieved with the following steps:

1. compute linearization of a PDE of the form F = 0 and its adjoint, and save
them in the form of a vector superfunction;

2. start a new computation with the given even PDE as a constraint on the (even)
jet space;



410 CHAPTER 16. USER CONTRIBUTED PACKAGES

3. load the superfunctions of item 1;

4. restrict them to the even PDE.

Only the last step needs to be explained. If we are considering, eg the Boussinesq
equation, then ut and its differential consequences (ie the principal derivatives) are
not automatically expanded to the right-hand side of the equation and its differen-
tial consequences. At the moment this step is not fully automatic. More precisely,
only principal derivatives which appear as coefficients in total derivatives can be
replaced by their expression. The lists of such derivatives with the corresponding
expressions are repprincparam_der and repprincparam_odd (see Sec-
tion 16.12.3). They are in the format of REDUCE’s replacement list and can be
used in let-rules. If the linearization or its adjoint happen to depend on another
principal derivative this must be computed separately. A forthcoming release of
REDUCE will automatize this procedure.

However, note that for evolutionary equations this step is trivial, as the restriction
of linearization and its adjoint on the given PDE will only affect total derivatives
which are restricted by CDE to the PDE.

16.12.9 Higher symmetries

In this section we show the computation of (some) higher [BCD+99] (or general-
ized, [Olv93]) symmetries of Burgers’equation B = ut − uxx + 2uux = 0.

We provide two ways to solve the equations for higher symmetries. The first pos-
sibility is to use dimensional analysis. The idea is that one can use the scale sym-
metries of Burgers’equation to assign “gradings” to each variable appearing in the
equation (in other words, one can use dimensional analisys). As a consequence,
one could try different ansatz for symmetries with polynomial generating funct-
ions. For example, it is possible to require that they are sum of monomials of given
degrees. This ansatz yields a simplification of the equations for symmetries, be-
cause it is possible to solve them in a “graded” way, i.e., it is possible to split them
into several equations made by the homogeneous components of the equation for
symmetries with respect to gradings.

In particular, Burgers’equation translates into the following dimensional equation:

[ut] = [uxx], [uxx] = [2uux].

By the rules [uz] = [u] − [z] and [uv] = [u] + [v], and choosing [x] = −1, we
have [u] = 1 and [t] = −2. This will be used to generate the list of homogeneous
monomials of given grading to be used in the ansatz about the structure of the
generating function of the symmetries.

The file for the above computation is bur_hsy1.red and the results of the com-
putation are in results/bur_hsy1_res.red.
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Another possibility to solve the equation for higher symmetries is to use a PDE
solver that is especially devoted to overdetermined systems, which is the distin-
guishing feature of systems coming from the symmetry analysis of PDEs. This ap-
proach is described below. The file for the above computation is bur_hsy2.red
and the results of the computation are in results/bur_hsy2_res.red.

Setting up the jet space and the differential equation. After loading CDE:

indep_var:={x,t}$
dep_var:={u}$
deg_indep_var:={-1,-2}$
deg_dep_var:={1}$
total_order:=10$

Here the new lists are scale degrees:

• deg_indep_var is the list of scale degrees of the independent variables;

• deg_dep_var is the list of scale degrees of the dependent variables;

We now give the equation and call CDE:

principal_der:={u_t}$
de:={u_2x+2*u*u_x}$
cde({indep_var,dep_var,{},total_order},

{principal_der,de,{},{}})$

Solving the problem via dimensional analysis. Higher symmetries of the given
equation are functions sym depending on parametric coordinates up to some jet
space order. We assume that they are graded polynomials of all parametric deriva-
tives. In practice, we generate a linear combination of graded monomials with
arbitrary coefficients, then we plug it in the equation of the problem and find con-
ditions on the coefficients that fulfill the equation. To construct a good ansatz, it
is required to make several attempts with different gradings, possibly including
independent variables, etc.. For this reason, ansatz-constructing functions are es-
pecially verbose. In order to use such functions they must be initialized with the
following command:

cde_grading(deg_indep_var,deg_dep_var,{})$

Note the empty list at the end; it playe a role only for computations involving odd
variables.
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We need one operator equ whose components will be the equation of higher sym-
metries and its consequences. Moreover, we need an operator c which will play
the role of a vector of constants, indexed by a counter ctel:

ctel:=0;
operator c,equ;

We prepare a list of variables ordered by scale degree:

l_grad_var:=der_deg_ordering(0,all_parametric_der)$

The function der_deg_ordering is defined in cde.red. It produces the
given list using the list all_parametric_der of all parametric derivatives of
the given equation up to the order total_order. The first two parameters can
assume the values 0 or 1 and say that we are considering even variables and that
the variables are of parametric type.

Then, due to the fact that all parametric variables have positive scale degree then
we prepare the list ansatz of all graded monomials of scale degree from 0 to 5

gradmon:=graded_mon(1,5,l_grad_var)$
gradmon:={1} . gradmon$
ansatz:=for each el in gradmon join el$

More precisely, the command graded_mon produces a list of monomials of de-
grees from i to j, formed from the list of graded variables l_grad_var; the
second command adds the zero-degree monomial; and the last command produces
a single list of all monomials.

Finally, we assume that the higher symmetry is a graded polynomial obtained from
the above monomials (so, it is independent of x and t!)

sym:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$

Next, we define the equation `B(sym) = 0. Here, `B stands for the linearization
(Section 16.12.8). A function sym that fulfills the above equation, on account of
B = 0, is an higher symmetry.

We cannot define the linearization as a C-differential operator in this way:

bur:={u_t - (2*u*u_x+u_2x)};
ell_function(bur,lbur);

as the linearization is performed with respect to parametric derivatives only! This
means that the linearization has to be computed beforehand in a free jet space, then
it may be used here.
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So, the right way to go is

mk_cdiffop(lbur,1,{1},1);
for all phi let lbur(1,1,phi)

= td(phi,t)-td(phi,x,2)-2*u*td(phi,x)-2*u_x*phi;

Note that for evolutionary equations the restriction of the linearization to the equat-
ion is equivalent to just restricting total derivatives, which is automatic in CDE.

The equation becomes

equ 1:=lbur(1,1,sym);

At this point we initialize the equation solver. This is a part of the CDIFF pack-
age called integrator.red (see the original documentation inside the folder
packages/cdiff in REDUCE’s source code). In our case the above package
will solve a large sparse linear system of algebraic equations on the coefficients of
sym.

The list of variables, to be passed to the equation solver:

vars:=append(indep_var,all_parametric_der);

The number of initial equation(s):

tel:=1;

Next command initializes the equation solver. It passes

• the equation vector equ togeher with its length tel (i.e., the total number
of equations);

• the list of variables with respect to which the system must not split the equat-
ions, i.e., variables with respect to which the unknowns are not polynomial.
In this case this list is just {};

• the constants’vector c, its length ctel, and the number of negative indexes
if any; just 0 in our example;

• the vector of free functions f that may appear in computations. Note that in
{f,0,0 } the second 0 stands for the length of the vector of free functions.
In this example there are no free functions, but the command needs the pres-
ence of at least a dummy argument, f in this case. There is also a last zero
which is the negative length of the vector f , just as for constants.

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});
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Run the procedure splitvars_opequ on the first component of equ in order
to obtain equations on coefficiens of each monomial.

tel:=splitvars_opequ(equ,1,1,vars);

Note that splitvars_opequ needs to know the indices of the first and the last
equation in equ, and here we have only one equation as equ(1). The output
tel is the final number of splitted equations, starting just after the initial equation
equ(1).

Next command tells the solver the total number of equations obtained after running
splitvars.

put_equations_used tel;

This command solves the equations for the coefficients. Note that we have to skip
the initial equations!

for i:=2:tel do integrate_equation i;

The output is written in the result file by the commands

off echo$
off nat$
out <<resname>>;
sym:=sym;
write ";end;";
shut <<resname>>;
on nat$
on echo$

The command off nat turns off writing in natural notation; results in this form
are better only for visualization, not for writing or for input into another computa-
tion. The command «resname» forces the evaluation of the variable resname
to its string value. The commands out and shut are for file opening and closing.
The command sym:=sym is evaluated only on the right-hand side.

One more example file is available; it concerns higher symmetries of the KdV
equation. In order to deal with symmetries explicitely depending on x and t
it is possible to use REDUCE and CDE commands in order to have sym =
x*(something of degree 3) + t*(something of degree 5) + (something of degree
2); this yields scale symmetries. Or we could use sym = x*(something of degree
1) + t*(something of degree 3) + (something of degree 0); this yields Galilean
boosts.
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Solving the problem using CRACK. CRACK is a PDE solver which is de-
voted mostly to the solution of overdetermined PDE systems [BW95, WB]. Sev-
eral mathematical problems have been solved by the help of CRACK, like finding
symmetries [Wol95, BW92] and conservation laws [Wol02]. The aim of CDE is to
provide a tool for computations with total derivatives, but it can be used to compute
symmetries too. In this subsection we show how to interface CDE with CRACK in
order to find higher (or generalized) symmetries for the Burgers’equation. To do
that, after loading CDE and introducing the equation, we define the linearization
of the equation lbur.

We introduce the new unknown function ‘ansatz’. We assume that the function
depends on parametric variables of order not higher than 3. The variables are
selected by the function selectvars of CDE as follows:

even_vars:=for i:=0:3 join
selectvars(0,i,dep_var,all_parametric_der)$

In the arguments of selectvars, 0 means that we want even variables, i
stands for the order of variables, dep_var stands for the dependent vari-
ables to be selected by the command (here we use all dependent variables),
all_parametric_der is the set of variables where the function will extract
the variables with the required properties. In the current example we wish to get
all higher symmetries depending on parametric variables of order not higher than
3.

The dependency of ansatz from the variables is given with the standard RE-
DUCE command depend:

for each el in even_vars do depend(ansatz,el)$

The equation to be solved is the equation lbur(ansatz)=0, hence we give the
command

total_eq:=lbur(1,1,ansatz)$

The above command will issue an error if the list {total_eq} depends on the
flag variable letop. In this case the computation has to be redone within a jet
space of higher order.

The equation ell_b(ansatz)=0 is polynomial with respect to the variables of
order higher than those appearing in ansatz. For this reason, its coefficients can
be put to zero independently. This is the reason why the PDEs that determine
symmetries are overdetermined. To tell this to CRACK, we issue the command

split_vars:=diffset(all_parametric_der,even_vars)$
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The list split_vars contains variables which are in the current CDE jet space
but not in even_vars.

Then, we load the package CRACK and get results.

load_package crack;
crack_results:=crack(total_eq,{},{ansatz},split_vars);

The results are in the variable crack_results:

{{{},
{ansatz=(2*c_12*u_x + 2*c_13*u*u_x + c_13*u_2x
+ 6*c_8*u**2*u_x + 6*c_8*u*u_2x + 2*c_8*u_3x
+ 6*c_8*u_x**2)/2},{c_8,c_13,c_12},

{}}}$

So, we have three symmetries; of course the generalized symmetry corresponds
to c_8. Remember to check always the output of CRACK to see if any of the
symbols c_n is indeed a free function depending on some of the variables, and not
just a constant.

16.12.10 Local conservation laws

In this section we will find (some) local conservation laws for the KdV equation
F = ut − uxxx + uux = 0. Concretely, we have to find non-trivial 1-forms
f = fxdx+ftdt on F = 0 such that d̄f = 0 on F = 0. “Triviality” of conservation
laws is a delicate matter, for which we invite the reader to have a look in [BCD+99].

The files containing this example are kdv_lcl1,kdv_lcl2 and the correspond-
ing results and debug files.

We suppose that the conservation law has the form ω = fxdx + ftdt. Using the
same ansatz as in the previous example we assume

fx:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$
ft:=(for each el in ansatz sum (c(ctel:=ctel+1)*el))$

Next we define the equation d̄(ω) = 0, where d̄ is the total exterior derivative
restricted to the equation.

equ 1:=td(fx,t)-td(ft,x)$

After solving the equation as in the above example we get

fx := c(3)*u_x + c(2)*u + c(1)$
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ft := (2*c(8) + 2*c(3)*u*u_x + 2*c(3)*u_3x + c(2)*u**2 +
2*c(2)*u_2x)/2$

Unfortunately it is clear that the conservation law corresponding to c(3) is trivial,
because it is just the KdV equation. Here this fact is evident; how to get rid of less
evident trivialities by an ‘automatic’ mechanism? We considered this problem in
the file kdv_lcl2, where we solved the equation

equ 1:=fx-td(f0,x);
equ 2:=ft-td(f0,t);

after having loaded the values fx and ft found by the previous program. In order
to do that we have to introduce two new counters:

operator cc,equ;
cctel:=0;

We make the following ansatz on f0:

f0:=(for each el in ansatz sum (cc(cctel:=cctel+1)*el))$

After solving the system, issuing the commands

fxnontriv := fx-td(f0,x);
ftnontriv := ft-td(f0,t);

we obtain

fxnontriv := c(2)*u$
ftnontriv := (c(2)*(u**2 + 2*u_2x))/2$

This mechanism can be easily generalized to situations in which the conservation
laws which are found by the program are difficult to treat by pen and paper. How-
ever, we will present another approach to the computation of conservation laws in
subsection 16.12.15.

16.12.11 Local Hamiltonian operators

In this section we will show how to compute local Hamiltonian operators for
Korteweg–de Vries, Boussinesq and Kadomtsev–Petviashvili equations. It is inter-
esting to note that we will adopt the same computational scheme for all equations,
even if the latter is not in evolutionary form and it has more than two independent
variables. This comes from a new mathematical theory which started in [KKV04]
for evolution equations and was later extended to general differential equations in
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[KKVV09].

Korteweg–de Vries equation. Here we will find local Hamiltonian operators
for the KdV equation ut = uxxx + uux. A necessary condition for an operator to
be Hamiltonian is that it sends generating functions (or characteristics, according
with [Olv93]) of conservation laws to higher (or generalized) symmetries. As it is
proved in [KKV04], this amounts at solving ¯̀

KdV (phi) = 0 over the equation{
ut = uxxx + uux
pt = pxxx + upx

or, in geometric terminology, find the shadows of symmetries on the `∗-covering
of the KdV equation, with the further condition that the shadows must be linear in
the p-variables. Note that the second equation (in odd variables!) is just the adjoint
of the linearization of the KdV equation applied to an odd variable.

The file containing this example is kdv_lho1.

We stress that the linearization ¯̀
KdV (phi) = 0 is the equation

td(phi,t)-u*td(phi,x)-u_x*phi-td(phi,x,3)=0

but the total derivatives are lifted to the `∗ covering, hence they contain also deriva-
tives with respect to p’s. We can define a linearization operator lkdv as usual.

In order to produce an ansatz which is a superfunction of one odd variable (or a
linear function in odd variables) we produce two lists: the list l_grad_var of all
even variables collected by their gradings and a similar list l_grad_odd for odd
variables:

l_grad_var:=der_deg_ordering(0,all_parametric_der)$
l_grad_odd:={1} . der_deg_ordering(1,all_parametric_odd)$
gradmon:=graded_mon(1,10,l_grad_var)$
gradmon:={1} . gradmon$

We need a list of graded monomials which are linear in odd variables. The func-
tion mkalllinodd produces all monomials which are linear with respect to the
variables from l_grad_odd, have (monomial) coefficients from the variables in
l_grad_var, and have total scale degrees from 1 to 6. Such monomials are then
converted to the internal representation of odd variables.

linodd:=mkalllinodd(gradmon,l_grad_odd,1,6)$

Note that all odd variables have positive scale degrees thanks to our initial choice
deg_odd_var:=1;. Finally, the ansatz for local Hamiltonian operators:
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sym:=(for each el in linext sum (c(ctel:=ctel+1)*el))$

After having set

equ 1:=lkdv(1,1,sym);

and having initialized the equation solver as before, we do splitext

tel:=splitext_opequ(equ,1,1);

in order to split the polynomial equation with respect to the ext variables, then
splitvars

tel2:=splitvars_opequ(equ,2,tel,vars);

in order to split the resulting polynomial equation in a list of equations on the
coefficients of all monomials.

Now we are ready to solve all equations:

put_equations_used tel;
for i:=2:tel do integrate_equation i;
end;

Note that we want all equations to be solved!

The results are the two well-known Hamiltonian operators for the KdV. After inte-
gration the function sym becomes

sym := (c(5)*p*u_x + 2*c(5)*p_x*u +
3*c(5)*p_3x + 3*c(2)*p_x)/3$

Of course, the results correspond to the operators

px → Dx,
1

3
(3p3x + 2upx + uxp)→

1

3
(3Dxxx + 2uDx + ux).

Note that each operator is multiplied by one arbitrary real constant, c(5) and
c(2).

The same problem can be approached using CRACK, as follows (file kdv_lho2.red).
An ansatz is constructed by the following instructions:

even_vars:=for i:=0:3 join
selectvars(0,i,dep_var,all_parametric_der)$

odd_vars:=for i:=0:3 join
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selectvars(1,i,odd_var,all_parametric_odd)$
ext_vars:=replace_oddext(odd_vars)$

ctemp:=0$
ansatz:=for each el in ext_vars sum

mkid(s,ctemp:=ctemp+1)*el$

Note that we have

ansatz := p*s1 + p_2x*s3 + p_3x*s4 + p_x*s2$

Indeed, we are looking for a third-order operator whose coefficients depend on
variables of order not higher than 3. This last property has to be introduced by

unk:=for i:=1:ctemp collect mkid(s,i)$
for each ell in unk do
for each el in even_vars do depend ell,el$

Then, we introduce the linearization (lifted on the cotangent covering)

operator ell_f$
for all sym let ell_f(sym)=

td(sym,t) - u*td(sym,x) - u_x*sym - td(sym,x,3)$

and the equation to be solved, together with the usual test that checks for the nedd
to enlarge the jet space:

total_eq:=ell_f(ansatz)$

Finally, we split the above equation by collecting all coefficients of odd variables:

system_eq:=splitext_list({total_eq})$

and we feed CRACK with the equations that consist in asking to the above coeffi-
cients to be zero:

load_package crack;
crack_results:=crack(system_eq,{},unk,

diffset(all_parametric_der,even_vars));

The results are the same as in the previous section:

crack_results := {{{},
{s4=(3*c_17)/2,s3=0,s2=c_16 + c_17*u,s1=(c_17*u_x)/2},
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{c_17,c_16},
{}}}$

Boussinesq equation. There is no conceptual difference when computing for
systems of PDEs with respect to the previous computations for scalar equations.
We will look for Hamiltonian structures for the dispersionless Boussinesq equat-
ion (16.58).

We will proceed by dimensional analysis. Gradings can be taken as

[t] = −2, [x] = −1, [v] = 1, [u] = 2, [p] = 1, [q] = 2

where p, q are the two odd coordinates. We have the `∗Bou covering equation
−pt + vpx + qx = 0
upx + σpxxx − qt + vqx = 0
ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

We have to find Hamiltonian operators as shadows of symmetries on the above
covering. At the level of source file (bou_lho1) the input data is:

indep_var:={x,t}$
dep_var:={u,v}$
odd_var:={p,q}$
deg_indep_var:={-1,-2}$
deg_dep_var:={2,1}$
deg_odd_var:={1,2}$
total_order:=8$
principal_der:={u_t,v_t}$
de:={u_x*v+u*v_x+sig*v_3x,u_x+v*v_x}$
principal_odd:={p_t,q_t}$
de_odd:={v*p_x+q_x,u*p_x+sig*p_3x+v*q_x}$

The ansatz for the components of the Hamiltonian operator, of scale degree be-
tween 1 and 6, is

linodd:=mkalllinodd(gradmon,l_grad_odd,1,6)$
phi1:=(for each el in linodd sum (c(ctel:=ctel+1)*el))$
phi2:=(for each el in linodd sum (c(ctel:=ctel+1)*el))$

and the equation for shadows of symmetries is (lbou2 is taken from Sec-
tion 16.12.8)

equ 1:=lbou2(1,1,phi1) + lbou2(1,2,phi2);
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equ 2:=lbou2(2,1,phi1) + lbou2(2,2,phi2);

After the usual procedures for decomposing polynomials we obtain three local
Hamiltonian operators:

phi1_odd := (2*c(31)*p*sig*v_3x + 2*c(31)*p*u*v_x
+ 2*c(31)*p*u_x*v + 6*c(31)*p_2x*sig*v_x
+ 4*c(31)*p_3x*sig*v + 6*c(31)*p_x*sig*v_2x
+ 4*c(31)*p_x*u*v + 2*c(31)*q*u_x + 4*c(31)*q_3x*sig
+ 4*c(31)*q_x*u + c(31)*q_x*v**2 + 2*c(16)*p*u_x
+ 4*c(16)*p_3x*sig + 4*c(16)*p_x*u
+ 2*c(16)*q_x*v + 2*c(10)*q_x)/2$

phi2_odd := (2*c(31)*p*u_x + 2*c(31)*p*v*v_x
+ 4*c(31)*p_3x*sig + 4*c(31)*p_x*u
+ c(31)*p_x*v**2 + 2*c(31)*q*v_x + 4*c(31)*q_x*v
+ 2*c(16)*p*v_x + 2*c(16)*p_x*v
+ 4*c(16)*q_x + 2*c(10)*p_x)/2$

There is a whole hierarchy of nonlocal Hamiltonian operators [KKV04].

Kadomtsev–Petviashvili equation. There is no conceptual difference in symb-
olic computations of Hamiltonian operators for PDEs in 2 independent variables
and in more than 2 independent variables, regardless of the fact that the equation
at hand is written in evolutionary form. As a model example, we consider the KP
equation

uyy = utx − u2
x − uuxx −

1

12
uxxxx. (16.59)

Proceeding as in the above examples we input the following data:

indep_var:={t,x,y}$
dep_var:={u}$
odd_var:={p}$
deg_indep_var:={-3,-2,-1}$
deg_dep_var:={2}$
deg_odd_var:={1}$
total_order:=6$
principal_der:={u_2y}$
de:={u_tx-u_x**2-u*u_2x-(1/12)*u_4x}$
principal_odd:={p_2y}$
de_odd:={p_tx-u*p_2x-(1/12)*p_4x}$

and look for Hamiltonian operators of scale degree between 1 and 5:
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linodd:=mkalllinodd(gradmon,l_grad_odd,1,5)$
phi:=(for each el in linodd sum (c(ctel:=ctel+1)*el))$

After solving the equation for shadows of symmetries in the cotangent covering

equ 1:=td(phi,y,2) - td(phi,x,t) + 2*u_x*td(phi,x)
+ u_2x*phi + u*td(phi,x,2) + (1/12)*td(phi,x,4);

we get the only local Hamiltonian operator

phi := c(13)*p_2x$

As far as we know there are no further local Hamiltonian operators.

Remark: the above Hamiltonian operator is already known in an evolutionary
presentation of the KP equation [Kup94]. Our mathematical theory of Hamiltonian
operators for general differential equations [KKVV09] allows us to formulate and
solve the problem for any presentation of the KP equation. Change of coordinate
formulae could also be provided.

16.12.12 Examples of Schouten bracket of local Hamiltonian oper-
ators

In this Section we will discuss examples of calculation of Schouten bracket in
order to check the Hamiltonian property for C-differential operators and/or the
compatibility of two distinct Hamiltonian operators. This subject is treated in a
much greater detail in the recent paper [Vit19], where many examples of Schouten
bracket calculations with CDE have been described.

We observe that a package that is capable to calculate the Schouten bracket of
weakly nonlocal operators (in one independent variable) is currently part of CDE,
version 3.0. Documentation for the package is being written; interested readers
may contact the author of CDE for questions.

Let F = 0 be a system of PDEs. Here F ∈ P , where P is the module (in the
algebraic sense) of vector functions P = {Jr(n,m)→ Rk}.

The Hamiltonian operators which have been computed in the previous Section are
differential operators sending generating functions of conservation laws into gen-
erating functions of symmetries for the above system of PDEs:

H : P̂ → κ (16.60)

• P̂ = {Jr(n,m)→ (Rk)∗ ⊗ ∧nT ∗Rn} is the space of covector-valued den-
sities,
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• κ = {Jr(n,m) → Rm} is the space of generalized vector fields on jets;
generating functions of higher symmetries of the system of PDEs are ele-
ments of this space.

As the operators are mainly used to define a bracket operation and a Lie alge-
bra structure on conservation laws, two properties are required: skew-adjointness
H∗ = −H (corresponding with skew-symmetry of the bracket) and [H,H] = 0
(corresponding with the Jacobi property of the bracket).

In order to compute the two properties we proceed as follows. Skew-adjointness
is checked by computing the adjoint and verifying that the sum with the initial
operator is zero.

In the case of evolutionary equations, P = κ, and Hamiltonian operators (16.60)
can also be interpreted as variational bivectors, ie

Ĥ : κ̂ × κ̂ → ∧nT ∗Rn (16.61)

where the correspondence is given by

H(ψ) = (aijσDσψj) → Ĥ(ψ1, ψ2) = (aijσDσψ1 jψ2 i) (16.62)

In terms of the corresponding superfunctions:

H = aik σpk σ → Ĥ = aik σpk σpi.

Note that the product pk σpi is anticommutative since p’s are odd variables.

After that a C-differential operator of the type of H has been converted into a
bivector it is possible to apply the formulae (16.56) and (16.57) in order to compute
the Schouten bracket. This is what we will see in next section.

Bi-Hamiltonian structure of the KdV equation. We can do the above compu-
tations using KdV equation as a test case (see the file kdv_lho3.red).

Let us load the above operators:

operator ham1;
for all psi1 let ham1(psi1)=td(psi1,x);
operator ham2;
for all psi2 let ham2(psi2)=
(1/3)*u_x*psi2 + td(psi2,x,3) + (2/3)*u*td(psi2,x);

We may convert the two operators into the corresponding superfunctions

conv_cdiff2superfun(ham1,sym1);
conv_cdiff2superfun(ham2,sym2);
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The result of the conversion is

sym1(1) := {p_x};
sym2(2) := {(1/3)*p*u_x + p_3x + (2/3)*p_x*u};

Skew-adjointness is checked at once:

adjoint_cdiffop(ham1,ham1_star);
adjoint_cdiffop(ham2,ham2_star);
ham1_star_sf(1)+sym1(1);
ham2_star_sf(1)+sym2(1);

and the result of the last two commands is zero.

Then we shall convert the two superfunctions into bivectors:

conv_genfun2biv(sym1_odd,biv1);
conv_genfun2biv(sym2_odd,biv2);

The output is:

biv1(1) := - ext(p,p_x);
biv2(1) := - (1/3)*( - 3*ext(p,p_3x) - 2*ext(p,p_x)*u);

Finally, the three Schouten brackets [Ĥi, Ĥj ] are computed, with i, j = 1, 2:

schouten_bracket(biv1,biv1,sb11);
schouten_bracket(biv1,biv2,sb12);
schouten_bracket(biv2,biv2,sb22);

the result are well-known lists of zeros.

Bi-Hamiltonian structure of the WDVV equation. This subsection refers to the
the example file wdvv_biham1.red. The simplest nontrivial case of the WDVV
equations is the third-order Monge–Ampère equation, fttt = f2

xxt − fxxxfxtt
[Dub96]. This PDE can be transformed into hydrodynamic form,

at = bx, bt = cx, ct = (b2 − ac)x,

via the change of variables a = fxxx, b = fxxt, c = fxtt. This system possesses
two Hamiltonian formulations [FGMN97]:ab

c


t

= Ai

δHi/δa
δHi/δb
δHi/δc

 , i = 1, 2
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with the homogeneous first-order Hamiltonian operator

Â1 =

−3
2Dx

1
2Dxa Dxb

1
2aDx

1
2(Dxb+ bDx) 3

2cDx + cx
bDx

3
2Dxc− cx (b2 − ac)Dx +Dx(b2 − ac)


with the Hamiltonian H1 =

∫
c dx, and the homogeneous third-order Hamiltonian

operator

A2 = Dx

 0 0 Dx

0 Dx −Dxa
Dx −aDx Dxb+ bDx + aDxa

Dx,

with the nonlocal Hamiltonian

H2 = −
∫ (

1

2
a
(
Dx
−1b
)2

+Dx
−1bDx

−1c

)
dx.

Both operators are of Dubrovin–Novikov type [DN83, DN84]. This means that
the operators are homogeneous with respect to the grading |Dx| = 1. It follows
that the operators are form-invariant under point transformations of the dependent
variables, ui = ui(ũj). Here and in what follows we will use the letters ui to denote
the dependent variables (a, b, c). Under such transformations, the coefficients of
the operators transform as differential-geometric objects.

The operator A1 has the general structure

A1 = gij1 Dx + Γijk u
k
x

where the covariant metric g1 ij is flat, Γijk = gis1 Γjsk (here gij1 is the inverse matrix
that represent the contravariant metric induced by g1 ij), and Γjsk are the usual
Christoffel symbols of g1 ij .

The operator A2 has the general structure

A2 = Dx

(
gij2 Dx + cijk u

k
x

)
Dx, (16.63)

where the inverse g2 ij of the leading term transforms as a covariant pseudo-
Riemannian metric. From now on we drop the subscript 2 for the metric of A2.
It was proved in [FPV14] that, if we set cijk = giqgjpc

pq
k , then

cijk =
1

3
(gik,j − gij,k)

and the metric fulfills the following identity:

gmk,n + gkn,m + gmn,k = 0. (16.64)

This means that the metric is a Monge metric [FPV14]. In particular, its coefficients
are quadratic in the variables ui. It is easy to input the two operators in CDE. Let
us start by A1: we may define its entries one by one as follows
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operator a1;

for all psi let a1(1,1,psi) = - (3/2)*td(psi,x);
for all psi let a1(1,2,psi) = (1/2)*td(a*psi,x);
...

We could also use one specialized Reduce package for the computation of
the Christoffel symbols, like RedTen or GRG. Assuming that the operators
gamma_hi(i,j,k) have been defined equal to Γijk and computed in the sys-
tem using the inverse matrix gij of the leading coefficient contravariant metric26

gij =

−3
2

1
2a b

1
2a b 3

2c
b 3

2c 2(b2 − ac)


then, provided we defined a list dep_var of the dependent variables, we could set

operator gamma_hi_con;
for all i,j let gamma_hi_con(i,j) =
(
for k:=1:3 sum gamma_hi(i,j,k)*mkid(part(dep_var,k),!_x)
)$

and

operator a1$
for all i,j,psi let a1(i,j,psi) =
gu1(i,j)*td(psi,x)+(for k:=1:3 sum gamma_hi_con(i,j)*psi
)$

The third order operator can be reconstructed as follows. Observe that the leading
contravariant metric is

gij =

0 0 1
0 1 −a
1 −a 2b+ a2


Introduce the above matrix in REDUCE as gu3. Then set

gu3:=gl3**(-1)$

and define cijk as

operator c_lo$

26Indeed in the example file wdvv_biham1.red there are procedures for computing all those
quantities.
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for i:=1:3 do
for j:=1:3 do
for k:=1:3 do
<<
c_lo(i,j,k):=
(1/3)*(df(gl3(k,i),part(dep_var,j))
- df(gl3(j,i),part(dep_var,k)))$

>>$

Then define cijk

templist:={}$
operator c_hi$
for i:=1:ncomp do
for j:=1:ncomp do
for k:=1:ncomp do
c_hi(i,j,k):=
<<
templist:=
for m:=1:ncomp join
for n:=1:ncomp collect
gu3(n,i)*gu3(m,j)*c_lo(m,n,k)$

templist:=part(templist,0):=plus
>>$

Introduce the contracted operator

operator c_hi_con$
for i:=1:ncomp do
for j:=1:ncomp do
c_hi_con(i,j):=
<<
templist:=for k:=1:ncomp collect
c_hi(i,j,k)*mkid(part(dep_var,k),!_x)$

templist:=part(templist,0):=plus
>>$

Finally, define the operator A2

operator aa2$
for all i,j,psi let aa2(i,j,psi) =
td(
gu3(i,j)*td(psi,x,2)+c_hi_con(i,j)*td(psi,x)
,x)$
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Now, we can test the Hamiltonian property of A1, A2 and their compatibility:

conv_cdiff2genfun(aa1,sym1)$
conv_cdiff2genfun(aa2,sym2)$

conv_genfun2biv(sym1,biv1)$
conv_genfun2biv(sym2,biv2)$

schouten_bracket(biv1,biv1,sb11);
schouten_bracket(biv1,biv2,sb12);
schouten_bracket(biv2,biv2,sb22);

Needless to say, the result of the last three command is a list of zeroes.

We observe that the same software can be used to prove the bi-Hamiltonianity of a
6-component WDVV system [PV15].

Schouten bracket of multidimensional operators. The formulae (16.56), (16.57)
hold also in the case of multidimensional operators, ie operators with total deriva-
tives in more than one independent variables. Here we give one Hamiltonian op-
erator H and we give two more variational bivectors P1, P2; all operators are
of Dubrovin–Novikov type (homogeneous). We check the compatibility by com-
puting [H,P1] and [H,P2]. Such computations are standard for the problem of
computing the Hamiltonian cohomology of H .

This example has been provided by M. Casati. The file of the computation is
dn2d_sb1.red. The dependent variables are p1, p2.

Let us set

H =

(
Dx 0
0 Dy

)
(16.65)

P1 =

(
P 11

1 P 12
1

P 21
1 P 22

1

)
(16.66)
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where

P 11
1 =2

∂g

∂p1
p2
yDx +

∂g

∂p1
p2
xy +

∂g

∂p1∂p2
p2
xp

2
y +

∂g

∂2p1
p1
xp

2
y

P 21
1 =− fD2

x + gD2
y +

∂g

∂p2
p2
yDy − (

∂f

∂p1
p1
x + 2

∂f

∂p2
p2
x)Dx

− ∂f

∂2p2
p2
xp

2
x −

∂f

∂p1∂p2
p1
xp

2
x −

∂f

∂p2
p2

2x;

P 12
1 =fD2

x − gD2
y +

∂f

∂p1
p1
xDx −

( ∂g
∂p2

p2
y + 2

∂g

∂p1
p1
y

)
Dy

− ∂g

∂2p1
p1
yp

1
y −

∂g

∂p1∂p2
p1
yp

2
y −

∂g

∂p1
p1

2y;

P 22
1 =2

∂f

∂p2
p1
xDy +

∂f

∂p2
p1
xy +

∂f

∂p1∂p2
p1
xp

1
y +

∂f

∂2p2
p1
xp

2
y;

and let P2 = P T1 . This is implemented as follows:

mk_cdiffop(aa2,1,{2},2)$
for all psi let aa2(1,1,psi) =
2*df(g,p1)*p2_y*td(psi,x) + df(g,p1)*p2_xy*psi
+ df(g,p1,p2)*p2_x*p2_y*psi + df(g,p1,2)*p1_x*p2_y*psi;

for all psi let aa2(1,2,psi) =
f*td(psi,x,2) - g*td(psi,y,2) + df(f,p1)*p1_x*td(psi,x)
- (df(g,p2)*p2_y + 2*df(g,p1)*p1_y)*td(psi,y)
- df(g,p1,2)*p1_y*p1_y*psi - df(g,p1,p2)*p1_y*p2_y*psi
- df(g,p1)*p1_2y*psi;

for all psi let aa2(2,1,psi) =
- f*td(psi,x,2) + g*td(psi,y,2)
+ df(g,p2)*p2_y*td(psi,y)
- (df(f,p1)*p1_x+2*df(f,p2)*p2_x)*td(psi,x)
- df(f,p2,2)*p2_x*p2_x*psi - df(f,p1,p2)*p1_x*p2_x*psi
- df(f,p2)*p2_2x*psi;

for all psi let aa2(2,2,psi) =
2*df(f,p2)*p1_x*td(psi,y)
+ df(f,p2)*p1_xy*psi + df(f,p1,p2)*p1_x*p1_y*psi
+ df(f,p2,2)*p1_x*p2_y*psi;

mk_cdiffop(aa3,1,{2},2)$
for all psi let aa3(1,1,psi) = aa2(1,1,psi);
for all psi let aa3(1,2,psi) = aa2(2,1,psi);
for all psi let aa3(2,1,psi) = aa2(1,2,psi);
for all psi let aa3(2,2,psi) = aa2(2,2,psi);
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Let us check the skew-adjointness of the above bivectors:

conv_cdiff2superfun(aa1,sym1)$
conv_cdiff2superfun(aa2,sym2)$
conv_cdiff2superfun(aa3,sym3)$

adjoint_cdiffop(aa1,aa1_star);
adjoint_cdiffop(aa2,aa2_star);
adjoint_cdiffop(aa3,aa3_star);

for i:=1:2 do write sym1(i) + aa1_star_sf(i);
for i:=1:2 do write sym2(i) + aa2_star_sf(i);
for i:=1:2 do write sym3(i) + aa3_star_sf(i);

Of course the last three commands produce two zeros each.

Let us compute Schouten brackets.

conv_cdiff2superfun(aa1,sym1)$
conv_cdiff2superfun(aa2,sym2)$
conv_cdiff2superfun(aa3,sym3)$

conv_genfun2biv(sym1,biv1)$
conv_genfun2biv(sym2,biv2)$
conv_genfun2biv(sym3,biv3)$

schouten_bracket(biv1,biv1,sb11);
schouten_bracket(biv1,biv2,sb12);
schouten_bracket(biv1,biv3,sb13);

sb11(1) is trivially a list of zeros, while sb12(1) is nonzero and sb13(1) is
again zero.

More formulae are currently being implemented in the system, like symplecticity
and Nijenhuis condition for recursion operators [KKV06]. Interested readers are
warmly invited to contact R. Vitolo for questions/feature requests.

16.12.13 Non-local operators

In this section we will show an experimental way to find nonlocal operators. The
word ‘experimental’ comes from the lack of a comprehensive mathematical theory
of nonlocal operators; in particular, it is still missing a theoretical framework for
Schouten brackets of nonlocal opeartors in the odd variable language.

In any case we will achieve the results by means of a covering of the cotangent
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covering. Indeed, it can be proved that there is a 1 − 1 correspondence between
(higher) symmetries of the initial equation and conservation laws on the cotangent
covering. Such conservation laws provide new potential variables, hence a cover-
ing (see [BCD+99] for theoretical details on coverings).

In Section 16.12.15 we will also discuss a procedure for finding conservation laws
from their generating functions that is of independent interest.

Non-local Hamiltonian operators for the Korteweg–de Vries equation. Here
we will compute some nonlocal Hamiltonian operators for the KdV equation.
The result of the computation (without the details below) has been published in
[KKV04].

We have to solve equations of the type ddx(ct)-ddt(cx) as in 16.12.10. The
main difference is that we will attempt a solution on the `∗-covering (see Subsec-
tion 16.12.11). For this reason, first of all we have to determine covering variables
with the usual mechanism of introducing them through conservation laws, this time
on the `∗-covering.

As a first step, let us compute conservation laws on the `∗-covering whose compo-
nents are linear in the p’s. This computation can be found in the file kdv_nlcl1
and related results and debug files.

The conservation laws that we are looking for are in 1 − 1 correspondence with
symmetries of the initial equation [KKV04]. We will look for conservatoin laws
which correspond to Galilean boost, x-translation, t-translation at the same time.
In the case of 2 independent variables and 1 dependent variable, one could prove
that one component of such conservation laws can always be written as sym*p as
follows:

c1x:=(t*u_x+1)*p$ % degree 1
c2x:=u_x*p$ % degree 4
c3x:=(u*u_x+u_3x)*p$ % degree 6

The second component must be found by solving an equation. To this aim we
produce the ansatz

c1t:=f1*p+f2*p_x+f3*p_2x$
% degree 6
c2t:=(for each el in linodd6 sum (c(ctel:=ctel+1)*el))$
% degree 8
c3t:=(for each el in linodd8 sum (c(ctel:=ctel+1)*el))$

where we already introduced the sets linodd6 and linodd8 of 6-th and 8-th
degree monomials which are linear in odd variables (see the source code). For the
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first conservation law solutions of the equation

equ 1:=td(c1t,x) - td(c1x,t);

are found by hand due to the presence of ‘t’ in the symmetry:

f3:=t*u_x+1$
f2:=-td(f3,x)$
f1:=u*f3+td(f3,x,2)$

We also have the equations

equ 2:=td(c2t,x)-td(c2x,t);
equ 3:=td(c3t,x)-td(c3x,t);

They are solved in the usual way (see the source code of the example and the results
file kdv_nlcl1_res).

Now, we solve the equation for shadows of nonlocal symmetries in a covering of
the `∗-covering (source file kdv_nlho1). We can produce such a covering by
introducing three new nonlocal (potential) variables ra,rb,rc. We are going to
look for non-local Hamiltonian operators depending linearly on one of these vari-
ables. To this aim we modify the odd part of the equation to include the components
of the above conservation laws as the derivatives of the new non-local variables r1,
r2, r3:

principal_odd:={p_t,r1_x,r1_t,r2_x,r2_t,r3_x,r3_t}$
de_odd:={u*p_x+p_3x,
p*(t*u_x + 1),
p*t*u*u_x + p*t*u_3x + p*u + p_2x*t*u_x + p_2x
- p_x*t*u_2x,
p*u_x,
p*u*u_x + p*u_3x + p_2x*u_x - p_x*u_2x,
p*(u*u_x + u_3x),
p*u**2*u_x + 2*p*u*u_3x + 3*p*u_2x*u_x + p*u_5x
+ p_2x*u*u_x + p_2x*u_3x - p_x*u*u_2x
- p_x*u_4x - p_x*u_x**2}$

The scale degree analysis of the local Hamiltonian operators of the KdV equation
leads to the formulation of the ansatz

phi:=(for each el in linodd sum (c(ctel:=ctel+1)*el))$

where linext is the list of graded mononials which are linear in odd variables
and have degree 7 (see the source file). The equation for shadows of nonlocal
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symmetries in `∗-covering

equ 1:=td(phi,t)-u*td(phi,x)-u_x*phi-td(phi,x,3);

is solved in the usual way, obtaining (in odd variables notation):

phi := (c(5)*(4*p*u*u_x + 3*p*u_3x + 18*p_2x*u_x
+ 12*p_3x*u + 9*p_5x + 4*p_x*u**2
+ 12*p_x*u_2x - r2*u_x))/4$

Higher non-local Hamiltonian operators could also be found [KKV04]. The
CRACK approach also holds for non-local computations.

16.12.14 Non-local recursion operator for the Korteweg–de Vries
equation.

Following the ideas in [KKV04], a differential operator that sends symmetries into
symmetries can be found as a shadow of symmetry on the `-covering of the KdV
equation, with the further condition that the shadows must be linear in the covering
q-variables. The tangent covering of the KdV equation is{

ut = uxxx + uux
qt = uxq + uqx + qxxx

and we have to solve the equation ¯̀
KdV (phi) = 0, where ¯̀

KdV means that the
linearization of the KdV equation is lifted over the tangent covering.

The file containing this example is kdv_ro1.red. The example closely follows
the computational scheme presented in [KVV12].

Usually, recursion operators are non-local: operators of the form D−1
x appear in

their expression. Geometrically we interpret this kind of operator as follows. We
introduce a conservation law on the cotangent covering of the form

ω = rt dx+ rx dt

where rt = uq + qxx and rx = q. It has the remarkable feature of being linear
with respect to q-variables. A non-local variable r can be introduced as a potential
of ω, as rx = rx, rt = rt. A computation of shadows of symmetries on the system
of PDEs 

ut = uxxx + uux
qt = uxq + uqx + qxxx
rt = uq + qxx
rx = q

yields, analogously to the previous computations,
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2*c(5)*q*u + 3*c(5)*q_2x + c(5)*r*u_x + c(2)*q.

The operator q stands for the identity operator, which is (and must be!) always a
solution; the other solution corresponds to the Lenard–Magri operator

3Dxx + 2u+ uxD
−1
x .

16.12.15 Non-local Hamiltonian-recursion operators for Plebanski
equation.

The Plebanski (or second Heavenly) equation

F = uttuxx − u2
tx + uxz + uty = 0 (16.67)

is Lagrangian. This means that its linearization is self-adjoint: `F = `∗F , so that
the tangent and cotangent covering coincide, its odd equation being

`F (p) = pxz + pty − 2utxptx + u2xp2t + u2tp2x = 0. (16.68)

It is not difficult to realize that the above equation can be written in explicit con-
servative form as

pxz + pty + uttpxx + uxxptt − 2utxptx

= Dx(pz + uttpx − utxpt) +Dt(py + uxxpt − utxpx) = 0,

thus the corresponding conservation law is

υ(1) = (py+uxxpt−utxpx) dx∧dy∧dz+(utxpt−pz−uttpx) dt∧dy∧dz. (16.69)

We can introduce a potential r for the above 2-component conservation law.
Namely, we can assume that

rx = py + uxxpt − utxpx, rt = utxpt − pz − uttpx. (16.70)

This is a new nonlocal variable for the (co)tangent covering of the Plebanski equat-
ion. We can load the Plebanski equation together with its nonlocal variable r as
follows:

indep_var:={t,x,y,z}$
dep_var:={u}$
odd_var:={p,r}$
deg_indep_var:={-1,-1,-4,-4}$
deg_dep_var:={1}$
deg_odd_var:={1,4}$
total_order:=6$
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principal_der:={u_xz}$
de:={-u_ty+u_tx**2-u_2t*u_2x}$
% rhs of the equations that define the nonlocal variable
rt:= - p_z - u_2t*p_x + u_tx*p_t$
rx:= p_y + u_2x*p_t - u_tx*p_x$
% We add conservation laws as new nonlocal odd variables;
principal_odd:={p_xz,r_x,r_t}$
%
de_odd:={-p_ty+2*u_tx*p_tx-u_2x*p_2t-u_2t*p_2x,rx,rt}$

We can easily verify that the integrability condition for the new nonlocal variable
holds:

td(r,t,x) - td(r,x,t);

the result is 0.

Now, we look for nonlocal recursion operators in the tangent covering using the
new nonlocal odd variable r. We can load the equation exactly as before. We look
for recursion operators which depend on r (which has scale degree 4); we produce
the following ansatz for phi:

linodd:=mkalllinodd(gradmon,l_grad_odd,1,4)$
phi:=(for each el in linodd sum (c(ctel:=ctel+1)*el))$

then we solve the equation of shadows of symmetries:

equ 1:=td(phi,x,z)+td(phi,t,y)-2*u_tx*td(phi,t,x)
+u_2x*td(phi,t,2)+u_2t*td(phi,x,2)$

The solution is

phi := c(28)*r + c(1)*p

hence we obtain the identity operator p and the new nonlocal operator r. It can be
proved that changing coordinates to the evolutionary presentation yields the local
operator (which has a much more complex expression than the identity operator)
and one of the nonlocal operators of [NNS05]. More details on this computation
can be found in [KVV12].
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16.13 CDIFF: A package for computations in geometry of
Differential Equations

Authors: P. Gragert, P.H.M. Kersten, G. Post and G. Roelofs.

Author of this Section: R. Vitolo.

We describe CDIFF, a Reduce package for computations in geometry of Differen-
tial Equations (DEs, for short) developed by P. Gragert, P.H.M. Kersten, G. Post
and G. Roelofs from the University of Twente, The Netherlands.

The package is part of the official REDUCE distribution at Sourceforge [Red], but
it is also distributed on the Geometry of Differential Equations web site http:
//gdeq.org (GDEQ for short).

We start from an installation guide for Linux and Windows. Then we focus on con-
crete usage recipes for the computation of higher symmetries, conservation laws,
Hamiltonian and recursion operators for polynomial differential equations. All
programs discussed here are shipped together with this manual and can be found
at the GDEQ website. The mathematical theory on which computations are based
can be found in refs. [BCD+99, KKV04].

NOTE: The new REDUCE package CDE [Vit], also distributed on http://
gdeq.org, simplifies the use of CDIFF and extends its capabilities. Interested
users may read the manual of CDE where the same computations described here
for CDIFF are done in a simpler way, and further capabilities allow CDE to solve
a greater variety of problems.

16.13.1 Introduction

This brief guide refers to using CDIFF, a set of symbolic computation programs
devoted to computations in geometry of DEs and developed by P. Gragert, P.H.M.
Kersten, G. Post and G. Roelofs at the University of Twente, The Netherlands.

Initially, the development of the CDIFF packages was started by Gragert and Ker-
sten for symmetry computations in DEs, then they have been partly rewritten and
extended by Roelofs and Post. The CDIFF packages consist of 3 program files plus
a utility file; only the main three files are documented [Roe92b, Roe92a, Pos96].
The CDIFF packages, as well as a copy of the documentation (including this man-
ual) and several example programs, can be found both at Sourceforge in the sources
of REDUCE [Red] and in the Geometry of Differential Equations (GDEQ for
short) web site [gde]. The name of the packages, CDIFF, comes from the fact
that the package is aimed at defining differential operators in total derivatives and
do computations involving them. Such operators are called C-differential operators
(see [BCD+99]).

http://gdeq.org
http://gdeq.org
http://gdeq.org
http://gdeq.org
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The main motivation for writing this manual was that REDUCE 3.8 recently be-
came free software, and can be downloaded here [Red]. For this reason, we are able
to make our computations accessible to a wider public, also thanks to the inclusion
of CDIFF in the official REDUCE distribution. The readers are warmly invited
to send questions, comments, etc., both on the computations and on the technical
aspects of installation and configuration of REDUCE, to the author of the present
manual.

Acknowledgements. My warmest thanks are for Paul H.M. Kersten, who ex-
plained to me how to use the CDIFF packages for several computations of in-
terest in the Geometry of Differential Equations. I also would like to thank I.S.
Krasil’shchik and A.M. Verbovetsky for constant support and stimulating discus-
sions which led me to write this text.

16.13.2 Computing with CDIFF

In order to use CDIFF it is necessary to load the package by the command

load_package cdiff;

All programs that we will discuss in this manual can be found inside the subfolder
examples in the folder which contains this manual. In order to run them just do

in "filename.red";

at the REDUCE command prompt.

There are some conventions that I adopted on writing programs which use CDIFF.

• Program files have the extension .red. This will load automatically the
reduce-ide mode in emacs (provided you made the installation steps de-
scribed in the reduce-ide guides).

• Program files have the following names:

equationname_typeofcomputation_version.red

where equationname stands for the shortened name of the equation (e.g.
Korteweg–de Vries is always indicated by KdV), typeofcomputation
stands for the type of geometric object which is computed with the given file,
for example symmetries, Hamiltonian operators, etc., version is a version
number.

• More specific information, like the date and more details on the computation
done in each version, are included as comment lines at the very beginning of
each file.
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Now we describe some examples of computations with CDIFF. The parts of ex-
amples which are shared between all examples are described only once. We stress
that all computations presented in this document are included in the official RE-
DUCE distribution and can be also downloaded at the GDEQ website [gde]. The
examples can be run with REDUCE by typing in "program.red"; at the
REDUCE prompt, as explained above.

Remark. The mathematical theories on which the computations are based can be
found in [BCD+99, KKV04].

Higher symmetries

In this section we show the computation of (some) higher symmetries of Burgers’
equationB = ut−uxx+2uux = 0. The corresponding file is Burg_hsym_1.red
and the results of the computation are in Burg_hsym_1_res.red.

The idea underlying this computation is that one can use the scale symmetries of
Burgers’ equation to assign “gradings” to each variable appearing in the equation.
As a consequence, one could try different ansatz for symmetries with polynomial
generating function. For example, it is possible to require that they are sum of
monomials of given degrees. This ansatz yields a simplification of the equations
for symmetries, because it is possible to solve them in a “graded” way, i.e., it is
possible to split them into several equations made by the homogeneous components
of the equation for symmetries with respect to gradings.

In particular, Burgers’ equation translates into the following dimensional equation:

[ut] = [uxx], [uxx = 2uux].

By the rules [uz] = [u] − [z] and [uv] = [u] + [v], and choosing [x] = −1, we
have [u] = 1 and [t] = −2. This will be used to generate the list of homogeneous
monomials of given grading to be used in the ansatz about the structure of the
generating function of the symmetries.

The following instructions initialize the total derivatives. The first string is the
name of the vector field, the second item is the list of even variables (note that
u1, u2, ... are ux, uxx, . . . ), the third item is the list of odd (non-commuting)
variables (‘ext’ stands for ‘external’ like in external (wedge) product). Note that in
this example odd variables are not strictly needed, but it is better to insert some of
them for syntax reasons.

super_vectorfield(ddx,{x,t,u,u1,u2,u3,u4,u5,u6,u7,
u8,u9,u10,u11,u12,u13,u14,u15,u16,u17},
{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,
ext 10,ext 11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,
ext 18,ext 19,ext 20,ext 21,ext 22,ext 23,ext 24,ext 25,
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ext 26,ext 27,ext 28,ext 29,ext 30,ext 31,ext 32,ext 33,
ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,ext 41,
ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,
ext 50,ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,
ext 58,ext 59,ext 60,ext 61,ext 62,ext 63,ext 64,ext 65,
ext 66,ext 67,ext 68,ext 69,ext 70,ext 71,ext 72,ext 73,
ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80
});

super_vectorfield(ddt,{x,t,u,u1,u2,u3,u4,u5,u6,u7,
u8,u9,u10,u11,u12,u13,u14,u15,u16,u17},
{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,
ext 10,ext 11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,
ext 18,ext 19,ext 20,ext 21,ext 22,ext 23,ext 24,ext 25,
ext 26,ext 27,ext 28,ext 29,ext 30,ext 31,ext 32,ext 33,
ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,ext 41,
ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,
ext 50,ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,
ext 58,ext 59,ext 60,ext 61,ext 62,ext 63,ext 64,ext 65,
ext 66,ext 67,ext 68,ext 69,ext 70,ext 71,ext 72,ext 73,
ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80
});

Specification of the vectorfield ddx. The meaning of the first index is the par-
ity of variables. In particular here we have just even variables. The second in-
dex parametrizes the second item (list) in the super_vectorfield declara-
tion. More precisely, ddx(0,1) stands for ∂/∂x, ddx(0,2) stands for ∂/∂t,
ddx(0,3) stands for ∂/∂u, ddx(0,4) stands for ∂/∂ux, . . . , and all coordi-
nates x, t, ux, . . . , are treated as even coordinates. Note that ‘$’ suppresses the
output.

ddx(0,1):=1$
ddx(0,2):=0$
ddx(0,3):=u1$
ddx(0,4):=u2$
ddx(0,5):=u3$
ddx(0,6):=u4$
ddx(0,7):=u5$
ddx(0,8):=u6$
ddx(0,9):=u7$
ddx(0,10):=u8$
ddx(0,11):=u9$
ddx(0,12):=u10$
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ddx(0,13):=u11$
ddx(0,14):=u12$
ddx(0,15):=u13$
ddx(0,16):=u14$
ddx(0,17):=u15$
ddx(0,18):=u16$
ddx(0,19):=u17$
ddx(0,20):=letop$

The string letop is treated as a variable; if it appears during computations it is
likely that we went too close to the highest order variables that we defined in the
file. This could mean that we need to extend the operators and variable list. In
case of large output, one can search in it the string letop to check whether errors
occurred.

Specification of the vectorfield ddt. In the evolutionary case we never have more
than one time derivative, other derivatives are utxxx···.

ddt(0,1):=0$
ddt(0,2):=1$
ddt(0,3):=ut$
ddt(0,4):=ut1$
ddt(0,5):=ut2$
ddt(0,6):=ut3$
ddt(0,7):=ut4$
ddt(0,8):=ut5$
ddt(0,9):=ut6$
ddt(0,10):=ut7$
ddt(0,11):=ut8$
ddt(0,12):=ut9$
ddt(0,13):=ut10$
ddt(0,14):=ut11$
ddt(0,15):=ut12$
ddt(0,16):=ut13$
ddt(0,17):=ut14$
ddt(0,18):=letop$
ddt(0,19):=letop$
sddt(0,20):=letop$

We now give the equation in the form one of the derivatives equated to a right-hand
side expression. The left-hand side derivative is called principal, and the remaining
derivatives are called parametric27. For scalar evolutionary equations with two
independent variables internal variables are of the type (t, x, u, ux, uxx, . . .).

27This terminology dates back to Riquier, see [Mar09]
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ut:=u2+2*u*u1;

ut1:=ddx ut;
ut2:=ddx ut1;
ut3:=ddx ut2;
ut4:=ddx ut3;
ut5:=ddx ut4;
ut6:=ddx ut5;
ut7:=ddx ut6;
ut8:=ddx ut7;
ut9:=ddx ut8;
ut10:=ddx ut9;
ut11:=ddx ut10;
ut12:=ddx ut11;
ut13:=ddx ut12;
ut14:=ddx ut13;

Test for verifying the commutation of total derivatives. Highest order defined terms
may yield some letop.

operator ev;

for i:=1:17 do write ev(0,i):=ddt(ddx(0,i))-ddx(ddt(0,i));

This is the list of variables with respect to their grading, starting from degree one.

all_graded_der:={{u},{u1},{u2},{u3},{u4},{u5},
{u6},{u7},{u8},{u9},{u10},{u11},{u12},{u13},{u14},{u15},
{u16},{u17}};

This is the list of all monomials of degree 0, 1, 2, . . . which can be constructed from
the above list of elementary variables with their grading.

grd0:={1};
grd1:= mkvarlist1(1,1)$
grd2:= mkvarlist1(2,2)$
grd3:= mkvarlist1(3,3)$
grd4:= mkvarlist1(4,4)$
grd5:= mkvarlist1(5,5)$
grd6:= mkvarlist1(6,6)$
grd7:= mkvarlist1(7,7)$
grd8:= mkvarlist1(8,8)$
grd9:= mkvarlist1(9,9)$
grd10:= mkvarlist1(10,10)$
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grd11:= mkvarlist1(11,11)$
grd12:= mkvarlist1(12,12)$
grd13:= mkvarlist1(13,13)$
grd14:= mkvarlist1(14,14)$
grd15:= mkvarlist1(15,15)$
grd16:= mkvarlist1(16,16)$

Initialize a counter ctel for arbitrary constants c; initialize equations:

operator c,equ;

ctel:=0;

We assume a generating function sym, independent of x and t, of degree ≤ 5.

sym:=
(for each el in grd0 sum (c(ctel:=ctel+1)*el))+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))+
(for each el in grd4 sum (c(ctel:=ctel+1)*el))+
(for each el in grd5 sum (c(ctel:=ctel+1)*el))$

This is the equation ¯̀
B(sym) = 0, where B = 0 is Burgers’ equation and sym is

the generating function. From now on all equations are arranged in a single vector
whose name is equ.

equ 1:=ddt(sym)-ddx(ddx(sym))-2*u*ddx(sym)-2*u1*sym ;

This is the list of variables, to be passed to the equation solver.

vars:={x,t,u,u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,
u12,u13,u14,u15,u16,u17};

This is the number of initial equation(s)

tel:=1;

The following procedure uses multi_coeff (from the package tools). It gets
all coefficients of monomials appearing in the initial equation(s). The coefficients
are put into the vector equ after the initial equations.

procedure splitvars i;
begin;
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ll:=multi_coeff(equ i,vars);
equ(tel:=tel+1):=first ll;
ll:=rest ll;
for each el in ll do equ(tel:=tel+1):=second el;
end;

This command initializes the equation solver. It passes

• the equation vector equ togeher with its length tel (i.e., the total number
of equations);

• the list of variables with respect to which the system must not split the equat-
ions, i.e., variables with respect to which the unknowns are not polynomial.
In this case this list is just {};

• the constants’vector c, its length ctel, and the number of negative indexes
if any; just 0 in our example;

• the vector of free functions f that may appear in computations. Note that in
{f,0,0 } the second 0 stands for the length of the vector of free functions.
In this example there are no free functions, but the command needs the pres-
ence of at least a dummy argument, f in this case. There is also a last zero
which is the negative length of the vector f , just as for constants.

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});

Run the procedure splitvars in order to obtain equations on coefficiens of each
monomial.

splitvars 1;

Next command tells the solver the total number of equations obtained after running
splitvars.

put_equations_used tel;

It is worth to write down the equations for the coefficients.

for i:=2:tel do write equ i;

This command solves the equations for the coefficients. Note that we have to skip
the initial equations!

for i:=2:tel do integrate_equation i;
;end;
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In the folder computations/NewTests/Higher_symmetries it is possi-
ble to find the following files:

Burg_hsym_1.red The above file, together with its results file.

KdV_hsym_1.red Higher symmetries of KdV, with the ansatz: deg(sym) ≤ 5.

KdV_hsym_2.red Higher symmetries of KdV, with the ansatz:

sym = x*(something of degree 3) + t*(something of degree 5)
+ (something of degree 2).

This yields scale symmetries.

KdV_hsym_3.red Higher symmetries of KdV, with the ansatz:

sym = x*(something of degree 1) + t*(something of degree 3)
+ (something of degree 0).

This yields Galilean boosts.

Local conservation laws

In this section we will find (some) local conservation laws for the KdV equation
F = ut − uxxx + uux = 0. Concretely, we have to find non-trivial 1-forms
f = fxdx+ftdt on F = 0 such that d̄f = 0 on F = 0. “Triviality” of conservation
laws is a delicate matter, for which we invite the reader to have a look in [BCD+99].

The files containing this example is KdV_loc-cl_1.red, KdV_loc-cl_2.red
and the corresponding results files.

We make use of ddx and ddt, which in the even part are the same as in the previ-
ous example (subsection 16.13.2). After defining the total derivatives we prepare
the list of graded variables (recall that in KdV u is of degree 2):

all_graded_der:={{},{u},{u1},{u2},{u3},{u4},{u5},
{u6},{u7},{u8},{u9},{u10},{u11},{u12},{u13},{u14},
{u15},{u16},{u17}};

We make the ansatz

fx:=
(for each el in grd0 sum (c(ctel:=ctel+1)*el))+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))$
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ft:=
(for each el in grd2 sum (c(ctel:=ctel+1)*el))+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))+
(for each el in grd4 sum (c(ctel:=ctel+1)*el))+
(for each el in grd5 sum (c(ctel:=ctel+1)*el))$

for the components of the conservation law. We have to solve the equation

equ 1:=ddt(fx)-ddx(ft);

the fact that ddx and ddt are expressed in internal coordinates on the equation
means that the objects that we consider are already restricted to the equation.

We shall split the equation in its graded summands with the procedure splitvars,
then solve it

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});
splitvars 1;
pte tel;
for i:=2:tel do es i;
end;

As a result we get

fx := c(3)*u1 + c(2)*u + c(1)$
ft := (2*c(3)*u*u1 + 2*c(3)*u3 + c(2)*u**2 + 2*c(2)*u2)/2$

Unfortunately it is clear that the conservation law corresponding to c(3) is trivial,
because it is the total x-derivative of F ; its restriction on the infinite prolonga-
tion of the KdV is zero. Here this fact is evident; how to get rid of less evident
trivialities by an ‘automatic’ mechanism? We considered this problem in the file
KdV_loc-cl_2.red, where we solved the equation

equ 1:=fx-ddx(f0);
equ 2:=ft-ddt(f0);

after having loaded the values fx and ft found by the previous program. We make
the following ansatz on f0:

f0:=
(for each el in grd0 sum (cc(cctel:=cctel+1)*el))+
(for each el in grd1 sum (cc(cctel:=cctel+1)*el))+
(for each el in grd2 sum (cc(cctel:=cctel+1)*el))+
(for each el in grd3 sum (cc(cctel:=cctel+1)*el))$
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Note that this gives a grading which is compatible with the gradings of fx and ft.
After solving the system

initialize_equations(equ,tel,{},{cc,cctel,0},{f,0,0});
for i:=1:2 do begin splitvars i;end;
pte tel;
for i:=3:tel do es i;
end;

issuing the commands

fxnontriv := fx-ddx(f0);
ftnontriv := ft-ddt(f0);

we obtain

fxnontriv := c(2)*u + c(1)$
ftnontriv := (c(2)*(u**2 + 2*u2))/2$

This mechanism can be easily generalized to situations in which the conservation
laws which are found by the program are difficult to treat by pen and paper.

Local Hamiltonian operators

In this section we will find local Hamiltonian operators for the KdV equation ut =
uxxx + uux. Concretely, we have to solve ¯̀

KdV (phi) = 0 over the equation{
ut = uxxx + uux
pt = pxxx + upx

or, in geometric terminology, find the shadows of symmetries on the `∗-covering of
the KdV equation. The reference paper for this type of computations is [KKV04].

The file containing this example is KdV_Ham_1.red.

We make use of ddx and ddt, which in the even part are the same as in the previ-
ous example (subsection 16.13.2). We stress that the linearization ¯̀

KdV (phi) = 0
is the equation

ddt(phi)-u*ddx(phi)-u1*phi-ddx(ddx(ddx(phi)))=0

but the total derivatives are lifted to the `∗ covering, hence they must contain also
derivatives with respect to p’s. This will be achieved by treating p variables as odd
and introducing the odd parts of ddx and ddt,

ddx(1,1):=0$
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ddx(1,2):=0$
ddx(1,3):=ext 4$
ddx(1,4):=ext 5$
ddx(1,5):=ext 6$
ddx(1,6):=ext 7$
ddx(1,7):=ext 8$
ddx(1,8):=ext 9$
ddx(1,9):=ext 10$
ddx(1,10):=ext 11$
ddx(1,11):=ext 12$
ddx(1,12):=ext 13$
ddx(1,13):=ext 14$
ddx(1,14):=ext 15$
ddx(1,15):=ext 16$
ddx(1,16):=ext 17$
ddx(1,17):=ext 18$
ddx(1,18):=ext 19$
ddx(1,19):=ext 20$
ddx(1,20):=letop$

In the above definition the first index ‘1’ says that we are dealing with odd vari-
ables, ext indicates anticommuting variables. Here, ext 3 is p0, ext 4 is px,
ext 5 is pxx, . . . so ddx(1,3):=ext 4 indicates px∂/∂p, etc..

Now, remembering that the additional equation is again evolutionary, we can get
rid of pt by letting it be equal to ext 6 + u*ext 4, as follows:

ddt(1,1):=0$
ddt(1,2):=0$
ddt(1,3):=ext 6 + u*ext 4$
ddt(1,4):=ddx(ddt(1,3))$
ddt(1,5):=ddx(ddt(1,4))$
ddt(1,6):=ddx(ddt(1,5))$
ddt(1,7):=ddx(ddt(1,6))$
ddt(1,8):=ddx(ddt(1,7))$
ddt(1,9):=ddx(ddt(1,8))$
ddt(1,10):=ddx(ddt(1,9))$
ddt(1,11):=ddx(ddt(1,10))$
ddt(1,12):=ddx(ddt(1,11))$
ddt(1,13):=ddx(ddt(1,12))$
ddt(1,14):=ddx(ddt(1,13))$
ddt(1,15):=ddx(ddt(1,14))$
ddt(1,16):=ddx(ddt(1,15))$
ddt(1,17):=ddx(ddt(1,16))$
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ddt(1,18):=letop$
ddt(1,19):=letop$
ddt(1,20):=letop$

Let us make the following ansatz about the Hamiltonian operators:

phi:=
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 3+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 4+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 4+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 4+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 5+

(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 6
$

Note that we are looking for generating functions of shadows which are linear
with respect to p’s. Moreover, having set [p] = −2 we will look for solutions of
maximal possible degree +1.

After having set

equ 1:=ddt(phi)-u*ddx(phi)-u1*phi-ddx(ddx(ddx(phi)));
vars:={x,t,u,u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,u12,
u13,u14,u15,u16,u17};
tel:=1;

we define the procedures splitvars as in subsection 16.13.2 and splitext
as follows:

procedure splitext i;
begin;
ll:=operator_coeff(equ i,ext);
equ(tel:=tel+1):=first ll;
ll:=rest ll;
for each el in ll do equ(tel:=tel+1):=second el;
end;
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Then we initialize the equations:

initialize_equations(equ,tel,{},{c,ctel,0},{f,0,0});

do splitext

splitext 1;

then splitvars

tel1:=tel;
for i:=2:tel1 do begin splitvars i;equ i:=0;end;

Now we are ready to solve all equations:

put_equations_used tel;
for i:=2:tel do write equ i:=equ i;
pause;
for i:=2:tel do integrate_equation i;
end;

Note that we want all equations to be solved!

The results are the two well-known Hamiltonian operators for the KdV:

phi := c(4)*ext(4) + 3*c(3)*ext(6) + 2*c(3)*ext(4)*u
+ c(3)*ext(3)*u1$

Of course, the results correspond to the operators

ext(4)→ Dx,
3*c(3)*ext(6) + 2*c(3)*ext(4)*u + c(3)*ext(3)*u1→

3Dxxx + 2uDx + ux.

Note that each operator is multiplied by one arbitrary real constant, c(4) and
c(3).

Non-local Hamiltonian operators

In this section we will show an experimental way to find nonlocal Hamiltonian
operators for the KdV equation. The word ‘experimental’ comes from the lack of a
consistent mathematical theory. The result of the computation (without the details
below) has been published in [KKV04].

We have to solve equations of the type ddx(ft)-ddt(fx) as in 16.13.2. The
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main difference is that we will attempt a solution on the `∗-covering (see Subsec-
tion 16.13.2). For this reason, first of all we have to determine covering variables
with the usual mechanism of introducing them through conservation laws, this time
on the `∗-covering.

As a first step, let us compute conservation laws on the `∗-covering whose
components are linear in the p’s. This computation can be found in the file
KdV_nloc-cl_1.red and related results file. When specifying odd variables
in ddx and ddt, we have something like

ddx(1,1):=0$
ddx(1,2):=0$
ddx(1,3):=ext 4$
ddx(1,4):=ext 5$
ddx(1,5):=ext 6$
ddx(1,6):=ext 7$
ddx(1,7):=ext 8$
ddx(1,8):=ext 9$
ddx(1,9):=ext 10$
ddx(1,10):=ext 11$
ddx(1,11):=ext 12$
ddx(1,12):=ext 13$
ddx(1,13):=ext 14$
ddx(1,14):=ext 15$
ddx(1,15):=ext 16$
ddx(1,16):=ext 17$
ddx(1,17):=ext 18$
ddx(1,18):=ext 19$
ddx(1,19):=ext 20$
ddx(1,20):=letop$
ddx(1,50):=(t*u1+1)*ext 3$ % degree -2
ddx(1,51):=u1*ext 3$ % degree +1
ddx(1,52):=(u*u1+u3)*ext 3$ % degree +3

and

ddt(1,1):=0$
ddt(1,2):=0$
ddt(1,3):=ext 6 + u*ext 4$
ddt(1,4):=ddx(ddt(1,3))$
ddt(1,5):=ddx(ddt(1,4))$
ddt(1,6):=ddx(ddt(1,5))$
ddt(1,7):=ddx(ddt(1,6))$
ddt(1,8):=ddx(ddt(1,7))$
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ddt(1,9):=ddx(ddt(1,8))$
ddt(1,10):=ddx(ddt(1,9))$
ddt(1,11):=ddx(ddt(1,10))$
ddt(1,12):=ddx(ddt(1,11))$
ddt(1,13):=ddx(ddt(1,12))$
ddt(1,14):=ddx(ddt(1,13))$
ddt(1,15):=ddx(ddt(1,14))$
ddt(1,16):=ddx(ddt(1,15))$
ddt(1,17):=ddx(ddt(1,16))$
ddt(1,18):=letop$
ddt(1,19):=letop$
ddt(1,20):=letop$
ddt(1,50):=f1*ext 3+f2*ext 4+f3*ext 5$
ddt(1,51):=f4*ext 3+f5*ext 4+f6*ext 5$
ddt(1,52):=f7*ext 3+f8*ext 4+f9*ext 5$

The variables corresponding to the numbers 50,51,52 here play a dummy role,
the coefficients of the corresponding vector are the unknown generating functions
of conservation laws on the `∗-covering. More precisely, we look for conservation
laws of the form

fx= phi*ext 3
ft= f1*ext3+f2*ext4+f3*ext5

The ansatz is chosen because, first of all, ext 4 and ext 5 can be removed from
fx by adding a suitable total divergence (trivial conservation law); moreover it can
be proved that phi is a symmetry of KdV. We can write down the equations

equ 1:=ddx(ddt(1,50))-ddt(ddx(1,50));
equ 2:=ddx(ddt(1,51))-ddt(ddx(1,51));
equ 3:=ddx(ddt(1,52))-ddt(ddx(1,52));

However, the above choices make use of a symmetry which contains ‘t’ in the
generator. This would make automatic computations more tricky, but still possible.
In this case the solution of equ 1 has been found by hand and passed to the
program:

f3:=t*u1+1$
f1:=u*f3+ddx(ddx(f3))$
f2:=-ddx(f3)$

together with the ansatz on the coefficients for the other equations

f4:=(for each el in grd5 sum (c(ctel:=ctel+1)*el))$
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f5:=(for each el in grd4 sum (c(ctel:=ctel+1)*el))$
f6:=(for each el in grd3 sum (c(ctel:=ctel+1)*el))$

f7:=(for each el in grd7 sum (c(ctel:=ctel+1)*el))$
f8:=(for each el in grd6 sum (c(ctel:=ctel+1)*el))$
f9:=(for each el in grd5 sum (c(ctel:=ctel+1)*el))$

The previous ansatz keep into account the grading of the starting symmetry in
phi*ext 3. The resulting equations are solved in the usual way (see the example
file).

Now, we solve the equation for shadows of nonlocal symmetries in a covering of
the `∗-covering. We can choose between three new nonlocal variables ra,rb,rc.
We are going to look for non-local Hamiltonian operators depending linearly on
one of these variables. Higher non-local Hamiltonian operators could be found by
introducing total derivatives of the r’s. As usual, the new variables are specified
through the components of the previously found conservation laws according with
the rule

ra_x=fx, ra_t=ft,

and analogously for the others. We define

ddx(1,50):=(t*u1+1)*ext 3$ % degree -2
ddx(1,51):=u1*ext 3$ % degree +1
ddx(1,52):=(u*u1+u3)*ext 3$ % degree +3

and

ddt(1,50) := ext(5)*t*u1 + ext(5) - ext(4)*t*u2
+ ext(3)*t*u*u1 + ext(3)*t*u3 + ext(3)*u$
ddt(1,51) := ext(5)*u1 - ext(4)*u2 + ext(3)*u*u1
+ ext(3)*u3$
ddt(1,52) := ext(5)*u*u1 + ext(5)*u3 - ext(4)*u*u2
- ext(4)*u1**2 - ext(4)*u4 + ext(3)*u**2*u1
+ 2*ext(3)*u*u3 + 3*ext(3)*u1*u2 + ext(3)*u5$

as it results from the computation of the conservation laws. The following ansatz
for the nonlocal Hamiltonian operator comes from the fact that local Hamiltonian
operators have gradings−1 and +1 when written in terms of p’s. So we are looking
for a nonlocal Hamiltonian operator of degree 3.

phi:=
(for each el in grd6 sum (c(ctel:=ctel+1)*el))*ext 50+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 51+
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(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 52+

(for each el in grd5 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd4 sum (c(ctel:=ctel+1)*el))*ext 4+
(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 6+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 7+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 8
$

As a solution, we obtain

phi := c(1)*(ext(51)*u1 - 9*ext(8) - 12*ext(6)*u
- 18*ext(5)*u1 - 4*ext(4)*u**2 - 12*ext(4)*u2
- 4*ext(3)*u*u1 - 3*ext(3)*u3)$

where ext51 stands for the nonlocal variable rb fulfilling

rb_x:=u1*ext 3$
rb_t:=ext(5)*u1 - ext(4)*u2 + ext(3)*u*u1 + ext(3)*u3$

Remark. In the file KdV_nloc-Ham_2.red it is possible to find another ansatz
for a non-local Hamiltonian operator of degree +5.

Computations for systems of PDEs

There is no conceptual difference when computing for systems of PDEs. We will
look for Hamiltonian structures for the following Boussinesq equation:{

ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

(16.71)

where σ is a constant. This example also shows how to deal with jet spaces with
more than one dependent variable. Here gradings can be taken as

[t] = −2, [x] = −1, [v] = 1, [u] = 2, [p] = [
∂

∂u
] = −2, [q] = [

∂

∂v
] = −1

where p, q are the two coordinates in the space of generating functions of conser-
vation laws.

The linearization of the above system and its adjoint are, respectively

`Bou =

(
Dt − vDx − vx −ux − uDx − σDxxx

−Dx Dt − vx − vDx

)
, `∗Bou =

(
−Dt + vDx Dx

uDx + σDxxx −Dt + vDx

)
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and lead to the `∗Bou covering equation
−pt + vpx + qx = 0
upx + σpxxx − qt + vqx = 0
ut − uxv − uvx − σvxxx = 0
vt − ux − vvx = 0

We have to find shadows of symmetries on the above covering. Total derivatives
must be defined as follows:

super_vectorfield(ddx,{x,t,u,v,u1,v1,u2,v2,u3,v3,u4,v4,
u5,v5,u6,v6,u7,v7,u8,v8,u9,v9,u10,v10,u11,v11,u12,v12,
u13,v13,u14,v14,u15,v15,u16,v16,u17,v17},
{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,
ext 10,ext 11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,
ext 18,ext 19,ext 20,ext 21,ext 22,ext 23,ext 24,ext 25,
ext 26,ext 27,ext 28,ext 29,ext 30,ext 31,ext 32,ext 33,
ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,ext 41,
ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,
ext 50,ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,
ext 58,ext 59,ext 60,ext 61,ext 62,ext 63,ext 64,ext 65,
ext 66,ext 67,ext 68,ext 69,ext 70,ext 71,ext 72,ext 73,
ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80
});

super_vectorfield(ddt,{x,t,u,v,u1,v1,u2,v2,u3,v3,u4,v4,
u5,v5,u6,v6,u7,v7,u8,v8,u9,v9,u10,v10,u11,v11,u12,v12,
u13,v13,u14,v14,u15,v15,u16,v16,u17,v17},
{ext 1,ext 2,ext 3,ext 4,ext 5,ext 6,ext 7,ext 8,ext 9,
ext 10,ext 11,ext 12,ext 13,ext 14,ext 15,ext 16,ext 17,
ext 18,ext 19,ext 20,ext 21,ext 22,ext 23,ext 24,ext 25,
ext 26,ext 27,ext 28,ext 29,ext 30,ext 31,ext 32,ext 33,
ext 34,ext 35,ext 36,ext 37,ext 38,ext 39,ext 40,ext 41,
ext 42,ext 43,ext 44,ext 45,ext 46,ext 47,ext 48,ext 49,
ext 50,ext 51,ext 52,ext 53,ext 54,ext 55,ext 56,ext 57,
ext 58,ext 59,ext 60,ext 61,ext 62,ext 63,ext 64,ext 65,
ext 66,ext 67,ext 68,ext 69,ext 70,ext 71,ext 72,ext 73,
ext 74,ext 75,ext 76,ext 77,ext 78,ext 79,ext 80
});

In the list of coordinates we alternate derivatives of u and derivatives of v. The
same must be done for coefficients; for example,

ddx(0,1):=1$
ddx(0,2):=0$
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ddx(0,3):=u1$
ddx(0,4):=v1$
ddx(0,5):=u2$
ddx(0,6):=v2$
...

After specifying the equation

ut:=u1*v+u*v1+sig*v3;
vt:=u1+v*v1;

we define the (already introduced) time derivatives:

ut1:=ddx ut;
ut2:=ddx ut1;
ut3:=ddx ut2;
...
vt1:=ddx vt;
vt2:=ddx vt1;
vt3:=ddx vt2;
...

up to the required order (here the order can be stopped at 15). Odd variables p and q
must be specified with an appropriate length (here it is OK to stop at ddx(1,36)).
Recall to replace pt, qt with the internal coordinates of the covering:

ddt(1,1):=0$
ddt(1,2):=0$
ddt(1,3):=+v*ext 5+ext 6$
ddt(1,4):=u*ext 5+sig*ext 9+v*ext 6$
ddt(1,5):=ddx(ddt(1,3))$
...

The list of graded variables:

all_graded_der:={{v},{u,v1},{u1,v2},{u2,v3},{u3,v4},{u4,v5},
{u5,v6},{u6,v7},{u7,v8},{u8,v9},{u9,v10},{u10,v11},
{u11,v12},{u12,v13},{u13,v14},{u14,v15},{u15,v16},
{u16,v17},{u17}};

The ansatz for the components of the Hamiltonian operator is

phi1:=
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 3+
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(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 4+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 6
$

phi2:=
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 4
$

and the equation for shadows of symmetries is

equ 1:=ddt(phi1)-v*ddx(phi1)-v1*phi1-u1*phi2-u*ddx(phi2)
-sig*ddx(ddx(ddx(phi2)));
equ 2:=-ddx(phi1)-v*ddx(phi2)-v1*phi2+ddt(phi2);

After the usual procedures for decomposing polynomials we obtain the following
result:

phi1 := c(6)*ext(6)$
phi2 := c(6)*ext(5)$

which corresponds to the vector (Dx, Dx). Extending the ansatz to

phi1:=
(for each el in grd3 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 7+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 9+
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 4+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 6+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 8
$

phi2:=
(for each el in grd2 sum (c(ctel:=ctel+1)*el))*ext 3+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 5+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 7+
(for each el in grd1 sum (c(ctel:=ctel+1)*el))*ext 4+
(for each el in grd0 sum (c(ctel:=ctel+1)*el))*ext 6
$

allows us to find a second (local) Hamiltonian operator
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phi1 := (c(3)*(2*ext(9)*sig + ext(6)*v + 2*ext(5)*u
+ ext(3)*u1))/2$

phi2 := (c(3)*(2*ext(6) + ext(5)*v + ext(3)*v1))/2$

There is one more higher local Hamiltonian operator, and a whole hierarchy of
nonlocal Hamiltonian operators [KKV04].

Explosion of denominators and how to avoid it

Here we propose the computation of the repeated total derivative of a denominator.
This computation fills up the whole memory after some time, and can be used as a
kind of speed test for the system. The file is KdV_denom_1.red.

After having defined total derivatives on the KdV equation, run the following iter-
ation:

phi:=1/(u3+u*u1)$
for i:=1:100 do begin

phi:=ddx(phi)$
write i;

end;

The program shows the iteration number. At the 18th iteration the program uses
about 600MB of RAM, as shown by top run from another shell, and 100% of one
processor.

There is a simple way to avoid denominator explosion. The file is KdV_denom_2.red.

After having defined total derivatives with respect to x (on the KdV equation, for
example) consider in the same ddx a component with a sufficently high index
immediately after ‘letop’ (otherwise super_vectorfield does not work!),
say ddx(0,21), and think of it as being the coefficient to a vector of the type

aa21:=1/(u3+u*u1);

In this case, its coefficient must be

ddx(0,21):=-aa21**2*(u4+u1**2+u*u2)$

More particularly, here follows the detailed definition of ddx

ddx(0,1):=1$
ddx(0,2):=0$
ddx(0,3):=u1$
ddx(0,4):=u2$
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ddx(0,5):=u3$
ddx(0,6):=u4$
ddx(0,7):=u5$
ddx(0,8):=u6$
ddx(0,9):=u7$
ddx(0,10):=u8$
ddx(0,11):=u9$
ddx(0,12):=u10$
ddx(0,13):=u11$
ddx(0,14):=u12$
ddx(0,15):=u13$
ddx(0,16):=u14$
ddx(0,17):=u15$
ddx(0,18):=u16$
ddx(0,19):=u17$
ddx(0,20):=letop$
ddx(0,21):=-aa21**2*(u4+u1**2+u*u2)$

Now, suppose that we want to compute the 5th total derivative of phi. Write the
following code:

phi:=aa30;
for i:=1:5 do begin

phi:=ddx(phi)$
write i;

end;

The result is then a polynomial in the additional ‘denominator’ variable

phi := aa21**2*( - 120*aa21**4*u**5*u2**5
- 600*aa21**4*u**4*u1**2*u2**4 - 600*aa21**4*u**4*u2**4*u4
- 1200*aa21**4*u**3*u1**4*u2**3 - 2400*aa21**4*u**3*u1**2*u2**3*u4
- 1200*aa21**4*u**3*u2**3*u4**2 - 1200*aa21**4*u**2*u1**6*u2**2
- 3600*aa21**4*u**2*u1**4*u2**2*u4 - 3600*aa21**4*u**2*u1**2*u2**2*u4**2
- 1200*aa21**4*u**2*u2**2*u4**3 - 600*aa21**4*u*u1**8*u2
- 2400*aa21**4*u*u1**6*u2*u4 - 3600*aa21**4*u*u1**4*u2*u4**2
- 2400*aa21**4*u*u1**2*u2*u4**3 - 600*aa21**4*u*u2*u4**4
- 120*aa21**4*u1**10 - 600*aa21**4*u1**8*u4
- 1200*aa21**4*u1**6*u4**2 - 1200*aa21**4*u1**4*u4**3
- 600*aa21**4*u1**2*u4**4 - 120*aa21**4*u4**5
+ 240*aa21**3*u**4*u2**3*u3
+ 720*aa21**3*u**3*u1**2*u2**2*u3 + 720*aa21**3*u**3*u1*u2**4
+ 240*aa21**3*u**3*u2**3*u5 + 720*aa21**3*u**3*u2**2*u3*u4
+ 720*aa21**3*u**2*u1**4*u2*u3 + 2160*aa21**3*u**2*u1**3*u2**3
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+ 720*aa21**3*u**2*u1**2*u2**2*u5 + 1440*aa21**3*u**2*u1**2*u2*u3*u4
+ 2160*aa21**3*u**2*u1*u2**3*u4 + 720*aa21**3*u**2*u2**2*u4*u5
+ 720*aa21**3*u**2*u2*u3*u4**2 + 240*aa21**3*u*u1**6*u3
+ 2160*aa21**3*u*u1**5*u2**2 + 720*aa21**3*u*u1**4*u2*u5
+ 720*aa21**3*u*u1**4*u3*u4 + 4320*aa21**3*u*u1**3*u2**2*u4
+ 1440*aa21**3*u*u1**2*u2*u4*u5 + 720*aa21**3*u*u1**2*u3*u4**2
+ 2160*aa21**3*u*u1*u2**2*u4**2 + 720*aa21**3*u*u2*u4**2*u5
+ 240*aa21**3*u*u3*u4**3 + 720*aa21**3*u1**7*u2
+ 240*aa21**3*u1**6*u5
+ 2160*aa21**3*u1**5*u2*u4 + 720*aa21**3*u1**4*u4*u5
+ 2160*aa21**3*u1**3*u2*u4**2 + 720*aa21**3*u1**2*u4**2*u5
+ 720*aa21**3*u1*u2*u4**3 + 240*aa21**3*u4**3*u5
- 60*aa21**2*u**3*u2**2*u4 - 90*aa21**2*u**3*u2*u3**2
- 120*aa21**2*u**2*u1**2*u2*u4 - 90*aa21**2*u**2*u1**2*u3**2
- 780*aa21**2*u**2*u1*u2**2*u3 - 180*aa21**2*u**2*u2**4
- 60*aa21**2*u**2*u2**2*u6 - 180*aa21**2*u**2*u2*u3*u5
- 120*aa21**2*u**2*u2*u4**2 - 90*aa21**2*u**2*u3**2*u4
- 60*aa21**2*u*u1**4*u4 - 1020*aa21**2*u*u1**3*u2*u3
- 1170*aa21**2*u*u1**2*u2**3 - 120*aa21**2*u*u1**2*u2*u6
- 180*aa21**2*u*u1**2*u3*u5 - 120*aa21**2*u*u1**2*u4**2
- 540*aa21**2*u*u1*u2**2*u5 - 1020*aa21**2*u*u1*u2*u3*u4
- 360*aa21**2*u*u2**3*u4 - 120*aa21**2*u*u2*u4*u6
- 90*aa21**2*u*u2*u5**2 - 180*aa21**2*u*u3*u4*u5
- 60*aa21**2*u*u4**3 - 240*aa21**2*u1**5*u3
- 990*aa21**2*u1**4*u2**2 - 60*aa21**2*u1**4*u6
- 540*aa21**2*u1**3*u2*u5 - 480*aa21**2*u1**3*u3*u4
- 1170*aa21**2*u1**2*u2**2*u4 - 120*aa21**2*u1**2*u4*u6
- 90*aa21**2*u1**2*u5**2 - 540*aa21**2*u1*u2*u4*u5
- 240*aa21**2*u1*u3*u4**2 - 180*aa21**2*u2**2*u4**2
- 60*aa21**2*u4**2*u6 - 90*aa21**2*u4*u5**2
+ 10*aa21*u**2*u2*u5 + 20*aa21*u**2*u3*u4 + 10*aa21*u*u1**2*u5
+ 110*aa21*u*u1*u2*u4 + 80*aa21*u*u1*u3**2 + 160*aa21*u*u2**2*u3
+ 10*aa21*u*u2*u7 + 20*aa21*u*u3*u6 + 30*aa21*u*u4*u5
+ 50*aa21*u1**3*u4 + 340*aa21*u1**2*u2*u3 + 10*aa21*u1**2*u7
+ 180*aa21*u1*u2**3 + 60*aa21*u1*u2*u6 + 80*aa21*u1*u3*u5
+ 50*aa21*u1*u4**2 + 60*aa21*u2**2*u5 + 100*aa21*u2*u3*u4
+ 10*aa21*u4*u7 + 20*aa21*u5*u6 - u*u6 - 6*u1*u5 - 15*u2*u4
- 10*u3**2 - u8)$

where the value of aa21 can be replaced back in the expression.
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16.14 CGB: Computing Comprehensive Gröbner Bases

Authors: Andreas Dolzmann, Thomas Sturm, and Winfried Neun

16.14.1 Introduction

Consider the ideal basis F = {ax, x + y}. Treating a as a parameter, the calling
sequence

torder({x,y},lex)$
groebner{a*x,x+y};

{x,y}

yields {x, y} as reduced Gröbner basis. This is, however, not correct under the spe-
cialization a = 0. The reduced Gröbner basis would then be {x+y}. Taking these
results together, we obtain C = {x + y, ax, ay}, which is correct wrt. all special-
izations for a including zero specializations. We call this set C a comprehensive
Gröbner basis (CGB).

The notion of a CGB and a corresponding algorithm has been introduced bei
Weispfenning [Wei92]. This algorithm works by performing case distinctions
wrt. parametric coefficient polynomials in order to find out what the head monomi-
als are under all possible specializations. It does thus not only determine a CGB, but
even classifies the contained polynomials wrt. the specializations they are relevant
for. If we keep the Gröbner bases for all cases separate and associate information
on the respective specializations with them, we obtain a Gröbner system. For our
example, the Gröbner system is the following;[

a 6= 0 {x+ y, ax, ay}
a = 0 {x+ y}

]
.

A CGB is obtained as the union of the single Gröbner bases in a Gröbner system.
It has also been shown that, on the other hand, a Gröbner system can easily be
reconstructed from a given CGB [Wei92].

The CGB package provides functions for computing both CGB’s and Gröbner sys-
tems, and for turning Gröbner systems into CGB’s.

16.14.2 Using the REDLOG Package

For managing the conditions occurring with the CGB computations, the CGB
package uses the package REDLOG implementing first-order formulas, [DS97a,
DS99], which is also part of the REDUCE distribution.
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16.14.3 Term Ordering Mode

The CGB package uses the settings made with the function torder of the
GROEBNER package. This includes in particular the choice of the main vari-
ables. All variables not mentioned in the variable list argument of torder are
parameters. The only term ordering modes recognized by CGB are lex and
revgradlex.

16.14.4 CGB: Comprehensive Gröbner Basis

The function cgb expects a list F of expressions. It returns a CGB of F wrt. the
current torder setting.

Example

torder({x,y},lex)$
cgb{a*x+y,x+b*y};

{x + b*y,a*x + y,(a*b - 1)*y}

ws;

{b*y + x,

a*x + y,

y*(a*b - 1)}

Note that the basis returned by the cgb call has not undergone the standard eval-
uation process: The returned polynomials are ordered wrt. the chosen term order.
Reevaluation changes this as can be seen with the output of ws.

16.14.5 GSYS: Gröbner System

The function gsys follows the same calling conventions as cgb. It returns the
complete Gröbner system represented as a nested list{{

c1, {g11, . . . , g1n1}
}
, . . . ,

{
cm, {gm1, . . . , g1nm}

}}
.

The ci are conditions in the parameters represented as quantifier-free REDLOG
formulas. Each choice of parameters will obey at least one of the ci. Whenever a
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choice of parameters obeys some ci, the corresponding {gi1, . . . , gini} is a Gröbner
basis for this choice.

Example

torder({x,y},lex)$
gsys {a*x+y,x+b*y};

{{a*b - 1 <> 0 and a <> 0,

{a*x + y,x + b*y,(a*b - 1)*y}},

{a <> 0 and a*b - 1 = 0,

{a*x + y,x + b*y}},

{a = 0,{a*x + y,x + b*y}}}

As with the function cgb, the contained polynomials remain unevaluated.

Computing a Gröbner system is not harder than computing a CGB. In fact, cgb
also computes a Gröbner system and then turns it into a CGB.

Switch CGBGEN: Only the Generic Case

If the switch cgbgen is turned on, both gsys and cgb will assume all parametric
coefficients to be non-zero ignoring the other cases. For cgb this means that the re-
sult equals—up to auto-reduction—that of groebner. A call to gsys will return
this result as a single case including the assumptions made during the computation:

Example

torder({x,y},lex)$
on cgbgen;
gsys{a*x+y,x+b*y};

{{a*b - 1 <> 0 and a <> 0,

{a*x + y,x + b*y,(a*b - 1)*y}}}

off cgbgen;
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16.14.6 GSYS2CGB: Gröbner System to CGB

The call gsys2cgb turns a given Gröbner system into a CGB by constructing the
union of the Gröbner bases of the single cases.

Example

torder({x,y},lex)$
gsys{a*x+y,x+b*y}$
gsys2cgb ws;

{x + b*y,a*x + y,(a*b - 1)*y}

16.14.7 Switch CGBREAL: Computing over the Real Numbers

All computations considered so far have taken place over the complex numbers,
more precisely, over algebraically closed fields. Over the real numbers, certain
branches of the CGB computation can become inconsitent though they are not in-
consistent over the complex numbers. Consider, e.g., a condition a2 + 1 = 0.

When turning on the switch cgbreal, all simplifications of conditions are per-
formed over the real numbers. The methods used for this are described in [DS97b].

Example

torder({x,y},lex)$
off cgbreal;
gsys {a*x+y,x-a*y};

2
{{a + 1 <> 0 and a <> 0,

2
{a*x + y,x - a*y,(a + 1)*y}},

2
{a <> 0 and a + 1 = 0,{a*x + y,x - a*y}},

{a = 0,{a*x + y,x - a*y}}}

on cgbreal;
gsys({a*x+y,x-a*y});



465

{{a <> 0,

2
{a*x + y,x - a*y,(a + 1)*y}},

{a = 0,{a*x + y,x - a*y}}}

16.14.8 Switches

cgbreal Compute over the real numbers. See Section 16.14.7 for details.

cgbgs Gröbner simplification of the condition. The switch cgbgs can be turned
on for applying advanced algebraic simplification techniques to the condi-
tions. This will, in general, slow down the computation, but lead to a simpler
Gröbner system.

cgbstat Statistics of the CGB run. The switch cgbstat toggles the creation and
output of statistical information on the CGB run. The statistical information
is printed at the end of the run.

cgbfullred Full reduction. By default, the CGB functions perform full reductions
in contrast to pure top reductions. By turning off the switch cgbfullred,
reduction can be restricted to top reductions.
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16.15 COEFF2: Computing Comprehensive Gröbner Bases

Authors: Fujio Kako and Masaaki Ito

In REDUCE, we can use the COEFF operator which returns a list of coefficients of
a polynomial with respect to specified variables. On the other hand, the COEFF2
operator gives a polynomial in which each coefficient is replaced by special vari-
ables #1,#2,· · · . It is used with the same syntax as the COEFF operator:

COEFF2(〈EXPRN:polynomial〉, 〈VAR:kernel〉) : algebraic

Example:

off allfac;
f := (a+b)^2*x^2*y+(c+d)^2*x*y;
f2 := coeff2(f,x,y);
g := (2*c+d)*x^2+(3+a)*x*y^3;
g2 := coeff2(g,x,y);

would result in the output

2 2 2 2 2 2 2
f := a *x *y + 2*a*b*x *y + b *x *y + c *x*y + 2*c*d*x*y + d *x*y

2
f2 := #1*x *y + #2*x*y

3 2 2 3
g := a*x*y + 2*c*x + d*x + 3*x*y

2 3
g2 := #3*x + #4*x*y

If you want to retrieve the values of special variables #1,#2,· · · , we can use the
command NM. The syntax for this is:

NM(〈N:integer〉) : algebraic

It returns the value of the variable #n. For example, to get the value of #1 in the
above, one could say:

nm(1);

yields the result
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2 2
a + 2*a*b + b

It is also possible to evaluate an expression including special variables #1,#2,· · ·
by EVAL2 operator. The syntax for this is:

EVAL2(〈EXPRN:rational〉) : algebraic

Example:

coeff2(f2*g2,x,y);

4 3 4 3 2 4
#5*x *y + #6*x *y + #7*x *y + #8*x *y

nm(8);

#2*#4

eval2(ws);

2 2 2 2
a*c + 2*a*c*d + a*d + 3*c + 6*c*d + 3*d

The user may remove all values of special variables #1,#2,· · · by the command
RESET, in the form

RESET( );



468 CHAPTER 16. USER CONTRIBUTED PACKAGES

16.16 COMPACT: Package for compacting expressions

COMPACT is a package of functions for the reduction of a polynomial in the pres-
ence of side relations. COMPACT applies the side relations to the polynomial so
that an equivalent expression results with as few terms as possible. For example,
the evaluation of

compact(s*(1-sin x^2)+c*(1-cos x^2)+sin x^2+cos x^2,
{cos x^2+sin x^2=1});

yields the result

2 2
SIN(X) *C + COS(X) *S + 1 .

The switch TRCOMPACT can be used to trace the operation.

Author: Anthony C. Hearn.

16.17 CRACK: Solving overdetermined systems of PDEs
or ODEs

CRACK is a package for solving overdetermined systems of partial or ordinary
differential equations (PDEs, ODEs). Examples of programs which make use
of CRACK (finding symmetries of ODEs/PDEs, first integrals, an equivalent La-
grangian or a "differential factorization" of ODEs) are included. The application
of symmetries is also possible by using the APPLYSYM package.

Authors: Andreas Brand, Thomas Wolf.
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16.18 CVIT: Fast calculation of Dirac gamma matrix
traces

This package provides an alternative method for computing traces of Dirac gamma
matrices, based on an algorithm by Cvitanovich that treats gamma matrices as 3-j
symbols.

Authors: V.Ilyin, A.Kryukov, A.Rodionov, A.Taranov.

Abstract

In modern high energy physics the calculation of Feynman diagrams are still very
important. One of the difficulties of these calculations are trace calculations. So
the calculation of traces of Dirac’s γ-matrices were one of first task of computer al-
gebra systems. All available algorithms are based on the fact that gamma-matrices
constitute a basis of a Clifford algebra:

{Gm,Gn} = 2gmn.

We present the implementation of an alternative algorithm based on treating of
gamma-matrices as 3-j symbols (details may be found in [1,2]).

The program consists of 5 modules described below.
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MODULES CROSS REFERENCES
+--------+
| REDUCE |
|________| |ISIMP1
ISIMP2| +-----------------------+

+--->-----| RED_TO_CVIT_INTERFACE |
|_______________________|

CALC_SPUR| |REPLACE_BY_VECTOR
| |REPLACE_BY_VECTORP
| |GAMMA5P
^ V
+--------------+
| CVITMAPPING |
|______________|

^
|PRE-CALC-MAP
|CALC_MAP_TAR
|CALC_DENTAR
|

+-------------+
| INTERFIERZ |
|_____________|

| |MK-NUMR
| |STRAND-ALG-TOP
| ^

MAP-TO-STRAND| +------------+
INCIDENT1| | EVAL-MAPS |

| |____________|
^ |DELETEZ1
| |CONTRACT-STRAND

+----------------+ |COLOR-STRAND
| MAP-TO-STRAND |---->---+
|________________|

Requires of REDUCE version: 3.2, 3.3.

Module RED_TO_CVIT_INTERFACE

Author: A.P.Kryukov
Purpose:interface REDUCE and CVIT package
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RED_TO_CVIT_INTERFACE module is intended for connection of REDUCE
with main module of CVIT package. The main idea is to preserve standard RE-
DUCE syntax for high energy calculations. For realization of this we redefine
SYMBOLIC PROCEDURE ISIMP1 from HEPhys module of REDUCE system.

After loading CVIT package user may use switch CVIT which is ON by default.
If switch CVIT is OFF then calculations of Diracs matrices traces are performed
using standard REDUCE facilities. If CVIT switch is ON then CVIT package will
be active.

RED_TO_CVIT_INTERFACE module performs some primitive simplification
and control input data independently. For example it remove GmGm, check parity
of the number of Dirac matrices in each trace etc. There is one principal restriction
concerning G5-matrix. There are no closed form for trace in non-integer dimension
case when trace include G5-matrix. The next restriction is that if the space-time
dimension is integer then it must be even (2,4,6,...). If these and other restrictions
are violated then the user get corresponding error message. List of messages is
included.

LIST OF IMPORTED FUNCTIONS
-------------------------------------------------
Function From module
-------------------------------------------------
ISIMP2 HEPhys
CALC_SPUR CVITMAPPING
-------------------------------------------------

LIST OF EXPORTED FUNCTION
-------------------------------------------------
Function To module
-------------------------------------------------
ISIMP1 HEPhys (redefine)
REPLACE_BY_VECTOR EVAL_MAP
REPLACE_BY_VECTORP EVAL__MAP
GAMMA5P CVITMAPPING, EVAL_MAP
-------------------------------------------------

Module CVITMAPPING

Author: A.Ya.Rodionov
Purpose: graphs reduction

CVITMAPPING module is intended for diagrams calculation according to Cvi-
tanovic - Kennedy algorithm. The top function of this module CALC_SPUR
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is called from RED_TO_CVIT_INTERFACE interface module. The main idea
of the algorithm consists in diagram simplification according to rules (1.9’) and
(1.14) from [1]. The input data - trace of Diracs gamma matrices (G-matrices)
has a form of a list of identifiers lists with cyclic order. Some of identifiers may
be identical. In this case we assume summation over dummy indices. So trace
Sp(GbGr).Sp(GwGbGcGwGcGr) is represented as list ((b r) (w b c w c r)).

The first step is to transform the input data to “map” structure and then to reduce
the map to a “simple” one. This transformation is made by function TRANS-
FORM_MAP_ (top function). Transformation is made in three steps. At the first
step the input data are transformed to the internal form - a map (by function PRE-
PARE_MAP_). At the second step a map is subjected to Fierz transformations
(1.14) (function MK_SIMPLE_MAP_). At this step of optimization can be maid
(if switch CVITOP is on) by function MK_FIRZ_OP. In this case Fierzing starts
with linked vertices with minimal distance (number of vertices) between them. Af-
ter Fierz transformations map is further reduced by vertex simplification routine
MK_SIMPLE_VERTEX using (1.9’). Vertices reduced to primitive ones, that is to
vertices with three or less edges. This is the last (third) step in transformation from
input to internal data.

The next step is optional. If switch CVITBTR is on factorisation of bubble (func-
tion FIND_BUBBLES1) and triangle (function FIND_TRIANGLES1) submaps
is made. This factorisation is very efficient for “wheel” diagrams and unneces-
sary for “lattice” diagrams. Factorisation is made recursively by substituting com-
posed edges for bubbles and composed vertices for triangles. So check (function
SORT_ATLAS) must be done to test possibility of future marking procedure. If the
check fails then a new attempt to reorganize atlas (so we call complicated struc-
ture witch consists of MAP, COEFFicient and DENOMinator) is made. This cause
backtracking (but very seldom). Backtracking can be traced by turning on switch
CVITRACE. FIND_BUBLTR is the top function of this program’s branch.

Then atlases must be prepared (top function WORLD_FROM_ATLAS) for final
algebraic calculations. The resulted object called “world” consists of edges names
list (EDGELIST), their marking variants (VARIANTS) and WORLD1 structure.
WORLD1 structure differs from WORLD structure in one point. It contains MAP2
structure instead of MAP structure. MAP2 is very complicated structure and con-
sist of VARIANTS, marking plan and GSTRAND. (GSTRAND constructed by
PRE!-CALC!-MAP_ from INTERFIERZ module.) By marking we understand
marking of edges with numbers according to Cvitanovic - Kennedy algorithm.

The last step is performed by function CALC_WORLD. At this step algebraic
calculations are done. Two functions CALC_MAP_TAR and CALC_DENTAR
from INTERFIERZ module make algebraic expressions in the prefix form. This
expressions are further simplified by function REVAL. This is the REDUCE system
general function for algebraic expressions simplification. REVAL and SIMP!* are
the only REDUCE functions used in this module.
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There are also some functions for printing several internal structures: PRINT_ATLAS,
PRINT_VERTEX, PRINT_EDGE, PRINT_COEFF, PRINT_DENOM. This func-
tions can be used for debugging.

If an error occur in module CVITMAPPING the error message “ERROR IN
MAP CREATING ROUTINES” is displayed. Error has number 55. The switch
CVITERROR allows to give full information about error: name of function where
error occurs and names and values of function’s arguments. If CVITERROR switch
is on and backtracking fails message about error in SORT_ATLAS function is
printed. The result of computation however will be correct because in this case
factorized structure is not used. This happens extremely seldom.

List of imported function
-------------------------------------------------
function from module
-------------------------------------------------
REVAL REDUCE
SIMP!* REDUCE
CALC_MAP_TAR INTERFIERZ
CALC_DENTAR INTERFIERZ
PRE!-CALC!-MAP_ INTERFIERZ
GAMMA5P RED_TO_CVIT_INTERFACE
-------------------------------------------------

List of exported function
-------------------------------------------------
function to module
-------------------------------------------------
CALC_SPUR REDUCE - CVIT interface
-------------------------------------------------

Data structure
WORLD ::= (EDGELIST,VARIANTS,WORLD1)
WORLD1 ::= (MAP2,COEFF,DENOM)
MAP2 ::= (MAPS,VARIANTS,PLAN)
MAPS ::= (EDGEPAIR . GSTRAND)
MAP1 ::= (EDGEPAIR . MAP)
MAP ::= list of VERTICES (unordered)
EDGEPAIR ::= (OLDEDGELIST . NEWEDGELIST)
COEFF ::= list of WORLDS (unordered)
ATLAS ::= (MAP,COEFF,DENOM)
GSTRAND ::= (STRAND*,MAP,TADPOLES,DELTAS)
VERTEX ::= list of EDGEs (with cyclic order)
EDGE ::= (NAME,PROPERTY,TYPE)
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NAME ::= ATOM
PROPERTY ::= (FIRSTPAIR . SECONDPAIR)
TYPE ::= T or NIL
------------------------------------------------

*Define in module MAP!-TO!-STRAND.

Modules INTERFIERZ, EVAL_MAPS, AND MAP-TO-STRAND.

Author: A.Taranov
Purpose: evaluate single Map

Module INTERFIERZ exports to module CVITMAPPING three functions: PRE-
CALC-MAP_, CALC-MAP_TAR, CALC-DENTAR.

Function PRE-CALC-MAP_ is used for preliminary processing of a map. It returns
a list of the form (STRAND NEWMAP TADEPOLES DELTAS) where STRAND
is strand structure described in MAP-TO-STRAND module. NEWMAP is a map
structure without “tadepoles” and “deltas”. “Tadepole” is a loop connected with
map with only one line (edge). “Delta” is a single line disconnected from a map.
TADEPOLES is a list of “tadepole” submaps. DELTAS is a list (CONS E1 E2)
where E1 and E2 are

Function CALC_MAP_TAR takes a list of the same form as returned by PRE-
CALC-MAP_, a-list, of the form (... edge . weight ... ) and returns a prefix form
of algebraic expression corresponding to the map numerator.

Function CALC-DENTAR returns a prefix form of algebraic expression corre-
sponding to the map denominator.

Module EVAL-MAP exports to module INTERFIERZ functions MK-NUMR and
STRAND-ALG-TOP.

Function MK-NUMR returns a prefix form for some combinatorial coefficient (Po-
hgammer symbol).

Function STRAND-ALG-TOP performs an actual computation of a prefix form
of algebraic expression corresponding to the map numerator. This computation is
based on a “strand” structure constructed from the “map” structure.

Module MAP-TO-STRAND exports functions MAP-TO-STRAND, INCIDENT1
to module INTERFIERZ and functions DELETEZ1, CONTRACT-STRAND,
COLOR-STRAND to module EVAL-MAPS.

Function INCIDENT1 is a selector in “strand” structure. DELETEZ1 performs
auxiliary optimization of “strand”. MAP-TO-STRAND transforms “map” to
“strand” structure. The latter is describe in program module.
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CONTRACT-STRAND do strand vertex simplifications of “strand” and COLOR-
STRAND finishes strand generation.

Description of STRAND data structure.
STRAND ::=<LIST OF VERTEX>
VERTEX ::=<NAME> . (<LIST OF ROAD> <LIST OF ROAD>)
ROAD ::=<ID> . NUMBER
NAME ::=NUMBER

LIST OF MESSAGES

• CALC_SPUR:<vecdim> IS NOT EVEN SPACE-TIME DIMENSION The
dimension of space-time<vecdimis integer but not even. Only even numeric
dimensions are allowed.

• NOSPUR NOT YET IMPLEMENTED Attempt to calculate trace when
NOSPUR switch is on. This facility is not implemented now.

• G5 INVALID FOR VECDIM NEQ 4 Attempt to calculate trace with
gamma5-matrix for space-time dimension not equal to 4.

• CALC_SPUR: <expr> HAS NON-UNIT DENOMINATOR The <expr>
has non-unit denominator.

• THREE INDICES HAVE NAME <name> There are three indices with
equal names in evaluated expression.

List of switches
------------------------------------------------------------
switch default comment
------------------------------------------------------------
CVIT ON If it is on then use Kennedy-

Cvitanovic algorithm else use
standard facilities.

CVITOP OFF Fierz optimization switch
CVITBTR ON Bubbles and triangles

factorisation switch
CVITRACE OFF Backtracking tracing switch
------------------------------------------------------------

Functions cross references*.

CALC_SPUR
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|
+-->SIMP!* (REDUCE)

|
+-->CALC_SPUR0

|
|--->TRANSFORM_MAP_
| |
| |--->MK_SIMPLE_VERTEX
| +--->MK_SIMPLE_MAP_
| |
| +--->MK_SIMPLE_MAP_1
| |
| +--->MK_FIERS_OP
|
|--->WORLD_FROM_ATLAS
| |
| +--->CONSTR_WORLDS
| |
| +---->MK_WORLD1
| |
| +--->MAP_2_FROM_MAP_1
| |
| |--->MARK_EDGES
| +--->MAP_1_TO_STRAND
| |
| +-->PRE!-CALC!-MAP_
| (INTERFIRZ)
|
|--->CALC_WORLD
| |
| |--->CALC!-MAP_TAR (INTERFIRZ)
| |--->CALC!-DENTAR (INTERFIRZ)
| +--->REVAL (REDUCE)
|
+--->FIND_BUBLTR

|
+--->FIND_BUBLTR0

|
|--->SORT_ATLAS
+--->FIND_BUBLTR1

|
|--->FIND_BUBLES1
+--->FIND_TRIANGLES1

*Unmarked functions are from CVITMPPING module.
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16.19 DEFINT: A definite integration interface

This package finds the definite integral of an expression in a stated interval. It
uses several techniques, including an innovative approach based on the Meijer G-
function, and contour integration.

Authors: Kerry Gaskell, Stanley M. Kameny, Winfried Neun.

16.19.1 Introduction

This documentation describes part of REDUCE’s definite integration package that
is able to calculate the definite integrals of many functions, including several spe-
cial functions. There are other parts of this package, such as Stan Kameny’s code
for contour integration, that are not included here. The integration process de-
scribed here is not the more normal approach of initially calculating the indefinite
integral, but is instead the rather unusual idea of representing each function as a
Meijer G-function (a formal definition of the Meijer G-function can be found in
[PBM89]), and then calculating the integral by using the following Meijer G inte-
gration formula.

∫ ∞
0

xα−1Gstuv

(
σx

∣∣∣∣∣ (cu)

(dv)

)
Gmnpq

(
ωxl/k

∣∣∣∣∣ (ap)

(bq)

)
dx = kGijkl

(
ξ

∣∣∣∣∣ (gk)

(hl)

)
(16.72)

The resulting Meijer G-function is then retransformed, either directly or via a
hypergeometric function simplification, to give the answer. A more detailed ac-
count of this theory can be found in [AM90].

16.19.2 Integration between zero and infinity

As an example, if one wishes to calculate the following integral

∫ ∞
0

x−1e−x sin(x) dx

then initially the correct Meijer G-functions are found, via a pattern matching pro-
cess, and are substituted into eq. 16.72 to give

√
π

∫ ∞
0

x−1G10
01

(
x

∣∣∣∣∣ .0
)
G10

02

(
x2

4

∣∣∣∣∣ . .1
2 0

)
dx
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The cases for validity of the integral are then checked. If these are found to be
satisfactory then the formula is calculated and we obtain the following Meijer G-
function

G12
22

(
1

∣∣∣∣∣ 1
2 1
1
2 0

)

This is reduced to the following hypergeometric function

2F1(
1

2
, 1;

3

2
;−1)

which is then calculated to give the correct answer of

π

4

The above formula (16.72) is also true for the integration of a single Meijer
G-function by replacing the second Meijer G-function with a trivial Meijer G-
function.

A list of numerous particular Meijer G-functions is available in [PBM89].

16.19.3 Integration over other ranges

Although the description so far has been limited to the computation of definite inte-
grals between 0 and infinity, it can also be extended to calculate integrals between
0 and some specific upper bound, and by further extension, integrals between any
two bounds. One approach is to use the Heaviside function, i.e.

∫ ∞
0

x2e−xH(1− x) dx =

∫ 1

0
x2e−xdx

Another approach, again not involving the normal indefinite integration process,
again uses Meijer G-functions, this time by means of the following formula

∫ y

0
xα−1Gmnpq

(
σx

∣∣∣∣∣ (au)

(bv)

)
dx = yαGm n+1

p+1 q+1

(
σy

∣∣∣∣∣ (a1..an, 1− α, an+1..ap)

(b1..bm,−α, bm+1..bq)

)
(16.73)

For a more detailed look at the theory behind this see [AM90].

For example, if one wishes to calculate the following integral
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∫ y

0
sin(2

√
x) dx

then initially the correct Meijer G-function is found, by a pattern matching process,
and is substituted into eq. 16.73 to give

∫ y

0
G10

02

(
x

∣∣∣∣∣ . .1
2 0

)
dx

which then in turn gives

y G11
13

(
y

∣∣∣∣∣ 0
1
2 −1 0

)
dx

and returns the result

√
π J3/2(2

√
y) y

y1/4

16.19.4 Using the definite integration package

To use this package, you must first load it by the command

load_package defint;

Definite integration is then possible using the int command with the syntax:

INT(EXPRN:algebraic,VAR:kernel,LOW:algebraic,UP:algebraic)
:algebraic.

where LOW and UP are the lower and upper bounds respectively for the definite
integration of EXPRN with respect to VAR.

Examples ∫ ∞
0

e−xdx

int(e^(-x),x,0,infinity);

1
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∫ ∞
0

x sin(1/x) dx

int(x*sin(1/x),x,0,infinity);

1
INT(X*SIN(---),X,0,INFINITY)

X

∫ ∞
0

x2 cos(x) e−2xdx

int(x^2*cos(x)*e^(-2*x),x,0,infinity);

4
-----
125

∫ ∞
0

xe−1/2xH(1− x) dx =

∫ 1

0
xe−1/2xdx

int(x*e^(-1/2x)*Heaviside(1-x),x,0,infinity);

2*(2*SQRT(E) - 3)
-------------------

SQRT(E)

∫ 1

0
x log(1 + x) dx

int(x*log(1+x),x,0,1);

1
---
4

∫ y

0
cos(2x) dx

int(cos(2x),x,y,2y);
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SIN(4*Y) - SIN(2*Y)
---------------------

2

16.19.5 Integral Transforms

A useful application of the definite integration package is in the calculation of
various integral transforms. The transforms available are as follows:

• Laplace transform

• Hankel transform

• Y-transform

• K-transform

• StruveH transform

• Fourier sine transform

• Fourier cosine transform

Laplace transform

The Laplace transform

f(s) = L{F(t)} =

∫ ∞
0

e−stF (t) dt

can be calculated by using the laplace_transform command.

This requires as parameters

• the function to be integrated

• the integration variable.

For example

L{e−at}

is entered as
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laplace_transform(e^(-a*x),x);

and returns the result

1

s+ a

Hankel transform

The Hankel transform

f(ω) =

∫ ∞
0

F (t) Jν(2
√
ωt) dt

can be calculated by using the hankel_transform command e.g.

hankel_transform(f(x),x);

This is used in the same way as the laplace_transform command.

Y-transform

The Y-transform

f(ω) =

∫ ∞
0

F (t)Yν(2
√
ωt) dt

can be calculated by using the Y_transform command e.g.

Y_transform(f(x),x);

This is used in the same way as the laplace_transform command.

K-transform

The K-transform

f(ω) =

∫ ∞
0

F (t)Kν(2
√
ωt) dt

can be calculated by using the K_transform command e.g.
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K_transform(f(x),x);

This is used in the same way as the laplace_transform command.

StruveH transform

The StruveH transform

f(ω) =

∫ ∞
0

F (t)StruveH(ν, 2
√
ωt) dt

can be calculated by using the struveh_transform command e.g.

struveh_transform(f(x),x);

This is used in the same way as the laplace_transform command.

Fourier sine transform

The Fourier sine transform

f(s) =

∫ ∞
0

F (t) sin(st) dt

can be calculated by using the fourier_sin command e.g.

fourier_sin(f(x),x);

This is used in the same way as the laplace_transform command.

Fourier cosine transform

The Fourier cosine transform

f(s) =

∫ ∞
0

F (t) cos(st) dt

can be calculated by using the fourier_cos command e.g.

fourier_cos(f(x),x);

This is used in the same way as the laplace_transform command.
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16.19.6 Additional Meijer G-function Definitions

The relevant Meijer G representation for any function is found by a pattern-
matching process which is carried out on a list of Meijer G-function definitions.
This list, although extensive, can never hope to be complete and therefore the user
may wish to add more definitions. Definitions can be added by adding the follow-
ing lines:

defint_choose(f(~x),~var => f1(n,x);

symbolic putv(mellin!-transforms!*,n,’
(() (m n p q) (ai) (bj) (C) (var)));

where f(x) is the new function, i = 1..p, j=1..q, C = a constant, var = variable, n =
an indexing number.

For example when considering cos(x) we have

Meijer G representation –

√
πG10

02

(
x2

4

∣∣∣∣∣ . .0 1
2

)
dx

Internal definite integration package representation –

defint_choose(cos(~x),~var) => f1(3,x);

where 3 is the indexing number corresponding to the 3 in the following formula

symbolic putv(mellin!-transforms!*,3,’
(() (1 0 0 2) () (nil (quotient 1 2))
(sqrt pi) (quotient (expt x 2) 4)));

or the more interesting example of Jn(x):

Meijer G representation –

G10
02

(
x2

4

∣∣∣∣∣ . .
n
2
−n
2

)
dx

Internal definite integration package representation –

defint_choose(besselj(~n,~x),~var) => f1(50,x,n);
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symbolic putv(mellin!-transforms!*,50,’
((n) (1 0 0 2) () ((quotient n 2)

(minus quotient n 2)) 1
(quotient (expt x 2) 4)));

16.19.7 The print_conditions function

The required conditions for the validity of the transform integrals can be viewed
using the following command:

print_conditions().

For example after calculating the following laplace transform

laplace_transform(x^k,x);

using the print_conditions command would produce

repart(sum(ai) - sum(bj)) + 1/2 (q + 1 - p)>(q - p) repart(s)

and ( - min(repart(bj))<repart(s))<1 - max(repart(ai))

or mod(arg(eta))=pi*delta

or ( - min(repart(bj))<repart(s))<1 - max(repart(ai))

or mod(arg(eta))<pi*delta

where
delta = s+ t− u−v

2
eta = 1− α(v − u)− µ− ρ
µ =

∑q
j=1 bj −

∑p
i=1 ai + p−q

2 + 1

ρ =
∑v

j=1 dj −
∑u

i=1 ci + u−v
2 + 1

s, t, u, v, p, q, α as in (1)

16.19.8 Tracing

A new switch TRDEFINT can be set to ON to print information about intermediate
steps of the calculation.



487

16.19.9 Acknowledgements

I would like to thank Victor Adamchik whose implementation of the definite inte-
gration package for REDUCE is vital to this interface.



488 CHAPTER 16. USER CONTRIBUTED PACKAGES

16.20 DESIR: Differential linear homogeneous equation
solutions in the neighborhood of irregular and reg-
ular singular points

This package enables the basis of formal solutions to be computed for an ordinary
homogeneous differential equation with polynomial coefficients over Q of any or-
der, in the neighborhood of zero (regular or irregular singular point, or ordinary
point).

Authors: C. Dicrescenzo, F. Richard-Jung, E. Tournier.

Differential linear homogenous Equation Solutions in the
neighbourhood of Irregular and Regular singular points

Version 3.1 - Septembre 89

Groupe de Calcul Formel de Grenoble
laboratoire TIM3

(C. Dicrescenzo, F. Richard-Jung, E. Tournier)

E-mail: dicresc@afp.imag.fr

16.20.1 INTRODUCTION

This software enables the basis of formal solutions to be computed for an ordinary
homogeneous differential equation with polynomial coefficients over Q of any or-
der, in the neighbourhood of zero ( regular or irregular singular point, or ordinary
point ).
Tools have been added to deal with equations with a polynomial right-hand side,
parameters and a singular point not to be found at zero.

This software can be used in two ways :

• direct ( DELIRE procedure )

• interactive ( DESIR procedure)

The basic procedure is the DELIRE procedure which enables the solutions of a
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linear homogeneous differential equation to be computed in the neigh- bourhood
of zero.

The DESIR procedure is a procedure without argument whereby DELIRE can be
called without preliminary treatment to the data, that is to say, in an interactive au-
tonomous way. This procedure also proposes some transfor- mations on the initial
equation. This allows one to start comfortably with an equation which has a non
zero singular point, a polynomial right-hand side and parameters.
This document is a succint user manual. For more details on the underlying math-
ematics and the algorithms used, the reader can refer to :

E. Tournier : Solutions formelles d’equations differentielles - Le logiciel de cal-
cul formel DESIR.
These d’Etat de l’Universite Joseph Fourier (Grenoble - avril 87).

He will find more precision on use of parameters in :

F. Richard-Jung : Representation graphique de solutions d’equations differen-
tielles dans le champ complexe.
These de l’Universite Louis Pasteur (Strasbourg - septembre 88).

16.20.2 FORMS OF SOLUTIONS

We have tried to represent solutions in the simplest form possible. For that, we
have had to choose different forms according to the complexity of the equation
(parameters) and the later use we shall have of these solutions.

"general solution" = {......, { split_sol , cond },....}

cond = list of conditions or empty list (if there is no condition)
that parameters have to verify such that split_sol is in the
basis of solutions. In fact, if there are parameters, basis of
solutions can have different expressions according to the
values of parameters. ( Note : if cond={}, the list "general
solution" has one element only.)

split_sol = { q, ram, polysol, r }
( " split solution " enables precise information on the solu-
tion to be obtained immediately )

The variable in the differential operator being x, solutions are expressed in respect
to a new variable xt, which is a fractional power of x, in the following way :
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q : polynomial in 1/xt with complex coefficients
ram : xt = xram (1/ram is an integer)
polysol : polynomial in log(xt) with formal series in xt coefficients
r : root of a complex coefficient polynomial ("indicial equation").

"standard solution" = eqxxr∗rampolysolx

qx and polysolx are q and polysol expressions in which xt has been replaced by
xram

N.B. : the form of these solutions is simplified according to the nature of the point
zero.

- if 0 is a regular singular point : the series appearing in polysol are conver-
gent, ram = 1 and q = 0.

- if 0 is a regular point, we also have : polysol is constant in log(xt) (no
logarithmic terms).

16.20.3 INTERACTIVE USE

To call the procedure : desir();
solution:=desir();

The DESIR procedure computes formal solutions of a linear homogeneous differ-
ential equation in an interactive way.
In this equation the variable must be x.

The procedure requires the order and the coefficients of the equation, the names of
parameters if there are any, then if the user wants to transform this equation and
how ( for example to bring back a singular point to zero see procedures changehom,
changevar, changefonc - ).

This procedure DISPLAYS the solutions and RETURNS a list of general term {
lcoeff, {....,{ general_solution },....}}. The number of elements in this list is linked
to the number of transformations requested :

* lcoeff : list of coefficients of the differential equation
* general_solution : solution written in the general form

16.20.4 DIRECT USE

procedure delire(x, k, grille, lcoeff, param);
This procedure computes formal solutions of a linear homogeneous differential
equation with polynomial coefficients over Q and of any order, in the neighbor-
hood of zero, regular or irregular singular point. In fact it initializes the call of
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the NEWTON procedure that is a recursive procedure (algorithm of NEWTON-
RAMIS-MALGRANGE)

x : variable
k : "number of desired terms".

For each formal series in xt appearing in polysol,
a0 + a1xt + a2xt

2 + ... + anxt
n + . . ., we compute the k + 1 first

coefficients a0, a1, . . . , ak.
grille : the coefficients of the differential operator are polynomial in xgrille (in

general grille = 1)
lcoeff : list of coefficients of the differential operator (in increasing order of

differentiation)
param : list of parameters

This procedure RETURNS the list of general solutions.

16.20.5 USEFUL FUNCTIONS

Reading of equation coefficients

procedure lectabcoef( );
This procedure is called by DESIR to read the coefficients of an equation, in in-
creasing order of differentiation, but can be used independently.

reading of n : order of the equation.
reading of parameters (only if a variable other than x appears in the coefficients)
this procedure returns the list { lcoeff, param } made up of the list of coefficients
and the list of parameters (which can be empty).

Verification of results

procedure solvalide(solutions, solk, k);
This procedure enables the validity of the solution number solk in the list "solu-
tions" to be verified.
solutions = {lcoeff ,{....,{general_solution},....}} is any element of the list re-
turned by DESIR or is {lcoeff, sol} where sol is the list returned by DELIRE.

If we carry over the solution eqxxr∗rampolysolx in the equation, the result has the
form eqxxr∗ramreste, where reste is a polynomial in log(xt), with polynomial
coefficients in xt. This procedure computes the minimal valuation V of reste as
polynomial in xt, using k "number of desired terms" asked for at the call of DESIR
or DELIRE, and DISPLAYS the "theoretical" size order of the regular part of the
result : xram∗(r+v).



492 CHAPTER 16. USER CONTRIBUTED PACKAGES

On the other hand, this procedure carries over the solution in the equation and
DISPLAYS the significative term of the result. This is of the form :

eqxxapolynomial(log(xt)), with a >= ram ∗ (r + v).

Finally this procedure RETURNS the complete result of the carry over of the solu-
tion in the equation.

This procedure cannot be used if the solution number solk is linked to a condition.

Writing of different forms of results

procedure standsol(solutions);

This procedure enables the simplified form of each solution to be obtained from
the list "solutions", {lcoeff ,{...,{general_solution},....}} which is one of the el-
ements of the list returned by DESIR, or {lcoeff, sol} where sol is the list returned
by DELIRE.

This procedure RETURNS a list of 3 elements : { lcoeff, solstand, solcond }
lcoef = list of differential equation coefficients
solstand = list of solutions written in standard form
solcond = list of conditional solutions that have not been written in

standard form. This solutions remain in general form.

This procedure has no meaning for "conditional" solutions. In case, a value has
to be given to the parameters, that can be done either by calling the procedure
SORPARAM that displays and returns these solutions in the standard form, either
by calling the procedure SOLPARAM which returns these solutions in general
form.

procedure sorsol(sol);

This procedure is called by DESIR to write the solution sol, given in general form,
in standard form with enumeration of different conditions (if there are any).
It can be used independently.

Writing of solutions after the choice of parameters

procedure sorparam(solutions, param);

This is an interactive procedure which displays the solutions evaluated : the value
of parameters is requested.
solutions : {lcoeff ,{....,{general_solution},....}}
param : list of parameters.

It returns the list formed of 2 elements :
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• list of evaluated coefficients of the equation

• list of standard solutions evaluated for the value of parameters.

procedure solparam(solutions, param, valparam);
This procedure evaluates the general solutions for the value of parameters given by
valparam and returns these solutions in general form.
solutions : {lcoeff ,{....,{general_solution},....}}
param : list of parameters
valparam : list of parameters values

It returns the list formed of 2 elements :

• list of evaluated coefficients of the equation

• list of solutions in general form, evaluated for the value of parameters.

Transformations

procedure changehom(lcoeff, x, secmember, id);
Differentiation of an equation with right-hand side.
lcoeff : list of coefficients of the equation
x : variable
secmember : right-hand side
id : order of the differentiation.

It returns the list of coefficients of the differentiated equation. It enables an equat-
ion with polynomial right-hand side to be transformed into a homogeneous equat-
ion by differentiating id times, id = degre(secmember) + 1.
procedure changevar(lcoeff, x, v, fct);
Changing of variable in the homogeneous equation defined by the list,lcoeff of its
coefficients : the old variable x and the new variable v are linked by the relation
x = fct(v).

It returns the list of coefficients in respect to the variable v of the new equation.

examples of use :

- translation enabling a rational singularity to be brought back to zero.

- x = 1/v brings the infinity to 0.

procedure changefonc(lcoeff, x, q, fct);
Changing of unknown function in the homogeneous equation defined by the list
lcoeff of its coefficients :
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lcoeff : list of coefficients of the initial equation
x : variable
q : new unknown function
fct : y being the unknown function y = fct(q)

It returns the list of coefficients of the new equation.

Example of use :

this procedure enables the computation,in the neighbourhood of an irregular sin-
gularity, of the "reduced" equation associated to one of the slopes (the Newton
polygon having a null slope of no null length). This equation gives much informa-
tions on the associated divergent series.

Optional writing of intermediary results

switch trdesir : when it is ON, at each step of the Newton algorithm, a description
of the Newton polygon is displayed (it is possible to follow the break of slopes), and
at each call of the FROBENIUS procedure ( case of a null slope ) the corresponding
indicial equation is displayed.

By default, this switch is OFF.

16.20.6 LIMITATIONS

1. This DESIR version is limited to differential equations leading to indicial
equations of degree <= 3. To pass beyond this limit, a further version writ-
ten in the D5 environment of the computation with algebraic numbers has to
be used.

2. The computation of a basis of solutions for an equation depending on pa-
rameters is assured only when the indicial equations are of degree <= 2.
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16.21 DFPART: Derivatives of generic functions

This package supports computations with total and partial derivatives of formal
function objects. Such computations can be useful in the context of differential
equations or power series expansions.

Author: Herbert Melenk.

The package DFPART supports computations with total and partial derivatives of
formal function objects. Such computations can be useful in the context of differ-
ential equations or power series expansions.

16.21.1 Generic Functions

A generic function is a symbol which represents a mathematical function. The
minimal information about a generic function function is the number of its argu-
ments. In order to facilitate the programming and for a better readable output this
package assumes that the arguments of a generic function have default names such
as f(x, y),q(rho, phi). A generic function is declared by prototype form in a state-
ment

GENERIC_FUNCTION 〈fname〉(〈arg1〉, 〈arg2〉, . . . , 〈argn〉);

where fname is the (new) name of a function and argi are symbols for its for-
mal arguments. In the following fname is referred to as “generic function",
arg1, arg2, . . . , argn as “generic arguments" and fname(arg1, arg2, . . . , argn)
as “generic form". Examples:

generic_function f(x,y);
generic_function g(z);

After this declaration REDUCE knows that

• there are formal partial derivatives ∂f
∂x , ∂f∂y

∂g
∂z and higher ones, while partial

derivatives of f and g with respect to other variables are assumed as zero,

• expressions of the type f(), g() are abbreviations for f(x, y), g(z),

• expressions of the type f(u, v) are abbreviations for
sub(x = u, y = v, f(x, y))

• a total derivative df(u,v)
dw has to be computed as ∂f

∂x
du
dw + ∂f

∂y
dv
dw
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16.21.2 Partial Derivatives

The operator DFP represents a partial derivative:

DFP(〈expr〉, 〈dfarg1〉, 〈dfarg2〉, . . . , 〈dfargn〉);

where expr is a function expression and dfargi are the differentiation variables.
Examples:

dfp(f(),{x,y});

means ∂2f
∂x∂y and

dfp(f(u,v),{x,y});

stands for ∂2f
∂x∂y (u, v). For compatibility with the DF operator the differentiation

variables need not be entered in list form; instead the syntax of DF can be used,
where the function expression is followed by the differentiation variables, eventu-
ally with repetition numbers. Such forms are interenally converted to the above
form with a list as second parameter.

The expression expr can be a generic function with or without arguments, or an
arithmetic expression built from generic functions and other algebraic parts. In the
second case the standard differentiation rules are applied in order to reduce each
derivative expressions to a minimal form.

When the switch NAT is on partial derivatives of generic functions are printed in
standard index notation, that is fxy for ∂2f

∂x∂y and fxy(u, v) for ∂2f
∂x∂y (u, v). There-

fore single characters should be used for the arguments whenever possible. Exam-
ples:

generic_function f(x,y);
generic_function g(y);
dfp(f(),x,2);

F
XX

dfp(f()*g(),x,2);

F *G()
XX

dfp(f()*g(),x,y);
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F *G() + F *G
XY X Y

The difference between partial and total derivatives is illustrated by the following
example:

generic_function h(x);
dfp(f(x,h(x))*g(h(x)),x);

F (X,H(X))*G(H(X))
X

df(f(x,h(x))*g(h(x)),x);

F (X,H(X))*G(H(X)) + F (X,H(X))*H (X)*G(H(X))
X Y X

+ G (H(X))*H (X)*F(X,H(X))
Y X

Cooperation of partial derivatives and Taylor series under a differential side relation
dq
dx = f(x, q):

load_package taylor;
operator q;
let df(q(~x),x) => f(x,q(x));
taylor(q(x0+h),h,0,3);

F (X0,Q(X0)) + F (X0,Q(X0))*F(X0,Q(X0))
X Y 2

Q(X0) + F(X0,Q(X0))*H + -----------------------------------------*H
2

+ (F (X0,Q(X0)) + F (X0,Q(X0))*F(X0,Q(X0))
XX XY

+ F (X0,Q(X0))*F (X0,Q(X0)) + F (X0,Q(X0))*F(X0,Q(X0))
X Y YX

2 2 3
+ F (X0,Q(X0))*F(X0,Q(X0)) + F (X0,Q(X0)) *F(X0,Q(X0)))/6*H
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YY Y

4
+ O(H )

Normally partial differentials are assumed as non-commutative

dfp(f(),x,y)-dfp(f(),y,x);

F - F
XY YX

However, a generic function can be declared to have globally interchangeable par-
tial derivatives using the declaration DFP_COMMUTE which takes the name of a
generic function or a generic function form as argument. For such a function dif-
ferentiation variables are rearranged corresponding to the sequence of the generic
variables.

generic_function q(x,y);
dfp_commute q(x,y);
dfp(q(),{x,y,y}) + dfp(q(),{y,x,y}) + dfp(q(),{y,y,x});

3*Q
XYY

If only a part of the derivatives commute, this has to be declared using the standard
REDUCE rule mechanism. Please note that then the derivative variables must be
written as list.

16.21.3 Substitutions

When a generic form or a DFP expression takes part in a substitution the following
steps are performed:

1. The substitutions are performed for the arguments. If the argument list is
empty the substitution is applied to the generic arguments of the function; if
these change, the resulting forms are used as new actual arguments. If the
generic function itself is not affected by the substitution, the process stops
here.

2. If the function name or the generic function form occurs as a left hand side
in the substitution list, it is replaced by the corresponding right hand side.
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3. The new form is partially differentiated according to the list of partial deriva-
tive variables.

4. The (eventually modified) actual parameters are substituted into the form for
their corresponding generic variables. This substitution is done by name.

Examples:

generic_function f(x,y);
sub(y=10,f());

F(X,10)

sub(y=10,dfp(f(),x,2));

F (X,10)
XX

sub(y=10,dfp(f(y,y),x,2));

F (10,10)
XX

sub(f=x**3*y**3,dfp(f(),x,2));

3
6*X*Y

generic_function ff(y,z);
sub(f=ff,f(a,b));

FF(B,Z)

The dataset dfpart.tst contains more examples, including a complete applica-
tion for computing the coefficient equations for Runge-Kutta ODE solvers.
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16.22 DUMMY: Canonical form of expressions with dummy
variables

This package allows a user to find the canonical form of expressions involving
dummy variables. In that way, the simplification of polynomial expressions can be
fully done. The indeterminates are general operator objects endowed with as few
properties as possible. In that way the package may be used in a large spectrum of
applications.

Author: Alain Dresse.

16.22.1 Introduction

The possibility to handle dummy variables and to manipulate dummy summations
are important features in many applications. In particular, in theoretical physics,
the possibility to represent complicated expressions concisely and to realize sim-
plifications efficiently depend on both capabilities. However, when dummy vari-
ables are used, there are many more ways to express a given mathematical objects
since the names of dummy variables may be chosen almost arbitrarily. Therefore,
from the point of view of computer algebra the simplification problem is much
more difficult. Given a definite ordering, one is, at least, to find a representation
which is independent of the names chosen for the dummy variables otherwise,
simplifications are impossible. The package does handle any number of dummy
variables and summations present in expressions which are arbitrary multivariate
polynomials and which have operator objects eventually dependent on one (or sev-
eral) dummy variable(s) as some of their indeterminates. These operators have the
same generality as the one existing in REDUCE. They can be noncommutative,
anticommutative or commutative. They can have any kind of symmetry property.
Such polynomials will be called in the following dummy polynomials. Any mono-
mial of this kind will be called dummy monomial. For any such object, the package
allows to find a well defined normal form in one-to-one correspondance with it.

In section 2, the convention for writing dummy summations is explained and the
available declarations to introduce or suppress dummy variables are given.

In section 3, the commands allowing to give various algebraic properties to the
operators are described.

In section 4, the use of the function CANONICAL is explained and illustrated.

In section 5, a fairly complete set of references is given.

The use of DUMMY requires that the package ASSIST version 2.2 be available.
This is the case when REDUCE 3.6 is used. When loaded, ASSIST is automati-
cally loaded.
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16.22.2 Dummy variables and dummy summations

A dummy variable (let us name it dv) is an identifier which runs from the integer
i1 to another integer i2. To the extent that no definite space is defined, i1 and i2 are
assumed to be some integers which are the same for all dummy variables.

If f is any REDUCE operator, then the simplest dummy summation associated to
dv is the sum

i2∑
dv=i1

f(dv)

and is simply written as
f(dv).

No other rules govern the implicit summations. dv can appear as many times we
want since the operator f may depend on an arbitrary number of variables. So, the
package is potentially applicable to many contexts. For instance, it is possible to
add rules of the kind one encounters in tensor calculus.

Obviously, there are as many ways we want to express the same quantity. If the
name of another dummy variable is dum then the previous expression is written as

i2∑
dum=i1

f(dum)

and the computer algebra system should be able to find that the expression

f(dv)− f(dum);

is equal to 0. A very special case which is allowed is when f is the identity operator.
So, a generic dummy polynomial will be a sum of dummy monomials of the kind∏

i

ci ∗ fi(dv1, . . . , dvki , fr1, . . . , frli)

where dv1, . . . , are dummy variables while fr1, . . . , are ordinary or free variables.

To declare dummy variables, two commands are available:

• i.

dummy_base <idp>;

where idp is the name of any unassigned identifier.

• ii.

dummy_names <d>,<dp>,<dpp> ....;
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The first one declares idp1, . . . , idpn as dummy variables i.e. all variables of
the form idpxxx where xxx is a number will be dummy variables, such as
idp1, idp2, . . . , idp23. The second one gives special names for dummy variables.
All other identifiers which may appear are assumed to be free. However, there is a
restriction: named and base dummy variables cannot be declared simultaneously.
The above declarations are mutually exclusive. Here is an example showing that:

dummy_base dv; ==> dv

% dummy indices are dv1, dv2, dv3, ...

dummy_names i,j,k; ==>

***** The created dummy base dv must be cleared

When this is done, an expression like

op(dv1)*sin(dv2)*abs(i)*op(dv2)$

means a sum over dv1, dv2. To clear the dummy base, and to create the dummy
names i, j, k one is to do

clear_dummy_base; ==> t

dummy_names i,j,k; ==> t

% dummy indices are i,j,k.

When this is done, an expression like

op(dv1)*sin(dv2)*abs(x)*op(i)^3*op(dv2)$

means a sum over i. One should keep in mind that every application of the above
commands erases the previous ones. It is also possible to display the declared
dummy names using SHOW_DUMMY_NAMES:

show_dummy_names(); ==> {i,j,k}

To suppress all dummy variables one can enter

clear_dummy_names; clear_dummy_base;
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16.22.3 The Operators and their Properties

All dummy variables should appear at first level as arguments of operators. For
instance, if i and j are dummy variables, the expression

rr:= op(i,j)-op(j,j)

is allowed but the expression

op(i,op(j)) - op(j,op(j))

is not allowed. This is because dummy variables are not detected if they appear
at a level larger than 1. Apart from that there is no restrictions. Operators may
be commutative, noncommutative or even anticommutative. Therefore they may
be elements of an algebra, they may be tensors, spinors, grassman variables, etc.
. . . By default they are assumed to be commutative and without symmetry proper-
ties. The REDUCE command NONCOM is taken into account and, in addition, the
command

anticom at1, at2;

makes the operators at1 and at2 anticommutative.

One can also give symmetry properties to them. The usual declarations SYMMETRIC
and ANTISYMMETRIC are taken into account. Moreover and most important
they can be endowed with a partial symmetry through the command SYMTREE.
Here are three illustrative examples for the r operator:

symtree (r,{!+, 1, 2, 3, 4});
symtree (r,{!*, 1, {!-, 2, 3, 4}});
symtree (r, {!+, {!-, 1, 2}, {!-, 3, 4}});

The first one makes the operator (fully) symmetric. The second one declares it
antisymmetric with respect to the three last indices. The symbols !*, !+ and !- at
the beginning of each list mean that the operator has no symmetry, is symmetric or
is antisymmetric with respect to the indices inside the list. Notice that the indices
are not denoted by their names but merely by their natural order of appearance. 1
means the first written argument of r, 2 its second argument etc. The first command
is equivalent to the declaration symmetric except that the number of indices of
r is restricted to 4 i.e. to the number declared in SYMTREE. In the second example
r is stated to have no symmetry with respect to the first index and is declared to
be antisymmetric with respect to the three last indices. In the third example, r is
made symmetric with respect to the interchange of the pairs of indices 1,2 and 3,4
respectively and is made antisymmetric separately within the pairs (1, 2) and (3, 4).
It is the symmetry of the Riemann tensor. The anticommutation property and the
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various symmetry properties may be suppressed by the commands REMANTICOM
and REMSYM. To eliminate partial symmetry properties one can also use SYMTREE
itself. For example, assuming that r has the Riemann symmetry, to eliminate it do

symtree (r,{!*, 1, 2, 3, 4});

However, notice that the number of indices remains fixed and equal to 4 while with
REMSYM it becomes again arbitrary.

16.22.4 The Function CANONICAL

CANONICAL is the most important functionality of the package. It can be applied
on any polynomial whether it is a dummy polynommial or not. It returns a normal
form uniquely determined from the current ordering of the system. If the poly-
nomial does not contain any dummy index, it is rewriten taking into account the
various operator properties or symmetries described above. For instance,

symtree (r, {!+, {!-, 1, 2}, {!-, 3, 4}});

aa:=r(x3,x4,x2,x1)$

canonical aa; ==> - r(x1,x2,x3,x4).

If it contains dummy indices, CANONICAL takes also into account the various
dummy summations, makes the relevant simplifications, eventually rename the
dummy indices and returns the resulting normal form. Here is a simple example:

operator at1,at2;
anticom at1,at2;

dummy_names i,j,k; ==> t

show_dummy_names(); ==> {i,j,k}

rr:=at1(i)*at2(k) -at2(k)*at1(i)$

canonical rr; => 2*at1(i)*at2(j)

It is important to notice, in the above example, that in addition to the summa-
tions over indices i and k, and of the anticommutativity property of the operators,
canonical has replaced the index k by the index j. This substitution is essen-
tial to get full simplification. Several other examples are given in the test file and,
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there, the output of CANONICAL is explained.

As stated in the previous section, the dependence of operators on dummy indices
is limited to first level. An erroneous result will be generated if it is not the case as
the subsequent example illustrates:

operator op;

dummy_names i,j;

rr:=op(i,op(j))-op(j,op(j))$

canonical rr; ==> 0

Zero is obtained because, in the second term, CANONICAL has replaced j by i
but has left op(j) unchanged because it does not see the index j which is inside.
This fact has also the consequence that it is unable to simplify correctly (or at
all) expressions which contain some derivatives. For instance (i and j are dummy
indices):

aa:=df(op(x,i),x) -df(op(x,j),x)$

canonical aa; ==> df(op(x,i),x) - df(op(x,j),x)

instead of zero. A second limitation is that CANONICAL does not add anything
to the problem of simplifications when side relations (like Bianchi identities) are
present.
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16.23 EDS: A package for exterior differential systems

EDS is a REDUCE package for symbolic analysis of partial differential equations
using the geometrical approach of exterior differential systems. The package im-
plements much of exterior differential systems theory, including prolongation and
involution analysis, and has been optimised for large, non-linear problems.

Author: David Hartley

EDS is a REDUCE package for symbolic analysis of partial differential equations
using the geometrical approach of exterior differential systems. The package im-
plements much of exterior differential systems theory, including prolongation and
involution analysis, and has been optimised for large, non-linear problems.

16.23.1 Introduction

Exterior differential systems give a geometrical framework for partial differential
equations and more general differential geometric problems. The geometrical for-
mulation has several advantages stemming from its coordinate-independence, in-
cluding superior treatment of nonlinear and global problems. There is not sufficient
space in this manual for an introduction to exterior differential systems beyond the
scant details given in section 16.23.2, but there are a number of up-to-date texts on
the subject (eg [BCG+91, Spi79]).

EDS provides a number of tools for setting up and manipulating exterior differen-
tial systems and implements many features of the theory. Its main strengths are
the ability to use anholonomic or moving frames and the care taken with nonlinear
problems.

There has long been interest in implementing the theory of exterior differential
systems in a computer algebra system (eg [ASY74, GMM+81, HT91]). The EDS
package owes much to these earlier efforts, and also to related packages for PDE
analysis (eg [MF93, Rei91, Sei95]), as well as to earlier versions of EDS produced
at Lancaster university with R W Tucker and P A Tuckey. Finally, EDS uses the
exterior calculus package EXCALC of E Schrüfer 16.24 and the exterior ideals
package XIDEAL 16.82. XIDEAL and EXCALC are loaded automatically with
EDS.

This work has been supported by the Graduate College on Scientific Comput-
ing, University of Cologne and GMD St Augustin, funded by the DFG (Deutsche
Forschungsgemeinschaft). I would like to express my thanks to R W Tucker,
E Schrüfer, P A Tuckey, F W Hehl and R B Gardner for helpful and encourag-
ing discussions.
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16.23.2 EDS data structures and concepts

This section presents the various structures used for expressing exterior systems
quantities in EDS. In addition, some the concepts used in EDS to aid computation
are described.

Coframings

Within the context of EDS, a coframing means a real finite-dimensional differen-
tiable manifold with a given global cobasis. The information about a coframing
required by EDS is kept in a 〈coframing〉 object. The cobasis is the identifying ele-
ment of an EDS 〈coframing〉: distinct cobases for the same differentiable manifold
are treated as distinct 〈coframing〉 objects in EDS. The cobasis may be either holo-
nomic or anholonomic, allowing some manifolds with non-trivial topology (eg.
group manifolds) to be treated.

In addition to the cobasis, an EDS 〈coframing〉 can be given coordinates, structure
equations and restrictions. The coordinates may be an incomplete or overcomplete
set. The structure equations express the exterior derivative of the coordinates and
cobasis elements as needed. All coordinate differentials must be expressed in terms
of the given cobasis, but not all cobasis differentials need be known. The restric-
tions are a set of inequalities (at present using just 6=) describing point sets not in
the manifold.

The 〈coframing〉 object is, of course, by no means a full description of a differen-
tiable manifold. For example, there is no topology and there are no charts. How-
ever, the 〈coframing〉 object carries sufficient information about the underlying
manifold to allow a range of exterior systems calculations to be carried out. As
such, it is convenient to accept an abuse of language and think of the 〈coframing〉
object as a manifold.

A 〈coframing〉 is constructed or selected using the coframing operator.

Examples:

• R3 with cobasis {dx,dy,dz} and coordinates {x, y, z}.

• R2\{0} with cobasis {e1, e2}, a single coordinate {r}, “structure equations”
{dr = e1, de1 = 0,de2 = e1 ∧ e2/r} and restrictions {r 6= 0}.

• R2\{0} with cobasis {dx, dy}, coordinates {x, y} and restrictions {x2 +
y2 6= 0}.

• S1 with cobasis {ω} and structure equations {dω = 0}.
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• S2 cannot be encapsulated by an EDS 〈coframing〉 since there is no global
cobasis.

16.23.3 Exterior differential systems

A simple 〈EDS〉, or exterior differential system, is a triple (S,Ω,M), whereM is a
〈coframing〉 (section 16.23.2), S is a 〈system〉 (section 16.23.3) on M , and Ω is an
independence condition: either a decomposable 〈p-form〉 or a 〈system〉 of 1-forms
onM (exterior differential systems without independence condition are not treated
by EDS).

More generally, an 〈EDS〉 is a list of simple 〈EDS〉 objects where the various
coframings are all disjoint. This last requirement in not enforced within EDS unless
the edsdisjoint switch is on (section 16.23.12). These more general 〈EDS〉
objects are represented as a list of simple 〈EDS〉 objects. All operators which take
an 〈EDS〉 argument accept both simple and compound types.

The trivial 〈EDS〉, describing an inconsistent problem with no solutions, is defined
to be ({1},{},{}).

An 〈EDS〉 is represented by the eds operator (section 16.23.4), and can addition-
ally be generated using the contact and pde2eds operators (sections 16.23.4,
16.23.4).

The solutions of (S,Ω,M) are integral manifolds, or immersions (cf section
16.23.3) on which S vanishes and the rank of Ω is preserved. Solutions at a single
point are described by integral elements (section 16.23.3).

Systems

In EDS, the label 〈system〉 refers to a list

{〈p-form expr〉,· · ·}

of differential forms. This is distinct from an 〈EDS〉 (section 16.23.3), which has
additional structure. However, many EDS operators will accept either an 〈EDS〉 or
a 〈system〉 as arguments. In the latter case, any extra information which is required
is taken from the background coframing (section 16.23.3).

The 〈system〉 of an 〈EDS〉 can be obtained with the system operator (section
16.23.5).
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Background coframing

The information encapsulated in a coframing operator is usually inactive. How-
ever, when operations are performed on a 〈coframing〉 or an 〈EDS〉 object (sections
16.23.2, 16.23.3), this information is activated for the duration of those operations.
It is possible to activate the rules and orderings of a coframing operator glob-
ally, by making it the background coframing. All subsequent EXCALC opera-
tions will be governed by those rules. Operations on 〈EDS〉 objects are unaffected,
since their coframings are still activated locally. The background coframing can
be set and changed with the set_coframing command, and inspected using
coframing.

Integral elements

An integral element of an exterior system (S,Ω,M) is a subspace P ⊂ TpM of the
tangent space at some point p ∈M such that all forms in S vanish when evaluated
on vectors from P . In addition, no non-zero vector in P may annul every form in
Ω.

Alternatively, an integral element P ⊂ TpM can be represented by its annihila-
tor P⊥ ⊂ T ∗pM , comprising those 1-forms at p which annul every vector in P .
This can also be understood as a maximal set of 1-forms at p such that S ' 0
(mod P⊥) and the rank of Ω is preserved modulo P⊥. This is the representation
used by EDS. Further, the reference to the point p is omitted, so an 〈integral ele-
ment〉 in EDS is a distribution of 1-forms onM , specified as a 〈system〉 of 1-forms.

In specifying an integral element for a particular 〈EDS〉, it is possible to omit the
Pfaffian component of the 〈EDS〉, since these 1-forms must be part of any integral
element.

Examples:

• With M = R3 = {(x, y, z)}, S = {dx ∧ dz} and Ω = {dx,dy}, the
integral element P = {∂x + ∂z, ∂y} is equally determined by its annihilator
P⊥ = {dz − dx}.

• For S = {dz − ydx} and Ω = {dx}, the integral element P = {∂x + y∂z}
can be specified simply as {dy}.

Properties

For large problems, it can require a great deal of computation to establish whether,
for example, a system is closed or not. In order to save recomputing such proper-
ties, an 〈EDS〉 object carries a list of 〈properties〉 of the form
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{〈keyword〉 = 〈value〉,· · ·}

where 〈keyword〉 is one of closed, quasilinear, pfaffian or involutive,
and 〈value〉 is either 0 (false) or 1 (true). These properties are suppressed when an
〈EDS〉 is printed, unless the nat switch is off. They can be examined using the
properties operator (section 16.23.5).

Properties are usually generated automatically by EDS as required, but may be
explicitly checked using the operators in section 16.23.8. If a property is not yet
present on the list, it is not yet known, and must be checked explicitly if required.

In addition to the properties just described, an 〈EDS〉 object carries a number of
hidden properties which record the results of previous calculations, such as the clo-
sure or information about the prolongation of the system. These hidden properties
speed up many operations which contain common sub-calculations. The hidden
properties are stored using internal LISP data structures and so are not available
for inspection.

Properties can be asserted when an 〈EDS〉 is constructed with the eds operator
(section 16.23.4). Care is needed since such assertions are never checked. Proper-
ties can be erased using the cleanup operator (section 16.23.14).

Maps

Within EDS, a map f : M → N is given as a 〈map〉 object, a list

{〈coordinate〉 = 〈expr〉,· · ·,〈expr〉 neq 〈expr〉,· · ·}

of substitutions and restrictions. The substitutions express coordinates on the target
manifold N in terms of those on the source manifold M . The restrictions describe
point sets not contained in the source manifold M . The ordering of substitutions
and restrictions in the list is unimportant. It is not necessary that the restrictions
and right-hand sides of the substitutions be written entirely in M coordinates, but
it must be possible by repeated substitution to produce expressions on M (see the
examples below). Any denominators in the substitutions are automatically added to
the list of restrictions. It is not necessary to include trivial equations for coordinates
which are present on both M and N . Note that projections cannot be represented
in this fashion (but see the cross operator, section 16.23.6).

Maps are applied using the pullback and restrict operators (sections
16.23.6, 16.23.6).

Examples:

• The map R2\{0} → R3, (x, y) 7→ (x, y, z = x2 + y2) is represented {z =
x2 + y2, z 6= 0}.
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• {x = u + v, y = u − v} might represent the coordinate change R3 → R3,
(u, v, z) 7→ (x = u+ v, y = u− v, z).

• {x = u+ v, y = 2u− x} is the same map again.

• {x = 2v+y, y = 2u−x} is unacceptable since x and y cannot be eliminated
from the right-hand sides by repeated substitution.

Cobasis transformations

A cobasis transformation is given in EDS by a 〈transform〉, a list

{〈cobasis element〉 = 〈1-form expr〉,· · ·}

of substitutions. When applying a transformation to a 〈p-form〉 or 〈system〉, it is
necessary to specify the forward transformation just as for a sub substitution. For
〈EDS〉 and 〈coframing〉 objects, it is also possible to specify the inverse of the de-
sired substition: EDS will automatically invert the transformation as required. For
a partial change of cobasis, it is not necessary to include trivial equalities. Cobasis
transformations are applied by the transform operator (section 16.23.6).

Examples:

• {ω1 = xdy−ydx, ω2 = xdx+ydy} gives a transformation between Carte-
sian and polar cobases on R2\{0}.

• On J1(R2,R) with cobasis {du,dp,dq,dr, ds, dt,dx,dy}, the list {θ1 =
du− pdx− qdy, θ2 = dp− rdx− sdy, θ3 = dq − sdx− tdy} specifies a
new cobasis in which the contact system is simply {θ1, θ2, θ3}.

Tableaux

For a quasilinear Pfaffian exterior differential system ({θa}, {ωi},M), the tableau
A = [πai ] is a matrix of 1-forms such that

dθa + πai ∧ ωi ' 0 (mod {θa, ωi ∧ ωj})

The πai are not unique: if {θa, πρ, ωi} is a standard cobasis for the system (section
16.23.3), the EDS 〈tableau〉 is a matrix containing linear combinations of the πρ

only. Zero rows are omitted.

The tableau of an 〈EDS〉 is generated by the tableau operator (section 16.23.7),
or can be entered using the mat operator. The Cartan characters of a tableau are
found using characters (section 16.23.7).
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Normal form

Parts of the theory of exterior differential systems apply only at points on the un-
derlying manifold where the system is in some sense non-singular. To ensure the
theory applies, EDS automatically works all exterior systems (S,Ω,M) into a nor-
mal form in which

1. The Pfaffian (degree 1) component of S is in solved form, where each expres-
sion has a distinguished term with coefficient 1, unique to that expression.

2. The independence condition Ω is also in solved form.

3. The distinguished terms from the 1-forms in S have been eliminated from
the rest of S and from Ω.

4. Any 1-forms in S which vanish modulo the independence condition are re-
moved from the system and their coefficients are appended as 0-forms.

Conditions 1 and 2 ensure the 1-forms have constant rank, while 3 is convenient for
many tests and calculations. In bringing the system into solved form, divisions will
be made only by coefficients which are constants, parameters or functions which
are nowhere zero on the manifold. The test for nowhere-zero functions uses the
restrictions component of the 〈coframing〉 structure (cf section 16.23.2) and is still
primitive: facts such as x2 + 1 6= 0 on a real manifold are overlooked. See also the
switch edssloppy (section 16.23.11).

This “normal form” has, of course, nothing to do with the various normal forms
(eg Goursat) into which some exterior systems may be brought by cobasis trans-
formations and choices of generators.

Examples:

• On M = {(u, v, w) ∈ R3 | u 6= v}, the Pfaffian system

{udu+ vdv + dw, (u2 + u− v2)du+ udv + dw}

has the solved form

{dv + (u+ v)du, dw + (−uv + u− v)du}.

• Since the independence condition is defined only modulo the system, the
system

S = {du− dx− uydy}, Ω = dx ∧ dy

has an equivalent normal form

S = {dx− du+ uydy}, Ω = du ∧ dy.
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Standard cobasis

Given an 〈EDS〉 (S,Ω,M) in normal form (section 16.23.3), the cobasis of the
〈coframing〉M can be decomposed into three sets: {θa}, the distinguished terms
from the 1-forms in S, {ωi}, the distinguished terms from the 1-forms in Ω, and
the remainder {πρ}. Within EDS, {θa, πρ, ωi} is called the standard cobasis, and
all expressions are ordered so that θa > πρ > ωi. The ordering within the three
sets is determined by the REDUCE 〈kernel〉 ordering.

Examples:

• For the system S = {du − dx − uydy}, Ω = dx ∧ dy, the decomposed
standard cobasis is {du} ∪ {duy} ∪ {dx,dy}.

• For the contact system

S =


du− uxdx− uydy
dux − uxxdx− uxydy
duy − uxydx− uyydy

the standard cobasis is {du,dux,duy} ∪ {duxx, duxy,duyy} ∪ {dx, dy}.

16.23.4 Constructing EDS objects

Before analysing an exterior system, it is necessary to enter it into EDS somehow.
Several means are provided for this purpose, and are described in this section.

coframing

An EDS 〈coframing〉 is constructed using the coframing operator. There are
several ways in which it can be used.

The simplest syntax

coframing({〈expr〉,· · ·})

examines the argument for 0-form and 1-form variables and deduces a full
〈coframing〉 object capable of supporting the given expressions. This includes
recursively examining the exterior derivatives of the variables appearing explic-
itly in the argument, taking into account prevailing let rules. In this form, the
ordering of the final cobasis elements follows the prevailing REDUCE ordering.
Free indices in indexed expressions are expanded to a list of explicit indices using
index_expand (section 16.23.14).

A more basic syntax is
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coframing(〈cobasis〉 [,〈coordinates〉] [,〈restrictions〉]
[,〈structure equations〉])

where 〈cobasis〉 is a list of 〈kernel〉 1-forms, 〈coordinates〉 is a list of 〈kernel〉 0-
forms, 〈restrictions〉 is a list of inequalities (using only 6= at present), and 〈structure
equations〉 is a list of rules giving the exterior derivatives of the coordinates and
cobasis elements. All arguments except the cobasis are optional, and the order of
arguments is unimportant. As in the first syntax, missing parts are deduced. The
ordering of the final cobasis elements follows the ordering specified, rather than
the prevailing REDUCE ordering.

Finally,

coframing(〈EDS〉)

returns the coframing argument of an 〈EDS〉, and

coframing()

returns the current background coframing (section 16.23.3).

Examples:

coframing {x,y,z};

coframing({d x,d y,d z},{x,y,z},{},{})

coframing({e 1,e 2},{r},{r neq 0},
{d r=>e 1,d e 1=>0,d e 2=>e 1^e 2/r});

1 2
1 2 1 2 e ^e 1

coframing({e ,e },{r},{d e => 0,d e => -------,d r => e },
r

{r neq 0})

coframing({e 2}) where {d r=e 1,d e 1=0,d e 2=e 1^e 2/r};

1 2
1 2 1 2 e ^e 1

coframing({e ,e },{r},{d e => 0,d e => -------,d r => e },
r

{r neq 0})
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eds

A simple 〈EDS〉 is constructed using the eds operator.

eds(〈system〉,〈indep. condition〉 [,〈coframing〉] [,〈properties〉])

(cf sections 16.23.3, 16.23.2, 16.23.3). The 〈indep. condition〉 can be either a de-
composable 〈p-form〉 or a 〈system〉 of 1-forms. Free indices in indexed expressions
are expanded to a list of explicit indices using index_expand (section 16.23.14).

The 〈coframing〉 argument can be omitted, in which case the expressions from
the 〈system〉 and 〈indep. condition〉 are fed to the coframing operator (section
16.23.4) to construct a suitable working space.

The 〈properties〉 argument is optional, allowing the given properties to be asserted.
This can save considerable time for large systems, but care is needed since the
assertions are never checked.

The 〈EDS〉 is put into normal form (section 16.23.3) before being returned.

On output, only the 〈system〉 and 〈indep. condition〉 are displayed, unless the nat
switch is off, in which case the 〈coframing〉 and 〈properties〉 are shown too. This
is so that an 〈EDS〉 can be written out to a file and read back in.

The parts of an 〈EDS〉 are obtained with the operators system, cobasis,
independence and properties (sections 16.23.5, 16.23.5, 16.23.5 and
16.23.5).

Examples:

pform {x,y,z,p,q}=0,{e(i),w(i,j)}=1;

indexrange {i,j,k}={1,2},{a,b,c}={3};

eds({d z - p*d x - q*d y, d p^d q},{d x,d y});

EDS({d z - p*d x - q*d y,d p^d q},{d x,d y})

OMrules :=
index_expand {d e(i)=>-w(i,-j)^e(j),w(i,-j)+w(j,-i)=>0}$

eds({e(a)},{e(i)}) where OMrules;

3 1 2
EDS({e },{e ,e })
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coframing ws;
3 2 1 2 1 2 2

coframing({e ,w ,e ,e },{},{d e => - e ^w ,
1 1

2 1 2
d e => e ^w },{})

1

contact

Many PDE problems are formulated as exterior systems using a jet bundle con-
tact system. To facilitate construction of these systems, the contact operator is
provided. The syntax is

contact(〈order〉,〈source manifold〉,〈target manifold〉)

where 〈order〉 is a non-negative integer, and the two remaining arguments are ei-
ther 〈coframing〉 objects or lists of 〈p-form〉 expressions. In the latter case, the
expressions are fed to the coframing operator (section 16.23.4). The contact
system for the bundle Jr(M,N) of r-jets of maps M → N is thus returned by
contact(r,M,N). Source and target spaces may have anholonomic cobases.
Indexed names for the jet bundle fibre coordinates are constructed using the iden-
tifiers in the source and target cobases.

Examples:

pform {x,y,z,u,v}=0,{e i,w a}=1;
indexrange {i}={1,2},{a}=1;
contact(1,{x,y,z},{u,v});

EDS({d u - u *d x - u *d y - u *d z,
x y z

d v - v *d x - v *d y - v *d z},{d x,d y,d z})
x y z

OMrules := index_expand{d e(1)=>e(1)^e(2),d e(2)=>0,d w(a)=>0};
contact(2,{e(i)},{w(a)}) where OMrules;

1 1 1 1 2
EDS({w - w *e - w *e ,

1 2
1 1 1 1 2

d w - w *e - w *e ,
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1 1 1 1 2
1 1 1 1 1 2 1 2

d w + ( - w + w )*e - w *e },{e ,e })
2 1 2 1 2 2

pde2eds

A PDE system can be encoded into an 〈EDS〉 using pde2eds. The syntax is

pde2eds(〈pde〉 [,〈dependent〉,〈independent〉])

where 〈pde〉 is a list of equations or expressions (implicitly assumed to vanish)
specifying the PDE system using either the standard REDUCE df operator, or the
EXCALC @ operator. If the optional variable lists 〈dependent〉 and 〈independent〉
are not given, pde2eds infers them from the expressions in 〈pde〉. The order of
each dependent variable is determined automatically.

The result returned by pde2eds is an 〈EDS〉 based on the contact system of the
relevant mixed-order jet bundle. Any of the 〈pde〉members which is in solved form
is used to pull back this contact system. Any remaining expressions or unresolved
equations are simply appended as 0-forms: before many of the analysis tools (sec-
tion 16.23.7) can be applied, it is necessary to convert this to a system generated in
positive degree using the lift operator (section 16.23.6).

The automatic inference of dependent and independent variables is governed by
the following rules. The independent variables are all those with respect to which
derivatives appear. The dependent variables are those for which explicit deriva-
tives appear, as well as any which have dependencies (as declared by depend
or fdomain) or which are 0-forms. To exclude a variable from the dependent
variable list (for example, because it is regarded as given) or to include extra inde-
pendent variables, use the optional arguments to pde2eds.

One of the awkward points about pde2eds is that implicit dependence is
changed globally. In order for the df and @ operators to be used to express the
PDE, the 〈dependent〉 variables must depend (via depend or fdomain) on the
〈independent〉 variables. On the other hand, in the 〈EDS〉, these variables are all
completely independent coordinates. The pde2eds operator thus removes the
implicit dependence so that the 〈EDS〉 is correct upon return. This means that the
〈pde〉 will no longer evaluate properly until such time as the dependence is manu-
ally restored, whereupon the 〈EDS〉 will no longer be correct, and so on.

To assist with this difficulty, pde2eds saves a record of the dependencies it has
removed in the shared variable dependencies. The operator mkdepend can
be used to restore the initial state.

See also the operators pde2jet (section 16.23.14) and mkdepend (section
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16.23.14).

Example:

depend u,x,y; depend v,x,y;
pde2eds({df(u,y,y)=df(v,x),df(v,y)=y*df(v,x)});

EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x y x

d u - u *d x - v *d y,
y y x x

d v - v *d x - v *y*d y},d x^d y)
x x

dependencies;

{{u,y,x},{v,y,x}}

set_coframing

The background coframing (section 16.23.3) is set with set_coframing. The
syntax is

set_coframing 〈arg〉

where 〈arg〉 is a 〈coframing〉 or an 〈EDS〉 and the previous background coframing
is returned. All rules, orderings etc pertaining to the previous background cofram-
ing are removed and replaced by those for the new 〈coframing〉. The special form

set_coframing()

clears the background coframing entirely and returns the previous one.

16.23.5 Inspecting EDS objects

Given an 〈EDS〉 or some other EDS structure, it is often desirable to inspect or
extract some part of it. The operators described in this section do just that. Many
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of them accept various types of arguments and return the relevant information in
each case.

cobasis

cobasis 〈arg〉

returns the cobasis for 〈arg〉, which may be either a 〈coframing〉 or an 〈EDS〉 (sec-
tions 16.23.2, 16.23.3). The order of the items in the list gives the 〈kernel〉 ordering
which applies when the 〈coframing〉 in 〈arg〉 is active.

coordinates

coordinates 〈arg〉

returns the coordinates for 〈arg〉, which may be either a 〈coframing〉, an 〈EDS〉, or
a list of 〈expr〉 (sections 16.23.2, 16.23.3). The coordinates in a list of 〈expr〉 are
defined to be those 0-form 〈kernels〉 with no implicit dependencies.

Examples:

coordinates contact(3,{x},{u});

{x,u,u ,u ,u }
x x x x x x

fdomain u=u(x);
coordinates {d u+d y};

{x,y}

structure_equations

structure_equations 〈arg〉

returns the structure equations (cf section 16.23.2) for 〈arg〉, which may be either
a 〈coframing〉, an 〈EDS〉, or a 〈transform〉 (sections 16.23.2, 16.23.3, 16.23.3). In
the case of a 〈transform〉, it is assumed the exterior derivatives of the right-hand
sides are known, and a list giving the exterior derivatives of the left-hand sides is
returned. This requires inverting the transformation. In case this has already been
done, and was time consuming, an alternative syntax
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structure_equations(〈transform〉,〈inverse transform〉)

avoids recomputing the inverse.

Example:

structure_equations{e 1=d x/x,e 2=x*d y};

1 2 1 2
{d e => 0,d e => e ^e }

restrictions

restrictions 〈arg〉

returns the restrictions for 〈arg〉, which may be either a 〈coframing〉 or an 〈EDS〉
(sections 16.23.2, 16.23.3). The result is a list of inequalities.

system

system 〈EDS〉

returns the system component of an 〈EDS〉 (sections 16.23.3, 16.23.3) as a list of
〈p-form〉 expressions. (The PSL-based REDUCE command system operates as
before: the syntax

system "〈command〉"

executes an operating system (eg UNIX) command.)

independence

independence 〈EDS〉

returns the independence condition of an 〈EDS〉 (section 16.23.3) as a list of 〈1-
form〉 expressions.
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properties

properties 〈EDS〉

returns the currently known properties of an 〈EDS〉 (sections 16.23.3, 16.23.3) as
a list of equations of the form 〈keyword〉 = 〈value〉.

Example:

properties closure contact(1,{x},{u});

{closed=1,pfaffian=1,quasilinear=1}

one_forms

one_forms 〈arg〉

returns the 1-forms in 〈arg〉, which may be either an 〈EDS〉 or a list of 〈expr〉
(sections 16.23.3, 16.23.3).

Example:

one_forms {5,x*y - u,d u - x*d y,d u^d x- x*d y^d x};

{d u - d y*x}

zero_forms, nought_forms

zero_forms 〈arg〉

returns the 0-forms in 〈arg〉, which may be either an 〈EDS〉 or a list of 〈expr〉
(sections 16.23.3, 16.23.3). The alternative syntax nought_forms does the same
thing.

Example:

zero_forms {5,x*y - u,d u - x*d y,d u^d x- x*d y^d x};

{5, - u + x*y}
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16.23.6 Manipulating EDS objects

The abililty to change coordinates or cobasis, or to modify the system or coframing
can make the difference between an intractible problem and a solvable one. The
facilities described in this section form the low-level core of EDS functions.

Most of the operators in this section can be applied to both 〈EDS〉 and 〈coframing〉
objects. Where it makes sense (eg pullback, restrict and transform),
they can be applied to a 〈system〉, or list of differential forms as well.

augment

augment(〈EDS〉,〈system〉)

appends the extra forms in the second argument to the system part of the first. If the
forms in the 〈system〉 do not live on the coframing of the 〈EDS〉, an error results.
The original 〈EDS〉 is unchanged.

Example:

% Non-Pfaffian system for a Monge-Ampere equation
S := contact(1,{x,y},{z})$
S := augment(S,{d z(-x)^d z(-y)});

s := EDS({d z - z *d x - z *d y,
x y

d z ^d z },{d x,d y})
x y

cross

The infix operator cross gives the direct product of 〈coframing〉 objects. The
syntax is

〈arg1〉 cross 〈arg2〉 [cross · · · ]

The first argument may be either a 〈coframing〉 (section 16.23.2) or an 〈EDS〉 (sec-
tion 16.23.3). The remaining arguments may be either 〈coframing〉 objects or any
valid argument to the coframing operator (section 16.23.4), in which case the
corresponding 〈coframing〉 is automatically inferred. The arguments may not con-
tain any common coordinates or cobasis elements.
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If the first argument is an 〈EDS〉, the result is the 〈EDS〉 lifted to the direct product
space. In this way, it is possible to execute a pullback under a projection.

Example:

coordinates(contact(1,{x,y},{u}) cross {v});

{x,y,u,u ,u ,v}
x y

pullback

Pullbacks with respect to an EDS 〈map〉 (section 16.23.3) have the syntax

pullback(〈arg〉,〈map〉)

where 〈arg〉 can be any one of 〈EDS〉, 〈coframing〉, 〈system〉 or 〈p-form〉 expres-
sion (sections 16.23.3, 16.23.2, 16.23.3). The result is of the same type as 〈arg〉.

For an 〈EDS〉 or 〈coframing〉with anholonomic cobasis, pullback calculates the
pullbacks of the cobasis elements and chooses a cobasis for the source coframing
itself. For a 〈system〉, any zeroes in the result are dropped from the list.

Examples:

pullback(contact(1,{x,y},{u}),{u(-y) = u*u(-x)});

EDS({d u - u *d x - u *u*d y},{d x,d y})
x x

M := coframing({e 1,e 2},{r},{r neq 0},
{d r=>e 1,d e 1=>0,d e 2=>e 1^e 2/r})$

pullback(M,{r=1/x});
2

2 2 e ^d x
coframing({e ,d x},{x},{d e => --------},{x neq 0})

x

pullback(ws,{x=0});

***** Map image not within target coframing in pullback
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pullback({y*d y,d y - d x},{y=x});

{d x*x}

restrict

Restrictions with respect to an EDS 〈map〉 (section 16.23.3) have the syntax

restrict(〈arg〉,〈map〉)

where 〈arg〉 can be any one of 〈EDS〉, 〈coframing〉, 〈system〉 or 〈p-form〉 expres-
sion (sections 16.23.3, 16.23.2, 16.23.3). The result is of the same type as 〈arg〉.
The action of restrict is similar to that of pullback, except that only scalar
coefficients are affected: 1-form variables are unchanged.

Examples:

% Bring a system into normal form by restricting the coframing

S := eds({u*d v - v*d u},{d x});

s := EDS({v*d u - u*d v},{d x})

restrict(S,{u neq 0});

v
EDS({d v - ---*d u},{d x})

u

% Difference between restrict and pullback

pullback({x*d x - y*d y},{x=y,y=1});

{}

restrict({x*d x - y*d y},{x=y,y=1});

{d x - d y}

transform

A change of cobasis is made using the transform operator
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transform(〈arg〉,〈transform〉)

where 〈arg〉 can be any one of 〈EDS〉, 〈coframing〉, 〈system〉 or 〈p-form〉 expres-
sion (sections 16.23.3, 16.23.2, 16.23.3) and 〈transform〉 is a list of substitutions
(cf section 16.23.3). The result is of the same type as 〈arg〉.

For an 〈EDS〉 or 〈coframing〉, transform can detect whether the tranformation
is given in the forward or reverse direction and invert accordingly. Structure equat-
ions are updated correctly. If an exact cobasis element is eliminated, its expression
in terms of the new cobasis is added to the list of structure equations, since the
corresponding coordinate may still be present elsewhere in the structure.

Example:

S := contact(1,{x},{u});

s := EDS({d u - u *d x},{d x})
x

new := {e(1) = first system S,w(1) = d x};

1 1
new := {e =d u - d x*u ,w =d x}

x

S := transform(S,new);

1 1
s := EDS({e },{w })

structure_equations s;

1 1
{d e => - d u ^w ,

x
1

d w => 0,

1 1
d u => e + u *w ,

x
1

d x => w }
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lift

Many of the analysis tools (section 16.23.7) cannot treat systems containing 0-
forms. The lift operator

lift 〈EDS〉

solves the 0-forms in the system and uses the solution to pull back to a smaller
manifold. This may generate new 0-form conditions (in the course of bringing the
pulled-back system into normal form), in which case the process is repeated until
the system is generated in positive degree. In non-linear problems, the solution
space of the 0-forms may be a variety, in which case a compound 〈EDS〉 (section
16.23.3) will result. If edsverbose is on (section 16.23.9), the solutions are
displayed as they are generated.

Example:

S := augment(contact(2,{x,y},{u}),{u(-y,-y)-u(-x,-x)})$
on edsverbose;
lift S;

Solving 0-forms
New equations:
u =u
y y x x

EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x x y

d u - u *d x - u *d y},{d x,d y})
y x y x x

16.23.7 Analysing exterior systems

This section describes higher level operators for extracting information about ex-
terior systems. Many of them require a 〈EDS〉 in normal form (section 16.23.3)
generated in positive degree as input, but some can also analyse a 〈system〉 (section
16.23.3) or a single 〈p-form〉. Only trivial examples are provided in this section,
but many of these operators are used in the longer examples in the test file which
accompanies this package.
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cartan_system

The Cartan system of a form or system S is the smallest Pfaffian system C such
that Λ(C) contains a set I of forms algebraically equivalent to S. The Cartan sys-
tem is also known as the associated Pfaff system or retracting space. An alternative
characterisation is to note that the annihilator C⊥ comprises all vectors V satisfy-
ing iV S ' 0 (mod S). Note this is a purely algebraic concept: S need not be
closed under differentiation. See also cauchy_system (section 16.23.7).

The operator

cartan_system 〈arg〉

returns the Cartan system of 〈arg〉, which may be an 〈EDS〉, a 〈system〉 or a single
〈p-form〉 expression (sections 16.23.3, 16.23.3). For an 〈EDS〉, the result is a Pfaf-
fian 〈EDS〉 on the same manifold, otherwise it is a 〈system〉. The argument must
be generated in positive degree.

Example:

cartan_system{d u^d v + d v^d w + d x^d y};

{d u - d w,d v,d x,d y}

cauchy_system

The Cauchy system C of a form or system S is the Cartan system or retracting
space of its closure under exterior differentiation (section 16.23.7). The annihilator
C⊥ consists of the Cauchy vectors for the S.

The operator

cauchy_system 〈arg〉

returns the Cauchy system of 〈arg〉, which may be an 〈EDS〉, a 〈system〉 or a single
〈p-form〉 expression (sections 16.23.3, 16.23.3). For an 〈EDS〉, the result is a Pfaf-
fian 〈EDS〉 on the same manifold, otherwise it is a 〈system〉. The argument must
be generated in positive degree.

Example:

cauchy_system{u*d v + v*d w + x*d y};

{d u,d v,d w,d x,d y}
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characters

The Cartan characters {s1, ..., sn} of an 〈EDS〉 or 〈tableau〉 (sections 16.23.3,
16.23.3) are obtained with

characters 〈EDS〉 or characters 〈tableau〉

The zeroth character s0 is not returned, it is simply the number of 1-forms in the
〈EDS〉 (cf one_forms, section 16.23.5). The definition used for the last charac-
ter: sn = (d − n) − (s0 + s1 + ... + sn−1), where d is the manifold dimension,
allows Cartan’s test to be used even when Cauchy characteristics are present.

For a nonlinear 〈EDS〉, the Cartan characters can vary from stratum to stratum of
the Grassmann bundle variety of ordinary integral elements (cf grassmann_variety
in section 16.23.7). Nonetheless, they are constant on each stratum, so it suffices
to calculate them at one point (ie at one integral element). This is done using the
syntax

characters(〈EDS〉,〈integral element〉)

where 〈integral element〉 is a list of 1-forms (cf section 16.23.3).

The Cartan characters are calculated from the reduced characters for a fixed flag of
integral elements based on the 1-forms in the independence condition of an 〈EDS〉.
This can lead to incorrect results if the flag is somehow singular, so two switches
are provided to overcome this (section 16.23.13). First, genpos looks at a generic
flag by using a general linear transformation to put the system in general position.
This guarantees correct results, but can be too slow for practical purposes. Sec-
ondly, ranpos performs a linear transformation using a sparse matrix of random
integers. In most cases, this is much faster than using general position, and a few
repetitions give some confidence in the results.

Example:

S := pullback(contact(2,{x,y},{u}),{u(-x,-y)=0});

s := EDS({d u - u *d x - u *d y,
x y

d u - u *d x,
x x x

d u - u *d y},{d x,d y})
y y y
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characters S;

{1,1}

on ranpos; characters S;

{2,0}

closure

closure 〈EDS〉

returns the closure of the 〈EDS〉 under exterior differentiation.

Owing to conflicts with the requirements of a normal form (section 16.23.3),
closure cannot guarantee that the resulting system is closed if the 〈EDS〉 con-
tains 0-forms.

derived_system

derived_system 〈arg〉

returns the first derived system of 〈arg〉, which must be a Pfaffian 〈EDS〉 or
〈system〉. Repeated use gives the derived flag leading to the maximal integrable
subsystem.

Example:

pform {p,r,x,y,z}=0; korder z;
derived_system eds({d z - q*d y,d p - e**z*d y,

d r - e**z*p*d y,d x},{d y});

z z
EDS({d p - e *d y,d r - e *p*d y,d x},{d y})

derived_system ws;

1
EDS({d p - ---*d r,d x},{d y})

p
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derived_system ws;

1
EDS({d p - ---*d r,d x},{d y})

p

dim_grassmann_variety

dim_grassmann_variety 〈EDS〉

returns the dimension of the Grassmann bundle variety of ordinary integral ele-
ments for an 〈EDS〉 (cf grassmann_variety, section 16.23.7). This number
is useful, for example, in Cartan’s test. For a nonlinear 〈EDS〉, this can vary from
stratum to stratum of the variety, so

dim_grassmann_variety(〈EDS〉,〈integral element〉)

returns the dimension of the stratum containing the 〈integral element〉 (cf section
16.23.3).

dim

dim 〈arg〉

returns the dimension of the manifold underlying 〈arg〉, which can be either an
〈EDS〉 or a 〈coframing〉 (sections 16.23.3, 16.23.2).

involution

involution 〈EDS〉

repeatedly prolongs an 〈EDS〉 until it reaches involution or inconsistency (cf
prolong, section 16.23.7). The system must be in normal form (section 16.23.3)
and generated in positive degree. For nonlinear problems, all branches of the
prolongation tree are followed. The result is an 〈EDS〉 (usually a compound
one for nonlinear problems, see section 16.23.3) giving the involutive prolonga-
tion. In case some variety couldn’t be resolved during the process, the relevant
branch is truncated at that point and represented by a system with 0-forms, as with
grassmann_variety (section 16.23.7). The result of involution might
then not be in involution.

If the edsverbose switch is on (section 16.23.9), a trace of the prolongations is
produced. See the Janet problem in the test file for an example.
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linearise, linearize

A nonlinear exterior system can be linearised at some point on the manifold with
respect to any integral element, yielding a constant coefficient exterior system with
the same Cartan characters. In EDS, reference to the point is omitted, so the result
is an exterior system linearised with respect to a distribution of integral elements.
The syntax is

linearise(〈EDS〉,〈integral element〉)

but linearize will work just as well. See the isometric embeddings example in
the test file.

For a quasilinear 〈EDS〉 (cf section 16.23.8),

linearise 〈EDS〉

returns an equivalent exterior system containing only linear generators.

Example:

f := d u^d x + d v^d y$
S := eds({f,d v^f},{d x,d y});

s := EDS({d u^d x + d v^d y,d u^d v^d x},{d x,d y})

linearise S;

EDS({d u^d x + d v^d y},{d x,d y})

integral_element

integral_element 〈EDS〉

returns a random 〈integral element〉 of the 〈EDS〉 (section 16.23.3). The system
must be in normal form (section 16.23.3) and generated in positive degree. This
integral element is found using the method described by Wahlquist [Wah93] (es-
sentially the Cartan-Kähler construction filling in the free variables from each polar
system with random integer values). This method can fail on non-involutive sys-
tems, or 〈EDS〉 objects whose independence conditions indicate a singular flag of
integral elements (cf the discussion about Cartan characters, section 16.23.7).

See the isometric embedding problem in the test file for an example.
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prolong

prolong 〈EDS〉

calculates the prolongation of the 〈EDS〉 to the Grassmann bundle variety of in-
tegral elements. The system must be in normal form (section 16.23.3) and gener-
ated in positive degree. The variety is decomposed using essentially the REDUCE
solve operator. If no solutions can be found, the variety is empty, and the pro-
longation is the inconsistent 〈EDS〉 (section 16.23.3). Otherwise, the result is a list
of variety components, which fall into three classes:

1. a submanifold of the Grassmann bundle which surjects onto the base mani-
fold. The result in this case is the pullback of the Grassmann bundle contact
〈EDS〉 to this submanifold.

2. a submanifold of the Grassmann bundle which does not surject onto the base
manifold (ie cannot be presented by solving for Grassmann bundle fibre co-
ordinates). The result in this case is the pullback of the original 〈EDS〉 to the
projection onto the base manifold. If 0-forms arise in bringing the pullback
to normal form, these are solved recursively and the system pulled back again
until the result is generated in positive degree (cf lift, section 16.23.6).

3. a component of the variety which solve was not able to resolve explicitly.
The result in this case is the Grassmann bundle contact 〈EDS〉 augmented
with the 0-forms which solve couldn’t treat. This can be extracted from
the result of prolong and manipulated further “by hand”,

The result returned by prolong will, in general, be a compound 〈EDS〉 (section
16.23.3). If the switch edsverbose (section 16.23.9) is on, a trace of the pro-
longation is printed.

The 〈map〉s which are generated in a prolong call are available subsequently
in the global variable pullback_maps. This facility is still very primitive and
unstructured. It should be extended to the involution operator as well...

Example:

pde := {u(-y,-y)=u(-x,-x)**2/2,u(-x,-y)=u(-x,-x)};

2
(u )

x x
pde := {u =---------,u =u }

y y 2 x y x x
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S := pullback(contact(2,{x,y},{u}),pde)$
on edsverbose;
prolong S;

Reduction using new equations:
u =1
x x
Prolongation using new equations:
u =0
x x x
u =0
x x y

{EDS({d u - u *d x - u *d y,
x y

d u - d x - d y,
x

1
d u - d x - ---*d y},{d x,d y}),

y 2

EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x x x

2
(u )

x x
d u - u *d x - ---------*d y,

y x x 2

d u },{d x,d y})}
x x

tableau

tableau 〈EDS〉

returns the 〈tableau〉 (section 16.23.3) of a quasilinear Pfaffian 〈EDS〉, which must
be in normal form and generated in positive degree.
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Example:

tableau contact(2,{x,y},{u});

[d u d u ]
[ x x x y]
[ ]
[d u d u ]
[ x y y y]

torsion

For a semilinear Pfaffian exterior differential system, the torsion corresponds to
first-order integrability conditions for the system. Specifically,

torsion 〈EDS〉

returns a list of 0-forms describing the projection of the Grassmann bundle variety
of integral elements onto the base manifold. If the switch edssloppy (section
16.23.11) is on, quasilinear systems are treated as semilinear. A semilinear system
is involutive if both the torsion is empty, and Cartan’s test for the reduced characters
is satisfied.

Example:

S := pullback(contact(2,{x,y},{u}),
{u(-y,-y)=u(-x),u(-x,-y)=u});

s := EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u*d y,
x x x

d u - u*d x - u *d y},{d x,d y})
y x

torsion s;

{u - u }
x x y
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grassmann_variety

Given an exterior system (S,Ω,M) with independence condition of rank n, the
Grassmann bundle of n-planes over M contains a submanifold characterised by
those n-planes compatible with the independence condition. All integral elements
must lie in this submanifold. The operator

grassmann_variety 〈EDS〉

returns the contact system for this part of the Grassmann bundle augmented by
the 0-forms specifying the variety of integral elements of S. In cases where
prolong (section 16.23.7) is unable to decompose the variety automatically,
grassmann_variety can be used in combination with zero_forms (sec-
tion 16.23.5) to calculate the variety conditions. Any solutions found “by hand”
can be incorporated using pullback (section 16.23.6).

Example: Using the system from the example in section 16.23.7:

zero_forms grassmann_variety S;

{ - u *u + u ,
x x x x x x x y

- u + u }
x x x x x y

solve ws;

Unknowns: {u ,u ,u }
x x x x x y x x

{{u =0,u =0},
x x y x x x

{u =1,u =u }}
x x x x x x x y

The second solution contains an integrability condition.

16.23.8 Testing exterior systems

The operators in this section allow various properties of an 〈EDS〉 to be checked.
These checks are done automatically when required on entry to the routines in
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sections 16.23.6 and 16.23.7, but sometimes it is useful to know explicitly. The
result is either a 1 (true) or a 0 (false), so the operators can be used in boolean
expressions within if statements etc. Since checking these properties can be very
time-consuming, the result of the first test is stored on the 〈properties〉 record of
an 〈EDS〉 to avoid re-checking. This memory can be cleared using the cleanup
operator.

closed

closed 〈arg〉

checks whether 〈arg〉, which may be an 〈EDS〉, a 〈system〉 or a single 〈p-form〉 is
closed under exterior differentiation.

Examples:

closed(x*d x);

1

closed {d u - p*d x,d p - p/y*d x};

0

involutive

involutive 〈EDS〉

checks whether 〈EDS〉 is involutive, using Cartan’s test. See the test file for exam-
ples.

pfaffian

pfaffian 〈EDS〉

checks whether 〈EDS〉 is a Pfaffian system: generated by a set of 1-forms and their
exterior derivatives. The 〈EDS〉 must be in normal form (section 16.23.3) for this
to succeed. Systems with 0-forms are non-Pfaffian by definition in EDS.
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Examples:

pfaffian eds({d u - p*d x - q*d y,d p^d x+d q^d y},{d x,d y});

1

pfaffian eds({d u - p*d x - q*d y,d p^d q},{d x,d y});

0

quasilinear

An exterior system (S,Ω,M) is said to be quasilinear if, when written in the stand-
ard cobasis {θa, πρ, ωi} (section 16.23.3), its closure can be generated by a set of
forms which are of combined total degree 1 in {θa, πρ}. The operation

quasilinear 〈EDS〉

checks whether the closure of 〈EDS〉 is a quasilinear system. The 〈EDS〉 must be
in normal form (section 16.23.3) for this to succeed. Systems with 0-forms are not
quasilinear by definition in EDS.

Examples:

% A system where pi(rho)={d p,d q}, and which looks non-linear

S := eds({d u - p*d x - q*d y,d p^d q^d y},{d x,d y})$

quasilinear S;

1

linearise closure S;

EDS({d u - p*d x - q*d y,
- d p^d x - d q^d y},{d x,d y})

% One which is really non-linear

quasilinear eds({d u - p*d x - q*d y,d p^d q},{d x,d y});

0
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semilinear

Let (S,Ω,M) be such that, written in the standard cobasis {θa, πρ, ωi} (section
16.23.3), its closure is explicitly quasilinear. If the coefficients of {πρ} depend
only on the independent variables, then the system is said to be semilinear. The
operation

semilinear 〈EDS〉

checks whether closure of 〈EDS〉 is a semilinear system. The 〈EDS〉 must be in
normal form (section 16.23.3) for this to succeed. Systems with 0-forms are not
semilinear by definition in EDS.

For semilinear systems, the expressions determining the Grassmann bundle vari-
ety of integral elements will be linear in the Grassmann bundle fibre coordinates,
with coefficients which depend only upon the independent variables. This allows
alternative, faster algorithms to be used in analysis.

If the switch edssloppy is on (section 16.23.11), all quasilinear systems are
treated as if they are semilinear.

Examples:

% A semilinear system: @(u,y) = y*@(u,x)
S := eds({d u - p*d x - p*y*d y},{d x,d y})$
semilinear S;

1
% A quasilinear system: @(u,y) = u*@(u,x)
S := eds({d u - p*d x - p*u*d y},{d x,d y})$
quasilinear S;

1
semilinear S;

0
on edssloppy;
semilinear S;

1

frobenius

frobenius 〈arg〉
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checks whether 〈arg〉, which may be an 〈EDS〉 or a 〈system〉, is a completely inte-
grable Pfaffian system.

Examples:

if frobenius eds({d u -p*(d x+d y)},d x^d y) then yes else no;

no

if frobenius eds({d u -u*(d x+d y)},d x^d y) then yes else no;

yes

equiv

〈EDS1〉 equiv 〈EDS2〉

checks whether 〈EDS1〉 and 〈EDS2〉 are algebraically equivalent as exterior sys-
tems (ie generate the same algebraic ideal).

Examples:

S1 := contact(2,{x,y},{u})$
S2 := augment(S1,foreach f in system S1 join {d f,d x^d f})$
if S1 equiv S2 then yes else no;

no

if closure S1 equiv S2 then yes else no;

yes

16.23.9 Switches

EDS provides several switches to govern the display of information and speed or
reliability of the results.

edsverbose

If edsverbose is on, a number of operators (eg prolong, involution) will
display additional information as the calculation progresses. For large problems,
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this can produce too much output to be useful, so edsverbose is off by default.
This allows only warning (***) and error (*****) messages to be printed.

16.23.10 edsdebug

If edsdebug is on, EDS produces copious quantities of information, in addition
to that produced with edsverbose on. This information is for debugging pur-
poses, and may not make much sense without knowledge of the inner workings of
EDS. edsdebug is off by default.

16.23.11 edssloppy

Normally, EDS will not divide by any expressions it does not know to be nowhere
zero. If an 〈EDS〉 can be brought into normal form only by restricting away from
the zeroes of some coefficients, then these restrictions should be made using the
restrict operator (section 16.23.6). However, if edssloppy is on, then EDS
will, as a last resort, divide by whatever is necessary to bring an 〈EDS〉 into normal
form, invert a transformation, and so on. The relevant restrictions will be made
automatically, so no inconsistency should arise. In addition, with edssloppy on,
all quasilinear systems are treated as if they were semilinear (cf section 16.23.8).
edssloppy is off by default.

16.23.12 edsdisjoint

When decomposing a variety into (something like) smooth components, EDS nor-
mally pays no attention to whether the components are disjoint. Turning on the
switch edsdisjoint forces EDS to ensure the decomposition is a disjoint union
(cf disjoin, section 16.23.14). For large problems this can lead to a prolifera-
tion of singular pieces. If some of these turn out to be uninteresting, EDS cannot
re-join the remaining pieces into a smaller decomposition. edsdisjoint is off
by default.

16.23.13 ranpos, genpos

When calculating Cartan characters (eg to check involution), EDS uses the inde-
pendence condition of an 〈EDS〉 as presented to define a flag of integral elements.
Depending on the cobasis and ordering, this flag may be singular, leading to in-
correct Cartan characters. To overcome this problem, the switches ranpos and
genpos provide a means to select other flags. With ranpos on, a flag defined
by taking a random linear transformation of the 1-forms in the independence con-
dition will be used. The results may still be incorrect, but the likelihood is much
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lower. With genpos on, a generic (upper triangular) transformation is used. this
guarantees the correct Cartan characters, but reduces performance too much to be
useful for large problems. Both switches are off by default, and switching one
on automatically switches the other off. See section 16.23.7 for an example.

16.23.14 Auxiliary functions

This section describes various operators designed to ease working with exterior
forms and exterior systems in REDUCE.

invert

invert 〈transform〉

returns a 〈transform〉 which is inverse to the given one (section 16.23.6). If the
〈transform〉 given is only partial, the 1-form 〈kernel〉s to eliminate are chosen based
on the prevailing kernel ordering. If a background coframing (section 16.23.3)
is active, and edssloppy (section 16.23.11) is off, invert will divide by
nowhere-zero expressions only.

Examples:

set_coframing coframing{u,v,w,x,y,z}$
invert {d u = 3*d x - d y + 5*d z, d v = d x + 2*d z};

{d x=d v - 2*d z,d y= - d u + 3*d v - d z}

% A y coefficient forces a different choice of inverse

invert {d u = 3*d x - y*d y + 5*d z, d v = d x + 2*d z};

{d x=2*d u - 5*d v + 2*d y*y,d z= - d u + 3*d v - d y*y}

linear_divisors

linear_divisors 〈pform〉

returns a basis for the space of linear divisors (1-form factors) of a 〈p-form〉.



543

Example:

f := d p^d q^d u - d p^d q^d x*x + d p^d q^d z*y
- d u^d v^d x*x + d u^d v^d z*y + d u^d x^d y
+ d x^d y^d z*y$

linear_divisors f;

{d u - d x*x + d z*y}

exfactors

exfactors 〈pform〉

returns a list of factors for a 〈p-form〉, consisting of the linear divisors plus one
more factor. The list is ordered such that the original expression is a product of the
factors in this order.

Example:

f := d p^d q^d u - d p^d q^d x*x + d p^d q^d z*y
- d u^d v^d x*x + d u^d v^d z*y + d u^d x^d y
+ d x^d y^d z*y$

exfactors f;

{d p^d q - d v^d x*x + d v^d z*y + d x^d y,
d u - d x*x + d z*y}

f - (part(ws,0) := ^);

0

index_expand

EXCALC caters for indexed variables in which various index names have been as-
signed a specific set of values. Any expression with paired indices is expanded au-
tomatically to an explicit sum over the index set (provided the EXCALC command
nosum has not been applied). The EDS operator index_expand is designed to
expand an expression with free indices to an explicit list over the index set, taking
some limited account of the possible index symmetries.

The syntax is

index_expand 〈arg〉
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where 〈arg〉 can be an expression, a rule or equation or a boolean expression, or an
arbitrarily nested list of these items. The result is a flattened list.

Examples:

indexrange {i,j,k}={1,2,3},{a,b}={x,y};
pform {e(i),o(a,b)}=1;
index_expand(e(i)^e(j));

1 2 1 3 2 3
{e ^e ,e ^e ,e ^e }

index_expand{o(-a,-b)+o(-b,-a) => 0};

{2*o => 0,o + o => 0, 2*o => 0}
x x x y y x y y

pde2jet

A PDE system can be encoded into EDS jet variable notation using pde2jet.
The syntax is as for pde2eds:

pde2jet(〈pde〉 [,〈dependent〉,〈independent〉])

where 〈pde〉 is a list of equations or expressions (implicitly assumed to vanish)
specifying the PDE system using either the standard REDUCE df operator, or the
EXCALC @ operator. If the optional variable lists 〈dependent〉 and 〈independent〉
are not given, pde2jet infers them from the expressions in 〈pde〉, using the same
rules as pde2eds (section 16.23.4).

The result of pde2jet is the input 〈pde〉, with all derivatives of dependent vari-
ables replaced by indexed 0-form variables from the appropriate jet bundle. Unlike
pde2eds, pde2jet does not disturb the variable dependencies.

Example:

depend u,x,y; depend v,x,y;
pde2jet({df(u,y,y)=df(v,x),df(v,y)=y*df(v,x)});

{u =v ,
y y x

v =v *y}
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y x

mkdepend

The mkdepend operator is intended for restoring the dependencies destroyed by
a call to pde2eds (section 16.23.4). The syntax is

mkdepend {〈list of variables〉,· · ·}

where the first variable in each list is declared to depend on the remaining ones.

disjoin

The disjoin operator takes a list of 〈maps〉 (section 16.23.3) describing a de-
composition of a variety, and returns an equivalent list of 〈maps〉 such that the
components are all disjoint. The background coframing (section 16.23.3) should
be set appropriately before calling disjoin. The syntax is

disjoin {〈map〉,· · ·}

Example:

set_coframing coframing {x,y};
disjoin {{x=0},{y=0}};

{{y=0,x neq 0},{x=0,y neq 0},{y=0,x=0}}

cleanup

To avoid lengthy recomputations, EDS stores various properties (section 16.23.3)
and also many intermediate results in a hidden list attached to each 〈EDS〉. When
EDS detects a change in circumstances which could make the information innacu-
rate, it is discarded and recomputed. Unfortunately, this mechanism is not perfect,
and occasionally misses something which renders the results incorrect. In such a
case, it is possible to discard all the properties and hidden information using the
cleanup operator. The call

cleanup 〈arg〉

returns a copy of 〈arg〉, which may be a 〈coframing〉 or an 〈EDS〉 which has been
stripped of this auxilliary information. Note that the original input (with possible
innacuracies) is left undisturbed by this operation: the result of cleanup must be
used.
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Example:

% An erroneous property assertion
S := eds({d u - p*d x},{d x,d y},{closed = 1})$
closure S;

EDS({d u - p*d x},{d x,d y});

S := cleanup S$
properties S;

{}

closure S;

EDS({d u - p*d x, - d p^d x},{d x,d y});

reorder

All operations with a 〈coframing〉 or 〈EDS〉 temporarily override the prevailing
kernel order with their own. Thus the ordering of the cobasis elements in a
〈coframing〉 operator remains fixed, even when a REDUCE korder statement
is issued. To enforce conformity to the prevailing kernel order, the reorder op-
erator is available. The call

reorder 〈arg〉

returns a copy of 〈arg〉, which may be a 〈coframing〉 or an 〈EDS〉 which has been
reordered. Note that the original input is left undisturbed by this operation: the
result of reorder must be used.

Example:

M := coframing {x,y,z};

m := coframing({d x,d y,d z},{x,y,z},{},{})

korder z,y,x;
reorder m;

coframing({d z,d y,d x},{z,y,x},{},{})
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16.23.15 Experimental facilities

This section describes various operators in EDS which either not algorithmically
well-founded, or whose implementation is very unstable, or which have known
bugs.

poincare

The poincare operator implements the homotopy integral found in the proof of
Poincaré’s lemma. The expansion point is the origin of the coordinates found in
the input. The syntax is

poincare 〈p-form〉

If f is a p-form, then poincare f is a (p − 1)-form, and f - poincare d
f is an exact p-form.

Examples:

poincare(3*d x^d y^d z);

d x^d y*z - d x^d z*y + d y^d z*x

d ws;

3*d x^d y^d z

2*x*d y - poincare d(2*x*d y);

d x*y + d y*x

invariants

The invariants operator implements the algorithm implicit in the inductive
proof of the Frobenius theorem. The syntax is

invariants(〈system〉 [,〈list of coordinate〉])

where 〈system〉 is a set of 1-forms satisfying the Frobenius condition. The optional
second argument specifies the order in which the coordinates are projected away
to get a trivially integrable system. The CRACK and ODESOLVE packages are
used to solve the ODE systems which arise, so the limitations of these packages
constrain the scope of this operator as well.
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Examples:

invariants {d x*y + d y*x*z + d z*log(y)*x*y};

z
{ - y *x}

invariants {d y*z**2 - d y*z + d z*y,d x*(1 - z) + d z*x};

x y*(z - 1)
{-------,-----------}

z - 1 z

symbol_relations

The symbol_relations operator finds the linear relations between the entries
of the tableau matrix for a quasilinear system. The syntax is

symbol_relations(〈EDS〉, 〈identifier〉)

where 〈EDS〉 is a quasilinear Pfaffian system and 〈identifier〉 is used to create a
2-indexed 1-form which will label the tableau entries.

Example:

S := pde2eds {df(u,y,y) = df(u,x,x)};

s := EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x x y

d u - u *d x - u *d y},d x^d y)
y x y x x

symbol_relations(S,pi);

1 2
{pi - pi ,

x y
1 2

pi - pi }
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symbol_matrix

The symbol_matrix operator returns the symbol matrix for a quasilinear sys-
tem in terms of a given variable. The syntax is

symbol_matrix(〈EDS〉, 〈identifier〉)

where 〈EDS〉 is a quasilinear Pfaffian system and 〈identifier〉 is used to create an
indexed 0-form which will parameterise the matrix.

Example:

% With the same system as for symbol_relations:

symbol_matrix(S,xi);

[xi - xi ]
[ x y]
[ ]
[xi - xi ]
[ y x]

characteristic_variety

The characteristic_variety operator returns the equations specifying the
characteristic variety for a quasilinear system in terms of a given variable. The
syntax is

characteristic_variety(〈EDS〉, 〈identifier〉)

where 〈EDS〉 is a quasilinear Pfaffian system and 〈identifier〉 is used to create an
indexed 0-form variable. The result is a list of two lists: the first being the variety
equations and the second the variables involved.

Example:

% With the same system as for symbol_relations:

characteristic_variety(S,xi);
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2 2
{{(xi ) - (xi ) },

x y
{xi ,xi }}

x y

16.23.16 Command tables

The tables in this appendix summarise the commands available in EDS. More de-
tailed descriptions of the syntax and function of each command are to be found in
the earlier sections. In each case, examples of the command are given, whereby
the argument variables have the following types (see section 16.23.2):

E, E′ 〈EDS〉
S 〈system〉
M , N 〈coframing〉, or a 〈system〉 specifying a 〈coframing〉
r 〈integer〉
Ω 〈p-form〉
f 〈map〉
rsx 〈list of inequalities〉
cob 〈list of 1-form variables〉
crd, dep, ind 〈list of 0-form variables〉
drv 〈list of rules for exterior derivatives〉
pde 〈list of expressions or equations〉
X 〈transform〉
T 〈tableau〉
P 〈integral element〉
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Command Function

coframing(cob,crd,rsx,drv) constructs a 〈coframing〉with the given coba-
sis cob, coordinates crd, restrictions rsx and
structure equations drv: crd, rsx and drv are
optional

coframing(S) constructs a 〈coframing〉 capable of support-
ing the given 〈system〉

eds(S,Ω,M) constructs a simple 〈EDS〉 object with given
system and independence condition: if M is
not supplied, it is deduced from the rest

contact(r,M,N) constructs the 〈EDS〉 for the contact system
of the jet bundle Jr(M,N)

pde2eds(pde,dep,ind) converts a PDE system to an EDS: dependent
and independent variables are deduced if they
are not specified (variable dependencies are
removed)

set_coframing(M)
set_coframing(E)

sets background coframing and returns previ-
ous one

set_coframing() clears background coframing and returns pre-
vious one

Table 16.1: Commands for constructing EDS objects
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Command Function

coframing(E) extracts the underlying 〈coframing〉

coframing() returns the current background coframing

cobasis(M)
cobasis(E)

extracts the underlying cobasis

coordinates(M)
coordinates(E)

extracts the coordinates

structure_equations(M)
structure_equations(E)

extracts the rules for exterior derivatives for
cobasis and coordinates

restrictions(M)
restrictions(E)

extracts the inequalities describing the re-
strictions in the 〈coframing〉

system(E) extracts the 〈system〉 part of E

independence(E) extracts the independence condition from E
as a Pfaffian 〈system〉

properties(E) returns the currently known properties of
the 〈EDS〉 E as a list of equations
〈keyword〉=〈value〉

one_forms(E)
one_forms(S)

selects the 1-forms from a system

zero_forms(E)
zero_forms(S)

selects the 0-forms from a system

Table 16.2: Commands for inspecting EDS objects
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Command Function

augment(E,S) appends the extra forms in S to the system in
E

M cross N
E cross N

forms the direct product of two coframings:
an 〈EDS〉 E is lifted to the extended space

pullback(E,f)
pullback(S,f)
pullback(Ω,f)

pulls back the first argument using the 〈map〉
f

pullback(M,f) returns a 〈coframing〉 N suitable as the
source for f : N →M

restrict(E,f)
restrict(S,f)
restrict(Ω,f)

restricts the first argument to the points spec-
ified by the 〈map〉 f

restrict(M,f) adds the restrictions in f to M

transform(M,X)
transform(E,X)
transform(S,X)
transform(Ω,X)

applies the change of cobasis X to the first
argument: for a 〈coframing〉M or an 〈EDS〉
E, X may be specified in either the forward
or reverse direction

lift(E) eliminates any 0-forms in E by solving and
pulling back

Table 16.3: Commands for manipulating EDS objects
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Command Function

cartan_system(E)
cartan_system(S)
cartan_system(Ω)

calculates the Cartan system (associated Pfaff
system, retracting space): no differentiations
are performed

cauchy_system(E)
cauchy_system(S)
cauchy_system(Ω)

calculates the Cauchy system: the Cartan sys-
tem of the closure under exterior differentia-
tion

characters(E)
characters(T)

calculates the (reduced) Cartan characters
{s1, ..., sn} (E quasilinear)

characters(E,P) Cartan characters for a non-linear E at inte-
gral element P

closure(E) calculates the closure ofE under exterior dif-
ferentiation

derived_system(E)
derived_system(S)

calculates the first derived system of the Pfaf-
fian system E or S

dim_grassmann_variety(E)
dim_grassmann_variety(E,P)

dimension of the Grassman bundle variety of
integral elements: for non-linear E, the base
element P must be given

dim(M)
dim(E)

returns the manifold dimension

involution(E) repeatedly prolongs E to involution (or in-
consistency)

linearise(E,P) linearise the (non-linear) EDSE with respect
to the integral element P

integral_element(E) find a random 〈integral element〉 of E

prolong(E) prolongs E, and projects back down to a sub-
variety of the original manifold if integrabil-
ity conditions arise

tableau(E) calculates the 〈tableau〉 of the quasilinear
Pfaffian 〈EDS〉 E

torsion(E) returns a 〈system〉 of 0-forms specifying the
integrability conditions for the semilinear or
quasilinear Pfaffian 〈EDS〉 E

grassmann_variety(E) returns the contact 〈EDS〉 for the Grassmann
bundle of n-planes over the manifold of E,
augmented by the 0-forms specifying the va-
riety of integral elements of E

Table 16.4: Commands for analysing exterior systems
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Command Function

closed(E)
closed(S)
closed(Ω)

checks for closure under exterior differ-
entiation

involutive(E) applies Cartan’s test for involution

pfaffian(E) checks if E is generated by 1-forms and their
exterior derivatives

quasilinear(E) tests if the closure of E can be generated by
forms at most linear in the complement of the
independence condition

semilinear(E) tests if the closure of E is quasilinear and, in
addition, the coefficients of the linear terms
contain only independent variables or con-
stants

E equiv E′ checks whether E and E′ are algebraically
equivalent

Table 16.5: Commands for testing exterior systems

Switch Function

edsverbose if on, displays additional information as cal-
culations progress

edsdebug if on, produces copious quantities of internal
information, in addition to that produced by
edsverbose

edssloppy if on, allows EDS to divide by expressions
not known to be non-zero and treats quasilin-
ear systems as semilinear

edsdisjoint if on, forces varieties to be decomposed into
disjoint components

ranpos
genpos

if on, uses a random or generic flag of inte-
gral elements when calculating Cartan char-
acters: otherwise the independence condition
as presented guides the choice of flag

Table 16.6: Switches (all off by default)



556 CHAPTER 16. USER CONTRIBUTED PACKAGES

Command Function

coordinates(S) scans the expressions in S for coordinates

invert(X) returns the inverse 〈transform〉 X−1

structure_equations(X)
structure_equations(X,X−1)

returns exterior derivatives of lhs(X)

linear_divisors(Ω) calculates a basis for the space of 1-form fac-
tors of Ω

exfactors(Ω) as for linear_divisors, but with the ad-
ditional (non-linear) factor

index_expand(any) returns a list of copies of its argument, with
free EXCALC indices replaced by successive
values from the relevant index range

pde2jet(pde,dep,ind) converts a PDE system into jet bundle nota-
tion, replacing derivatives by jet bundle co-
ordinates (variable dependencies are not af-
fected)

mkdepend(list) restores variable dependencies destroyed by
pde2eds

disjoin({f, g, ...}) decomposes the variety specified by the given
〈map〉 variables into a disjoint union

cleanup(E)
cleanup(M)

returns a fresh copy of E or M with all prop-
erties and stored results removed

reorder(E)
reorder(M)

returns a fresh copy of E or M , conforming
to the prevailing REDUCE kernel order

Table 16.7: Auxilliary functions
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Command Function

poincare(Ω) calculates the homotopy integral from the
proof of Poincaré’s lemma: if Ω is exact, then
the result is a form whose exterior derivative
gives back Ω

invariants(E,crd)
invariants(S,crd)

calculates the invariants (first integrals) of a
completely integrable Pfaffian system using
the inductive proof of the Frobenius theorem:
the optional second argument specifies the or-
der in which the coordinates are to be pro-
jected away

symbol_relations(E,π) returns relations between the entries of the
tableau matrix, represented by 2-indexed 〈1-
form〉 variables πa

i

symbol_matrix(E,ξ) returns the symbol matrix for a quasilinear
〈EDS〉 E as a function of 〈0-form〉 variables
ξi

characteristic_variety(E,ξ) returns equations describing the characteris-
tic variety ofE in terms of 〈0-form〉 variables
ξi

Table 16.8: Experimental functions (unstable)
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16.24 EXCALC: A differential geometry package

EXCALC is designed for easy use by all who are familiar with the calculus of Mod-
ern Differential Geometry. The program is currently able to handle scalar-valued
exterior forms, vectors and operations between them, as well as non-scalar valued
forms (indexed forms). It is thus an ideal tool for studying differential equations,
doing calculations in general relativity and field theories, or doing simple things
such as calculating the Laplacian of a tensor field for an arbitrary given frame.

Author: Eberhard Schrüfer.
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16.24.1 Introduction

EXCALC is designed for easy use by all who are familiar with the calculus of
Modern Differential Geometry. Its syntax is kept as close as possible to standard
textbook notations. Therefore, no great experience in writing computer algebra
programs is required. It is almost possible to input to the computer the same as what
would have been written down for a hand-calculation. For example, the statement

f*x^y + u _| (y^z^x)

would be recognized by the program as a formula involving exterior products and
an inner product. The program is currently able to handle scalar-valued exterior
forms, vectors and operations between them, as well as non-scalar valued forms
(indexed forms). With this, it should be an ideal tool for studying differential
equations, doing calculations in general relativity and field theories, or doing such
simple things as calculating the Laplacian of a tensor field for an arbitrary given
frame. With the increasing popularity of this calculus, this program should have an
application in almost any field of physics and mathematics.

Since the program is completely embedded in REDUCE, all features and facilities
of REDUCE are available in a calculation. Even for those who are not quite com-
fortable in this calculus, there is a good chance of learning it by just playing with
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the program.

This is the last release of version 2. A much extended differential geometry pack-
age (which includes complete symbolic index simplification, tensors, mappings,
bundles and others) is under development.

Complaints and comments are appreciated and should be send to the author. If the
use of this program leads to a publication, this document should be cited, and a
copy of the article to the above address would be welcome.

16.24.2 Declarations

Geometrical objects like exterior forms or vectors are introduced to the system by
declaration commands. The declarations can appear anywhere in a program, but
must, of course, be made prior to the use of the object. Everything that has no
declaration is treated as a constant; therefore zero-forms must also be declared.

An exterior form is introduced by

PFORM < declaration1>, < declaration2>, . . . ;

where

< declaration> ::= < name> | < list of names>=< number> | < identifier> |
< expression>
< name> ::= < identifier> | < identifier>(< arguments>)

For example

pform u=k,v=4,f=0,w=dim-1;

declares U to be an exterior form of degree K, V to be a form of degree 4, F to be a
form of degree 0 (a function), and W to be a form of degree DIM-1.

If the exterior form should have indices, the declaration would be

pform curv(a,b)=2,chris(a,b)=1;

The names of the indices are arbitrary.

Exterior forms of the same degree can be grouped into lists to save typing.

pform {x,y,z}=0,{rho(k,l),u,v(k)}=1;

The declaration of vectors is similar. The command TVECTOR takes a list of
names.

TVECTOR < name1>, < name2>, . . . ;
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For example, to declare X as a vector and COMM as a vector with two indices, one
would say

tvector x,comm(a,b);

If a declaration of an already existing name is made, the old declaration is removed,
and the new one is taken.

The exterior degree of a symbol or a general expression can be obtained with the
function

EXDEGREE < expression>;

Example:

exdegree(u + 3*chris(k,-k));

1

16.24.3 Exterior Multiplication

Exterior multiplication between exterior forms is carried out with the nary infix op-
erator ˆ (wedge). Factors are ordered according to the usual ordering in REDUCE
using the commutation rule for exterior products.

Example 10

pform u=1,v=1,w=k;

u^v;

U^V

v^u;

- U^V

u^u;

0

w^u^v;

K
( - 1) *U^V^W



561

(3*u-a*w)^(w+5*v)^u;

A*(5*U^V^W - U^W^W)

It is possible to declare the dimension of the underlying space by

SPACEDIM < number> | < identifier>;

If an exterior product has a degree higher than the dimension of the space, it is
replaced by 0:

spacedim 4;

pform u=2,v=3;

u^v;

0

16.24.4 Partial Differentiation

Partial differentiation is denoted by the operator @. Its capability is the same as the
REDUCE DF operator.

Example 11

@(sin x,x);

COS(X)

@(f,x);

0

An identifier can be declared to be a function of certain variables. This is done
with the command FDOMAIN. The following would tell the partial differentiation
operator that F is a function of the variables X and Y and that H is a function of X.

fdomain f=f(x,y),h=h(x);

Applying @ to F and H would result in

@(x*f,x);
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F + X*@ F
X

@(h,y);

0

The partial derivative symbol can also be an operator with a single argument. It
then represents a natural base element of a tangent vector.

Example 12

a*@ x + b*@ y;

A*@ + B*@
X Y

16.24.5 Exterior Differentiation

Exterior differentiation of exterior forms is carried out by the operator d. Products
are normally differentiated out, i.e.

pform x=0,y=k,z=m;

d(x * y);

X*d Y + d X^Y

d(r*y);

R*d Y

d(x*y^z);

K
( - 1) *X*Y^d Z + X*d Y^Z + d X^Y^Z

This expansion can be suppressed by the command NOXPND D.

noxpnd d;

d(y^z);
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d(Y^Z)

To obtain a canonical form for an exterior product when the expansion is switched
off, the operator D is shifted to the right if it appears in the leftmost place.

d y ^ z;

K
- ( - 1) *Y^d Z + d(Y^Z)

Expansion is performed again when the command XPND D is executed.

Functions which are implicitly defined by the FDOMAIN command are expanded
into partial derivatives:

pform x=0,y=0,z=0,f=0;

fdomain f=f(x,y);

d f;

@ F*d X + @ F*d Y
X Y

If an argument of an implicitly defined function has further dependencies the chain
rule will be applied e.g.

fdomain y=y(z);

d f;

@ F*d X + @ F*@ Y*d Z
X Y Z

Expansion into partial derivatives can be inhibited by NOXPND @ and enabled
again by XPND @.

The operator is of course aware of the rules that a repeated application always leads
to zero and that there is no exterior form of higher degree than the dimension of
the space.

d d x;
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0

pform u=k;
spacedim k;

d u;

0

16.24.6 Inner Product

The inner product between a vector and an exterior form is represented by the
diphthong _| (underscore or-bar), which is the notation of many textbooks. If the
exterior form is an exterior product, the inner product is carried through any factor.

Example 13

pform x=0,y=k,z=m;

tvector u,v;

u _| (x*y^z);

K
X*(( - 1) *Y^U _| Z + U _| Y^Z)

In repeated applications of the inner product to the same exterior form the vector
arguments are ordered e.g.

(u+x*v) _| (u _| (3*z));

- 3*U _| V _| Z

The duality of natural base elements is also known by the system, i.e.

pform {x,y}=0;

(a*@ x+b*@(y)) _| (3*d x-d y);

3*A - B
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16.24.7 Lie Derivative

The Lie derivative can be taken between a vector and an exterior form or between
two vectors. It is represented by the infix operator |_ . In the case of Lie differen-
tiating, an exterior form by a vector, the Lie derivative is expressed through inner
products and exterior differentiations, i.e.

pform z=k;

tvector u;

u |_ z;

U _| d Z + d(U _| Z)

If the arguments of the Lie derivative are vectors, the vectors are ordered using the
anticommutivity property, and functions (zero forms) are differentiated out.

Example 14

tvector u,v;

v |_ u;

- U |_ V

pform x=0,y=0;

(x*u) |_ (y*v);

- U*Y*V _| d X + V*X*U _| d Y + X*Y*U |_ V

16.24.8 Hodge-* Duality Operator

The Hodge-* duality operator maps an exterior form of degree K to an exterior form
of degree N-K, where N is the dimension of the space. The double application
of the operator must lead back to the original exterior form up to a factor. The
following example shows how the factor is chosen here

spacedim n;
pform x=k;

# # x;
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2
(K + K*N)

( - 1) *X*SGN

The indeterminate SGN in the above example denotes the sign of the determinant
of the metric. It can be assigned a value or will be automatically set if more of
the metric structure is specified (via COFRAME), i.e. it is then set to g/|g|, where
g is the determinant of the metric. If the Hodge-* operator appears in an exterior
product of maximal degree as the leftmost factor, the Hodge-* is shifted to the right
according to

pform {x,y}=k;

# x ^ y;

2
(K + K*N)

( - 1) *X^# Y

More simplifications are performed if a coframe is defined.

16.24.9 Variational Derivative

The function VARDF returns as its value the variation of a given Lagrangian n-form
with respect to a specified exterior form (a field of the Lagrangian). In the shared
variable BNDEQ!*, the expression is stored that has to yield zero if integrated over
the boundary.

Syntax:

VARDF(<Lagrangian n-form>,< exterior form>)

Example 15

spacedim 4;

pform l=4,a=1,j=3;

l:=-1/2*d a ^ # d a - a^# j$ %Lagrangian of the e.m. field

vardf(l,a);

- (# J + d # d A) %Maxwell’s equations
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bndeq!*;

- ’A^# d A %Equation at the boundary

Restrictions:

In the current implementation, the Lagrangian must be built up by the fields and
the operations d, #, and @. Variation with respect to indexed quantities is currently
not allowed.

For the calculation of the conserved currents induced by symmetry operators (vec-
tor fields), the function NOETHER is provided. It has the syntax:

NOETHER(<Lagrangian n-form>,< field>,< symmetry generator>)

Example 16

pform l=4,a=1,f=2;

spacedim 4;

l := -1/2*d a^#d a; %Free Maxwell field;

tvector x; %An unspecified generator;

noether(l,a,x);

- 2*d(x _| a)^# d a + d a^x _| # d a - x _| d a^# d a
--------------------------------------------------------

2

The above expression would be the canonical energy momentum 3-forms of the
Maxwell field, if X is interpreted as a translation;

16.24.10 Handling of Indices

Exterior forms and vectors may have indices. On input, the indices are given as
arguments of the object. A positive argument denotes a superscript and a negative
argument a subscript. On output, the indexed quantity is displayed two dimension-
ally if NAT is on. Indices may be identifiers or numbers.

Example 17
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pform om(k,l)=m,e(k)=1;

e(k)^e(-l);

K
E ^E

L

om(4,-2);

4
OM

2

In the current release, full simplification is performed only if an index range is
specified. It is hoped that this restriction can be removed soon. If the index range
(the values that the indices can obtain) is specified, the given expression is evalu-
ated for all possible index values, and the summation convention is understood.

Example 18

indexrange t,r,ph,z;

pform e(k)=1,s(k,l)=2;

w := e(k)*e(-k);

T R PH Z
W := E *E + E *E + E *E + E *E

T R PH Z

s(k,l):=e(k)^e(l);

T T
S := 0

R T T R
S := - E ^E

PH T T PH
S := - E ^E

.
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.

.

If the expression to be evaluated is not an assignment, the values of the expression
are displayed as an assignment to an indexed variable with name NS. This is done
only on output, i.e. no actual binding to the variable NS occurs.

e(k)^e(l);

T T
NS := 0

R T T R
NS := - E ^E

.

.

.

It should be noted, however, that the index positions on the variable NS can some-
times not be uniquely determined by the system (because of possible reorderings in
the expression). Generally it is advisable to use assignments to display complicated
expressions.

A range can also be assigned to individual index-names. For example, the declara-
tion

indexrange {k,l}={x,y,z},{u,v,w}={1,2};

would assign to the index identifiers k,l the range values x,y,z and to the index
identifiers u,v,w the range values 1,2. The use of an index identifier not listed in
previous indexrange statements has the range of the union of all given index ranges.

With the above example of an indexrange statement, the following index evalua-
tions would take place

pform w n=0;

w(k)*w(-k);

X Y Z
W *W + W *W + W *W
X Y Z
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w(u)*w(-u);

1 2
W *W + W *W
1 2

w(r)*w(-r);

1 2 X Y Z
W *W + W *W + W *W + W *W + W *W
1 2 X Y Z

In certain cases, one would like to inhibit the summation over specified index
names, or at all. For this the command

NOSUM < indexname1>, . . . ;

and the switch NOSUM are available. The command NOSUM has the effect that
summation is not performed over those indices which had been listed. The com-
mand RENOSUM enables summation again. The switch NOSUM, if on, inhibits any
summation.

It is possible to declare symmetry properties for an indexed quantity by the com-
mand INDEX_SYMMETRIES. A prototypical example is as follows

index_symmetries u(k,l,m,n): symmetric in {k,l},{m,n}
antisymmetric in {{k,l},{m,n}},

g(k,l),h(k,l): symmetric;

It declares the object u symmetric in the first two and last two indices and anti-
symmetric with respect to commutation of the given index pairs. If an object is
completely symmetric or antisymmetric, the indices need not to be given after the
corresponding keyword as shown above for g and h.

If applicable, this command should be issued, since great savings in memory and
execution time result. Only strict components are printed.

The commands symmetric and antisymmetric of earlier releases have no effect.

16.24.11 Metric Structures

A metric structure is defined in EXCALC by specifying a set of basis one-forms
(the coframe) together with the metric.
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Syntax:

COFRAME < identifier>< (index1)>=< expression1>,
< identifier>< (index2)>=< expression2>,
.
.
.
< identifier>< (indexn)>=< expressionn>

WITH METRIC < name>=< expression>;

This statement automatically sets the dimension of the space and the index range.
The clause WITH METRIC can be omitted if the metric is Euclidean and the short-
hand WITH SIGNATURE <diagonal elements> can be used in the case
of a pseudo-Euclidean metric. The splitting of a metric structure in its metric ten-
sor coefficients and basis one-forms is completely arbitrary including the extremes
of an orthonormal frame and a coordinate frame.

Example 19

coframe e r=d r, e(ph)=r*d ph
with metric g=e(r)*e(r)+e(ph)*e(ph); %Polar coframe

coframe e(r)=d r,e(ph)=r*d(ph); %Same as before

coframe o(t)=d t, o x=d x
with signature -1,1; %A Lorentz coframe

coframe b(xi)=d xi, b(eta)=d eta %A lightcone coframe
with metric w=-1/2*(b(xi)*b(eta)+b(eta)*b(xi));

coframe e r=d r, e ph=d ph %Polar coordinate
with metric g=e r*e r+r**2*e ph*e ph; %basis

Individual elements of the metric can be accessed just by calling them with the
desired indices. The value of the determinant of the covariant metric is stored in
the variable DETM!*. The metric is not needed for lowering or raising of indices
as the system performs this automatically, i.e. no matter in what index position
values were assigned to an indexed quantity, the values can be retrieved for any
index position just by writing the indexed quantity with the desired indices.

Example 20

coframe e t=d t,e x=d x,e y=d y
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with signature -1,1,1;

pform f(k,l)=0;

index_symmetries f(k,l): antisymmetric;

f(k,l) := 0$
f(-t,-x):=ex$ f(-x,-y):=b$
on nero;

f(k,-l);

X
NS := - EX

T

T
NS := - EX

X

Y
NS := - B

X

X
NS := B

Y

Any expression containing differentials of the coordinate functions will be trans-
formed into an expression of the basis one-forms.The system also knows how to
take the exterior derivative of the basis one-forms.

Example 21(Spherical coordinates)

coframe e(r)=d(r), e(th)=r*d(th), e(ph)=r*sin(th)*d(ph);

d r^d th;

R TH
(E ^E )/R

d(e(th));

R TH
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(E ^E )/R

pform f=0;

fdomain f=f(r,th,ph);

factor e;

on rat;

d f; %The "gradient" of F in spherical coordinates;

R TH PH
E *@ F + (E *@ F)/R + (E *@ F)/(R*SIN(TH))

R TH PH

The frame dual to the frame defined by the COFRAME command can be introduced
by FRAME command.

FRAME < identifier>;

This command causes the dual property to be recognized, and the tangent vectors
of the coordinate functions are replaced by the frame basis vectors.

Example 22

coframe b r=d r,b ph=r*d ph,e z=d z; %Cylindrical coframe;

frame x;

on nero;

x(-k) _| b(l);

R
NS := 1
R

PH
NS := 1

PH

Z
NS := 1
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Z

x(-k) |_ x(-l); %The commutator of the dual frame;

NS := X /R
PH R PH

NS := ( - X )/R %i.e. it is not a coordinate base;
R PH PH

As a convenience, the frames can be displayed at any point in a program by the
command DISPLAYFRAME;.

The Hodge-* duality operator returns the explicitly constructed dual element if
applied to coframe base elements. The metric is properly taken into account.

The total antisymmetric Levi-Cevita tensor EPS is also available. The value of
EPS with an even permutation of the indices in a covariant position is taken to be
+1.

16.24.12 Riemannian Connections

The command RIEMANNCONX is provided for calculating the connection 1 forms.
The values are stored on the name given to RIEMANNCONX. This command is far
more efficient than calculating the connection from the differential of the basis
one-forms and using inner products.

Example 23(Calculate the connection 1-form and curvature 2-form on S(2))

coframe e th=r*d th,e ph=r*sin(th)*d ph;

riemannconx om;

om(k,-l); %Display the connection forms;

TH
NS := 0

TH

PH PH
NS := (E *COS(TH))/(SIN(TH)*R)
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TH

TH PH
NS := ( - E *COS(TH))/(SIN(TH)*R)

PH

PH
NS := 0

PH

pform curv(k,l)=2;

curv(k,-l):=d om(k,-l) + om(k,-m)^om(m-l);
%The curvature forms

TH
CURV := 0

TH

PH TH PH 2
CURV := ( - E ^E )/R

TH %Of course it was a sphere with
%radius R.

TH TH PH 2
CURV := (E ^E )/R

PH

PH
CURV := 0

PH

16.24.13 Killing Vectors

The command KILLING_VECTOR is provided for calculating the determining
system of partial differential equations of Killing vectors for a given metric struc-
ture provided by the coframe statement. The result is a list where the first entry is
a vector constructed from the identifier given to the command and the second entry
consists of a list of partial differential equations for the coefficients of this vector.

Example 24(Calculate the determining pde’s for a Killing vector of S(2))
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coframe e th = d th,e ph = sin th*d ph;

killing_vector u;

ph th
{@ *u + @ *u ,
ph th

th
{@ (u ),

th

ph 2 th
@ (u )*sin(th) + @ (u ),
th ph

th ph
cos(th)*u + @ (u )*sin(th)}}

ph

16.24.14 Ordering and Structuring

The ordering of an exterior form or vector can be changed by the command
FORDER. In an expression, the first identifier or kernel in the arguments of
FORDER is ordered ahead of the second, and so on, and ordered ahead of all not
appearing as arguments. This ordering is done on the internal level and not only on
output. The execution of this statement can therefore have tremendous effects on
computation time and memory requirements. REMFORDER brings back standard
ordering for those elements that are listed as arguments.

An expression can be put in a more structured form by renaming a subexpression.
This is done with the command KEEP which has the syntax

KEEP < name1>=< expression1>,< name2>=< expression2>, . . .

The effect is that rules are set up for simplifying < name> without introducing its
definition in an expression. In an expression the system also tries by reordering to
generate as many instances of < name> as possible.

Example 25

pform x=0,y=0,z=0,f=0,j=3;



577

keep j=d x^d y^d z;

j;

J

d j;

0

j^d x;

0

fdomain f=f(x);

d f^d y^d z;

@ F*J
X

The capabilities of KEEP are currently very limited. Only exterior products should
occur as righthand sides in KEEP.
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16.24.15 Summary of Operators and Commands

Table 16.9 summarizes EXCALC commands and the page number they are defined
on.

^ Exterior Multiplication 560
@ Partial Differentiation 561
@ Tangent Vector 562
# Hodge-* Operator 565
_| Inner Product 564
|_ Lie Derivative 565
COFRAME Declaration of a coframe 571
d Exterior differentiation 562
DISPLAYFRAME Displays the frame 574
EPS Levi-Civita tensor 574
EXDEGREE Calculates the exterior degree of an expression 560
FDOMAIN Declaration of implicit dependencies 561
FORDER Ordering command 576
FRAME Declares the frame dual to the coframe 573
INDEXRANGE Declaration of indices 568
INDEX_SYMMETRIES Declares arbitrary index symmetry properties 570
KEEP Structuring command 576
KILLING_VECTOR Structuring command 575
METRIC Clause of COFRAME to specify a metric 571
NOETHER Calculates the Noether current 567
NOSUM Inhibits summation convention 570
NOXPND d Inhibits the use of product rule for d 562
NOXPND @ Inhibits expansion into partial derivatives 563
PFORM Declaration of exterior forms 559
REMFORDER Clears ordering 576
RENOSUM Enables summation convention 570
RIEMANNCONX Calculation of a Riemannian Connection 574
SIGNATURE Clause of COFRAME to specify a pseudo- 571

Euclidean metric
SPACEDIM Command to set the dimension of a space 561
TVECTOR Declaration of vectors 559
VARDF Variational derivative 566
XPND d Enables the use of product rule for d 563

(default)
XPND @ Enables expansion into partial derivatives 563

(default)

Table 16.9: EXCALC Command Summary
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16.24.16 Examples

The following examples should illustrate the use of EXCALC. It is not intended
to show the most efficient or most elegant way of stating the problems; rather the
variety of syntactic constructs are exemplified. The examples are on a test file
distributed with EXCALC.

% Problem: Calculate the PDE’s for the isovector of the heat equation.
% --------
% (c.f. B.K. Harrison, f.B. Estabrook, "Geometric Approach...",
% J. Math. Phys. 12, 653, 1971)

% The heat equation @ psi = @ psi is equivalent to the set of exterior
% xx t

% equations (with u=@ psi, y=@ psi):
% T x

pform {psi,u,x,y,t}=0,a=1,{da,b}=2;

a := d psi - u*d t - y*d x;

da := - d u^d t - d y^d x;

b := u*d x^d t - d y^d t;

% Now calculate the PDE’s for the isovector.

tvector v;

pform {vpsi,vt,vu,vx,vy}=0;
fdomain vpsi=vpsi(psi,t,u,x,y),vt=vt(psi,t,u,x,y),vu=vu(psi,t,u,x,y),

vx=vx(psi,t,u,x,y),vy=vy(psi,t,u,x,y);

v := vpsi*@ psi + vt*@ t + vu*@ u + vx*@ x + vy*@ y;

factor d;
on rat;

i1 := v |_ a - l*a;

pform o=1;

o := ot*d t + ox*d x + ou*d u + oy*d y;

fdomain f=f(psi,t,u,x,y);
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i11 := v _| d a - l*a + d f;

let vx=-@(f,y),vt=-@(f,u),vu=@(f,t)+u*@(f,psi),vy=@(f,x)+y*@(f,psi),
vpsi=f-u*@(f,u)-y*@(f,y);

factor ^;

i2 := v |_ b - xi*b - o^a + zeta*da;

let ou=0,oy=@(f,u,psi),ox=-u*@(f,u,psi),
ot=@(f,x,psi)+u*@(f,y,psi)+y*@(f,psi,psi);

i2;

let zeta=-@(f,u,x)-@(f,u,y)*u-@(f,u,psi)*y;

i2;

let xi=-@(f,t,u)-u*@(f,u,psi)+@(f,x,y)+u*@(f,y,y)+y*@(f,y,psi)+@(f,psi);

i2;

let @(f,u,u)=0;

i2; % These PDE’s have to be solved.

clear a,da,b,v,i1,i11,o,i2,xi,t;
remfdomain f,vpsi,vt,vu,vx,vy;
clear @(f,u,u);

% Problem:
% --------
% Calculate the integrability conditions for the system of PDE’s:
% (c.f. B.F. Schutz, "Geometrical Methods of Mathematical Physics"
% Cambridge University Press, 1984, p. 156)

% @ z /@ x + a1*z + b1*z = c1
% 1 1 2

% @ z /@ y + a2*z + b2*z = c2
% 1 1 2

% @ z /@ x + f1*z + g1*z = h1
% 2 1 2
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% @ z /@ y + f2*z + g2*z = h2
% 2 1 2 ;

pform w(k)=1,integ(k)=4,{z(k),x,y}=0,{a,b,c,f,g,h}=1,
{a1,a2,b1,b2,c1,c2,f1,f2,g1,g2,h1,h2}=0;

fdomain a1=a1(x,y),a2=a2(x,y),b1=b1(x,y),b2=b2(x,y),
c1=c1(x,y),c2=c2(x,y),f1=f1(x,y),f2=f2(x,y),
g1=g1(x,y),g2=g2(x,y),h1=h1(x,y),h2=h2(x,y);

a:=a1*d x+a2*d y$
b:=b1*d x+b2*d y$
c:=c1*d x+c2*d y$
f:=f1*d x+f2*d y$
g:=g1*d x+g2*d y$
h:=h1*d x+h2*d y$

% The equivalent exterior system:
factor d;
w(1) := d z(-1) + z(-1)*a + z(-2)*b - c;
w(2) := d z(-2) + z(-1)*f + z(-2)*g - h;
indexrange 1,2;
factor z;
% The integrability conditions:

integ(k) := d w(k) ^ w(1) ^ w(2);

clear a,b,c,f,g,h,x,y,w(k),integ(k),z(k);
remfdomain a1,a2,b1,c1,c2,f1,f2,g1,g2,h1,h2;

% Problem:
% --------
% Calculate the PDE’s for the generators of the d-theta symmetries of
% the Lagrangian system of the planar Kepler problem.
% c.f. W.Sarlet, F.Cantrijn, Siam Review 23, 467, 1981
% Verify that time translation is a d-theta symmetry and calculate the
% corresponding integral.

pform {t,q(k),v(k),lam(k),tau,xi(k),eta(k)}=0,theta=1,f=0,
{l,glq(k),glv(k),glt}=0;

tvector gam,y;

indexrange 1,2;

fdomain tau=tau(t,q(k),v(k)),xi=xi(t,q(k),v(k)),f=f(t,q(k),v(k));



582 CHAPTER 16. USER CONTRIBUTED PACKAGES

l := 1/2*(v(1)**2 + v(2)**2) + m/r$ % The Lagrangian.

pform r=0;
fdomain r=r(q(k));
let @(r,q 1)=q(1)/r,@(r,q 2)=q(2)/r,q(1)**2+q(2)**2=r**2;

lam(k) := -m*q(k)/r; % The force.

gam := @ t + v(k)*@(q(k)) + lam(k)*@(v(k))$

eta(k) := gam _| d xi(k) - v(k)*gam _| d tau$

y := tau*@ t + xi(k)*@(q(k)) + eta(k)*@(v(k))$ % Symmetry generator.

theta := l*d t + @(l,v(k))*(d q(k) - v(k)*d t)$

factor @;

s := y |_ theta - d f$

glq(k) := @(q k) _| s;
glv(k) := @(v k) _| s;
glt := @(t) _| s;

% Translation in time must generate a symmetry.
xi(k) := 0;
tau := 1;

glq k := glq k;
glv k := glv k;
glt;

% The corresponding integral is of course the energy.
integ := - y _| theta;

clear l,lam k,gam,eta k,y,theta,s,glq k,glv k,glt,t,q k,v k,tau,xi k;
remfdomain r,f,tau,xi;

% Problem:
% --------
% Calculate the "gradient" and "Laplacian" of a function and the "curl"
% and "divergence" of a one-form in elliptic coordinates.

coframe e u = sqrt(cosh(v)**2 - sin(u)**2)*d u,
e v = sqrt(cosh(v)**2 - sin(u)**2)*d v,
e phi = cos u*sinh v*d phi;
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pform f=0;

fdomain f=f(u,v,phi);

factor e,^;
on rat,gcd;
order cosh v, sin u;
% The gradient:
d f;

factor @;
% The Laplacian:
# d # d f;

% Another way of calculating the Laplacian:
-#vardf(1/2*d f^#d f,f);

remfac @;

% Now calculate the "curl" and the "divergence" of a one-form.

pform w=1,a(k)=0;

fdomain a=a(u,v,phi);

w := a(-k)*e k;
% The curl:
x := # d w;

factor @;
% The divergence:
y := # d # w;

remfac @;
clear x,y,w,u,v,phi,e k,a k;
remfdomain a,f;

% Problem:
% --------
% Calculate in a spherical coordinate system the Navier Stokes equations.

coframe e r=d r, e theta =r*d theta, e phi = r*sin theta *d phi;
frame x;

fdomain v=v(t,r,theta,phi),p=p(r,theta,phi);

pform v(k)=0,p=0,w=1;
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% We first calculate the convective derivative.

w := v(-k)*e(k)$

factor e; on rat;

cdv := @(w,t) + (v(k)*x(-k)) |_ w - 1/2*d(v(k)*v(-k));

%next we calculate the viscous terms;

visc := nu*(d#d# w - #d#d w) + mu*d#d# w;

% Finally we add the pressure term and print the components of the
% whole equation.

pform nasteq=1,nast(k)=0;

nasteq := cdv - visc + 1/rho*d p$

factor @;

nast(-k) := x(-k) _| nasteq;

remfac @,e;

clear v k,x k,nast k,cdv,visc,p,w,nasteq,e k;
remfdomain p,v;

% Problem:
% --------
% Calculate from the Lagrangian of a vibrating rod the equation of
% motion and show that the invariance under time translation leads
% to a conserved current.

pform {y,x,t,q,j}=0,lagr=2;

fdomain y=y(x,t),q=q(x),j=j(x);

factor ^;

lagr := 1/2*(rho*q*@(y,t)**2 - e*j*@(y,x,x)**2)*d x^d t;

vardf(lagr,y);

% The Lagrangian does not explicitly depend on time; therefore the
% vector field @ t generates a symmetry. The conserved current is
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pform c=1;
factor d;

c := noether(lagr,y,@ t);

% The exterior derivative of this must be zero or a multiple of the
% equation of motion (weak conservation law) to be a conserved current.

remfac d;

d c;

% i.e. it is a multiple of the equation of motion.

clear lagr,c,j,y,q;
remfdomain y,q,j;

% Problem:
% --------
% Show that the metric structure given by Eguchi and Hanson induces a
% self-dual curvature.
% c.f. T. Eguchi, P.B. Gilkey, A.J. Hanson, "Gravitation, Gauge Theories
% and Differential Geometry", Physics Reports 66, 213, 1980

for all x let cos(x)**2=1-sin(x)**2;

pform f=0,g=0;
fdomain f=f(r), g=g(r);

coframe o(r) = f*d r,
o(theta) = (r/2)*(sin(psi)*d theta - sin(theta)*cos(psi)*d phi),

o(phi) = (r/2)*(-cos(psi)*d theta - sin(theta)*sin(psi)*d phi),
o(psi) = (r/2)*g*(d psi + cos(theta)*d phi);

frame e;

pform gamma(a,b)=1,curv2(a,b)=2;
index_symmetries gamma(a,b),curv2(a,b): antisymmetric;

factor o;

gamma(-a,-b) := -(1/2)*( e(-a) _| (e(-c) _| (d o(-b)))
-e(-b) _| (e(-a) _| (d o(-c)))
+e(-c) _| (e(-b) _| (d o(-a))) )*o(c)$

curv2(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c)$
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let f=1/g,g=sqrt(1-(a/r)**4);

pform chck(k,l)=2;
index_symmetries chck(k,l): antisymmetric;

% The following has to be zero for a self-dual curvature.

chck(k,l) := 1/2*eps(k,l,m,n)*curv2(-m,-n) + curv2(k,l);

clear gamma(a,b),curv2(a,b),f,g,chck(a,b),o(k),e(k),r,phi,psi;
remfdomain f,g;

% Example: 6-dimensional FRW model with quadratic curvature terms in
% -------
% the Lagrangian (Lanczos and Gauss-Bonnet terms).
% cf. Henriques, Nuclear Physics, B277, 621 (1986)

for all x let cos(x)**2+sin(x)**2=1;

pform {r,s}=0;
fdomain r=r(t),s=s(t);

coframe o(t) = d t,
o(1) = r*d u/(1 + k*(u**2)/4),
o(2) = r*u*d theta/(1 + k*(u**2)/4),
o(3) = r*u*sin(theta)*d phi/(1 + k*(u**2)/4),
o(4) = s*d v1,
o(5) = s*sin(v1)*d v2

with metric g =-o(t)*o(t)+o(1)*o(1)+o(2)*o(2)+o(3)*o(3)
+o(4)*o(4)+o(5)*o(5);

frame e;

on nero; factor o,^;

riemannconx om;

pform curv(k,l)=2,{riemann(a,b,c,d),ricci(a,b),riccisc}=0;

index_symmetries curv(k,l): antisymmetric,
riemann(k,l,m,n): antisymmetric in {k,l},{m,n}

symmetric in {{k,l},{m,n}},
ricci(k,l): symmetric;

curv(k,l) := d om(k,l) + om(k,-m)^om(m,l);

riemann(a,b,c,d) := e(d) _| (e (c) _| curv(a,b));

% The rest is done in the Ricci calculus language,
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ricci(-a,-b) := riemann(c,-a,-d,-b)*g(-c,d);

riccisc := ricci(-a,-b)*g(a,b);

pform {laglanc,inv1,inv2} = 0;

index_symmetries riemc3(k,l),riemri(k,l),
hlang(k,l),einst(k,l): symmetric;

pform {riemc3(i,j),riemri(i,j)}=0;

riemc3(-i,-j) := riemann(-i,-k,-l,-m)*riemann(-j,k,l,m)$
inv1 := riemc3(-i,-j)*g(i,j);
riemri(-i,-j) := 2*riemann(-i,-k,-j,-l)*ricci(k,l)$
inv2 := ricci(-a,-b)*ricci(a,b);
laglanc := (1/2)*(inv1 - 4*inv2 + riccisc**2);

pform {einst(a,b),hlang(a,b)}=0;

hlang(-i,-j) := 2*(riemc3(-i,-j) - riemri(-i,-j) -
2*ricci(-i,-k)*ricci(-j,K) +
riccisc*ricci(-i,-j) - (1/2)*laglanc*g(-i,-j));

% The complete Einstein tensor:

einst(-i,-j) := (ricci(-i,-j) - (1/2)*riccisc*g(-i,-j))*alp1 +
hlang(-i,-j)*alp2$

alp1 := 1$
factor alp2;

einst(-i,-j) := einst(-i,-j);

clear o(k),e(k),riemc3(i,j),riemri(i,j),curv(k,l),riemann(a,b,c,d),
ricci(a,b),riccisc,t,u,v1,v2,theta,phi,r,om(k,l),einst(a,b),
hlang(a,b);

remfdomain r,s;

% Problem:
% --------
% Calculate for a given coframe and given torsion the Riemannian part and
% the torsion induced part of the connection. Calculate the curvature.

% For a more elaborate example see E.Schruefer, F.W. Hehl, J.D. McCrea,
% "Application of the REDUCE package EXCALC to the Poincare gauge field
% theory of gravity", GRG Journal, vol. 19, (1988) 197--218
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pform {ff, gg}=0;

fdomain ff=ff(r), gg=gg(r);

coframe o(4) = d u + 2*b0*cos(theta)*d phi,
o(1) = ff*(d u + 2*b0*cos(theta)*d phi) + d r,
o(2) = gg*d theta,
o(3) = gg*sin(theta)*d phi

with metric g = -o(4)*o(1)-o(4)*o(1)+o(2)*o(2)+o(3)*o(3);

frame e;

pform {tor(a),gwt(a)}=2,gamma(a,b)=1,
{u1,u3,u5}=0;

index_symmetries gamma(a,b): antisymmetric;

fdomain u1=u1(r),u3=u3(r),u5=u5(r);

tor(4) := 0$

tor(1) := -u5*o(4)^o(1) - 2*u3*o(2)^o(3)$

tor(2) := u1*o(4)^o(2) + u3*o(4)^o(3)$

tor(3) := u1*o(4)^o(3) - u3*o(4)^o(2)$

gwt(-a) := d o(-a) - tor(-a)$

% The following is the combined connection.
% The Riemannian part could have equally well been calculated by the
% RIEMANNCONX statement.

gamma(-a,-b) := (1/2)*( e(-b) _| (e(-c) _| gwt(-a))
+e(-c) _| (e(-a) _| gwt(-b))

-e(-a) _| (e(-b) _| gwt(-c)) )*o(c);

pform curv(a,b)=2;
index_symmetries curv(a,b): antisymmetric;
factor ^;

curv(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c);

clear o(k),e(k),curv(a,b),gamma(a,b),theta,phi,x,y,z,r,s,t,u,v,p,q,c,cs;
remfdomain u1,u3,u5,ff,gg;

showtime;
end;
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16.25 FIDE: Finite difference method for partial differ-
ential equations

This package performs automation of the process of numerically solving partial
differential equations systems (PDES) by means of computer algebra. For PDES
solving, the finite difference method is applied. The computer algebra system RE-
DUCE and the numerical programming language FORTRAN are used in the pre-
sented methodology. The main aim of this methodology is to speed up the process
of preparing numerical programs for solving PDES. This process is quite often,
especially for complicated systems, a tedious and time consuming task.

Documentation for this package is in plain text.

Author: Richard Liska.

16.25.1 Abstract

The FIDE package performs automation of the process of numerical solving par-
tial differential equations systems (PDES) by means of computer algebra. For
PDES solving finite difference method is applied. The computer algebra system
REDUCE and the numerical programming language FORTRAN are used in the
presented methodology. The main aim of this methodology is to speed up the
process of preparing numerical programs for solving PDES. This process is quite
often, especially for complicated systems, a tedious and time consuming task. In
the process one can find several stages in which computer algebra can be used
for performing routine analytical calculations, namely: transforming differential
equations into different coordinate systems, discretization of differential equations,
analysis of difference schemes and generation of numerical programs. The FIDE
package consists of the following modules:

EXPRES for transforming PDES into any orthogonal coordinate system.

IIMET for discretization of PDES by integro-interpolation method.

APPROX for determining the order of approximation of difference scheme.

CHARPOL for calculation of amplification matrix and characteristic polynomial
of difference scheme, which are needed in Fourier stability analysis.

HURWP for polynomial roots locating necessary in verifying the von Neumann
stability condition.

LINBAND for generating the block of FORTRAN code, which solves a system
of linear algebraic equations with band matrix appearing quite often in dif-
ference schemes.
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Version 1.1 of the FIDE package is the result of porting FIDE package to RE-
DUCE 3.4. In comparison with Version 1.0 some features has been changed in the
LINBAND module (possibility to interface several numerical libraries).

References ———-

[1] R. Liska, L. Drska: FIDE: A REDUCE package for automation of FInite dif-
ference method for solving pDE. In ISSAC ’90, Proceedings of the International
Symposium on Symbolic and Algebraic Computation, Ed. S. Watanabe, M. Na-
gata. p. 169-176, ACM Press, Addison Wesley, New York 1990.

16.25.2 EXPRES

A Module for Transforming Differential Operators and Equations into an Arbitrary
Orthogonal Coordinate System

This module makes it possible to express various scalar, vector, and tensor differ-
ential equations in any orthogonal coordinate system. All transformations needed
are executed automatically according to the coordinate system given by the user.
The module was implemented according to the similar MACSYMA module from
[1].

The specification of the coordinate system

The coordinate system is specified using the following statement:

SCALEFACTORS <d>,<tr 1>,...,<tr d>,<cor 1>,...,<cor d>;
<d> ::= 2 | 3 coordinate system dimension
<tr i> ::= "algebraic expression" the expression of the i-th

Cartesian coordinate in new
coordinates

<cor i> ::= "identifier" the i-th new coordinate

All evaluated quantities are transformed into the coordinate system set by the last
SCALEFACTORS statement. By default, if this statement is not applied, the three-
dimensional Cartesian coordinate system is employed. During the evaluation of
SCALEFACTORS statement the metric coefficients, i.e. scale factors SF(i), of a
defined coordinate system are computed and printed. If the WRCHRI switch is
ON, then the nonzero Christoffel symbols of the coordinate system are printed too.
By default the WRCHRI switch is OFF.
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The declaration of tensor quantities

Tensor quantities are represented by identifiers. The VECTORS declaration de-
clares the identifiers as vectors, the DYADS declaration declares the identifiers as
dyads. i.e. two-dimensional tensors, and the TENSOR declaration declares the
identifiers as tensor variables. The declarations have the following syntax:

<declaration> <id 1>,<id 2>,...,<id n>;
<declaration> ::= VECTORS | DYADS | TENSOR
<id i> ::= "identifier"

The value of the identifier V declared as vector in the two-dimensional coordinate
system is (V(1), V(2)), where V(i) are the components of vector V. The value of
the identifier T declared as a dyad is ((T(1,1), T(1,2)), (T(2,1), T(2,2))). The value
of the tensor variable can be any tensor (see below). Tensor variables can be used
only for a single coordinate system, after the coordinate system redefining by a
new SCALEFACTORS statement, the tensor variables have to be re-defined using
the assigning statement.

New infix operators

For four different products between the tensor quantities, new infix operators have
been introduced (in the explaining examples, a two-dimensional coordinate system,
vectors U, V, and dyads T, W are considered):

. - scalar product U.V = U(1)*V(1)+U(2)*V(2)
? - vector product U?V = U(1)*V(2)-U(2)*V(1)
& - outer product U&V = ((U(1)*V(1),U(1)*V(2)),

(U(2)*V(1),U(2)*V(2)))
# - double scalar product T#W = T(1,1)*W(1,1)+T(1,2)*W(1,2)+

T(2,1)*W(2,1)+T(2,2)*W(2,2)

The other usual arithmetic infix operators +, -, *, ** can be used in all situations
that have sense (e.g. vector addition, a multiplication of a tensor by a scalar, etc.).

New prefix operators

New prefix operators have been introduced to express tensor quantities in its com-
ponents and the differential operators over the tensor quantities:

VECT - the explicit expression of a vector in its components

DYAD - the explicit expression of a dyad in its components
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GRAD - differential operator of gradient

DIV - differential operator of divergence

LAPL - Laplace’s differential operator

CURL - differential operator of curl

DIRDF - differential operator of the derivative in direction (1st argument is the
directional vector)

The results of the differential operators are written using the DIFF operator.
DIFF(<scalar>,<cor i>) expresses the derivative of <scalar> with respect to the
coordinate <cor i>. This operator is not further simplified. If the user wants to
make it simpler as common derivatives, he performs the following declaration:

FOR ALL X,Y LET DIFF(X,Y) = DF(X,Y); .

Then, however, we must realize that if the scalars or tensor quantities do not di-
rectly explicitly depend on the coordinates, their dependencies have to be declared
using the DEPEND statements, otherwise the derivative will be evaluated to zero.
The dependence of all vector or dyadic components (as dependence of the name of
vector or dyad) has to appear before VECTORS or DYADS declarations, otherwise
after these declarations one has to declare the dependencies of all components. For
formulating the explicit derivatives of tensor expressions, the differentiation oper-
ator DF can be used (e.g. the differentiation of a vector in its components).

Tensor expressions

Tensor expressions are the input into the EXPRES module and can have a variety
of forms. The output is then the formulation of the given tensor expression in
the specified coordinate system. The most general form of a tensor expression
<tensor> is described as follows (the conditions (d=i) represent the limitation on
the dimension of the coordinate system equalling i):

<tensor> ::= <scalar> | <vector> | <dyad>
<scalar> ::= "algebraic expression, can contain <scalars>" |

"tensor variable with scalar value" |
<vector 1>.<vector 2> | <dyad 1>#<dyad 2> |
(d=2)<vector 1>?<vector 2> | DIV <vector> |
LAPL <scalar> | (d=2) ROT <vector> |
DIRDF(<vector>,<scalar>)

<vector> ::= "identifier declared by VECTORS statement" |
"tensor variable with vector value" |
VECT(<scalar 1>,...,<scalar d>) | -<vector> |
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<vector 1>+<vector 2> | <vector 1>-<vector 2> |
<scalar>*<vector> | <vector>/<scalar> |
<dyad>.<vector> | <vector>.<dyad> | (d=3)
<vector 1>?<vector 2> | (d=2) <vector>?<dyad> |
(d=2) <dyad>?<vector> | GRAD <scalar> |
DIV <dyad> | LAPL <vector> | (d=3) ROT <vector> |
DIRDF(<vector 1>,<vector 2>) | DF(<vector>,"usual
further arguments")

<dyad> ::= "identifier declared by DYADS statement" |
"tensor variable with dyadic value" |
DYAD((<scalar 11>,...,<scalar 1d>),...,(<scalar d1>,
...,<scalar dd>)) | -<dyad> | <dyad 1>+<dyad 2> |
<dyad 1>-<dyad 2> | <scalar>*<dyad> | <dyad>/<scalar>
| <dyad 1>.<dyad 2> | <vector 1>&<vector 2> |
(d=3) <vector>?<dyad> | (d=3) <dyad>?<vector> |
GRAD <vector> | DF(<dyad>,"usual further arguments")

Assigning statement

The assigning statement for tensor variables has a usual syntax, namely:

<tensor variable> := <tensor>
<tensor variable> ::= "identifier declared TENSOR" .

The assigning statement assigns the tensor variable the value of the given tensor
expression, formulated in the given coordinate system. After a change of the coor-
dinate system, the tensor variables have to be redefined.

References ———-

[1] M. C. Wirth, On the Automation of Computational Physics. PhDr Thesis. Re-
port UCRL-52996, Lawrence Livermore National Laboratory, Livermore, 1980.

16.25.3 IIMET

A Module for Discretizing the Systems of Partial Differential Equations

This program module makes it possible to discretize the specified system of par-
tial differential equations using the integro-interpolation method, minimizing the
number of the used interpolations in each independent variable. It can be used
for non-linear systems and vector or tensor variables as well. The user specifies
the way of discretizing individual terms of differential equations, controls the dis-
cretization and obtains various difference schemes according to his own wish.
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Specification of the coordinates and the indices corresponding to them

The independent variables of differential equations will be called coordinates. The
names of the coordinates and the indices that will correspond to the particular coor-
dinates in the difference scheme are defined using the COORDINATES statement:

COORDINATES <coordinate 1>{,<coordinate i>} [ INTO
<index 1>{,<index i>}];

<coordinate i> ::= "identifier" - the name of the coordinate
<index i> ::= "identifier" - the name of the index

This statement specifies that the <coordinate i> will correspond to the <index i>.
A new COORDINATES statement cancels the definitions given by the preceding
COORDINATES statement. If the part [ INTO ... ] is not included in the statement,
the statement assigns the coordinates the indices I, J, K, L, M, N, respectively. If
it is included, the number of coordinates and the number of indices should be the
same.

2.2 Difference grids

In the discretization, orthogonal difference grids are employed. In addition to the
basic grid, called the integer one, there is another, the half-integer grid in each co-
ordinate, whose cellular boundary points lie in the centers of the cells of the integer
grid. The designation of the cellular separating points and centers is determined by
the CENTERGRID switch: if it is ON and the index in the given coordinate is I,
the centers of the grid cells are designated by indices I, I + 1,..., and the boundary
points of the cells by indices I + 1/2,..., if, on the contrary, the switch is OFF, the
cellular centers are designated by indices I + 1/2,..., and the boundary points by
indices I, I + 1,... (see Fig. 2.1).

ON CENTERGRID
I-1/2 I I+1/2 I+1 I+3/2

---|--------|--------|--------------|--------------|----
I I+1/2 I+1 I+3/2 I+2

OFF CENTERGRID

Figure 2.1 Types of grid

In the case of ON CENTERGRID, the indices i,i+1,i-1... thus designate the centers
of the cells of the integer grid and the boundary points of the cells of the half-integer
grid, and, similarly, in the case of OFF CENTERGRID, the boundaries of the cells
of the integer grid and the central points of the half-integer grid. The meaning
of the integer and half-integer grids depends on the CENTERGRID switch in the
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described way. After the package is loaded, the CENTERGRID is ON. Obviously,
this switch is significant only for non-uniform grids with a variable size of each
cell. The grids can be uniform, i.e. with a constant cell size - the step of the grid.
The following statement:

GRID UNIFORM,<coordinate>{,<coordinate>};

defines uniform grids in all coordinates occurring in it. Those coordinates that do
not occur in the GRID UNIFORM statement are supposed to have non-uniform
grids. In the outputs, the grid step is designated by the identifier that is made by
putting the character H before the name of the coordinate. For a uniform grid,
this identifier (e.g. for the coordinate X the grid step HX) has the meaning of a
step of an integer or half-integer grids that are identical. For a non-uniform grid,
this identifier is an operator and has the meaning of a step of an integer grid, i.e.
the length of a cell whose center (in the case of ON CENTERGRID) or beginning
(in the case of OFF CENTERGRID) is designated by a single argument of this
operator. For each coordinate s designated by the identifier i, this step of the integer
non-uniform grid is defined as follows:

Hs(i+j) = s(i+j+1/2) - s(i+j-1/2) at ON CENTERGRID
Hs(i+j) = s(i+j+1) - s(i+j) at OFF CENTERGRID

for all integers j (s(k) designates the value of the coordinate s in the cellular bound-
ary point subscripted with the index k). The steps of the half-integer non-uniform
grid are not applied in outputs.

Declaring the dependence of functions on coordinates

In the system of partial differential equations, two types of functions, in other
words dependent variables can occur: namely, the given functions, whose values
are known before the given system is solved, and the sought functions, whose val-
ues are not available until the system of equations is solved. The functions can be
scalar, vector, or tensor, for vector or tensor functions the EXPRES module has to
be applied at the same time. The names of the functions employed in the given
system and their dependence on the coordinates are specified using the DEPEN-
DENCE statement.

DEPENDENCE <dependence>{,<dependence>};
<dependence> ::= <function>([<order>],<coordinate>{,

<coordinate>})
<function> ::= "identifier" - the name of the function
<order> ::= 1|2 tensor order of the function (the value of

the function is 1 - vector, 2 - dyad (two-
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dimensional tensor))

Every <dependence> in the statement determines on which <coordinates> the
<function> depends. If the tensor <order> of the function occurs in the <de-
pendence>, the <function> is declared as a vector or a dyad. If, however, the
<function> has been declared by the VECTORS and DYADS statements of the
EXPRES module, the user need not present the tensor <order>. By default, a func-
tion without any declaration is regarded as scalar. In the discretization, all scalar
components of tensor functions are replaced by identifiers that arise by putting suc-
cessively the function name and the individual indices of the given component (e.g.
the tensor component T(1,2), written in the EXPRES module as T(1,2), is repre-
sented by the identifier T12). Before the DEPENDENCE statement is executed,
the coordinates have to be defined using the COORDINATES statement. There
may be several DEPENDENCE statements. The DEPENDENCE statement can-
cels all preceding determinations of which grids are to be used for differentiating
the function or the equation for this function. These determinations can be either
defined by the ISGRID or GRIDEQ statements, or computed in the evaluation of
the IIM statement. The GIVEN statement:

GIVEN <function>{,<function>};

declares all functions included in it as given functions whose values are known to
the user or can be computed. The CLEARGIVEN statement:

CLEARGIVEN;

cancels all preceding GIVEN declarations. If the TWOGRID switch is ON, the
given functions can be differentiated both on the integer and the half-integer grids.
If the TWOGRID switch is OFF, any given function can be differentiated only on
one grid. After the package is loaded, the TWOGRID is ON.

Functions and difference grids

Every scalar function or scalar component of a vector or a dyadic function occur-
ring in the discretized system can be discretized in any of the coordinates either
on the integer or half-integer grid. One of the tasks of the IIMET module is to
find the optimum distribution of each of these dependent variables of the system
on the integer and half-integer grids in all variables so that the number of the per-
formed interpolations in the integro-interpolation method will be minimal. Using
the statement

SAME <function>{,<function>};
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all functions given in one of these declarations will be discretized on the same
grids in all coordinates. In each SAME statement, at least one of these functions
in one SAME statement must be the sought one. If the given function occurs in
the SAME statement, it will be discretized only on one grid, regardless of the state
of the TWOGRID switch. If a vector or a dyadic function occurs in the SAME
statement, what has been said above relates to all its scalar components. There
are several SAME statements that can be presented. All SAME statements can be
canceled by the following statement:

CLEARSAME;

The SAME statement can be successfully used, for example, when the given func-
tion depends on the function sought in a complicated manner that cannot be in-
cluded either in the differential equation or in the difference scheme explicitly, and
when both the functions are desired to be discretized in the same points so that
the user will not be forced to execute the interpolation during the evaluation of the
given function. In some cases, it is convenient too to specify directly which vari-
able on which grid is to be discretized, for which case the ISGRID statement is
applied:

ISGRID <s-function>{,<s-function>};
<s-function> ::= <function>([<component>,]<s-grid>{,<s-grid>})
<s-grid> ::= <coordinate> .. <grid>,
<grid> ::= ONE | HALF designation of the integer

(ONE) and half-integer (HALF)
grids

<component> ::= <i-dim> | for the vector <function>
<i-dim>,<i-dim> for the dyadic <function>

it is not presented for the
scalar <function>

<i-dim> ::= *| "natural number from 1 to the space dimension
the space dimension is specified in the EXPRES
module by the SCALEFACTORS statement, * means all
components

The statement defines that the given functions or their components will be dis-
cretized in the specified coordinates on the specified grids, so that, for example,
the statement ISGRID U (X..ONE,Y..HALF), V(1,Z..ONE), T(*,1,X..HALF); de-
fines that scalar U will be discretized on the integer grid in the coordinate X, and
on the half-integer one in the coordinate Y, the first component of vector V will
be on the integer grid in the coordinate Z, and the first column of tensor T will be
on the half-integer grid in the coordinate X. The ISGRID statement can be applied
more times. The functions used in this statement have to be declared before by the
DEPENDENCE statement.
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Equations and difference grids

Every equation of the system of partial differential equations is an equation for
some sought function (specified in the IIM statement). The correspondence be-
tween the sought functions and the equations is mutually unambiguous. The
GRIDEQ statement makes it possible to determine on which grid an individual
equation will be discretized in some or all coordinates

GRIDEQ <g-function>{,<g-function>};
<g-function> ::= <function>(<s-grid>{,<s-grid>})

Every equation can be discretized in any coordinate either on the integer or half-
integer grid. This statement determines the discretization of the equations given by
the functions included in it in given coordinates, on given grids. The meaning of
the fact that an equation is discretized on a certain grid is as follows: index I used
in the DIFMATCH statements (discussed in the following section), specifying the
discretization of the basic terms, will be located in the center of the cell of this
grid, and indices I+1/2, I-1/2 from the DIFMATCH statement on the boundaries
of the cell of this grid. The actual name of the index in the given coordinate is
determined using the COORDINATES statement, and its location on the grid is set
by the CENTERGRID switch.

Discretization of basic terms

The discretization of a system of partial differential equations is executed succes-
sively in individual coordinates. In the discretization of an equation in one coor-
dinate, the equation is linearized into its basic terms first that will be discretized
independently then. If D is the designation for the discretization operator in the
coordinate x, this linearization obeys the following rules:

1. D(a+b) = D(a)+D(b)
2. D(-a) = -D(a)
3. D(p.a) = p.D(a) (p does not depend on the coordinate x)
4. D(a/p) = D(a)/p

The linearization lasts as long as some of these rules can be applied. The basic
terms that must be discretized after the linearization have then the forms of the
following quantities:

1. The actual coordinate in which the discretization is performed.

2. The sought function.

3. The given function.
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4. The product of the quantities 1 - 7.

5. The quotient of the quantities 1 - 7.

6. The natural power of the quantities 1 - 7.

7. The derivative of the quantities 1 - 7 with respect to the actual coordinate.

The way of discretizing these basic terms, while the functions are on integer and
half-integer grids, is determined using the DIFMATCH statement:

DIFMATCH <coordinate>,<pattern term>,{{<grid specification>,}
<number of interpolations>, <discretized term>};

<coordinate> ::= ALL | "identifier" - the coordinate name from
the COORDINATES statement

<pattern term> ::= <pattern coordinate>|
<pattern sought function>|
<pattern given function>|<pattern term> *
<pattern term>|<pattern term> / <pattern term>|
<pattern term> ** <exponent>|
DIFF(<pattern term>,<pattern coordinate>[,<order
of derivative>])|
<declared operator>(<pattern term>{,<pattern term>})

<pattern coordinate> ::= X
<pattern sought function> ::= U | V | W
<pattern given function> ::= F | G
<exponent> ::= N | "integer greater than 1"
<order of derivative> ::= "integer greater than 2"
<grid specification> ::= <pattern function>=<grid>
<pattern function> ::= <pattern sought function>|

<pattern given function>
<number of interpolations> ::= "non-negative integer"
<discretized term> ::= <pattern operator>(<index expression>)|

"natural number"|DI|DIM1|DIP1|DIM2|DIP2|
<declared term> | - <discretized term> |
<discretized term> + <discretized term> |
<discretized term> * <discretized term> |
<discretized term> / <discretized term> |
(<discretized term>) |
<discretized term> **<exponent>

<pattern operator> ::= X | U | V | W | F | G
<index expression> ::= <pattern index> |

<pattern index> + <increment> |
<pattern index> - <increment>

<pattern index> ::= I
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<increment> = "rational number"
DIFCONST <declared term>{,<declared term>};
<declared term> ::= "identifier" - the constant parameter of

the difference scheme.
DIFFUNC <declared operator>{,<declared operator>};
<declared operator> ::= "identifier" - prefix operator, that can

appear in discretized equations (e.g. SIN).

The first parameter of the DIFMATCH statement determines the coordinate for
which the discretization defined in it is valid. If ALL is used, the discretization
will be valid for all coordinates, and this discretization is accepted when it has
been checked whether there has been no other discretization defined for the given
coordinate and the given pattern term. Each pattern sought function, occurring in
the pattern term, must be included in the specification of the grids. The pattern
given functions from the pattern term can occur in the grid specification, but in
some cases (see below) need not. In the grid specification the maximum number
of 3 pattern functions may occur. The discretization of each pattern term has to
be specified in all combinations of the pattern functions occurring in the grid spec-
ification, on the integer and half-integer grids, that is 2**n variants for the grid
specification with n pattern functions (n=0,1,2,3). The discretized term is the dis-
cretization of the pattern term in the pattern coordinate X in the point X(I) on the
pattern grid (see Fig. 2.2), and the pattern functions occurring in the grid specifi-
cation are in the discretized term on the respective grids from this specification (to
the discretized term corresponds the grid specification preceding it).

integer grid
X(I-1) X(I) X(I+1)

| DIM1 | DIP1 |
---|------|------|-------------|-------------|-----|-----|---

| DIM2 | DI | DIP2 |
X(I-3/2) X(I-1/2) X(I+1/2) X(I+3/2)

half-integer grid

Figure 2.2 Pattern grid

The pattern grid steps defined as

DIM2 = X(I - 1/2) - X(I - 3/2)
DIM1 = X(I) - X(I - 1)
DI = X(I + 1/2) - X(I - 1/2)
DIP1 = X(I + 1) - X(I)
DIP2 = X(I + 3/2) - X(I + 1/2)

can occur in the discretized term. In the integro-interpolation method, the dis-
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cretized term is specified by the integral

<discretized term>=1/(X(I+1/2)-X(I-1/2))*DINT(X(I-1/2),X(I+1/2),
<pattern term>,X),

where DINT is operator of definite integration DINT(from, to, function, variable).
The number of interpolations determines how many interpolations were needed for
calculating this integral in the given discrete form (the function on the integer or
half-integer grid). If the integro-interpolation method is not used, the more conve-
nient is the distribution of the functions on the half-integer and integer grids, the
smaller number is chosen by the user. The parameters of the difference scheme
defined by the DIFCONST statement can occur in the discretized expression too
(for example, the implicit-explicit scheme on the implicit layer multiplied by the
constant C and on the explicit one by (1-C)). As a matter of fact, all DIFMATCH
statements create a base of pattern terms with the rules of how to discretize these
terms in individual coordinates under the assumption that the functions occurring
in the pattern terms are on the grids determined in the grid specification (all combi-
nations must be included). The DIFMATCH statement does not check whether the
discretized term is actually the discretization of the pattern term or whether in the
discretized term occur the functions from the grid specification on the grids given
by this specification. An example can be the following definition of the discretiza-
tion of the first and second derivatives of the sought function in the coordinate R
on a uniform grid:

DIFMATCH R,DIFF(U,X),U=ONE,2,(U(I+1)-U(I-1))/(2*DI);
U=HALF,0,(U(I+1/2)-U(I-1/2))/DI;

DIFMATCH R,DIFF(U,X,2),U=ONE,0,(U(I+1)-2*U(I)+U(I-1))/DI**2,
U=HALF,2,(U(I+3/2)-U(I+1/2)-U(I-1/2)+U(I-3/2))/(2*DI**2);

All DIFMATCH statements can be cleared by the statement

CLEARDIFMATCH;

After this statement user has to supply its own DIFMATCH statements. But now
back to the discretizing of the basic terms obtained by the linearization of the par-
tial differential equation, as mentioned at the beginning of this section. Using the
method of pattern matching, for each basic term a term representing its pattern is
found in the base of pattern terms (specified by the DIFMATCH statements). The
pattern matching obeys the following rules:

1. The pattern for the coordinate in which the discretization is executed is the
pattern coordinate X.

2. The pattern for the sought function is some pattern sought function, and this
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correspondence is mutually unambiguous.

3. The pattern for the given function is some pattern given function, or, in case
the EQFU switch is ON, some pattern sought function, and, again, the cor-
respondence of the pattern with the given function is mutually unambiguous
(after loading the EQFU switch is ON).

4. The pattern for the products of quantities is the product of the patterns of
these quantities, irrespective of their sequence.

5. The pattern for the quotient of quantities is the quotient of the patterns of
these quantities.

6. The pattern for the natural power of a quantity is the same power of the
pattern of this quantity or the power of this quantity with the pattern exponent
N.

7. The pattern for the derivative of a quantity with respect to the coordinate in
which the discretization is executed is the derivative of the pattern of this
quantity with respect to the pattern coordinate X of the same order of differ-
entiation.

8. The pattern for the sum of the quantities that have the same pattern with the
identical correspondence of functions and pattern functions is this common
pattern (so that it will not be necessary to multiply the parentheses during
discretizing the products in the second and further coordinates).

When matching the pattern of one basic term, the program finds the pattern term
and the functions corresponding to the pattern functions, maybe also the exponent
corresponding to the pattern exponent N. After determining on which grids the in-
dividual functions and the individual equations will be discretized, which will be
discussed in the next section, the program finds in the pattern term base the dis-
cretized term either with pattern functions on the same grids as are the functions
from the basic term corresponding to them in case that the given equation is differ-
entiated on the integer grid, or with pattern functions on inverse grids (an inverse
integer grid is a half-integer grid, and vice versa) compared with those used for
the functions from the basic term corresponding to them in case the given equation
is differentiated on the half-integer grid (the discretized term in the DIFMATCH
statement is expressed in the point X(I), i.e. on the integer grid, and holds for the
discretizing of the equation on the integer grid; with regard to the substitutions for
the pattern index I mentioned later, it is possible to proceed in this way and not nec-
essary to define the discretization in the points X(I+1/2) too, i.e. on the half-integer
grid). The program replaces in the thus obtained discretized term:

1. The pattern coordinate X with the particular coordinate s in which the dis-
cretization is actually performed.
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2. The pattern index I and the grid steps DIM2, DIM1, DI, DIP1, DIP2 with
the expression given in table 2.1 according to the state of the CENTERGRID
switch and to the fact whether the given equation is discretized on the integer
or half-integer grid (i is the index corresponding to the coordinate s according
to the COORDINATES statement, the grid steps were defined in section 2.2)

3. The pattern functions with the corresponding functions from the basic term
and, possibly, the pattern exponent with the corresponding exponent from
the basic term.

--------------------------------------------------------------------
| the equation discretized on |
| the integer grid | the half-integer grid |
| CENTERGRID |CENTERGRID|CENTERGRID| CENTERGRID |
| OFF | ON | OFF | ON |
|------------------------------------------------------------------|
| I | i | i+1/2 |
|----|-------------------------------------------------------------|
|DIM2|(Hs(i-2)+Hs(i-1))/2| Hs(i-1) |(Hs(i-1)+Hs(i))/2 |
|DIM1| Hs(i-1) | (Hs(i-1)+Hs(i))/2 | Hs(i) |
|DI |(Hs(i-1)+Hs(i))/2 | Hs(i) |(Hs(i)+Hs(i+1))/2 |
|DIP1| Hs(i) | (Hs(i)+Hs(i+1))/2 | Hs(i+1) |
|DIP2|(Hs(i)+Hs(i+1))/2 | Hs(i+1) |(Hs(i+1)+Hs(i+2))/2|
--------------------------------------------------------------------

Table 2.1 Values of the pattern index and
the pattern grid steps.

More details will be given now to the discretization of the given functions and its
specification. The given function may occur in the SAME statement, which makes
it bound with some sought function, in other words it can be discretized only on one
grid. This means that all basic terms, in which this function occurs, must have their
pattern terms in whose discretization definitions by the DIFMATCH statement the
pattern function corresponding to the mentioned given function has to occur in the
grid specification. If the given function does not occur in the SAME statement and
the TWOGRID switch is OFF, i.e. it can be discretized only on one grid again,
the same holds true. If, however, the given function does not occur in the SAME
statement and the TWOGRID switch is ON, i.e. it can be discretized simultane-
ously on the integer and the half-integer grids, then the basic terms of the equations
including this function have their pattern terms in whose discretization definitions
the pattern function corresponding to the mentioned given function need not occur
in the grid specification. If, however, in spite of all, this pattern function in the dis-
cretization definition does occur in the grid specification, it is the alternative with
a smaller number of interpolations occurring in the DIFMATCH statement that
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is selected for each particular basic term with a corresponding pattern (the given
function can be on the integer or half-integer grid). Before the discretization is exe-
cuted, it is necessary to define using the DIFMATCH statements the discretization
of all pattern terms that are the patterns of all basic terms of all equations appearing
in the discretized system in all coordinates. The fact that the pattern terms of the
basic terms of partial equations occur repeatedly in individual systems has made
it possible to create a library of the discretizations of the basic types of pattern
terms using the integro-interpolation method. This library is a component part of
the IIMET module (in its end) and makes work easier for those users who find
the pattern matching mechanism described here too difficult. New DIFMATCH
statements have to be created by those whose equations will contain a basic term
having no pattern in this library, or those who need another method to perform
the discretization. The described implemented algorithm of discretizing the basic
terms is sufficiently general to enable the use of a nearly arbitrary discretization on
orthogonal grids.

Discretization of a system of equations

All statements influencing the run of the discretization that one want use in this
run have to be executed before the discretization is initiated. The COORDI-
NATES, DEPENDENCE, and DIFMATCH statements have to occur in all appli-
cations. Further, if necessary, the GRID UNIFORM, GIVEN, ISGRID, GRIDEQ,
SAME, and DIFCONST statements can be used, or some of the CENTREGRID,
TWOGRID, EQFU, and FULLEQ switches can be set. Only then the discretization
of a system of partial differential equations can be started using the IIM statement:

IIM <array>{,<sought function>,<equation>};
<array> ::= "identifier" - the name of the array for storing

the result
<sought function> ::= "identifier" - the name of the function

whose behavior is described by the
equation

<equation> ::= <left side> = <right side>
<left side> ::= "algebraic expression" , the derivatives are

designated by the DIFF operator
<right side> ::= "algebraic expression"

Hence, in the IIM statement the name of the array in which the resulting difference
schemes will be stored, and the pair sought function - equation, which describes
this function, are specified. The meaning of the relation between the sought func-
tion and its equation during the discretization lies in the fact that the sought function
is preferred in its equation so that the interpolation is not, if possible, used in dis-
cretizing the terms of this equation that contain it. In the equations, the functions
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and the coordinates appear as identifiers. The identifiers that have not been de-
clared as functions by the DEPENDENCE statement or as coordinates by the CO-
ORDINATES statement are considered constants independent of the coordinates.
The partial derivatives are expressed by the DIFF operator that has the same syntax
as the standard differentiation operator DF. The functions and the equations can
also have the vector or tensor character. If these non-scalar quantities are applied,
the EXPRES module has to be used together with the IIMET module, and also
non-scalar differential operators such as GRAD, DIV, etc. can be employed. The
sequence performed by the program in the discretization can be briefly summed up
in the following items:

1. If there are non-scalar functions or equations in a system of equations, they
are automatically converted into scalar quantities by means of the EXPRES
module.

2. In each equation, the terms containing derivatives are transferred to the left
side, and the other terms to the right side of the equation.

3. For each coordinate, with respect to the sequence in which they occur in the
COORDINATES statement, the following is executed:

a) It is determined on which grids all functions and all equations in the actual
coordinate will be discretized, and simultaneously the limits are kept result-
ing from the ISGRID, GRIDEQ, and SAME statements if they were used.
Such a distribution of functions and equations on the grids is selected among
all possible variants that ensures the minimum sum of all numbers of the
interpolations of the basic terms (specified by the DIFMATCH statement) of
all equations if the FULLEQ switch is ON, or of all left sides of the equat-
ions if the FULLEQ switch is OFF (after the loading the FULLEQ switch is
ON).

b) The discretization itself is executed, as specified by the DIFMATCH state-
ments.

4. If the array name is A, then if there is only one scalar equation in the IIM
statement, the discretized left side of this equation is stored in A(0) and the
discretized right side in A(1) (after the transfer mentioned in item 2), if there
are more scalar equations than one in the IIM statement, the discretization of
the left side of the i-th scalar equation is stored in A(i,0) and the discretiza-
tion of the right side in A(i,1).

The IIM statement can be used more times during one program run, and between its
calls, the discretizing process can be altered using other statements of this module.
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Error messages

The IIMET module provides error messages in the case of the user’s errors. Sim-
ilarly as in the REDUCE system, the error reporting is marked with five stars :
"*****" on the line start. Some error messages are identical with those of the
REDUCE system. Here are given some other error messages that require a more
detailed explanation:

***** Matching of X term not found
- the discretization of the pattern term that is the pattern of

the basic term printed on the place X has not been
defined (using the DIFMATCH statement)

***** Variable of type F not defined on grids in DIFMATCH
- in the definition of the discretizing of the pattern term

the given functions were not used in the grid
specification and are needed now

***** X Free vars not yet implemented
- in the grid specification in the DIFMATCH statement

more than 3 pattern functions were used

***** All grids not given for term X
- in the definition of the discretization of the pattern of

the basic term printed on the place X not all
necessary combinations of the grid specification
of the pattern functions were presented

16.25.4 APPROX

A Module for Determining the Precision Order of the Difference Scheme

This module makes it possible to determine the differential equation that is solved
by the given difference scheme, and to determine the order of accuracy of the
solution of this scheme in the grid steps in individual coordinates. The discrete
function values are expanded into the Taylor series in the specified point.

Specification of the coordinates and the indices corresponding to them

The COORDINATES statement, described in the IIMET module manual, speci-
fying the coordinates and the indices corresponding to them is the same for this
program module as well. It has the same meaning and syntax. The present module
version assumes a uniform grid in all coordinates. The grid step in the input dif-
ference schemes has to be designated by an identifier consisting of the character H
and the name of the coordinate, e.g. the step of the coordinate X is HX.



607

Specification of the Taylor expansion

In the determining of the approximation order, all discrete values of the functions
are expanded into the Taylor series in all coordinates. In order to determine the
Taylor expansion, the program needs to know the point in which it performs this
expansion, and the number of terms in the Taylor series in individual coordinates.
The center of the Taylor expansion is specified by the CENTER statement and the
number of terms in the Taylor series in individual coordinates by the MAXORDER
statement:

CENTER <center>{,<center>};
<center> ::= <coordinate> = <increment>
<increment> ::= "rational number"
MAXORDER <order>{,<order>};
<order> ::= <coordinate> = <number of terms>
<number of terms> ::= "natural number"

The increment in the CENTER statement determines that the center of the Taylor
expansion in the given coordinate will be in the point specified by the index I +
<increment>, where I is the index corresponding to this coordinate, defined using
the COORDINATES statement, e.g. the following example

COORDINATE T,X INTO N,J;
CENTER T = 1/2, X = 1;
MAXORDER T = 2, X = 3;

specifies that the center of the Taylor expansion will be in the point (t(n+1/2),x(j+1))
and that until the second derivatives with respect to t (second powers of ht) and un-
til the third derivatives with respect to x (third powers of hx) the expansion will
be performed. The CENTER and MAXORDER statements can be placed only
after the COORDINATES statement. If the center of the Taylor expansion is not
defined in some coordinate, it is supposed to be in the point given by the index
of this coordinate (i.e. zero increment). If the number of the terms of the Taylor
expansion is not defined in some coordinate, the expansion is performed until the
third derivatives with respect to this coordinate.

Function declaration

All functions whose discrete values are to be expanded into the Taylor series must
be declared using the FUNCTIONS statement:

FUNCTIONS <name of function>{,<name of function>};
<name of function> ::= "identifier"
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In the specification of the difference scheme, the functions are used as operators
with one or more arguments, designating the discrete values of the functions. Each
argument is the sum of the coordinate index (from the COORDINATES statement)
and a rational number. If some index is omitted in the arguments of a function, this
functional value is supposed to lie in the point in which the Taylor expansion is
performed, as specified by the CENTER statement. In other words, if the COOR-
DINATES and CENTER statements, shown in the example in the previous section,
are valid, then it holds that U(N+1) = U(N+1,J+1) and U(J-1) = U(N+1/2,J-1). The
FUNCTIONS statement can declare both the sought and the known functions for
the expansion.

Order of accuracy determination

The order of accuracy of the difference scheme is determined by the APPROX
statement:

APPROX (<diff. scheme>);
<diff. scheme> ::= <l. side> = <r. side>
<l. (r.) side> ::= "algebraic expression"

In the difference scheme occur the functions in the form described in the preceding
section, the coordinate indices and the grid steps described in section 3.1, and the
other symbolic parameters of the difference scheme. The APPROX statement ex-
pands all discrete values of the functions declared in the FUNCTIONS statement
into the Taylor series in all coordinates (the point in which the Taylor expansion
is performed is specified by the CENTER statement, and the number of the ex-
pansion terms by the MAXORDER statement), substitutes the expansions into the
difference scheme, which gives a modified differential equation. The modified dif-
ferential equation, containing the grid steps too, is an equation that is really solved
by the difference scheme (into the given orders in the grid steps). The partial
differential equation, whose solution is approximated by the difference scheme, is
determined by replacing the grid steps by zeros and is displayed after the following
message:

"Difference scheme approximates differential equation"

Then the following message is displayed:

"with orders of approximation:"

and the lowest powers (except for zero) of the grid steps in all coordinates, occur-
ring in the modified differential equation are written. If the PRAPPROX switch
is ON, then the rest of the modified differential equation is printed. If this rest is
added to the left hand side of the approximated differential equation, one obtain
modified equation. By default the PRAPPROX switch is OFF. If the grid steps are
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found in some denominator in the modified equation, i.e. with a negative exponent,
the following message is written, preceding the approximated differential equation:

"Reformulate difference scheme, grid steps remain in denominator"

and the approximated differential equation is not correctly determined (one of its
sides is zero). Generally, this message means that there is a term in the difference
scheme that is not a difference replacement of the derivative, i.e. the ratio of the
differences of the discrete function values and the discrete values of the coordinates
(the steps of the difference grid). The user, however, must realize that in some cases
such a term occurs purposefully in the difference scheme (e.g. on the grid boundary
to keep the scheme conservative).

16.25.5 CHARPOL

A Module for Calculating the Amplification Matrix and the Characteristic Polyno-
mial of the Difference Scheme

This program module is used for the first step of the stability analysis of the differ-
ence scheme using the Fourier method. It substitutes the Fourier components into
the difference scheme, calculates the amplification matrix of the scheme for tran-
sition from one time layer to another, and computes the characteristic polynomial
of this matrix.

Commands common with the IIMET module

The COORDINATES and GRID UNIFORM statements, described in the IIMET
module manual, are applied in this module as well, having the same meaning and
syntax. The time coordinate is assumed to be designated by the identifier T. The
present module version requires all coordinates to have uniform grids, i.e. to be
declared in the GRID UNIFORM statement. The grid step in the input difference
schemes has to be designated by the identifier consisting of the character H and the
name of the coordinate, e.g. the step of the time coordinate T is HT.

Function declaration

The UNFUNC statement declares the names of the sought functions used in the
difference scheme:

UNFUNC <function>{,<function>}
<function> ::= "identifier" - the name of the sought function

The functions are used in the difference schemes as operators with one or more
arguments for designating the discrete function values. Each argument is the sum
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of the index (from the COORDINATES statement) and a rational number. If some
index is omitted in the function arguments, this function value is supposed to lie in
the point specified only by this index, which means that, with the indices N and J
and the function U, it holds that U(N+1) = U(N+1,J) and U(J-1) = U(N,J-1). As
two-step (in time) difference schemes may be used only, the time index may occur
either completely alone in the arguments, or in the sum with a one.

Amplification matrix

The AMPMAT matrix operator computes the amplification matrix of a two-step
difference scheme. Its argument is an one column matrix of the dimension (1,k),
where k is the number of the equations of the difference scheme, that contains the
difference equations of this scheme as algebraic expressions equal to the difference
of the right and left sides of the difference equations. The value of the AMPMAT
matrix operator is the square amplification matrix of the dimension (k,k). During
the computation of the amplification matrix, two new identifiers are created for
each spatial coordinate. The identifier made up of the character K and the name
of the coordinate represents the wave number in this coordinate, and the identi-
fier made up of the character A and the name of the coordinate represents the
product of this wave number and the grid step in this coordinate divided by the
least common multiple of all denominators occurring in the scheme in the function
argument containing the index of this coordinate. On the output an equation is dis-
played defining the latter identifier. For example, if in the case of function U and
index J in the coordinate X the expression U(J+1/2) has been used in the scheme
(and, simultaneously, no denominator higher than 2 has occurred in the arguments
with J), the following equation is displayed: AX: = (KX*HX)/2. The definition
of these quantities As allows to express every sum occurring in the argument of
the exponentials as the sum of these quantities multiplied by integers, so that after
a transformation, the amplification matrix will contain only sin(As) and cos(As)
(for all spatial coordinates s). The AMPMAT operator performs these transforma-
tions automatically. If the PRFOURMAT switch is ON (after the loading it is ON),
the matrices H0 and H1 (the amplification matrix is equal to -H1**(-1)*H0) are
displayed during the evaluation of the AMPMAT operator. These matrices can be
used for finding a suitable substitution for the goniometric functions in the next
run for a greater simplification. The TCON matrix operator transforms the square
matrix into a Hermit-conjugate matrix, i.e. a transposed and complex conjugate
one. Its argument is the square matrix and its value is Hermit-conjugate matrix of
the argument. The Hermit-conjugate matrix is used for testing the normality and
unitarity of the amplification matrix in the determining of the sufficient stability
condition.
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Characteristic polynomial

The CHARPOL operator calculates the characteristic polynomial of the given
square matrix. The variable of the characteristic polynomial is designated by the
LAM identifier. The operator has one argument, the square matrix, and its value is
its characteristic polynomial in LAM.

Automatic denotation

Several statements and procedures are designed for automatic denotation of some
parts of algebraic expressions by identifiers. This denotation is namely useful when
we obtain very large expressions, which cannot fit into the available memory. We
can denote subparts of an expression from the previous step of calculation by iden-
tifiers, replace these subparts by these identifiers and continue the analytic calcu-
lation only with these identifiers. Every time we use this technique we have to
explicitly survive in processed expressions those algebraic quantities which will be
necessary in the following steps of calculation. The process of denotation and re-
placement is performed automatically and the algebraic values which are denoted
by these new identifiers can be written out at any time. We describe how this au-
tomatic denotation can be used. The statement DENOTID defines the beginning
letters of newly created identifiers. Its syntax is

DENOTID <id>;
<id> ::= "identifier"

After this statement the new identifiers created by the operators DENOTEPOL and
DENOTEMAT will begin with the letters of the identifier <id> used in this state-
ment. Without using any DENOTID statement all new identifiers will begin with
one letter A. We suggest to use this statement every time before using operators
DENOTEPOL or DENOTEMAT with some new identifier and to choose identi-
fiers used in this statement in such a way that the newly created identifiers are not
equal to any identifiers used in the expressions you are working with. The operator
DENOTEPOL has one argument, a polynomial in LAM, and denotes the real and
imaginary part of its coefficients by new identifiers. The real part of the j-th LAM
power coefficient is denoted by the identifier <id>R0j and the imaginary part by
<id>I0j, where <id> is the identifier used in the last DENOTID statement. The
denotation is done only for non-numeric coefficients. The value of this operator
is the polynomial in LAM with coefficients constructed from the new identifiers.
The algebraic expressions which are denoted by these identifiers are stored as LISP
data structure standard quotient in the LISP variable DENOTATION!* (assoc. list).
The operator DENOTEMAT has one argument, a matrix, and denotes the real and
imaginary parts of its elements. The real part of the (j,k) matrix element is denoted
by the identifier <id>Rjk and the imaginary part by <id>Ijk. The returned value of
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the operator is the original matrix with non-numeric elements replaced by <id>Rjk
+ I*<id>Ijk. Other matters are the same as for the DENOTEPOL operator. The
statement PRDENOT has the syntax

PRDENOT;

and writes from the variable DENOTATION!* the definitions of all new identifiers
introduced by the DENOTEPOL and DENOTEMAT operators since the last call of
CLEARDENOT statement (or program start) in the format defined by the present
setting of output control declarations and switches. The definitions are written in
the same order as they have been entered, so that the definitions of the first DE-
NOTEPOL or DENOTEMAT operators are written first. This order guarantees
that this statement can be utilized directly to generate a semantically correct nu-
merical program (the identifiers from the first denotation can appear in the second
one, etc.). The statement CLEARDENOT with the syntax

CLEARDENOT;

clears the variable DENOTATION!*, so that all denotations saved earlier by the
DENOTEPOL and DENOTEMAT operators in this variable are lost. The PRDE-
NOT statement succeeding this statement writes nothing.

16.25.6 HURWP

A Module for Polynomial Roots Locating

This module is used for verifying the stability of a polynomial, i.e. for verifying
if all roots of a polynomial lie in a unit circle with its center in the origin. By
investigating the characteristic polynomial of the difference scheme, the user can
determine the conditions of the stability of this scheme.

Conformal mapping

The HURW operator transforms a polynomial using the conformal mapping
LAM=(z+1)/(z-1). Its argument is a polynomial in LAM and its value is a trans-
formed polynomial in LAM (LAM=z). If P is a polynomial in LAM, then it holds:
all roots LAM1i of the polynomial P are in their absolute values smaller than one,
i.e. |LAM1i|<1, iff the real parts of all roots LAM2i of the HURW(P) polynomial
are negative, i.e. Re (LAM2i)<0. The elimination of the unit polynomial roots
(LAM=1), which has to occur before the conformal transformation is performed,
is made by the TROOT1 operator. The argument of this operator is a polynomial
in LAM and its value is a polynomial in LAM not having its root equal to one any
more. Mostly, the investigated polynomial has some more parameters. For some
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special values of those parameters, the polynomial may have a unit root. During
the evaluation of the TROOT1 operator, the condition concerning the polynomial
parameters is displayed, and if it is fulfilled, the resulting polynomial has a unit
root.

Investigation of polynomial roots

The HURWITZP operator checks whether a polynomial is the Hurwitz polynomial,
i.e. whether all its roots have negative real parts. The argument of the HURWITZP
operator is a polynomial in LAM with real or complex coefficients, and its value
is YES if the argument is the Hurwitz polynomial. It is NO if the argument is
not the Hurwitz polynomial, and COND if it is the Hurwitz polynomial when the
conditions displayed by the HURWITZP operator during its analysis are fulfilled.
These conditions have the form of inequalities and contain algebraic expressions
made up of the polynomial coefficients. The conditions have to be valid either si-
multaneously, or they are designated and a proposition is created from them by the
AND and OR logic operators that has to be fulfilled (it is the condition concerning
the parameters occurring in the polynomial coefficient) by a polynomial to be the
Hurwitz one. This proposition is the sufficient condition, the necessary condition
is the fulfillment of all the inequalities displayed. If the HURWITZP operator is
called interactively, the user is directly asked if the inequalities are or are not valid.
The user responds "Y" if the displayed inequality is valid, "N" if it is not, and "?"
if he does not know whether the inequality is true or not.

16.25.7 LINBAND

A Module for Generating the Numeric Program for Solving a System of Linear
Algebraic Equations with Band Matrix

The LINBAND module generates the numeric program in the FORTRAN lan-
guage, which solves a system of linear algebraic equations with band matrix us-
ing the routine from the LINPACK, NAG ,IMSL or ESSL program library. As
input data only the system of equations is given to the program. Automatically, the
statements of the FORTRAN language are generated that fill the band matrix of
the system in the corresponding memory mode of chosen library, call the solving
routine, and assign the chosen variables to the solution of the system. The module
can be used for solving linear difference schemes often having the band matrix.

Program generation

The program in the FORTRAN language is generated by the GENLINBANDSOL
statement (the braces in this syntax definition occur directly in the program and do
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not have the usual meaning of the possibility of repetition, they designate REDUCE
lists):

GENLINBANDSOL (<n-lower>,<n-upper>,{<system>});
<n-lower> ::= "natural number"
<n-upper> ::= "natural number"
<system> ::= <part of system> | <part of system>,<system>
<part of system>::= {<variable>,<equation>} | <loop>
<variable> ::= "kernel"
<equation> ::= <left side> = <right side>
<left side> ::= "algebraic expression"
<right side> ::= "algebraic expression"
<loop> ::= {DO,{<parameter>,<from>,<to>,<step>},<c-system>}
<parameter> ::= "identifier"
<from> ::= <i-expression>
<to> ::= <i-expression>
<step> ::= <i-expression>
<i-expression> ::= "algebraic expression" with natural value

(evaluated in FORTRAN)
<c-system> ::= <part of c-system> | <part of c-system>,<c-

system>
<part of c-system> ::= {<variable>,<equation>}

The first and second argument of the GENLINBANDSOL statement specifies the
number of the lower (below the main diagonal) and the upper diagonals of the
band matrix of the system. The system of linear algebraic equations is specified
by means of lists expressed by braces in the REDUCE system. The variables of
the equation system can be identifiers, but most probably they are operators with an
argument or with arguments that are analogous to array in FORTRAN. The left side
of each equation has to be a linear combination of the system variables, the right
side, on the contrary, is not allowed to contain any variables of the system. The
sequence of the band matrix lines is given by the sequence of the equations, and
the sequence of the columns by the sequence of the variables in the list describing
the equation system. The meaning of the loop in the system list is similar to that of
the DO loop of the FORTRAN language. The individual variables and equations
described by the loop are obtained as follows:

1. <parameter> = <from>. 2. The <parameter> value is substituted into the vari-
ables and equations of the <c-system> loop, by which further variables and equat-
ions of the system are obtained. 3. <parameter> is increased by <step>. 4. If
<parameter> is less or equal <to>, then go to step 2, else all variables and equat-
ions described by the loop have already been obtained.

The variables and equations of the system included in the loop usually contain the
loop parameter, which mostly occur in the operator arguments in the REDUCE
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language, or in the array indices in the FORTRAN language. If NL = <n-lower>,
NU = <n-upper>, and for some loop F = <from>, T = <to>, S = <step> and N is
the number of the equations in the loop <c-system>, it has to be true that

UP(NL/N) + UP(NU/N) < DOWN((T-F)/S)

where UP represents the rounding-off to a higher natural number, and DOWN the
rounding-off to a lower natural number. With regard to the fact that, for example,
the last variable before the loop is not required to equal the last variable from the
loop system, into which the loop parameter equal to F-S is substituted, when the
band matrix is being constructed, from the FORTRAN loop that corresponds to the
loop from the specification of the equation system, at least the first NL variables-
equations have to be moved to precede the FORTRAN loop, and at least the last
NU variables-equations have to be moved to follow this loop in order that the cor-
respondence of the system variables in this loop with the system variables before
and after this loop will be secured. And this move requires the above mentioned
condition to be fulfilled. As, in most cases, NL/N and NU/N are small with respect
to (T-F)/S, this condition does not represent any considerable constrain. The loop
parameters <from>, <to>, and <step> can be natural numbers or expressions that
must have natural values in the run of the FORTRAN program.

Choosing the numerical library

The user can choose the routines of which numerical library will be used in the
generated FORTRAN code. The supported numerical libraries are: LINPACK,
NAG, IMSL and ESSL (IBM Engineering and Scientific Subroutine Library) .
The routines DGBFA, DGBSL (band solver) and DGTSL (tridiagonal solver) are
used from the LINPACK library, the routines F01LBF, F04LDF (band solver) and
F01LEF, F04LEF (tridiagonal solver) are used from the NAG library, the routine
LEQT1B is used from the IMSL library and the routines DGBF, DGBS (band
solver) and DGTF, DGTS (tridiagonal solver) are used from the ESSL library. By
default the LINPACK library routines are used. The using of other libraries is con-
trolled by the switches NAG,IMSL and ESSL. All these switches are by default
OFF. If the switch IMSL is ON then the IMSL library routine is used. If the switch
IMSL is OFF and the switch NAG is ON then NAG library routines are used. If
the switches IMSL and NAG are OFF and the switch ESSL is ON then the ESSL
library is used. During generating the code using LINPACK, NAG or ESSL li-
braries the special routines are use for systems with tridiagonal matrices, because
tridiagonal solvers are faster than the band matrix solvers.
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Completion of the generated code

The GENLINBANDSOL statement generates a block of FORTRAN code ( a block
of statements of the FORTRAN language) that performs the solution of the given
system of linear algebraic equations. In order to be used, this block of code has to
be completed with some declarations and statements, thus getting a certain enve-
lope that enables it to be integrated into the main program. In order to be able to
work, the generated block of code has to be preceded by:

1. The declaration of arrays as described by the comments generated into the
FORTRAN code (near the calling of library routines)

2. The assigning the values to the integer variables describing the real dimen-
sions of used arrays (again as described in generated FORTRAN comments)

3. The filling of the variables that can occur in the loop parameters.

4. The filling or declaration of all variables and arrays occurring in the system
equations, except for the variables of the system of linear equations.

5. The definition of subroutine ERROUT the call to which is generated after
some routines found that the matrix is algorithmically singular

The mentioned envelope for the generated block can be created manually, or di-
rectly using the GENTRAN program package for generating numeric programs.
The LINBAND module itself uses the GENTRAN package, and the GENLIN-
BANDSOL statement can be applied directly in the input files of the GENTRAN
package (template processing). The GENTRAN package has to be loaded prior to
loading of the LINBAND module. The generated block of FORTRAN code has to
be linked with the routines from chosen numerical library.

References ———-
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16.26 FPS: Automatic calculation of formal power series

This package can expand a specific class of functions into their corresponding
Laurent-Puiseux series.

Authors: Wolfram Koepf and Winfried Neun.

16.26.1 Introduction

This package can expand functions of certain type into their corresponding
Laurent-Puiseux series as a sum of terms of the form

∞∑
k=0

ak(x− x0)mk/n+s

where m is the ‘symmetry number’, s is the ‘shift number’, n is the ‘Puiseux
number’, and x0 is the ‘point of development’. The following types are supported:

• functions of ‘rational type’, which are either rational or have a rational
derivative of some order;

• functions of ‘hypergeometric type’ where a(k+m)/a(k) is a rational func-
tion for some integer m;

• functions of ‘explike type’ which satisfy a linear homogeneous differential
equation with constant coefficients.

The FPS package is an implementation of the method presented in [Koe92]. The
implementations of this package for MAPLE (by D. Gruntz) and MATHEMATICA

(by W. Koepf) served as guidelines for this one.

Numerous examples can be found in [Koe93b]–[Koe93a], most of which are con-
tained in the test file fps.tst. Many more examples can be found in the extensive
bibliography of Hansen [Han75].

16.26.2 REDUCE operator FPS

FPS(f,x,x0) tries to find a formal power series expansion for f with respect
to the variable x at the point of development x0. It also works for formal Lau-
rent (negative exponents) and Puiseux series (fractional exponents). If the third
argument is omitted, then x0:=0 is assumed.

Examples: FPS(asin(x)^2,x) results in
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2*k 2*k 2 2
x *2 *factorial(k) *x

infsum(----------------------------,k,0,infinity)
factorial(2*k + 1)*(k + 1)

FPS(sin x,x,pi) gives

2*k k
( - pi + x) *( - 1) *( - pi + x)

infsum(------------------------------------,k,0,infinity)
factorial(2*k + 1)

and FPS(sqrt(2-x^2),x) yields

2*k
- x *sqrt(2)*factorial(2*k)

infsum(--------------------------------,k,0,infinity)
k 2
8 *factorial(k) *(2*k - 1)

Note: The result contains one or more infsum terms such that it does not interfere
with the REDUCE operator sum. In graphical oriented REDUCE interfaces this
operator results in the usual

∑
notation.

If possible, the output is given using factorials. In some cases, the use of the
Pochhammer symbol pochhammer(a,k):= a(a+1) · · · (a+k−1) is necessary.

The operator FPS uses the operator SimpleDE of the next section.

If an error message of type

Could not find the limit of:

occurs, you can set the corresponding limit yourself and try a recalculation. In the
computation of FPS(atan(cot(x)),x,0), REDUCE is not able to find the
value for the limit limit(atan(cot(x)),x,0) since the atan function is
multi-valued. One can choose the branch of atan such that this limit equals π/2
so that we may set

let limit(atan(cot(~x)),x,0)=>pi/2;

and a recalculation of FPS(atan(cot(x)),x,0) yields the output pi -
2*x which is the correct local series representation.
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16.26.3 REDUCE operator SimpleDE

SimpleDE(f,x) tries to find a homogeneous linear differential equation with
polynomial coefficients for f with respect to x. Make sure that y is not a used
variable. The setting factor df; is recommended to receive a nicer output
form.

Examples: SimpleDE(asin(x)^2,x) then results in

2
df(y,x,3)*(x - 1) + 3*df(y,x,2)*x + df(y,x)

SimpleDE(exp(x^(1/3)),x) gives

2
27*df(y,x,3)*x + 54*df(y,x,2)*x + 6*df(y,x) - y

and SimpleDE(sqrt(2-x^2),x) yields

2
df(y,x)*(x - 2) - x*y

The depth for the search of a differential equation for f is controlled by the vari-
able fps_search_depth; higher values for fps_search_depth will in-
crease the chance to find the solution, but increases the complexity as well. The
default value for fps_search_depth is 5. For FPS(sin(x^(1/3)),x), or
SimpleDE(sin(x^(1/3)),x) e. g., a setting fps_search_depth:=6 is
necessary.

The output of the FPS package can be influenced by the switch tracefps. Set-
ting on tracefps causes various prints of intermediate results.

16.26.4 Problems in the current version

The handling of logarithmic singularities is not yet implemented.

The rational type implementation is not yet complete.

The support of special functions [Koe94a] will be part of the next version.
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16.27 GCREF: A Graph Cross Referencer

This package reuses the code of the RCREF package to create a graph displaying
the interdependency of procedures in a Reduce source code file.

Authors: A. Dolzmann, T. Sturm.

16.27.1 Basic Usage

Similarly to the Reduce cross referencer, it is used via switches as follows:

load_package gcref;
on gcref;
in "<filename>.red";
off gcref;

At off gcref; the graph is printed to the screen in TGF format. To redirect this
output to a file, use the following:

load_package gcref;
on gcref;
in "<filename>.red";
out "<filename>.tgf";
off gcref;
shut "<filename>.tgf";

16.27.2 Shell Script "gcref"

There is a shell script "gcref" in this directory automizing this like

./gcref filename.red

"gcref" is configured to use CSL Reduce. To use PSL Reduce instead, set $RE-
DUCE in the environment. To use PSL by default, define

REDUCE=redpsl

in line 3 of "gcref".

16.27.3 Redering with yED

The obtained TGF file can be viewed with a graph editor. I recommend using the
free software yED, which is written in Java and available for many platforms.
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Note that TGF is not suitable for storing rendering information. After opening the
TGF file with yED, the graph has to be rendered explicitly as follows:

* From menu "Layout" choose "Hierarchical Layout".

To resize the nodes to the procedure names

* from menu "Tools" choose "Fit Node to Label".

Feel free to experiment with yED and use other layout and layout options, which
might be suitable for your particular software.

For saving your particular layout at the end, use the GRAPHML format instead of
TGF.
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16.28 GENTRAN: A code generation package

GENTRAN is an automatic code GENerator and TRANslator. It constructs com-
plete numerical programs based on sets of algorithmic specifications and symbolic
expressions. Formatted FORTRAN, RATFOR, PASCAL or C code can be gener-
ated through a series of interactive commands or under the control of a template
processing routine. Large expressions can be automatically segmented into subex-
pressions of manageable size, and a special file-handling mechanism maintains
stacks of open I/O channels to allow output to be sent to any number of files si-
multaneously and to facilitate recursive invocation of the whole code generation
process.

Author: Barbara L. Gates.
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16.29 GNUPLOT: Display of functions and surfaces

This package is an interface to the popular GNUPLOT package. It allows you to
display functions in 2D and surfaces in 3D on a variety of output devices including
X terminals, PC monitors, and postscript and Latex printer files.

NOTE: The GNUPLOT package may not be included in all versions of REDUCE.

Author: Herbert Melenk.

16.29.1 Introduction

The GNUPLOT system provides easy to use graphics output for curves or surfaces
which are defined by formulas and/or data sets. GNUPLOT supports a variety of
output devices such as VGA screen, postscript, picTEX, MS Windows.
The REDUCE GNUPLOT package lets one use the GNUPLOT graphical output
directly from inside REDUCE, either for the interactive display of curves/surfaces
or for the production of pictures on paper.

16.29.2 Command plot

Under REDUCE GNUPLOT is used as graphical output server, invoked by the com-
mand plot(...). This command can have a variable number of parameters:

• A function to plot; a function can be

– an expression with one unknown, e.g. u*sin(u)ˆ2.

– a list of expressions with one (identical) unknown, e.g. {sin(u),
cos(u)}.

– an expression with two unknowns, e.g. u*sin(u)ˆ2+sqrt(v).

– a list of expressions with two (identical) unknowns, e.g.
{x^2+y^2,x^2-y^2}.

– a parametic expression of the form point(<u>,<v>) or point(<u>,
<v>,<w>) where u,v,w are expressions which depend of one or two
parameters; if there is one parameter, the object describes a curve in the
plane (only u and v) or in 3D space; if there are two parameters, the
object describes a surface in 3D. The parameters are treated as inde-
pendent variables. Example: point(sin t,cos t,t/10).

– an equation with a symbol on the left-hand side and an expression
with one or two unknowns on the right-hand side, e.g. dome=
1/(xˆ2+yˆ2).
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– an equation with an expression on the left-hand side and a zero on
right-hand side describing implicitly a one dimensional variety in the
plane (implicitly given curve), e.g. xˆ3 + x*yˆ2-9x = 0, or a
two-dimensional surface in 3-dimensional Euclidean space,

– an equation with an expression in two variables on the left-hand side
and a list of numbers on the right-hand side; the contour lines corre-
sponding to the given values are drawn, e.g.
xˆ3 - yˆ2 + x*y = {-2,-1,0,1,2}.

– a list of points in 2 or 3 dimensions, e.g. {{0,0},{0,1},{1,1}}
representing a curve,

– a list of lists of points in 2 or 3 dimensions e.g. {{{0,0},{0,1},{1,1}},
{{0,0},{0,1},{1,1}}} representing a family of curves.

• A range for a variable; this has the form variable=(lower_bound,..,
upper_bound) where lower_bound and upper_bound must be ex-
pressions which evaluate to numbers. If no range is specified the de-
fault ranges for independent variables are (−10 .. 10) and the range for
the dependent variable is set to maximum number of the GNUPLOT ex-
ecutable (using double floats on most IEEE machines). Additionally the
number of interval subdivisions can be assigned as a formal quotient
variable=(lower_bound..upper_bound)/<it> where it is a
positive integer. E.g. (1 .. 5)/30 means the interval from 1 to 5 sub-
divided into 30 pieces of equal size. A subdivision parameter overrides the
value of the variable points for this variable.

• A plot option, either as fixed keyword, e.g. hidden3d or as equation e.g.
term=pictex; free texts such as titles and labels should be enclosed in
string quotes.

Please note that a blank has to be inserted between a number and a dot, otherwise
the REDUCE translator will be misled.

If a function is given as an equation the left-hand side is mainly used as a label for
the axis of the dependent variable.

In two dimensions, plot can be called with more than one explicit function; all
curves are drawn in one picture. However, all these must use the same independent
variable name. One of the functions can be a point set or a point set list. Normally
all functions and point sets are plotted by lines. A point set is drawn by points only
if functions and the point set are drawn in one picture.

The same applies to three dimensions with explicit functions. However, an implic-
itly given curve must be the sole object for one picture.

The functional expressions are evaluated in rounded mode. This is done auto-
matically, it is not necessary to turn on rounded mode explicitly.
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Examples:

plot(cos x);
plot(s=sin phi, phi=(-3 .. 3));
plot(sin phi, cos phi, phi=(-3 .. 3));
plot (cos sqrt(x^2 + y^2), x=(-3 .. 3), y=(-3 .. 3), hidden3d);
plot {{0,0},{0,1},{1,1},{0,0},{1,0},{0,1},{0.5,1.5},{1,1},{1,0}};

% parametric: screw

on rounded;
w := for j := 1:200 collect {1/j*sin j, 1/j*cos j, j/200}$
plot w;

% parametric: globe
dd := pi/15$
w := for u := dd step dd until pi-dd collect

for v := 0 step dd until 2pi collect
{sin(u)*cos(v), sin(u)*sin(v), cos(u)}$

plot w;

% implicit: superposition of polynomials
plot((x^2+y^2-9)*x*y = 0);

Piecewise-defined functions

A composed graph can be defined by a rule-based operator. In that case each rule
must contain a clause which restricts the rule application to numeric arguments,
e.g.

operator my_step1;
let {my_step1(~x) => -1 when numberp x and x<-pi/2,

my_step1(~x) => 1 when numberp x and x>pi/2,
my_step1(~x) => sin x

when numberp x and -pi/2<=x and x<=pi/2};
plot(my_step2(x));

Of course, such a rule may call a procedure:

procedure my_step3(x);
if x<-1 then -1 else if x>1 then 1 else x;

operator my_step2;
let my_step2(~x) => my_step3(x) when numberp x;
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plot(my_step2(x));

The direct use of a produre with a numeric if clause is impossible.

Plot options

The following plot options are supported in the plot command:

• points=<integer>: the number of unconditionally computed data
points; for a grid pointsˆ2 grid points are used. The default value is
20. The value of points is used only for variables for which no individual
interval subdivision has been specified in the range specification.

• refine=<integer>: the maximum depth of adaptive interval intersec-
tions. The default is 8. A value 0 switches any refinement off. Note that a
high value may increase the computing time significantly.

Additional options

The following additional GNUPLOT options are supported in the plot command:

• title=name: the title (string) is put at the top of the picture.

• axes labels: xlabel="text1", ylabel="text2", and for surfaces
zlabel="text3". If omitted the axes are labeled by the independent
and dependent variable names from the expression. Note that xlabel,
ylabel, and zlabel here are used in the usual sense, x for the horizontal
and y for the vertical axis in 2-d and z for the perpendicular axis under 3-d
– these names do not refer to the variable names used in the expressions.

plot(1,x,(4*x^2-1)/2,(x*(12*x^2-5))/3, x=(-1 .. 1),
ylabel="L(x,n)", title="Legendre Polynomials");

• terminal=name: prepare output for device type name. Every instal-
lation uses a default terminal as output device; some installations support
additional devices such as printers; consult the original GNUPLOT docu-
mentation or the GNUPLOT Help for details.

• output="filename": redirect the output to a file.

• size="s_x,s_y": rescale the graph (not the window) where sx and sy
are scaling factors for the x- and y-sizes. Defaults are sx = 1, xz = 1. Note
that scaling factors greater than 1 will often cause the picture to be too big
for the window.
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plot(1/(x^2+y^2), x=(0.1 .. 5), y=(0.1 .. 5), size="0.7,1");

• view="r_x,r_z": set the viewpoint in 3 dimensions by turning the object
around the x or z axis; the values are degrees (integers). Defaults are rx =
60, rz = 30.

plot(1/(x^2+y^2), x=(0.1 .. 5), y=(0.1 .. 5), view="30,130");

• contour resp. nocontour: in 3 dimensions an additional contour map
is drawn (default: nocontour). Note that contour is an option which is
executed by GNUPLOT by interpolating the precomputed function values. If
you want to draw contour lines of a delicate formula, you had better use the
contour form of the REDUCE plot command.

• surface resp. nosurface: in 3 dimensions the surface is drawn, resp.
suppressed (default: surface).

• hidden3d: hidden line removal in 3 dimensions.

16.29.3 Paper output

The following example works for a PostScript printer. If your printer uses a differ-
ent communication, please find the correct setting for the terminal variable in
the GNUPLOT documentation.

For a PostScript printer, add the options terminal=postscript and output="filename"
to your plot command, e.g.

plot(sin x, x=(0 .. 10), terminal=postscript, output="sin.ps");

16.29.4 Mesh generation for implicit curves

The basic mesh for finding an implicitly-given curve, the x, y plane is subdivided
into an initial set of triangles. Those triangles which have an explicit zero point or
which have two points with different signs are refined by subdivision. A further re-
finement is performed for triangles which do not have exactly two zero neighbours
because such places may represent crossings, bifurcations, turning points or other
difficulties. The initial subdivision and the refinements are controlled by the option
points which is initially set to 20: the initial grid is refined unconditionally until
approximately points * points equally-distributed points in the x, y plane
have been generated.

The final mesh can be visualized in the picture by setting

on show_grid;
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16.29.5 Mesh generation for surfaces

By default the functions are computed at predefined mesh points: the ranges are
divided by the number associated with the option points in both directions.

For two dimensions the given mesh is adaptively smoothed when the curves are
too coarse, especially if singularities are present. On the other hand refinement can
be rather time-consuming if used with complicated expressions. You can control it
with the option refine. At singularities the graph is interrupted.

In three dimensions no refinement is possible as GNUPLOT supports surfaces only
with a fixed regular grid. In the case of a singularity the near neighborhood is
tested; if a point there allows a function evaluation, its clipped value is used instead,
otherwise a zero is inserted.

When plotting surfaces in three dimensions you have the option of hidden line
removal. Because of an error in Gnuplot 3.2 the axes cannot be labeled correctly
when hidden3d is used ; therefore they aren’t labelled at all. Hidden line removal
is not available with point lists.

16.29.6 GNUPLOT operation

The command plotreset; deletes the current GNUPLOT output window. The
next call to plot will then open a new one.

If GNUPLOT is invoked directly by an output pipe (UNIX and Windows), an even-
tual error in the GNUPLOT data transmission might cause GNUPLOT to quit. As
REDUCE is unable to detect the broken pipe, you have to reset the plot system by
calling the command plotreset; explicitly. Afterwards new graphics output
can be produced.

Under Windows 3.1 and Windows NT, GNUPLOT has a text and a graph window.
If you don’t want to see the text window, iconify it and activate the option update
wgnuplot.ini from the graph window system menu - then the present screen
layout (including the graph window size) will be saved and the text windows will
come up iconified in future. You can also select some more features there and so
tailor the graphic output. Before you terminate REDUCE you should terminate
the graphic window by calling plotreset;. If you terminate REDUCE without
deleting the GNUPLOT windows, use the command button from the GNUPLOT text
window - it offers an exit function.

16.29.7 Saving GNUPLOT command sequences

GNUPLOT If you want to use the internal GNUPLOT command sequence more
than once (e.g. for producing a picture for a publication), you may set
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on trplot, plotkeep;

trplot causes all GNUPLOT commands to be written additionally to the actual
REDUCE output. Normally the data files are erased after calling GNUPLOT, how-
ever with plotkeep on the files are not erased.

16.29.8 Direct Call of GNUPLOT

GNUPLOT has a lot of facilities which are not accessed by the operators and pa-
rameters described above. Therefore genuine GNUPLOT commands can be sent by
REDUCE. Please consult the GNUPLOT manual for the available commands and
parameters. The general syntax for a GNUPLOT call inside REDUCE is

gnuplot(<cmd>,<p_1>,<p_2> ...)

where cmd is a command name and p1, p2, . . . are the parameters, inside REDUCE
separated by commas. The parameters are evaluated by REDUCE and then trans-
mitted to GNUPLOT in GNUPLOT syntax. Usually a drawing is built by a sequence
of commands which are buffered by REDUCE or the operating system. For termi-
nating and activating them use the REDUCE command plotshow. Example:

gnuplot(set,polar);
gnuplot(unset,parametric);
gnuplot(set,dummy,x);
gnuplot(plot, x*sin x);
plotshow;

In this example the function expression is transferred literally to GNUPLOT, while
REDUCE is responsible for computing the function values when plot is called.
Note that GNUPLOT restrictions with respect to variable and function names have
to be taken into account when using this type of operation. Important: String
quotes are not transferred to the GNUPLOT executable; if the GNUPLOT syntax
needs string quotes, you must add doubled stringquotes inside the argument string,
e.g.

gnuplot(plot, """mydata""", "using 2:1");

16.29.9 Examples

The following are taken from a collection of sample plots (gnuplot.tst) and
a set of tests for plotting special functions. The pictures are made using the qt
GNUPLOT device and using the menu of the graphics window to export to PDF or
PNG.
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A simple plot for sin(1/x):

plot(sin(1/x), x=(-1 .. 1), y=(-3 .. 3));
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Some implicitly-defined curves:

plot(x^3 + y^3 - 3*x*y = {0,1,2,3}, x=(-2.5 .. 2), y=(-5 .. 5));
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A test for hidden surfaces:

plot(cos sqrt(x^2 + y^2), x=(-3 .. 3), y=(-3 .. 3), hidden3d);
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This may be slow on some machines because of a delicate evaluation context:

plot(sinh(x*y)/sinh(2*x*y), hidden3d);

REDUCE Plot

-10
-5

 0
 5

 10y -10

-5

 0

 5

 10

x

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

z



632 CHAPTER 16. USER CONTRIBUTED PACKAGES

on rounded;
w:= {for j:=1 step 0.1 until 20 collect {1/j*sin j, 1/j*cos j, j},

for j:=1 step 0.1 until 20 collect
{(0.1+1/j)*sin j, (0.1+1/j)*cos j, j} }$

plot w;
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An example taken from: Cox, Little, O’Shea, Ideals, Varieties and Algorithms:

plot(point(3u+3u*v^2-u^3, 3v+3u^2*v-v^3, 3u^2-3v^2), hidden3d,
title="Enneper Surface");
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The following examples use the specfn package to draw a collection of Cheby-
shev T polynomials and Bessel Y functions. The special function package has to
be loaded explicitely to make the operator ChebyshevT and BesselY available.

load_package specfn;
plot(chebyshevt(1,x), chebyshevt(2,x), chebyshevt(3,x),

chebyshevt(4,x), chebyshevt(5,x),
x=(-1 .. 1), title="Chebyshev t Polynomials");
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plot(bessely(0,x), bessely(1,x), bessely(2,x), x=(0.1 .. 10),
y=(-1 .. 1), title="Bessel functions of 2nd kind");
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16.30 GROEBNER: A Gröbner basis package

GROEBNER is a package for the computation of Gröbner Bases using the Buch-
berger algorithm and related methods for polynomial ideals and modules. It can be
used over a variety of different coefficient domains, and for different variable and
term orderings.

Gröbner Bases can be used for various purposes in commutative algebra, e.g. for
elimination of variables, converting surd expressions to implicit polynomial form,
computation of dimensions, solution of polynomial equation systems etc. The
package is also used internally by the SOLVE operator.

Authors: Herbert Melenk, H.M. Möller and Winfried Neun.

Gröbner bases are a valuable tool for solving problems in connection with multi-
variate polynomials, such as solving systems of algebraic equations and analyzing
polynomial ideals. For a definition of Gröbner bases, a survey of possible appli-
cations and further references, see [Buc85]. Examples are given in [BGK86], in
[Buc88] and also in the test file for this package.

The groebner package calculates Gröbner bases using the Buchberger algorithm.
It can be used over a variety of different coefficient domains, and for different
variable and term orderings.

The current version of the package uses parts of a previous version, written by
R. Gebauer, A.C. Hearn, H. Kredel and H. M. Möller. The algorithms imple-
mented in the current version are documented in [FGLM93], [GM88], [KW88]
and [GMN+91]. The operator saturation has been implemented in July 2000 (Her-
bert Melenk).

16.30.1 Background

Variables, Domains and Polynomials

The various functions of the groebner package manipulate equations and/or poly-
nomials; equations are internally transformed into polynomials by forming the dif-
ference of left-hand side and right-hand side, if equations are given.

All manipulations take place in a ring of polynomials in some variables x1, . . . , xn
over a coefficient domain d:

d[x1, . . . , xn],

where d is a field or at least a ring without zero divisors. The set of variables
x1, . . . , xn can be given explicitly by the user or it is extracted automatically from
the input expressions.

All REDUCE kernels can play the role of “variables” in this context; examples are
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x y z22 sin(alpha) cos(alpha) c(1,2,3) c(1,3,2) farina4711

The domain d is the current REDUCE domain with those kernels adjoined that are
not members of the list of variables. So the elements of d may be complicated
polynomials themselves over kernels not in the list of variables; if, however, the
variables are extracted automatically from the input expressions, d is identical with
the current REDUCE domain. It is useful to regard kernels not being members of
the list of variables as “parameters”, e.g.

a * x + (a - b) * y**2 with “variables” {x, y}
and “parameters” a and b .

The exponents of groebner variables must be positive integers.

A groebner variable may not occur as a parameter (or part of a parameter) of a
coefficient function. This condition is tested in the beginning of the groebner cal-
culation; if it is violated, an error message occurs (with the variable name), and the
calculation is aborted. When the groebner package is called by solve, the test is
switched off internally.

The current version of the Buchberger algorithm has two internal modes, a field
mode and a ring mode. In the starting phase the algorithm analyzes the domain
type; if it recognizes d as being a ring it uses the ring mode, otherwise the field
mode is needed. Normally field calculations occur only if all coefficients are num-
bers and if the current REDUCE domain is a field (e.g. rational numbers, modular
numbers modulo a prime). In general, the ring mode is faster. When no specific
REDUCE domain is selected, the ring mode is used, even if the input formulas
contain fractional coefficients: they are multiplied by their common denominators
so that they become integer polynomials. Zeroes of the denominators are included
in the result list.

Term Ordering

In the theory of Gröbner bases, the terms of polynomials are considered as or-
dered. Several order modes are available in the current package, including the
basic modes:

lex, gradlex, revgradlex

All orderings are based on an ordering among the variables. For each pair of vari-
ables (a, b) an order relation must be defined, e.g. “a � b”. The greater sign�
does not represent a numerical relation among the variables; it can be interpreted
only in terms of formula representation: “a” will be placed in front of “b” or “a” is
more complicated than “b”.
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The sequence of variables constitutes this order base. So the notion of

{x1, x2, x3}

as a list of variables at the same time means

x1� x2� x3

with respect to the term order.

If terms (products of powers of variables) are compared with lex, that term is cho-
sen which has a greater variable or a higher degree if the greatest variable is the
first in both. With gradlex the sum of all exponents (the total degree) is compared
first, and if that does not lead to a decision, the lex method is taken for the final
decision. The revgradlex method also compares the total degree first, but afterward
it uses the lex method in the reverse direction; this is the method originally used by
Buchberger.

Example 26 with {x, y, z}:

lex:
x ∗ y ∗ ∗3 � y ∗ ∗48 (heavier variable)

x ∗ ∗4 ∗ y ∗ ∗2 � x ∗ ∗3 ∗ y ∗ ∗10 (higher degree in 1st variable)

gradlex:
y ∗ ∗3 ∗ z ∗ ∗4 � x ∗ ∗3 ∗ y ∗ ∗3 (higher total degree)

x ∗ z � y ∗ ∗2 (equal total degree)

revgradlex:
y ∗ ∗3 ∗ z ∗ ∗4 � x ∗ ∗3 ∗ y ∗ ∗3 (higher total degree)

x ∗ z � y ∗ ∗2 (equal total degree,
so reverse order of lex)

The formal description of the term order modes is similar to [Kre88]; this descrip-
tion regards only the exponents of a term, which are written as vectors of integers
with 0 for exponents of a variable which does not occur:

(e) = (e1, . . . , en) representing x1 ∗ ∗e1 x2 ∗ ∗e2 · · ·xn ∗ ∗en.
deg(e) is the sum over all elements of (e)
(e)� (l)⇐⇒ (e)− (l)� (0) = (0, . . . , 0)

lex:
(e) > lex > (0) =⇒ ek > 0 and ej = 0 for j = 1, . . . , k − 1

gradlex:
(e) > gl > (0) =⇒ deg(e) > 0 or (e) > lex > (0)

revgradlex:
(e) > rgl > (0) =⇒ deg(e) > 0 or (e) < lex < (0)
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Note that the lex ordering is identical to the standard REDUCE kernel ordering,
when korder is set explicitly to the sequence of variables.

lex is the default term order mode in the groebner package.

It is beyond the scope of this manual to discuss the functionality of the term order
modes. See [Buc88].

The list of variables is declared as an optional parameter of the torder statement
(see below). If this declaration is missing or if the empty list has been used, the
variables are extracted from the expressions automatically and the REDUCE sys-
tem order defines their sequence; this can be influenced by setting an explicit order
via the korder statement.

The result of a Gröbner calculation is algebraically correct only with respect to
the term order mode and the variable sequence which was in effect during the
calculation. This is important if several calls to the groebner package are done with
the result of the first being the input of the second call. Therefore we recommend
that you declare the variable list and the order mode explicitly. Once declared it
remains valid until you enter a new torder statement. The operator gvars helps you
extract the variables from a given set of polynomials, if an automatic reordering
has been selected.

The Buchberger Algorithm

The Buchberger algorithm of the package is based on GEBAUER/MÖLLER [GM88].
Extensions are documented in [MMN88] and [GMN+91].

16.30.2 Loading of the Package

The following command loads the package into REDUCE (this syntax may vary
according to the implementation):

load_package groebner;

The package contains various operators, and switches for control over the reduction
process. These are discussed in the following.

16.30.3 The Basic Operators

Term Ordering Mode

torder(vl,m, [p1, p2, . . .]);
where vl is a variable list (or the empty list if no variables are declared ex-
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plicitly), m is the name of a term ordering mode lex, gradlex, revgradlex (or
another implemented mode) and [p1, p2, . . .] are additional parameters for
the term ordering mode (not needed for the basic modes).

torder sets variable set and the term ordering mode. The default mode is lex.
The previous description is returned as a list with corresponding elements.
Such a list can alternatively be passed as sole argument to torder.

If the variable list is empty or if the torder declaration is omitted, the auto-
matic variable extraction is activated.

gvars({exp1, exp2, . . ., expn});
where {exp1, exp2, . . . , expn} is a list of expressions or equations.

gvars extracts from the expressions {exp1, exp2, . . . , expn} the kernels,
which can play the role of variables for a Gröbner calculation. This can
be used e.g. in a torder declaration.

groebner: Calculation of a Gröbner Basis

groebner {exp1, exp2, . . . , expm};
where {exp1, exp2, . . . , expm} is a list of expressions or equations.

groebner calculates the Gröbner basis of the given set of expressions with
respect to the current torder setting.

The Gröbner basis {1}means that the ideal generated by the input polynom-
ials is the whole polynomial ring, or equivalently, that the input polynomials
have no zeroes in common.

As a side effect, the sequence of variables is stored as a REDUCE list in the
shared variable

gvarslast.

This is important if the variables are reordered because of optimization: you
must set them afterwards explicitly as the current variable sequence if you
want to use the Gröbner basis in the sequel, e.g. for a preduce call. A basis
has the property “Gröbner” only with respect to the variable sequences which
had been active during its computation.

Example 27

torder({},lex)$
groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,
2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };
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2
{8*x - 2*y + 5*y + 3,

3 2
2*y - 3*y - 16*y + 21}

This example used the default system variable ordering, which was {x, y}. With
the other variable ordering, a different basis results:

torder({y,x},lex)$
groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,
2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

2
{2*y + 2*x - 3*x - 6,

3 2
2*x - 5*x - 5*x}

Another basis yet again results with a different term ordering:

torder({x,y},revgradlex)$
groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,
2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

2
{2*y - 5*y - 8*x - 3,

y*x - y + x + 3,

2
2*x + 2*y - 3*x - 6}

The operation of groebner can be controlled by the following switches:

groebopt – If set on, the sequence of variables is optimized with respect to execu-
tion speed; the algorithm involved is described in [BGK86]; note that the
final list of variables is available in gvarslast.

An explicitly declared dependency supersedes the variable optimization. For
example
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depend a, x, y;

guarantees that a will be placed in front of x and y. So groebopt can be used
even in cases where elimination of variables is desired.

By default groebopt is off, conserving the original variable sequence.

groebfullreduction – If set off, the reduction steps during the
groebner operation are limited to the pure head term reduction; subsequent
terms are reduced otherwise.

By default groebfullreduction is on.

gltbasis – If set on, the leading terms of the result basis are extracted. They are
collected in a basis of monomials, which is available as value of the global
variable with the name gltb.

glterms – If {exp1, . . . , expm} contain parameters (symbols which are not mem-
ber of the variable list), the share variable glterms contains a list of expres-
sion which during the calculation were assumed to be nonzero. A Gröbner
basis is valid only under the assumption that all these expressions do not
vanish.

The following switches control the print output of groebner; by default all these
switches are set off and nothing is printed.

groebstat – A summary of the computation is printed including the computing
time, the number of intermediate h–polynomials and the counters for the
hits of the criteria.

trgroeb – Includes groebstat and the printing of the intermediate h-polynomials.

trgroebs – Includes trgroeb and the printing of intermediate s–polynomials.

trgroeb1 – The internal pairlist is printed when modified.

Gzerodim?: Test of dim = 0

gzerodim!? bas
where bas is a Gröbner basis in the current setting. The result is nil, if bas is
the basis of an ideal of polynomials with more than finitely many common
zeros. If the ideal is zero dimensional, i. e. the polynomials of the ideal have
only finitely many zeros in common, the result is an integer k which is the
number of these common zeros (counted with multiplicities).
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gdimension, gindependent_sets: compute dimension and independent vari-
ables

The following operators can be used to compute the dimension and the independent
variable sets of an ideal which has the Gröbner basis bas with arbitrary term order:

gdimension bas

gindependent_sets bas gindependent_sets computes the maximal left independent
variable sets of the ideal, that are the variable sets which play the role of free
parameters in the current ideal basis. Each set is a list which is a subset of
the variable list. The result is a list of these sets. For an ideal with dimen-
sion zero the list is empty. gdimension computes the dimension of the ideal,
which is the maximum length of the independent sets.

The switch groebopt plays no role in the algorithms gdimension and gindepen-
dent_sets. It is set off during the processing even if it is set on before. Its state is
saved during the processing.

The “Kredel-Weispfenning” algorithm is used (see [KW88], extended to general
ordering in [BWK93].

Conversion of a Gröbner Basis

glexconvert: Conversion of an Arbitrary Gröbner Basis of a Zero Dimensional
Ideal into a Lexical One

glexconvert({exp, . . . , expm} [, {var1 . . . , varn}] [,maxdeg = mx]
[, newvars = {nv1, . . . , nvk}])
where {exp1, . . . , expm} is a Gröbner basis with {var1, . . . , varn} as vari-
ables in the current term order mode, mx is an integer, and {nv1, . . . , nvk}
is a subset of the basis variables. For this operator the source and target
variable sets must be specified explicitly.

glexconvert converts a basis of a zero-dimensional ideal (finite number of isolated
solutions) from arbitrary ordering into a basis under lex ordering. During the call
of glexconvert the original ordering of the input basis must be still active!

newvars defines the new variable sequence. If omitted, the original variable se-
quence is used. If only a subset of variables is specified here, the partial ideal basis
is evaluated. For the calculation of a univariate polynomial, new-vars should be a
list with one element.

maxdeg is an upper limit for the degrees. The algorithm stops with an error mes-
sage, if this limit is reached.
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A warning occurs if the ideal is not zero dimensional.

glexconvert is an implementation of the FLGM algorithm by
FAUGÈRE, GIANNI, LAZARD and MORA [FGLM93]. Often, the calculation of
a Gröbner basis with a graded ordering and subsequent conversion to lex is faster
than a direct lex calculation. Additionally, glexconvert can be used to transform a
lex basis into one with different variable sequence, and it supports the calculation
of a univariate polynomial. If the latter exists, the algorithm is even applicable in
the non zero-dimensional case, if such a polynomial exists. If the polynomial does
not exist, the algorithm computes until maxdeg has been reached.

torder({{w,p,z,t,s,b},gradlex)

g := groebner { f1 := 45*p + 35*s -165*b -36,
35*p + 40*z + 25*t - 27*s, 15*w + 25*p*s +30*z -18*t
-165*b**2, -9*w + 15*p*t + 20*z*s,
w*p + 2*z*t - 11*b**3, 99*w - 11*s*b +3*b**2,
b**2 + 33/50*b + 2673/10000};

g := {60000*w + 9500*b + 3969,

1800*p - 3100*b - 1377,

18000*z + 24500*b + 10287,

750*t - 1850*b + 81,

200*s - 500*b - 9,
2

10000*b + 6600*b + 2673}

glexconvert(g,{w,p,z,t,s,b},maxdeg=5,newvars={w});

2
100000000*w + 2780000*w + 416421

glexconvert(g,{w,p,z,t,s,b},maxdeg=5,newvars={p});

2
6000*p - 2360*p + 3051
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groebner_walk: Conversion of a (General) Total Degree Basis into a Lex One

The algorithm groebner_walk convertes from an arbitrary polynomial system a
graduated basis of the given variable sequence to a lex one of the same sequence.
The job is done by computing a sequence of Gröbner bases of correspondig mono-
mial ideals, lifting the original system each time. The algorithm has been described
(more generally) by [AGK96a],[AGK96b],[AG98] and [CKM97]. groebner_walk
should be only called, if the direct calculation of a lex Gröbner base does not work.
The computation of groebner_walk includes some overhead (e. g. the computation
divides polynomials). Normally torder must be called before to define the vari-
ables and the variable sorting. The reordering of variables makes no sense with
groebner_walk; so do not call groebner_walk with groebopt on!

groebner_walk g
where g is a polynomial ideal basis computed under gradlex or under
weighted with a one-element, non zero weight vector with only one element,
repeated for each variable. The result is a corresponding lex basis (if that is
computable), independet of the degree of the ideal (even for non zero degree
ideals). The variabe gvarslast is not set.

groebnerf : Factorizing Gröbner Bases

Background

If Gröbner bases are computed in order to solve systems of equations or to find the
common roots of systems of polynomials, the factorizing version of the Buchberger
algorithm can be used. The theoretical background is simple: if a polynomial p can
be represented as a product of two (or more) polynomials, e.g. h = f ∗ g, then
h vanishes if and only if one of the factors vanishes. So if during the calculation
of a Gröbner basis h of the above form is detected, the whole problem can be
split into two (or more) disjoint branches. Each of the branches is simpler than
the complete problem; this saves computing time and space. The result of this
type of computation is a list of (partial) Gröbner bases; the solution set of the
original problem is the union of the solutions of the partial problems, ignoring the
multiplicity of an individual solution. If a branch results in a basis {1}, then there
is no common zero, i.e. no additional solution for the original problem, contributed
by this branch.

groebnerf Call

The syntax of groebnerf is the same as for groebner.

groebnerf({exp1, exp2, . . . , expm}[, {}, {nz1, . . . nzk});
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where {exp1, exp2, . . . , expm} is a given list of expressions or equations, and
{nz1, . . . nzk} is an optional list of polynomials known to be non-zero.

groebnerf tries to separate polynomials into individual factors and to branch the
computation in a recursive manner (factorization tree). The result is a list of partial
Gröbner bases. If no factorization can be found or if all branches but one lead to
the trivial basis {1}, the result has only one basis; nevertheless it is a list of lists
of polynomials. If no solution is found, the result will be {{1}}. Multiplicities
(one factor with a higher power, the same partial basis twice) are deleted as early
as possible in order to speed up the calculation. The factorizing is controlled by
some switches.

As a side effect, the sequence of variables is stored as a REDUCE list in the shared
variable

gvarslast .

If gltbasis is on, a corresponding list of leading term bases is also produced and is
available in the variable gltb.

The third parameter of groebnerf allows one to declare some polynomials nonzero.
If any of these is found in a branch of the calculation the branch is cancelled. This
can be used to save a substantial amount of computing time. The second parameter
must be included as an empty list if the third parameter is to be used.

torder({x,y},lex)$
groebnerf { 3*x**2*y + 2*x*y + y + 9*x**2 + 5*x = 3,

2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x = -3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 \};

{{y - 3,x},

2
{2*y + 2*x - 1,2*x - 5*x - 5}}

It is obvious here that the solutions of the equations can be read off immediately.

All switches from groebner are valid for groebnerf as well:
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groebopt
gltbasis
groebfullreduction
groebstat
trgroeb
trgroebs
rgroeb1

Additional switches for groebnerf :

trgroebr – All intermediate partial basis are printed when detected.

By default trgroebr is off.

groebmonfac groebresmax groebrestriction
These variables are described in the following paragraphs.

Suppression of Monomial Factors

The factorization in groebnerf is controlled by the following switches and vari-
ables. The variable groebmonfac is connected to the handling of “monomial fac-
tors”. A monomial factor is a product of variable powers occurring as a factor, e.g.
x ∗ ∗2 ∗ y in x ∗ ∗3 ∗ y − 2 ∗ x ∗ ∗2 ∗ y ∗ ∗2. A monomial factor represents a
solution of the type “x = 0 or y = 0” with a certain multiplicity. With groebnerf
the multiplicity of monomial factors is lowered to the value of the shared variable

groebmonfac

which by default is 1 (= monomial factors remain present, but their multiplicity is
brought down). With

groebmonfac := 0

the monomial factors are suppressed completely.

Limitation on the Number of Results

The shared variable

groebresmax

controls the number of partial results. Its default value is 300. If groebresmax
partial results are calculated, the calculation is terminated. groebresmax counts
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all branches, including those which are terminated (have been computed already),
give no contribution to the result (partial basis 1), or which are unified in the result
with other (partial) bases. So the resulting number may be much smaller. When
the limit of groeresmax is reached, a warning

GROEBRESMAX limit reached

is issued; this warning in any case has to be taken as a serious one. For “normal”
calculations the groebresmax limit is not reached. groebresmax is a shared variable
(with an integer value); it can be set in the algebraic mode to a different (positive
integer) value.

Restriction of the Solution Space

In some applications only a subset of the complete solution set of a given set of
equations is relevant, e.g. only nonnegative values or positive definite values for
the variables. A significant amount of computing time can be saved if nonrelevant
computation branches can be terminated early.

Positivity: If a polynomial has no (strictly) positive zero, then every system con-
taining it has no nonnegative or strictly positive solution. Therefore, the Buch-
berger algorithm tests the coefficients of the polynomials for equal sign if re-
quested. For example, in 13 ∗ x + 15 ∗ y ∗ z can be zero with real nonnegative
values for x, y and z only if x = 0 and y = 0 or z = 0; this is a sort of “factoriza-
tion by restriction”. A polynomial 13 ∗ x+ 15 ∗ y ∗ z + 20 never can vanish with
nonnegative real variable values.

Zero point: If any polynomial in an ideal has an absolute term, the ideal cannot
have the origin point as a common solution.

By setting the shared variable

groebrestriction

groebnerf is informed of the type of restriction the user wants to impose on the
solutions:

groebrestiction:=nonnegative;
only nonnegative real solutions are of interest

groebrestriction:=positive;
only nonnegative and nonzero solutions are of interest

groebrestriction:=zeropoint;
only solution sets which contain the point {0, 0, . . . , 0} are or interest.

If groebnerf detects a polynomial which formally conflicts with the restriction, it
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either splits the calculation into separate branches, or, if a violation of the restric-
tion is determined, it cancels the actual calculation branch.

greduce, preduce: Reduction of Polynomials

Background

Reduction of a polynomial “p” modulo a given sets of polynomials “b” is done by
the reduction algorithm incorporated in the Buchberger algorithm. Informally it
can be described for polynomials over a field as follows:

loop1: % head term elimination
if there is one polynomial b in B such that the leading

term of p is a multiple of the leading term of P do
p := p− lt(p)/lt(b) ∗ b (the leading term vanishes)

do this loop as long as possible;
loop2: % elimination of subsequent terms

for each term s in p do
if there is one polynomial b in B such that s is a
multiple of the leading term of p do
p := p− s/lt(b) ∗ b (the term s vanishes)

do this loop as long as possible;

If the coefficients are taken from a ring without zero divisors we cannot divide by
each possible number like in the field case. But using that in the field case, c ∗ p is
reduced to c ∗ q, if p is reduced to q, for arbitrary numbers c, the reduction for the
ring case uses the least c which makes the (field) reduction for c ∗ p integer. The
result of this reduction is returned as (ring) reduction of p eventually after removing
the content, i.e. the greatest common divisor of the coefficients. The result of this
type of reduction is also called a pseudo reduction of p.

Reduction via Gröbner Basis Calculation

greduce(exp, {exp1, exp2, . . . , expm}]);

where exp is an expression, and {exp1, exp2, . . . , expm} is a list of any number
of expressions or equations.

greduce first converts the list of expressions {exp1, . . . , expn} to a Gröbner basis,
and then reduces the given expression modulo that basis. An error results if the
list of expressions is inconsistent. The returned value is an expression representing
the reduced polynomial. As a side effect, greduce sets the variable gvarslast in the
same manner as groebner does.
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Reduction with Respect to Arbitrary Polynomials

preduce(exp, {exp1, exp2, . . . , expm});

where expm is an expression, and {exp1, exp2, . . . , expm} is a list of any number
of expressions or equations.

preduce reduces the given expression modulo the set {exp1, . . . , expm}. If this set
is a Gröbner basis, the obtained reduced expression is uniquely determined. If not,
then it depends on the subsequence of the single reduction steps (see 27). preduce
does not check whether {exp1, exp2, . . . , expm} is a Gröbner basis in the actual
order. Therefore, if the expressions are a Gröbner basis calculated earlier with a
variable sequence given explicitly or modified by optimization, the proper variable
sequence and term order must be activated first.

Example 28(preduce called with a Gröbner basis):

torder({x,y},lex);
gb:=groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,

2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2}$

preduce (5*y**2 + 2*x**2*y + 5/2*x*y + 3/2*y
+ 8*x**2 + 3/2*x - 9/2, gb);

2
y

greduce_orders: Reduction with several term orders

The shortest polynomial with different polynomial term orders is computed with
the operator greduce_orders:

greduce_orders(exp, {exp1, exp2, . . . , expm} [,{v1, v2, . . . , vn}]);
where exp is an expression and {exp1, exp2, . . . , expm} is a list of any num-
ber of expressions or equations. The list of variables v1, v2 . . . vn may be
omitted; if set, the variables must be a list.

The expression exp is reduced by greduce with the orders in the shared variable
gorders, which must be a list of term orders (if set). By default it is set to

{revgradlex, gradlex, lex}

The shortest polynomial is the result. The order with the shortest polynomial is
set to the shared variable gorder. A Gröbner basis of the system {exp1, exp2, . . . ,
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expm} is computed for each element of orders. With the default setting gorder in
most cases will be set to revgradlex. If the variable set is given, these variables are
taken; otherwise all variables of the system {exp1, exp2, . . . , expm} are extracted.

The Gröbner basis computations can take some time; if interrupted, the interme-
diate result of the reduction is set to the shared variable greduce_result, if one is
done already. However, this is not nesessarily the minimal form.

If the variable gorders should be set to orders with a parameter, the term oder has
to be replaced by a list; the first element is the term oder selected, followed by its
parameter(s), e.g.

orders := {{gradlexgradlex, 2}, {lexgradlex, 2}}

Reduction Tree

In some case not only are the results produced by greduce and preduce of interest,
but the reduction process is of some value too. If the switch

groebprot

is set on, groebner, greduce and preduce produce as a side effect a trace of their
work as a REDUCE list of equations in the shared variable

groebprotfile.

Its value is a list of equations with a variable “candidate” playing the role of the
object to be reduced. The polynomials are cited as “poly1”, “poly2”, . . . . If read as
assignments, these equations form a program which leads from the reduction input
to its result. Note that, due to the pseudo reduction with a ring as the coefficient
domain, the input coefficients may be changed by global factors.

Example 29

on groebprot $
preduce (5 ∗ y ∗ ∗2 + 2 ∗ x ∗ ∗2 ∗ y + 5/2 ∗ x ∗ y + 3/2 ∗ y + 8 ∗ x ∗ ∗2

+3/2 ∗ x− 9/2, gb);

2
y

groebprotfile;

2 2 2
{candidate=4*x *y + 16*x + 5*x*y + 3*x + 10*y + 3*y - 9,
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2
poly1=8*x - 2*y + 5*y + 3,

3 2
poly2=2*y - 3*y - 16*y + 21,
candidate=2*candidate,
candidate= - x*y*poly1 + candidate,
candidate= - 4*x*poly1 + candidate,
candidate=4*candidate,

3
candidate= - y *poly1 + candidate,
candidate=2*candidate,

2
candidate= - 3*y *poly1 + candidate,
candidate=13*y*poly1 + candidate,
candidate=candidate + 6*poly1,

2
candidate= - 2*y *poly2 + candidate,
candidate= - y*poly2 + candidate,
candidate=candidate + 6*poly2}

This means

16(5y2 + 2x2y +
5

2
xy +

3

2
y + 8x2 +

3

2
x− 9

2
) =

(−8xy − 32x− 2y3 − 3y2 + 13y + 6) poly1

+ (−2y2 − 2y + 6) poly2 + y2.

Tracing with groebnert and preducet

Given a set of polynomials {f1, . . . , fk} and their Gröbner basis {g1, . . . , gl}, it is
well known that there are matrices of polynomials Cij and Dji such that

fi =
∑
j

Cijgj and gj =
∑
i

Djifi

and these relations are needed explicitly sometimes. In BUCHBERGER [Buc85],
such cases are described in the context of linear polynomial equations. The stand-
ard technique for computing the above formulae is to perform Gröbner reductions,
keeping track of the computation in terms of the input data. In the current package
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such calculations are performed with (an internally hidden) cofactor technique: the
user has to assign unique names to the input expressions and the arithmetic combi-
nations are done with the expressions and with their names simultaneously. So the
result is accompanied by an expression which relates it algebraically to the input
values.

There are two complementary operators with this feature: groebnert and preducet;
functionally they correspond to groebner and preduce. However, the sets of ex-
pressions here must be equations with unique single identifiers on their left side
and the lhs are interpreted as names of the expressions. Their results are sets of
equations (groebnert) or equations (preducet), where a lhs is the computed value,
while the rhs is its equivalent in terms of the input names.

Example 30

We calculate the Gröbner basis for an ellipse (named “p1” ) and a line (named
“p2” ); p2 is member of the basis immediately and so the corresponding first result
element is of a very simple form; the second member is a combination of p1 and
p2 as shown on the rhs of this equation:

gb1:=groebnert {p1=2*x**2+4*y**2-100,p2=2*x-y+1};

gb1 := {2*x - y + 1=p2,
2

9*y - 2*y - 199= - 2*x*p2 - y*p2 + 2*p1 + p2}

Example 31

We want to reduce the polynomial x**2 wrt the above Gröbner basis and need
knowledge about the reduction formula. We therefore extract the basis polynom-
ials from gb1, assign unique names to them (here g1, g2) and call preducet. The
polynomial to be reduced here is introduced with the name Q, which then appears
on the rhs of the result. If the name for the polynomial is omitted, its formal value
is used on the right side too.

gb2 := for k := 1:length gb1 collect
mkid(g,k) = lhs part(gb1,k)$

preducet (q=x**2,gb2);

- 16*y + 208= - 18*x*g1 - 9*y*g1 + 36*q + 9*g1 - g2

This output means

x2 = (
1

2
x+

1

4
y − 1

4
)g1 +

1

36
g2 + (−4

9
y +

52

9
).

Example 32
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If we reduce a polynomial which is member of the ideal, we consequently get a
result with lhs zero:

preducet(q=2*x**2+4*y**2-100,gb2);

0= - 2*x*g1 - y*g1 + 2*q + g1 - g2

This means
q = (x+

1

2
y − 1

2
)g1 +

1

2
g2.

With these operators the matrices Cij and Dji are available implicitly, Dji as side
effect of groebnertT, cij by calls of preducet of fi wrt {gj}. The latter by definition
will have the lhs zero and a rhs with linear fi.

If {1} is the Gröbner basis, the groebnert calculation gives a “proof”, showing,
how 1 can be computed as combination of the input polynomials.

Remark: Compared to the non-tracing algorithms, these operators are much
more time consuming. So they are applicable only on small sized problems.

Gröbner Bases for Modules

Given a polynomial ring, e.g. r = z[x1 · · ·xk] and an integer n > 1: the vectors
with n elements of r form a module under vector addition (= componentwise ad-
dition) and multiplication with elements of r. For a submodule given by a finite
basis a Gröbner basis can be computed, and the facilities of the groebner package
can be used except the operators groebnerf and groesolve.

The vectors are encoded using auxiliary variables which represent the unit vectors
in the module. E.g. using v1, v2, v3 the module element [x2

1, 0, x1 − x2] is repre-
sented as x2

1v1 + x1v3 − x2v3. The use of v1, v2, v3 as unit vectors is set up by
assigning the set of auxiliary variables to the share variable gmodule, e.g.

gmodule := {v1,v2,v3};

After this declaration all monomials built from these variables are considered as an
algebraically independent basis of a vector space. However, you had best use them
only linearly. Once gmodule has been set, the auxiliary variables automatically
will be added to the end of each variable list (if they are not yet member there).
Example:

torder({x,y,v1,v2,v3},lex)$
gmodule := {v1,v2,v3}$
g:=groebner{x^2*v1 + y*v2,x*y*v1 - v3,2y*v1 + y*v3};
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2
g := {x *v1 + y*v2,

2
x*v3 + y *v2,

3
y *v2 - 2*v3,

2*y*v1 + y*v3}

preduce((x+y)^3*v1,g);

1 3 2
- x*y*v2 - ---*y *v3 - 3*y *v2 + 3*y*v3

2

In many cases a total degree oriented term order will be adequate for computations
in modules, e.g. for all cases where the submodule membership is investigated.
However, arranging the auxiliary variables in an elimination oriented term order
can give interesting results. E.g.

p1:=(x-1)*(x^2-x+3)$ p2:=(x-1)*(x^2+x-5)$
gmodule := {v1,v2,v3};
torder({v1,x,v2,v3},lex)$
gb:=groebner {p1*v1+v2,p2*v1+v3};

gb := {30*v1*x - 30*v1 + x*v2 - x*v3 + 5*v2 - 3*v3,

2 2
x *v2 - x *v3 + x*v2 + x*v3 - 5*v2 - 3*v3}

g:=coeffn(first gb,v1,1);

g := 30*(x - 1)

c1:=coeffn(first gb,v2,1);

c1 := x + 5

c2:=coeffn(first gb,v3,1);

c2 := - x - 3



654 CHAPTER 16. USER CONTRIBUTED PACKAGES

c1*p1 + c2*p2;

30*(x - 1)

Here two polynomials are entered as vectors [p1, 1, 0] and [p2, 0, 1]. Using a term
ordering such that the first dimension ranges highest and the other components low-
est, a classical cofactor computation is executed just as in the extended Euclidean
algorithm. Consequently the leading polynomial in the resulting basis shows the
greatest common divisor of p1 and p2, found as a coefficient of v1 while the coef-
ficients of v2 and v3 are the cofactors c1 and c2 of the polynomials p1 and p2 with
the relation gcd(p1, p2) = c1p1 + c2p2.

Additional Orderings

Besides the basic orderings, there are ordering options that are used for special
purposes.

Separating the Variables into Groups

It is often desirable to separate variables and formal parameters in a system of poly-
nomials. This can be done with a lex Gröbner basis. That however may be hard
to compute as it does more separation than necessary. The following orderings
group the variables into two (or more) sets, where inside each set a classical order-
ing acts, while the sets are handled via their total degrees, which are compared in
elimination style. So the Gröbner basis will eliminate the members of the first set,
if algebraically possible. torder here gets an additional parameter which describe
the grouping

torder (vl, gradlexgradlex, n)
torder (vl, gradlexrevgradlex,n)
torder (vl, lexgradlex, n)
torder (vl, lexrevgradlex, n)

Here the integer n is the number of variables in the first group and the names
combine the local ordering for the first and second group, e.g.

lexgradlex, 3 for {x1, x2, x3, x4, x5}:
xi11 . . . x

i5
5 � xj11 . . . xj55

if (i1, i2, i3)�lex (j1, j2, j3)
or (i1, i2, i3) = (j1, j2, j3)

and (i4, i5)�gradlex (j4, j5)
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Note that in the second place there is no lex ordering available; that would not make
sense.

Weighted Ordering

The statement

torder(vl, weighted, {n1, n2, n3 . . .});

establishes a graduated ordering, where the exponents are first multiplied by the
given weights. If there are less weight values than variables, the weight 1 is added
automatically. If the weighted degree calculation is not decidable, a lex comparison
follows.

Graded Ordering

The statement

torder(vl, graded, {n1, n2, n3 . . .}, order2);

establishes a graduated ordering, where the exponents are first multiplied by the
given weights. If there are less weight values than variables, the weight 1 is added
automatically. If the weighted degree calculation is not decidable, the term order
order2 specified in the following argument(s) is used. The ordering graded is
designed primarily for use with the operator dd_groebner.

Matrix Ordering

The statement

torder(vl, matrix, m);

wherem is a matrix with integer elements and row length which corresponds to the
variable number. The exponents of each monomial form a vector; two monomials
are compared by multiplying their exponent vectors first with m and comparing
the resulting vector lexicographically. E.g. the unit matrix establishes the classical
lex term order mode, a matrix with a first row of ones followed by the rows of a
unit matrix corresponds to the gradlex ordering.

The matrix m must have at least as many rows as columns; a non–square matrix
contains redundant rows. The matrix must have full rank, and the top non–zero
element of each column must be positive.
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The generality of the matrix based term order has its price: the computing time
spent in the term sorting is significantly higher than with the specialized term or-
ders. To overcome this problem, you can compile a matrix term order ; the compila-
tion reduces the computing time overhead significantly. If you set the switch comp
on, any new order matrix is compiled when any operator of the groebner package
accesses it for the first time. Alternatively you can compile a matrix explicitly

torder_compile(<n>,<m>);

where < n > is a name (an identifier) and < m > is a term order matrix.
torder_compile transforms the matrix into a LISP program, which is compiled by
the LISP compiler when comp is on or when you generate a fast loadable module.
Later you can activate the new term order by using the name < n > in a torder
statement as term ordering mode.

Gröbner Bases for Graded Homogeneous Systems

For a homogeneous system of polynomials under a term order graded, gradlex,
revgradlex or weighted a Gröbner Base can be computed with limiting the grade of
the intermediate s–polynomials:

dd_groebner(d1, d2, {p1, p2, . . .});

where d1 is a non–negative integer and d2 is an integer > d1 or “infinity". A pair
of polynomials is considered only if the grade of the lcm of their head terms is
between d1 and d2. See [BWK93] for the mathematical background. For the term
orders graded or weighted the (first) weight vector is used for the grade computa-
tion. Otherwise the total degree of a term is used.

16.30.4 Ideal Decomposition & Equation System Solving

Based on the elementary Gröbner operations, the groebner package offers addi-
tional operators, which allow the decomposition of an ideal or of a system of equat-
ions down to the individual solutions.

Solutions Based on Lex Type Gröbner Bases

groesolve: Solution of a Set of Polynomial Equations

The groesolve operator incorporates a macro algorithm; lexical Gröbner bases are
computed by groebnerf and decomposed into simpler ones by ideal decomposition
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techniques; if algebraically possible, the problem is reduced to univariate poly-
nomials which are solved by solve; if rounded is on, numerical approximations are
computed for the roots of the univariate polynomials.

groesolve({exp1, exp2, . . . , expm}[, {var1, var2, . . . , varn}]);

where {exp1, exp2, . . . , expm} is a list of any number of expressions or equations,
{var1, var2, . . . , varn} is an optional list of variables.

The result is a set of subsets. The subsets contain the solutions of the polynomial
equations. If there are only finitely many solutions, then each subset is a set of
expressions of triangular type {exp1, exp2, . . . , expn}, where exp1 depends only
on var1, exp2 depends only on var1 and var2 etc. until expn which depends
on var1, . . . , varn. This allows a successive determination of the solution com-
ponents. If there are infinitely many solutions, some subsets consist in less than
n expressions. By considering some of the variables as “free parameters”, these
subsets are usually again of triangular type.

Example 33(Intersubsections of a line with a circle):

groesolve({x ∗ ∗2− y ∗ ∗2− a, p ∗ x+ q ∗ y + s}, {x, y});

2 2 2 2 2
{{x=(sqrt( - a*p + a*q + s )*q - p*s)/(p - q ),

2 2 2 2 2
y= - (sqrt( - a*p + a*q + s )*p - q*s)/(p - q )},

2 2 2 2 2
{x= - (sqrt( - a*p + a*q + s )*q + p*s)/(p - q ),

2 2 2 2 2
y=(sqrt( - a*p + a*q + s )*p + q*s)/(p - q )}}

If the system is zero–dimensional (has a number of isolated solutions), the algo-
rithm described in [Hil99] is used, if the decomposition leaves a polynomial with
mixed leading term. Hillebrand has written the article and Möller was the tutor of
this job.

The reordering of the groesolve variables is controlled by the REDUCE switch
varopt. If varopt is on (which is the default of varopt), the variable sequence is op-
timized (the variables are reordered). If varopt is off, the given variable sequence is
taken (if no variables are given, the order of the REDUCE system is taken instead).
In general, the reordering of the variables makes the Gröbner basis computation
significantly faster. A variable dependency, declare by one (or several) depend
statements, is regarded (if varopt is on). The switch groebopt has no meaning for
groesolve; it is stored during its processing.



658 CHAPTER 16. USER CONTRIBUTED PACKAGES

groepostproc: Postprocessing of a Gröbner Basis

In many cases, it is difficult to do the general Gröbner processing. If a Gröbner
basis with a lex ordering is calculated already (e.g., by very individual parameter
settings), the solutions can be derived from it by a call to groepostproc. groesolve is
functionally equivalent to a call to groebnerf and subsequent calls to groepostproc
for each partial basis.

groepostproc({exp1, exp2, . . . , expm}[, {var1, var2, . . . , varn}]);

where {exp1, exp2, . . . , expm} is a list of any number of expressions,
{var1, var2, . . . , varn} is an optional list of variables. The expressions must be a
lex Gröbner basis with the given variables; the ordering must be still active.

The result is the same as with groesolve.

groepostproc({x3**2 + x3 + x2 - 1,
x2*x3 + x1*x3 + x3 + x1*x2 + x1 + 2,
x2**2 + 2*x2 - 1,
x1**2 - 2},{x3,x2,x1});

{{x3= - sqrt(2),

x2=sqrt(2) - 1,

x1=sqrt(2)},

{x3=sqrt(2),

x2= - (sqrt(2) + 1),

x1= - sqrt(2)},

sqrt(4*sqrt(2) + 9) - 1
{x3=-------------------------,

2

x2= - (sqrt(2) + 1),

x1=sqrt(2)},

- (sqrt(4*sqrt(2) + 9) + 1)
{x3=------------------------------,

2
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x2= - (sqrt(2) + 1),

x1=sqrt(2)},

sqrt( - 4*sqrt(2) + 9) - 1
{x3=----------------------------,

2

x2=sqrt(2) - 1,

x1= - sqrt(2)},

- (sqrt( - 4*sqrt(2) + 9) + 1)
{x3=---------------------------------,

2

x2=sqrt(2) - 1,

x1= - sqrt(2)}}

Idealquotient: Quotient of an Ideal and an Expression

Let i be an ideal and f be a polynomial in the same variables. Then the algebraic
quotient is defined by

i : f = {p | p ∗ f member of i} .

The ideal quotient i : f contains i and is obviously part of the whole polynomial
ring, i.e. contained in {1}. The case i : f = {1} is equivalent to f being a
member of i. The other extremal case, i : f = i, occurs, when f does not vanish
at any general zero of i. The explanation of the notion “general zero” introduced
by van der Waerden, however, is beyond the aim of this manual. The operation of
groesolve/groepostproc is based on nested ideal quotient calculations.

If i is given by a basis and f is given as an expression, the quotient can be calculated
by

idealquotient({exp1, . . . , expm}, exp);

where {exp1, exp2, . . . , expm} is a list of any number of expressions or equations,
exp is a single expression or equation.

idealquotient calculates the algebraic quotient of the ideal i with the basis
{exp1, exp2, . . . , expm} and exp with respect to the variables given or extracted.
{exp1, exp2, . . . , expm} is not necessarily a Gröbner basis. The result is the Gröb-
ner basis of the quotient.
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Saturation: Saturation of an Ideal and an Expression

The saturation operator computes the quotient on an ideal and an arbitrary power
of an expression exp ∗ ∗n with arbitrary n. The call is

saturation({exp1, . . . , expm}, exp);

where {exp1, exp2, . . . , expm} is a list of any number of expressions or equations,
exp is a single expression or equation.

saturation calls idealquotient several times, until the result is stable, and returns it.

Operators for Gröbner Bases in all Term Orderings

In some cases where no Gröbner basis with lexical ordering can be calculated, a
calculation with a total degree ordering is still possible. Then the Hilbert polyno-
mial gives information about the dimension of the solutions space and for finite sets
of solutions univariate polynomials can be calculated. The solutions of the equat-
ion system then is contained in the cross product of all solutions of all univariate
polynomials.

Hilbertpolynomial: Hilbert Polynomial of an Ideal

This algorithm was contributed by JOACHIM HOLLMAN, Royal Institute of Tech-
nology, Stockholm (private communication).

hilbertpolynomial({exp1, . . . , expm}) ;

where {exp1, . . . , expm} is a list of any number of expressions or equations.

hilertpolynomial calculates the Hilbert polynomial of the ideal with basis {exp1, . . . , expm}
with respect to the variables given or extracted provided the given term ordering is
compatible with the degree, such as the gradlex- or revgradlex-ordering. The term
ordering of the basis must be active and {exp1, . . . , expm} should be a Gröbner
basis with respect to this ordering. The Hilbert polynomial gives information about
the cardinality of solutions of the system {exp1, . . . , expm}: if the Hilbert polyno-
mial is an integer, the system has only a discrete set of solutions and the polynomial
is identical with the number of solutions counted with their multiplicities. Other-
wise the degree of the Hilbert polynomial is the dimension of the solution space.

If the Hilbert polynomial is not a constant, it is constructed with the variable “x”
regardless of whether x is member of {var1, . . . , varn} or not. The value of this
polynomial at sufficiently large numbers “x” is the difference of the dimension of
the linear vector space of all polynomials of degree ≤ x minus the dimension of
the subspace of all polynomials of degree ≤ x which belong also to the ideal.
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x must be an undefined variable or the value of x must be an undefined variable;
otherwise a warning is given and a new (generated) variable is taken instead.

Remark: The number of zeros in an ideal and the Hilbert polynomial depend
only on the leading terms of the Gröbner basis. So if a subsequent Hilbert cal-
culation is planned, the Gröbner calculation should be performed with on gltbasis
and the value of gltb (or its elements in a groebnerf context) should be given to
hilbertpolynomial. In this manner, a lot of computing time can be saved in the case
of long calculations.

16.30.5 Calculations “by Hand”

The following operators support explicit calculations with polynomials in a dis-
tributive representation at the REDUCE top level. So they allow one to do Gröbner
type evaluations stepwise by separate calls. Note that the normal REDUCE arith-
metic can be used for arithmetic combinations of monomials and polynomials.

Representing Polynomials in Distributive Form

gsortp;

where p is a polynomial or a list of polynomials.

If p is a single polynomial, the result is a reordered version of p in the distributive
representation according to the variables and the current term order mode; if p
is a list, its members are converted into distributive representation and the result
is the list sorted by the term ordering of the leading terms; zero polynomials are
eliminated from the result.

torder({alpha,beta,gamma},lex);

dip := gsort(gamma*(alpha-1)**2*(beta+1)**2);

2 2 2
dip := alpha *beta *gamma + 2*alpha *beta*gamma

2 2
+ alpha *gamma - 2*alpha*beta *gamma - 4*alpha*beta*gamma

2
- 2*alpha*gamma + beta *gamma + 2*beta*gamma + gamma
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Splitting of a Polynomial into Leading Term and Reductum

gsplitp;

where p is a polynomial.

gsplit converts the polynomial p into distributive representation and splits it into
leading monomial and reductum. The result is a list with two elements, the leading
monomial and the reductum.

gslit dip;

2 2
{alpha *beta *gamma,

2 2 2
2*alpha *beta*gamma + alpha *gamma - 2*alpha*beta *gamma

2
- 4*alpha*beta*gamma - 2*alpha*gamma + beta *gamma

+ 2*beta*gamma + gamma}

Calculation of Buchberger’s S-polynomial

gspoly(p1, p2);

where p1 and p2 are polynomials.

gspoly calculates the s-polynomial from p1 and p2;

Example for a complete calculation (taken from DAVENPORT ET AL. [DST93]):

torder({x,y,z},lex)$
g1 := x**3*y*z - x*z**2;
g2 := x*y**2*z - x*y*z;
g3 := x**2*y**2 - z;$

% first S-polynomial

g4 := gspoly(g2,g3);$

2 2
g4 := x *y*z - z
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% next S-polynomial

p := gspoly(g2,g4); $

2 2
p := x *y*z - y*z

% and reducing, here only by g4

g5 := preduce(p,{g4});

2 2
g5 := - y*z + z

% last S-polynomial}

g6 := gspoly(g4,g5);

2 2 3
g6 := x *z - z

% and the final basis sorted descending

gsort{g2,g3,g4,g5,g6};

2 2
{x *y - z,

2 2
x *y*z - z ,

2 2 3
x *z - z ,

2
x*y *z - x*y*z,

2 2
- y*z + z }
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16.31 GUARDIAN: Guarded Expressions in Practice

Computer algebra systems typically drop some degenerate cases when evaluating
expressions, e.g., x/x becomes 1 dropping the case x = 0. We claim that it is feasi-
ble in practice to compute also the degenerate cases yielding guarded expressions.
We work over real closed fields but our ideas about handling guarded expression
can be easily transferred to other situations. Using formulas as guards provides
a powerful tool for heuristically reducing the combinatorial explosion of cases:
equivalent, redundant, tautological, and contradictive cases can be detected by sim-
plification and quantifier elimination. Our approach allows to simplify the expres-
sions on the basis of simplification knowledge on the logical side. The method
described in this paper is implemented in the REDUCE package GUARDIAN.

Authors: Andreas Dolzmann and Thomas Sturm.

16.31.1 Introduction

It is meanwhile a well-known fact that evaluations obtained with the interactive use
of computer algebra systems (CAS) are not entirely correct in general. Typically,
some degenerate cases are dropped. Consider for instance the evaluation

x2

x
= x,

which is correct only if x 6= 0. The problem here is that CAS consider variables
to be transcendental elements. The user, in contrast, has in mind variables in the
sense of logic. In other words: The user does not think of rational functions but of
terms.

Next consider the valid expression
√
x+
√
−x

x
.

It is meaningless over the reals. CAS often offer no choice than to interprete surds
over the complex numbers even if they distinguish between a real and a complex
mode.

Corless and Jeffrey [CJ92] have examined the behavior of a number of CAS with
such input data. They come to the conclusion that simultaneous computation of
all cases is exemplary but not feasible due to the combinatorial explosion of cases
to be considered. Therefore, they suggest to ignore the degenerate cases but to
provide the assumptions to the user on request. We claim, in contrast, that it is in
fact feasible to compute all possible cases.

Our setting is as follows: Expressions are evaluated to guarded expressions con-
sisting of possibly several conventional expressions guarded by quantifier-free for-
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mulas. For the above examples, we would obtain[
x 6= 0 x

]
,
[

F
√

x+
√
−x

x

]
.

As the second example illustrates, we are working in ordered fields, more precisely
in real closed fields. The handling of guarded expressions as described in this paper
can, however, be easily transferred to other situations.

Our approach can also deal with redundant guarded expressions, such as T |x| − x
x ≥ 0 0
x < 0 −2x


which leads to algebraic simplification techniques based on logical simplification
as proposed by Davenport and Faure [DF94].

We use formulas over the language of ordered rings as guards. This provides pow-
erful tools for heuristically reducing the combinatorial explosion of cases: equiv-
alent, redundant, tautological, and contradictive cases can be detected by simplifi-
cation [DS97b] and quantifier elimination [Tar48, Col75, Wei88, RLW93, Wei97,
Wei94]. In certain situations, we will allow the formulas also to contain extra func-
tions such as

√
· or | · |. Then we take care that there is no quantifier elimination

applied.

Simultaneous computation of several cases concerning certain expressions be-
ing zero or not has been extensively investigated as dynamic evaluation [GD96,
DR94a, DR94b, BGDW95]. It has also been extended to real closed fields [DGV96].
The idea behind the development of these methods is of a more theoretical na-
ture than to overcome the problems with the interactive usage of CAS sketched
above: one wishes to compute in algebraic (or real) extension fields of the ratio-
nals. Guarded expressions occur naturally when solving problems parametrically.
Consider, e.g., the Gröbner systems used during the computation of comprehensive
Gröbner bases [Wei92].

The algorithms described in this paper are implemented in the REDUCE pack-
age GUARDIAN. It is based on the REDUCE [Hea95, Mel95] package RED-
LOG [DS97a, DS96] implementing a formula data type with corresponding algo-
rithms, in particular including simplification and quantifier elimination.



666 CHAPTER 16. USER CONTRIBUTED PACKAGES

16.31.2 An outline of our method

Guarded expressions

A guarded expression is a scheme 
γ0 t0
γ1 t1
...

...
γn tn


where each γi is a quantifier-free formula, the guard, and each ti is an associated
conventional expression. The idea is that some ti is a valid interpretation iff γi
holds. Each pair (γi, ti) is called a case.

The first case (γ0, t0) is the generic case: t0 is the expression the system would
compute without our package, and γ0 is the corresponding guard.

The guards γi need neither exclude one another, nor do we require that they form
a complete case distinction. We shall, however, assume that all cases covered by a
guarded expression are already covered by the generic case; in other words:

n∧
i=1

(γi −→ γ0). (16.74)

Consider the following evaluation of |x| to a guarded expression: T |x|
x ≥ 0 x
x < 0 −x

 .
Here the non-generic cases already cover the whole domain. The generic case is
in some way redundant. It is just present for keeping track of the system’s default
behavior. Formally we have

( n∨
i=1

γi

)
←→ γ0. (16.75)

As an example for a non-redundant, i.e., necessary generic case we have the eval-
uation of the reciprocal 1

x : [
x 6= 0 1

x

]
.

In every guarded expression, the generic case is explicitly marked as either neces-
sary or redundant. The corresponding tag is inherited during the evaluation process.
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Unfortunately it can happen that guarded expressions satisfy (16.75) without being
tagged redundant, e.g., specialization of[

T sinx
x = 0 0

]
to x = 0 if the system cannot evaluate sin(0). This does not happen if one claims
for necessary generic cases to have, as the reciprocal above, no alternative cases at
all. Else, in the sequel “redundant generic case” has to be read as “tagged redun-
dant.”

With guarded expressions, the evaluation splits into two independent parts: Al-
gebraic evaluation and a subsequent simplification of the guarded expression ob-
tained.

Guarding schemes

In the introduction we have seen that certain operators introduce case distinctions.
For this, with each operator f there is a guarding scheme associated providing
information on how to map f(t1, . . . , tm) to a guarded expression provided that
one does not have to care for the argument expressions t1, . . . , tm. In the easiest
case, this is a rewrite rule

f(a1, . . . , am)→ G(a1, . . . , am).

The actual terms t1, . . . , tm are simply substituted for the formal symbols a1,
. . . , am into the generic guarded expression G(a1, . . . , am). We give some ex-
amples:

a1

a2
→

[
a2 6= 0 a1

a2

]
√
a1 →

[
a1 ≥ 0

√
a1
]

sign(a1) →


T sign(a1)

a1 > 0 1
a1 = 0 0
a1 < 0 −1


|a1| →

 T |a1|
a1 ≥ 0 a1

a1 < 0 −a1

 (16.76)

For functions of arbitrary arity, e.g., min or max, we formally assume infinitely
many operators of the same name. Technically, we associate a procedure parame-
terized with the number of arguments m that generates the corresponding rewrite
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rule. As min_scheme(2) we obtain, e.g.,

min(a1, a2) →

 T min(a1, a2)
a1 ≤ a2 a1

a2 ≤ a1 a2

 , (16.77)

while for higher arities there are more case distinctions necessary.

For later complexity analysis, we state the concept of a guarding scheme formally:
a guarding scheme for an m-ary operator f is a map

gschemef : Em → GE

where E is the set of expressions, and GE is the set of guarded expressions. This al-
lows to split f(t1, . . . , tm) in dependence on the form of the parameter expressions
t1, . . . , tm.

Algebraic evaluation

Evaluating conventional expressions

The evaluation of conventional expressions into guarded expressions is performed
recursively: Constants c evaluate to [

T c
]
.

For the evaluation of f(e1, . . . , em) the argument expressions e1, . . . , em are re-
cursively evaluated to guarded expressions

e′i =


γi0 ti0
γi1 ti1
...

...
γini tini

 for 1 ≤ i ≤ m. (16.78)

Then the operator f is “moved inside” the e′i by combining all cases, technically a
simultaneous Cartesian product computation of both the sets of guards and the sets
of terms:

Γ =

m∏
i=1

{γi0, . . . , γini}, T =

m∏
i=1

{ti0, . . . , tini}. (16.79)

This leads to the intermediate result
γ10 ∧ · · · ∧ γm0 f(t10, . . . , tm0)

...
...

γ1n1 ∧ · · · ∧ γm0 f(t1n1 , . . . , tm0)
...

...
γ1n1 ∧ · · · ∧ γmnm f(t1n1 , . . . , tmnm)

 . (16.80)
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The new generic case is exactly the combination of the generic cases of the e′i. It
is redundant if at least one of these combined cases is redundant.

Next, all non-generic cases containing at least one redundant generic constituent
γi0 in their guard are deleted. The reason for this is that generic cases are only
used to keep track of the system default behavior. All other cases get the status of a
non-generic case even if they contain necessary generic constituents in their guard.

At this point, we apply the guarding scheme of f to all remaining expressions
f(t1i1 , . . . , tmim) in the form (16.80) yielding a nested guarded expression

Γ0

 δ00 u00
...

...
δ0k0 u0k0


...

...

ΓN

 δN0 uN0
...

...
δNkN uNkN




, (16.81)

which can be straightforwardly resolved to a guarded expression

Γ0 ∧ δ00 u00
...

...
Γ0 ∧ δ0k0 u0k0

...
...

ΓN ∧ δN0 uN0
...

...
ΓN ∧ δNkN uNkN


.

This form is treated analogously to the form (16.80): The new generic case
(Γ0 ∧ δ00, u00) is redundant if at least one of

(
Γ0, f(t10, . . . , tm0)

)
and (δ00, u00)

is redundant. Among the non-generic cases all those containing redundant generic
constituents in their guard are deleted, and all those containing necessary generic
constituents in their guard get the status of an ordinary non-generic case.

Finally the standard evaluator of the system—reval in the case of REDUCE—
is applied to all contained expressions, which completes the algebraic part of the
evaluation.

Evaluating guarded expressions

The previous section was concerned with the evaluation of pure conventional ex-
pressions into guarded expressions. Our system currently combines both conven-
tional and guarded expressions. We are thus faced with the problem of treating
guarded subexpressions during evaluation.
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When there is a guarded subexpression ei detected during evaluation, all contained
expressions are recursively evaluated to guarded expressions yielding a nested
guarded expression of the form (16.81). This is resolved as described above yield-
ing the evaluation subresult e′i.

As a special case, this explains how guarded expressions are (re)evaluated to
guarded expressions.

Example

We describe the evaluation of the expression min(x, |x|). The first argument e1 =
x evaluates recursively to

e′1 =
[

T x
]

(16.82)

with a necessary generic case. The nested x inside e2 = |x| evaluates to the same
form (16.82). For obtaining e′2, we apply the guarding scheme (16.76) of the abso-
lute value to the only term of (16.82) yielding T

 T |x|
x ≥ 0 x
x < 0 −x

  ,
where the inner generic case is redundant. This form is resolved to

e′2 =

 T ∧ T |x|
T ∧ x ≥ 0 x
T ∧ x < 0 −x


with a redundant generic case. The next step is the combination of cases by Carte-
sian product computation. We obtain T ∧ (T ∧ T) min(x, |x|)

T ∧ (T ∧ x ≥ 0) min(x, x)
T ∧ (T ∧ x < 0) min(x,−x)

 ,
which corresponds to (16.80) above. For the outer min, we apply the guarding
scheme (16.77) to all terms yielding the nested guarded expression

T ∧ (T ∧ T)

 T min(x, |x|)
x ≤ |x| x
|x| ≤ x |x|


T ∧ (T ∧ x ≥ 0)

 T min(x, x)
x ≤ x x
x ≤ x x


T ∧ (T ∧ x < 0)

 T min(x,−x)
x ≤ −x x
−x ≤ x −x




,
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which is in turn resolved to

(T ∧ (T ∧ T)) ∧ T min(x, |x|)
(T ∧ (T ∧ T)) ∧ x ≤ |x| x
(T ∧ (T ∧ T)) ∧ |x| ≤ x |x|
(T ∧ (T ∧ x ≥ 0)) ∧ T min(x, x)

(T ∧ (T ∧ x ≥ 0)) ∧ x ≤ x x
(T ∧ (T ∧ x ≥ 0)) ∧ x ≤ x x

(T ∧ (T ∧ x < 0)) ∧ T min(x,−x)
(T ∧ (T ∧ x < 0)) ∧ x ≤ −x x
(T ∧ (T ∧ x < 0)) ∧ −x ≤ x −x


.

From this, we delete the two non-generic cases obtained by combination with the
redundant generic case of the min. The final result of the algebraic evaluation step
is the following:

(T ∧ (T ∧ T)) ∧ T min(x, |x|)
(T ∧ (T ∧ T)) ∧ x ≤ |x| x
(T ∧ (T ∧ T)) ∧ |x| ≤ x |x|

(T ∧ (T ∧ x ≥ 0)) ∧ x ≤ x x
(T ∧ (T ∧ x ≥ 0)) ∧ x ≤ x x

(T ∧ (T ∧ x < 0)) ∧ x ≤ −x x
(T ∧ (T ∧ x < 0)) ∧ −x ≤ x −x


. (16.83)

Worst-case complexity

Our measure of complexity |G| for guarded expressions G is the number of con-
tained cases: ∣∣∣∣∣∣∣∣∣


γ0 t0
γ1 t1
...

...
γn tn


∣∣∣∣∣∣∣∣∣ = n+ 1.

As in Section 16.31.2, consider an m-ary operator f , guarded expression argu-
ments e′1, . . . , e′m as in equation (16.78), and the Cartesian product T as in equat-
ion (16.79). Then

|f(e′1, . . . , e
′
m)| ≤

∑
(t1,...,tm)∈T

|gschemef (t1, . . . , tm)|

≤ max
(t1,...,tm)∈T

|gschemef (t1, . . . , tm)| ·#T

= max
(t1,...,tm)∈T

|gschemef (t1, . . . , tm)| ·
m∏
j=1

|e′j |

≤ max
(t1,...,tm)∈T

|gschemef (t1, . . . , tm)| ·
(

max
1≤j≤m

|e′j |
)m
.
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In the important special case that the guarding scheme of f is a rewrite rule
f(a1, . . . , am)→ G, the above complexity estimation simplifies to

|f(e′1, . . . , e
′
m)| ≤ |G| ·

m∏
j=1

|e′j | ≤ |G| ·
(

max
1≤j≤m

|e′j |
)m
.

In other words: |G| plays the role of a factor, which, however, depends on f , and
|f(e′1, . . . , e

′
m)| is polynomial in the size of the ei but exponential in the arity of f .

Simplification

In view of the increasing size of the guarded expressions coming into existence
with subsequent computations, it is indispensable to apply simplification strate-
gies. There are two different algorithms involved in the simplification of guarded
expressions:

1. A formula simplifier mapping quantifier-free formulas to equivalent simpler
ones.

2. Effective quantifier elimination for real closed fields over the language of
ordered rings.

It is not relevant, which simplifier and which quantifier elimination procedure is
actually used. We use the formula simplifier described in [DS97b]. Our quantifier
elimination uses test point methods developed by Weispfenning [Wei88, RLW93,
Wei97]. It is restricted to formulas obeying certain degree restrictions wrt. the
quantified variables. As an alternative, REDLOG provides an interface to Hong’s
QEPCAD quantifier elimination package [HCJE93]. Compared to the simplifica-
tion, the quantifier elimination is more time consuming. It can be turned off by a
switch.

The following simplification steps are applied in the given order:

Contraction of cases This is restricted to the non-generic cases of the considered
guarded expression. We contract different cases containing the same terms:

γ0 t0
...

...
γi ti
...

...
γj ti
...

...


becomes


γ0 t0
...

...
γi ∨ γj ti

...
...

 .
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Simplification of the guards The simplifier is applied to all guards replacing
them by simplified equivalents. Since our simplifier maps γ ∨ γ to γ, this together
with the contraction of cases takes care for the deletion of duplicate cases.

Keep one tautological case If the guard of some non-generic case becomes “T,”
we delete all other non-generic cases. Else, if quantifier elimination is turned on,
we try to detect a tautology by eliminating the universal closures ∀γ of the guards
γ. This quantifier elimination is also applied to the guards of generic cases. These
are, in case of success, simply replaced by “T” without deleting the case.

Remove contradictive cases A non-generic case is deleted if its guard has be-
come “F.” If quantifier elimination is turned on, we try to detect further contradic-
tive cases by eliminating the existential closure ∃γ for each guard γ. This quantifier
elimination is also applied to generic cases. In case of success they are not deleted
but their guards are replaced by “F.” Our assumption (16.74) allows then to delete
all non-generic cases.

Example revisited

We turn back to the form (16.83) of our example min(x, |x|). Contraction of cases
with subsequent simplification automatically yields

T min(x, |x|)
T x

|x| − x ≤ 0 |x|
F −x

 ,
of which only the tautological non-generic case survives:[

T min(x, |x|)
T x

]
. (16.84)

Output modes

An output mode determines which part of the information contained in the guarded
expressions is provided to the user. GUARDIAN knows the following output modes:

Matrix Output matrices in the style used throughout this paper. We have already
seen that these can become very large in general.

Generic case Output only the generic case.
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Generic term Output only the generic term. Thus the output is exactly the same
as without the guardian package. If the condition of the generic case becomes “F,”
a warning “contradictive situation” is given. The computation can,
however, be continued.

Note that output modes are restrictions concerning only the output; internally the
system still computes with the complete guarded expressions.

A smart mode

Consider the evaluation result (16.84) of min(x, |x|). The generic term output
mode would output min(x, |x|), although more precise information could be given,
namely x. The problem is caused by the fact that generic cases are used to keep
track of the system’s default behavior. In this section we will describe an optional
smart mode with a different notion of generic case. To begin with, we show why
the problem can not be overcome by a “smart output mode.”

Assume that there is an output mode which outputs x for (16.84). As the next
computation involving (16.84) consider division by y. This would result in[

y 6= 0 min(x,|x|)
y

y 6= 0 x
y

]
.

Again, there are identic conditions for the generic case and some non-generic case,
and, again, the term belonging to the latter is simpler. Our mode would output xy .
Next, we apply the absolute value once more yielding y 6= 0 |min(x,|x|)|

|y|
xy ≥ 0 ∧ y 6= 0 x

y

xy < 0 ∧ y 6= 0 −x
y

 .
Here, the condition of the generic case differs from all other conditions. We thus
have to output the generic term. For the user, the evaluation of |xy | results in
|min(x,|x|)|

|y| .

The smart mode can turn a non-generic case into a necessary generic one dropping
the original generic case and all other non-generic cases. Consider, e.g., (16.84),
where the conditions are equal, and the non-generic term is “simpler.”

In fact, the relevant relationship between the conditions is that the generic condition
implies the non-generic one. In other words: Some non-generic condition is not
more restrictive than the generic condition, and thus covers the whole domain of the
guarded expression. Note that from the implication and (16.74) we may conclude
that the cases are even equivalent.
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Implication is heuristically checked by simplification. If this fails, quantifier elim-
ination provides a decision procedure. Note that our test point methods are in-
complete in this regard due to the degree restrictions. Also it cannot be applied
straightforwardly to guards containing operators that do not belong to the language
of ordered rings.

Whenever we happen to detect a relevant implication, we actually turn the cor-
responding non-generic case into the generic one. From our motivation of non-
generic cases, we may expect that non-generic expressions are generally more con-
venient than generic ones.

16.31.3 Examples

We give the results for the following computations as they are printed in the output
mode matrix providing the full information on the computation result. The reader
can derive himself what the output in the mode generic case or generic term would
be.

• Smart mode or not:

1

x2 + 2x+ 1
=
[
x+ 1 6= 0 1

x2+2x+1

]
.

The simplifier recognizes that the denominator is a square.

• Smart mode or not:

1

x2 + 2x+ 2
=
[

T 1
x2+2x+2

]
.

Quantifier elimination recognizes the positive definiteness of the denomina-
tor.

• Smart mode:
|x| −

√
x =

[
x ≥ 0 −

√
x+ x

]
.

The square root allows to forget about the negative branch of the absolute
value.

• Smart mode:

|x2 + 2x+ 1| =
[

T x2 + 2x+ 1
]
.

The simplifier recognizes the positive semidefiniteness of the argument. RE-
DUCE itself recognizes squares within absolute values only in very special
cases such as |x2|.
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• Smart mode:
min

(
x,max(x, y)

)
=
[

T x
]
.

Note that REDUCE does not know any rules about nested minima and max-
ima.

• Smart mode:
min

(
sign(x),−1

)
=
[

T −1
]
.

• Smart mode or not:

|x| − x =

 T |x| − x
x ≥ 0 0
x < 0 −2x

 .
This example is taken from [DF94].

• Smart mode or not:√
1 + x2y2(x2 + y2 − 3) =

[
T
√
x4y2 + x2y4 − 3x2y2 + 1

]
The Motzkin polynomial is recognized to be positive semidefinite by quanti-
fier elimination.

The evaluation time for the last example is 119 ms on a SUN SPARC-4. This illus-
trates that efficiency is no problem with such interactive examples.

16.31.4 Outlook

This section describes possible extensions of the GUARDIAN. The extensions pro-
posed in Section 16.31.4 on simplification of terms and Section 16.31.4 on a back-
ground theory are clear from a theoretical point of view but not yet implemented.
Section 16.31.4 collects some ideas on the application of our ideas to the REDUCE

integrator. In this field, there is some more theoretical work necessary.

Simplification of terms

Consider the expression sign(x)x − |x|. It evaluates to the following guarded ex-
pression:  T −|x|+ sign(x)x

x 6= 0 0
x = 0 −x

 .
This suggests to substitute −x by 0 in the third case, which would in turn allow to
contract the two non-generic cases yielding[

T −|x|+ sign(x)x
T 0

]
.
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In smart mode second case would then become the only generic case.

Generally, one would proceed as follows: If the guard is a conjunction containing
as toplevel equations

t1 = 0, . . . , tk = 0,

reduce the corresponding expression modulo the set of univariate linear polynom-
ials among t1, . . . , tk.

A more general approach would reduce the expression modulo a Gröbner basis of
all the t1, . . . , tk. This leads, however, to larger expressions in general.

One can also imagine to make use of non-conjunctive guards in the following way:

1. Compute a DNF of the guard.

2. Split the case into several cases corresponding to the conjunctions in the
DNF.

3. Simplify the terms.

4. Apply the standard simplification procedure to the resulting guarded expres-
sion. Note that it includes contraction of cases.

According to experiences with similar ideas in the “Gröbner simplifier” described
in [DS97b], this should work well.

Background theory

In practice one often computes with quantities guaranteed to lie in a certain range.
For instance, when computing an electrical resistance, one knows in advance that it
will not be negative. For such cases one would like to have some facility to provide
external information to the system. This can then be used to reduce the complexity
of the guarded expressions.

One would provide a function assert(ϕ), which asserts the formula ϕ to hold.
Successive applications of assert establish a background theory, which is a set of
formulas considered conjunctively. The information contained in the background
theory can be used with the guarded expression computation. The user must, how-
ever, not rely on all the background information to be actually used.

Technically, denote by Φ the (conjunctive) background theory. For the simplifica-
tion of the guards, we can make use of the fact that our simplifier is designed to
simplify wrt. a theory, cf. [DS97b]. For proving that some guard γ is tautological,
we try to prove

∀(Φ −→ γ)



678 CHAPTER 16. USER CONTRIBUTED PACKAGES

instead of ∀γ. Similarly, for proving that γ is contradictive, we try to disprove

∃(Φ ∧ γ).

Instead of proving ∀(γ1 −→ γ2) in smart mode, we try to prove

∀
(
(Φ ∧ γ1) −→ γ2

)
.

Independently, one can imagine to use a background theory for reducing the output
with the matrix output mode. For this, one simplifies each guard wrt. the theory
at the output stage treating contradictions and tautologies appropriately. Using the
theory for replacing all cases by one at output stage in a smart mode manner leads
once more to the problem of expressions or even guarded expressions “mysteri-
ously” getting more complicated. Applying the theory only at the output stage
makes it possible to implement a procedure unassert(ϕ) in a reasonable way.

Integration

CAS integrators make “mistakes” similar to those we have examined. Consider,
e.g., the typical result ∫

xa dx =
1

a+ 1
xa+1.

It does not cover the case a = −1, for which one wishes to obtain∫
x−1 dx = lnx.

This problem can also be solved by using guarded expressions for integration re-
sults.

Within the framework of this paper, we would have to associate a guarding scheme
to the integrator int. It is not hard to see that this cannot be done in a reasonable
way without putting as much knowledge into the scheme as into the integrator
itself. Thus for treating integration, one has to modify the integrator to provide
guarded expressions.

Next, we have to clarify what the guarded expression for the above integral would
look like. Since we know that the integral is defined for all interpretations of the
variables, our assumption (16.74) implies that the generic condition be “T.” We
obtain the guarded expression T

∫
xa dx

a 6= −1 1
a+1x

a+1

a = −1 lnx

 .
Note that the redundant generic case does not model the system’s current behavior.
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Combining algebra with logic

Our method, in the described form, uses an already implemented algebraic evalu-
ator. In the previous section, we have seen that this point of view is not sufficient
for treating integration appropriately.

Also our approach runs into trouble with built-in knowledge such as
√
x2 = |x|, (16.85)

sign(|x|) = 1. (16.86)

Equation (16.85) introduces an absolute value operator within a non-generic term
without making a case distinction. Equation (16.86) is wrong when not considering
x transcendental. In contrast to the situation with reciprocals, our technique cannot
be used to avoid this “mistake.” We obtain

sign(|x|) =

 T 1
x 6= 0 1
x = 0 0


yielding two different answers for x = 0.

We have already seen in the example Section 16.31.3 that the implementation of
knowledge such as (16.85) and (16.86) is usually quite ad hoc, and can be mostly
covered by using guarded expressions. This obesrvation gives rise to the following
question: When designing a new CAS based on guarded expressions, how should
the knowledge be distributed between the algebraic side and the logic side?

16.31.5 Conclusions

Guarded expressions can be used to overcome well-known problems with interpret-
ing expressions as terms. We have explained in detail how to compute with guarded
expressions including several simplification techniques. Moreover we gain alge-
braic simplification power from the logical simplifications. Numerous examples
illustrate the power of our simplification methods. The largest part of our ideas
is efficiently implemented, and the software is published. The outlook on back-
ground theories and on the treatment of integration by guarded expressions points
on interesting future extensions.
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16.32 IDEALS: Arithmetic for polynomial ideals

This package implements the basic arithmetic for polynomial ideals by exploiting
the Gröbner bases package of REDUCE. In order to save computing time all inter-
mediate Gröbner bases are stored internally such that time consuming repetitions
are inhibited.

Author: Herbert Melenk.

16.32.1 Introduction

This package implements the basic arithmetic for polynomial ideals by exploiting
the Gröbner bases package of REDUCE. In order to save computing time all inter-
mediate Gröbner bases are stored internally such that time consuming repetitions
are inhibited. A uniform setting facilitates the access.

16.32.2 Initialization

Prior to any computation the set of variables has to be declared by calling the
operator I_setting . E.g. in order to initiate computations in the polynomial ring
Q[x, y, z] call

I_setting(x,y,z);

A subsequent call to I_setting allows one to select another set of variables; at the
same time the internal data structures are cleared in order to free memory resources.

16.32.3 Bases

An ideal is represented by a basis (set of polynomials) tagged with the symbol I ,
e.g.

u := I(x*z-y**2, x**3-y*z);

Alternatively a list of polynomials can be used as input basis; however, all arith-
metic results will be presented in the above form. The operator ideal2list allows
one to convert an ideal basis into a conventional REDUCE list.

Operators

Because of syntactical restrictions in REDUCE, special operators have to be used
for ideal arithmetic:
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.+ ideal sum (infix)

.* ideal product (infix)

.: ideal quotient (infix)

./ ideal quotient (infix)

.= ideal equality test (infix)
subset ideal inclusion test (infix)
intersection ideal intersection (prefix,binary)
member test for membership in an ideal

(infix: polynomial and ideal)
gb Groebner basis of an ideal (prefix, unary)
ideal2list convert ideal basis to polynomial list

(prefix,unary)

Example:

I(x+y,x^2) .* I(x-z);

2 2 2
I(X + X*Y - X*Z - Y*Z,X*Y - Y *Z)

The test operators return the values 1 (=true) or 0 (=false) such that they can be
used in REDUCE if − then− else statements directly.

The results of sum, product, quotient, intersction are ideals represented by their
Gröbner basis in the current setting and term order. The term order can be modified
using the operator torder from the Gröbner package. Note that ideal equality
cannot be tested with the REDUCE equal sign:

I(x,y) = I(y,x) is false
I(x,y) .= I(y,x) is true

16.32.4 Algorithms

The operators groebner, preduce and idealquotient of the REDUCE Gröbner
package support the basic algorithms:

GB(Iu1, u2...)→ groebner({u1, u2...}, {x, ...})

p ∈ I1 → p = 0 mod I1

I1 : I(p)→ (I1
⋂
I(p))/p elementwise

On top of these the Ideals package implements the following operations:
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I(u1, u2...) + I(v1, v2...)→ GB(I(u1, u2..., v1, v2...))

I(u1, u2...) ∗ I(v1, v2...)→ GB(I(u1 ∗ v1, u1 ∗ v2, ..., u2 ∗ v1, u2 ∗ v2...))

I1
⋂
I2 → Q[x, ...]

⋂
GBlex(t ∗ I1 + (1− t) ∗ I2, {t, x, ..})

I1 : I(p1, p2, ...)→ I1 : I(p1)
⋂
I1 : I(p2)

⋂
...

I1 = I2 → GB(I1) = GB(I2)

I1 ⊆ I2 → ui ∈ I2 ∀ ui ∈ I1 = I(u1, u2...)

16.32.5 Examples

Please consult the file ideals.tst.
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16.33 INEQ: Support for solving inequalities

This package supports the operator ineq_solve that tries to solves single in-
equalities and sets of coupled inequalities.

Author: Herbert Melenk.

The following types of systems are supported :

• only numeric coefficients (no parametric system),

• a linear system of mixed equations and <= – >= inequalities, applying the
method of Fourier and Motzkin 28,

• a univariate inequality with <=, >=, > or < operator and polynomial or
rational left–hand and right–hand sides, or a system of such inequalities with
only one variable.

For linear optimization problems please use the operator simplex of the LINALG

package (cf. section 16.39).

Syntax:

INEQ_SOLVE(〈expr〉 [, 〈vl〉])

where <expr> is an inequality or a list of coupled inequalities and equations, and
the optional argument <vl> is a single variable (kernel) or a list of variables (ker-
nels). If not specified, they are extracted automatically from <expr>. For mul-
tivariate input an explicit variable list specifies the elimination sequence: the last
member is the most specific one.

An error message occurs if the input cannot be processed by the currently imple-
mented algorithms.

The result is a list. It is empty if the system has no feasible solution. Otherwise
the result presents the admissible ranges as set of equations where each variable
is equated to one expression or to an interval. The most specific variable is the
first one in the result list and each form contains only preceding variables (resolved
form). The interval limits can be formal max or min expressions. Algebraic num-
bers are encoded as rounded number approximations.

Examples:

ineq_solve({(2*x^2+x-1)/(x-1) >= (x+1/2)^2, x>0});

{x=(0 .. 0.326583),x=(1 .. 2.56777)}

28described by G.B. Dantzig in Linear Programming and Extensions.
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reg:=
{a + b - c>=0, a - b + c>=0, - a + b + c>=0, 0>=0, 2>=0,
2*c - 2>=0, a - b + c>=0, a + b - c>=0, - a + b + c - 2>=0,
2>=0, 0>=0, 2*b - 2>=0, k + 1>=0, - a - b - c + k>=0,
- a - b - c + k + 2>=0, - 2*b + k>=0,
- 2*c + k>=0, a + b + c - k>=0,

2*b + 2*c - k - 2>=0, a + b + c - k>=0}$

ineq_solve (reg,{k,a,b,c});

{c=(1 .. infinity),

b=(1 .. infinity),

a=(max( - b + c,b - c) .. b + c - 2),

k=a + b + c}



685

16.34 INVBASE: A package for computing involutive
bases

Involutive bases are a new tool for solving problems in connection with multivari-
ate polynomials, such as solving systems of polynomial equations and analyzing
polynomial ideals. An involutive basis of polynomial ideal is nothing but a special
form of a redundant Gröbner basis. The construction of involutive bases reduces
the problem of solving polynomial systems to simple linear algebra.

Authors: A.Yu. Zharkov and Yu.A. Blinkov.

16.34.1 Introduction

Involutive bases are a new tool for solving problems in connection with multivari-
ate polynomials, such as solving systems of polynomial equations and analyzing
polynomial ideals, see [ZB96]. An involutive basis of polynomial ideal is nothing
but a special form of a redundant Gröbner basis. The construction of involutive
bases reduces the problem of solving polynomial systems to simple linear algebra.
The INVBASE package 29 calculates involutive bases of polynomial ideals using
an algorithm described in [ZB96] which may be considered as an alternative to the
well-known Buchberger algorithm [Buc85]. The package can be used over a vari-
ety of different coefficient domains, and for different variable and term orderings.
The algorithm implemented in the INVBASE package is proved to be valid for
any zero-dimensional ideal (finite number of solutions) as well as for positive-
dimensional ideals in generic form. However, the algorithm does not terminate
for “sparse” positive-dimensional systems. In order to stop the process we use
the maximum degree bound for the Gröbner bases of generic ideals in the total-
degree term ordering established in [Laz83]. In this case, it is reasonable to call the
GROEBNER package with the answer of INVBASE as input information in order
to compute the reduced Gröbner basis under the same variable and term ordering.
Though the INVBASE package supports computing involutive bases in any admis-
sible term ordering, it is reasonable to compute them only for the total-degree term
orderings. The package includes a special algorithm for conversion of total-degree
involutive bases into the triangular bases in the lexicographical term ordering that is
desirable for finding solutions. Normally the sum of timings for these two compu-
tations is much less than the timing for direct computation of the lexicographical
involutive bases. As a rule, the result of the conversion algorithm is a reduced
Gröbner basis in the lexicographical term ordering. However, because of some
gaps in the current version of the algorithm, there may be rare situations when
the resulting triangular set does not possess the formal property of Gröbner bases.
Anyway, we recommend using the GROEBNER package with the result of the

29The REDUCE implementation has been supported by the Konrad-Zuse-Zentrum Berlin
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conversion algorithm as input in order either to check the Gröbner bases property
or to transform the result into a lexicographical Gröbner basis.

16.34.2 The Basic Operators

Term Ordering

The following term order modes are available:

REV GRADLEX, GRADLEX, LEX

These modes have the same meaning as for the GROEBNER package.
All orderings are based on an ordering among the variables. For each pair of vari-
ables an order relation > must be defined, e.g. x > y. The term ordering mode as
well as the order of variables are set by the operator

INV TORDER < mode >, {x1, ..., xn}

where < mode > is one of the term order modes listed above. The notion of
{x1, ..., xn} as a list of variables at the same time means x1 > ... > xn.

Example 1.
INV TORDER REV GRADLEX, {x, y, z}

sets the reverse graduated term ordering based on the variable order x > y > z.
The operator INVTORDER may be omitted. The default term order mode is REV-
GRADLEX and the default decreasing variable order is alphabetical (or, more gen-
erally, the default REDUCE kernel order). Furthermore, the list of variables in the
INVTORDER may be omitted. In this case the default variable order is used.

Computing Involutive Bases

To compute the involutive basis of ideal generated by the set of polynomials
{p1, ..., pm} one should type the command

INV BASE {p1, ..., pm}

where pi are polynomials in variables listed in the INVTORDER operator. If some
kernels in pi were not listed previously in the INVTORDER operator they are con-
sidered as parameters, i.e. they are considered part of the coefficients of polynom-
ials. If INVTORDER was omitted, all the kernels in pi are considered as variables
with the default REDUCE kernel order.
The coefficients of polynomials pi may be integers as well as rational numbers (or,



687

accordingly, polynomials and rational functions in the parametric case). The com-
putations modulo prime numbers are also available. For this purpose one should
type the REDUCE commands

ON MODULAR; SETMOD p;

where p is a prime number.
The value of the INVBASE function is a list of integer polynomials {g1, ..., gn}
representing an involutive basis of a given ideal.
Example 2.

INV TORDER REV GRADLEX, {x, y, z};
g := INV BASE {4 ∗ x ∗ ∗2 + x ∗ y ∗ ∗2− z + 1/4, 2 ∗ x+ y ∗ ∗2 ∗ z + 1/2,

x ∗ ∗2 ∗ z − 1/2 ∗ x− y ∗ ∗2};

The resulting involutive basis in the reverse graduate ordering is

g := { 8 ∗ x ∗ y ∗ z3 − 2 ∗ x ∗ y ∗ z2 + 4 ∗ y3 −
4 ∗ y ∗ z2 + 16 ∗ x ∗ y + 17 ∗ y ∗ z − 4 ∗ y,
8 ∗ y4 − 8 ∗ x ∗ z2 − 256 ∗ y2 + 2 ∗ x ∗ z + 64 ∗ z2 − 96 ∗ x+ 20 ∗ z − 9,

2 ∗ y3 ∗ z + 4 ∗ x ∗ y + y,

8 ∗ x ∗ z3 − 2 ∗ x ∗ z2 + 4 ∗ y2 − 4 ∗ z2 + 16 ∗ x+ 17 ∗ z − 4,

−4 ∗ y ∗ z3 − 8 ∗ y3 + 6 ∗ x ∗ y ∗ z + y ∗ z2 − 36 ∗ x ∗ y − 8 ∗ y,
4 ∗ x ∗ y2 + 32 ∗ y2 − 8 ∗ z2 + 12 ∗ x− 2 ∗ z + 1,

2 ∗ y2 ∗ z + 4 ∗ x+ 1,

−4 ∗ z3 − 8 ∗ y2 + 6 ∗ x ∗ z + z2 − 36 ∗ x− 8,

8 ∗ x2 − 16 ∗ y2 + 4 ∗ z2 − 6 ∗ x− z }

To convert it into a lexicographical Gröbner basis one should type

h := INV LEX g;

The result is

h := { 3976 ∗ x+ 37104 ∗ z6 − 600 ∗ z5 + 2111 ∗ z4 +

122062 ∗ z3 + 232833 ∗ z2 − 680336 ∗ z + 288814,

1988 ∗ y2 − 76752 ∗ z6 + 1272 ∗ z5 − 4197 ∗ z4 −
251555 ∗ z3 − 481837 ∗ z2 + 1407741 ∗ z − 595666,

16 ∗ z7 − 8 ∗ z6 + z5 + 52 ∗ z4 + 75 ∗ z3 − 342 ∗ z2 + 266 ∗ z − 60 }

In the case of “sparse” positive-dimensioned system when the involutive basis in
the sense of [ZB96] does not exist, you get the error message

∗ ∗ ∗ ∗ ∗MAXIMUM DEGREE BOUND EXCEEDED
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The resulting list of polynomials which is not an involutive basis is stored in the
share variable INVTEMPBASIS. In this case it is reasonable to call the GROEB-
NER package with the value of INVTEMPBASIS as input under the same variable
and term ordering.
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16.35 LALR: A parser generator

Author: Arthur Norman

This package provides a parser-generator, somewhat styled after yacc or the many
programs available for use with other languages. You present it with a phrase
structure grammar and it generates a set of tables that can then be used by the
function yyparse to read in material in the syntax that you specified. Internally
it uses a very well established technique known “LALR” which takes the grammar
are derives the description of a stack automaton that can accept it. Details of the
procedure can be found in standard books on compiler construction, such as the
one by Aho, Ullman Lam and Sethi.

At the time of writing this explanation the code is not in its final form, so this will
describe the current state and include a few notes on what might chaneg in the
future.

Building a parser is done in Reduce symbolic mode, so say "symbolic;" or
"lisp;" before starting your work.

To use the code here you use a function lalr_create_parser, giving it two
arguments. The first indicates precedence information and will be described later:
for now just pass the value nil. The second argument is a list of productions, and
the first one of these is taken to be the top-level target for the whole grammar.

Each production is in the form

(LHS ((rhs1.1 rhs1.2 ...) a1.1 a1.2 ...)
((rhs2.1 rhs2.1 ...) a2.1 a2.2 ...)
...)

which in regular publication style for grammars might be interpreted as meaning

LHS⇒ rhs1,1 rhs1,2 . . . {a1,1 a1,2 . . .}
| rhs2,1 rhs2,2 . . . {a2,1 a2,2 . . .}
. . .

;

The various lines specify different options for what the left hand side (non-terminal
symbol) might correspond to, while the items within the braces are sematic actions
that get obeyed or evaluated when the production ruls is used.

Each LHS is treated as a non-terminal symbol and is specified as a simple name.
Note that by default the Reduce parser will be folding characters within names
to lower case and so it will be best to choose names for non-terminals that are
unambiguous even when case-folded, but I would like to establish a convention
that in source code they are written in capitals.
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The RHS items may be either non-terminals (identified because they are present
in the left hand side of some production) or terminals. Terminal symbols can be
specified in two different ways.

The lexer has built-in recipes that decode certain sequences of characters and return
the special markers for !:symbol, !:number, !:string, !:list for commonly used cases.
In these cases the variable yylval gets left set to associated data, so for instance in
the case of !:symbol it gets set to the particular symbol concerned. The token type
:list is used for Lisp or rlisp-like notation where the input contains ’expression or
‘expression so for instance the input ‘(a b c) leads to the lexer returning !:list and
yylvel being set to (backquote (a b c)). This treatment is specialised for handling
rlisp-like syntax.

Other terminals are indicated by writing a string. That may either consist of char-
acters that would otherwise form a symbol (ie a letter followed by letters, digits
and underscores) or a sequence of non-alphanumeric characters. In the latter case
if a sequence of three or more punctuation marks make up a terminal then all the
shorter prefixes of it will also be grouped to form single entities. So if "<–>" is a
terminal then ’<’, ’<-’ and ’<–’ will each by parsed as single tokens, and any of
them that are not used as terminals will be classified as !:symbol.

As well as terminals and non-terminals (which are writtent as symbols or strings)
it is possible to write one of

(OPT s1 s2 . . . ) 0 or 1 instances of the sequence s1, . . .
(STAR s1 s2 . . . ) 0, 1, 2, . . . instances.
(PLUS s1 s2 . . . ) 1, 2, 3, . . . instances.
(LIST sep s1 s2 . . . ) like (STAR s1 s2 . . . ) but with the single item

sep between each instance.
(LISTPLUS sep s1 . . . ) like (PLUS s2 . . . ) but with sep interleaved.
(OR s1 s2 . . . ) one or other of the tokens shown.

When the lexer processes input it will return a numeric code that identifies the type
of the item seen, so in a production one might write (!:symbol ":=" EXPRESSION)
and as it recognises the first two tokens the lexer will return a numeric code for
!:symbol (and set yylval to the actual symbol as seen) and then a numeric code
that it allocates for ":=". In the latter case it will also set yylval to the symbol
!:!= in case that is useful. Precedence can be set using lalr_precedence. See
examples below.

16.35.1 Limitations

1. Grammar rules and semantic actions are specified in fairly raw Lisp.

2. The lexer is hand-written and can not readily be reconfigured for use with
languages other than rlisp. For instance it has use of "!" as a character escape
built into it.
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16.35.2 An example

% Here I set up a sample grammar
% S’ -> S
% S -> C C { }
% C -> "c" C { }
% | "d" { }
% This is example 4.42 from Aho, Sethi and Ullman’s Red Dragon book.
% It is example 4.54 in the more recent Purple book.
%
%
grammar := ’(

(s ((cc cc) ) % Use default semantic action here
)
(cc (("c" cc) (list ’c !$2)) % First production for C

(("d") ’d ) % Second production for C
))$

parsertables := lalr_create_parser(nil, grammar)$

<< lex_init();
yyparse() >>;

c c c d c d ;
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16.36 LAPLACE: Laplace transforms

This package can calculate ordinary and inverse Laplace transforms of expressions.
Documentation is in plain text.

Authors: C. Kazasov, M. Spiridonova, V. Tomov.

Reference: Christomir Kazasov, Laplace Transformations in REDUCE 3,
Proc. Eurocal ’87, Lecture Notes in Comp. Sci., Springer-Verlag
(1987) 132-133.

Some hints on how to use to use this package:

Syntax:

LAPLACE(< exp >,< var − s >,< var − t > )

INVLAP(< exp >,< var − s >,< var − t >)

where < exp > is the expression to be transformed, < var − s > is the source
variable (in most cases < exp > depends explicitly of this variable) and < var −
t > is the target variable. If < var − t > is omitted, the package uses an internal
variable lp!& or il!&, respectively.

The following switches can be used to control the transformations:

lmon: If on, sin, cos, sinh and cosh are converted by LAPLACE into
exponentials,

lhyp: If on, expressions ẽx are converted by INVLAP into hyperbolic
functions sinh and cosh,

ltrig: If on, expressions ẽx are converted by INVLAP into trigonometric
functions sin and cos.

The system can be extended by adding Laplace transformation rules for single
functions by rules or rule sets. In such a rule the source variable MUST be free,
the target variable MUST be il!& for LAPLACE and lp!& for INVLAP and the
third parameter should be omitted. Also rules for transforming derivatives are en-
tered in such a form.
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Examples:

let {laplace(log(~x),x) => -log(gam * il!&)/il!&,

invlap(log(gam * ~x)/x,x) => -log(lp!&)};

operator f;

let{

laplace(df(f(~x),x),x) => il!&*laplace(f(x),x) - sub(x=0,f(x)),

laplace(df(f(~x),x,~n),x) => il!&**n*laplace(f(x),x) -

for i:=n-1 step -1 until 0 sum

sub(x=0, df(f(x),x,n-1-i)) * il!&**i

when fixp n,

laplace(f(~x),x) = f(il!&)

};

Remarks about some functions:

The DELTA and GAMMA functions are known.
ONE is the name of the unit step function.
INTL is a parametrized integral function

intl(< expr >,< var >, 0, < obj.var >)

which means "Integral of < expr > wrt. < var > taken from 0 to < obj.var >",
e.g. intl(2∗y2, y, 0, x) which is formally a function in x.
We recommend reading the file LAPLACE.TST for a further introduction.
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16.37 LIE: Functions for the classification of real n-dimensional
Lie algebras

LIE is a package of functions for the classification of real n-dimensional Lie al-
gebras. It consists of two modules: liendmc1 and lie1234. With the help of the
functions in the liendmcl module, real n-dimensional Lie algebras Lwith a derived
algebra L(1) of dimension 1 can be classified.

Authors: Carsten and Franziska Schöbel.

LIE is a package of functions for the classification of real n-dimensional Lie alge-
bras. It consists of two modules: liendmc1 and lie1234.

liendmc1
With the help of the functions in this module real n-dimensional Lie algebras L
with a derived algebra L(1) of dimension 1 can be classified. L has to be defined
by its structure constants ckij in the basis {X1, . . . , Xn} with [Xi, Xj ] = ckijXk.
The user must define an ARRAY LIENSTRUCIN(n, n, n) with n being the dimen-
sion of the Lie algebra L. The structure constants LIENSTRUCIN(i, j, k):=ckij for
i < j should be given. Then the procedure LIENDIMCOM1 can be called. Its
syntax is:

LIENDIMCOM1(<number>).

<number> corresponds to the dimension n. The procedure simplifies the structure
of L performing real linear transformations. The returned value is a list of the form

(i) {LIE_ALGEBRA(2),COMMUTATIVE(n-2)} or
(ii) {HEISENBERG(k),COMMUTATIVE(n-k)}

with 3 ≤ k ≤ n, k odd.
The concepts correspond to the following theorem (LIE_ALGEBRA(2) → L2,
HEISENBERG(k)→ Hk and COMMUTATIVE(n-k)→ Cn−k):

Theorem. Every real n-dimensional Lie algebra L with a 1-dimensional derived
algebra can be decomposed into one of the following forms:

(i) C(L) ∩ L(1) = {0} : L2 ⊕ Cn−2 or
(ii) C(L) ∩ L(1) = L(1) : Hk ⊕ Cn−k (k = 2r − 1, r ≥ 2), with
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1. C(L) = Cj ⊕ (L(1) ∩ C(L)) and dimCj = j ,
2. L2 is generated by Y1, Y2 with [Y1, Y2] = Y1 ,
3. Hk is generated by {Y1, . . . , Yk} with

[Y2, Y3] = · · · = [Yk−1, Yk] = Y1.

(cf. [Sch93])

The returned list is also stored as LIE_LIST. The matrix LIENTRANS gives
the transformation from the given basis {X1, . . . , Xn} into the standard basis
{Y1, . . . , Yn}: Yj = (LIENTRANS)kjXk.
A more detailed output can be obtained by turning on the switch TR_LIE:

ON TR_LIE;

before the procedure LIENDIMCOM1 is called.
The returned list could be an input for a data bank in which mathematical relevant
properties of the obtained Lie algebras are stored.

lie1234
This part of the package classifies real low-dimensional Lie algebras L of the di-
mension n :=dimL = 1, 2, 3, 4. L is also given by its structure constants ckij in
the basis {X1, . . . , Xn} with [Xi, Xj ] = ckijXk. An ARRAY LIESTRIN(n, n, n)
has to be defined and LIESTRIN(i, j, k):=ckij for i < j should be given. Then the
procedure LIECLASS can be performed whose syntax is:

LIECLASS(<number>).

<number> should be the dimension of the Lie algebra L. The procedure stepwise
simplifies the commutator relations of L using properties of invariance like the
dimension of the centre, of the derived algebra, unimodularity etc. The returned
value has the form:

{LIEALG(n),COMTAB(m)},

where m corresponds to the number of the standard form (basis: {Y1, . . . , Yn}) in
an enumeration scheme. The corresponding enumeration schemes are listed below
(cf. [Sch92],[Mac99]). In case that the standard form in the enumeration scheme
depends on one (or two) parameter(s) p1 (and p2) the list is expanded to:

{LIEALG(n),COMTAB(m),p1,p2}.

This returned value is also stored as LIE_CLASS. The linear transformation from
the basis {X1, . . . , Xn} into the basis of the standard form {Y1, . . . , Yn} is given
by the matrix LIEMAT: Yj = (LIEMAT)kjXk.
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By turning on the switch TR_LIE:

ON TR_LIE;

before the procedure LIECLASS is called the output contains not only the list
LIE_CLASS but also the non-vanishing commutator relations in the standard form.
By the valuem and the parameters further examinations of the Lie algebra are pos-
sible, especially if in a data bank mathematical relevant properties of the enumer-
ated standard forms are stored.

Enumeration schemes for lie1234
returned list LIE_CLASS the corresponding commutator relations

LIEALG(1),COMTAB(0) commutative case

LIEALG(2),COMTAB(0) commutative case
LIEALG(2),COMTAB(1) [Y1, Y2] = Y2

LIEALG(3),COMTAB(0) commutative case
LIEALG(3),COMTAB(1) [Y1, Y2] = Y3

LIEALG(3),COMTAB(2) [Y1, Y3] = Y3

LIEALG(3),COMTAB(3) [Y1, Y3] = Y1, [Y2, Y3] = Y2

LIEALG(3),COMTAB(4) [Y1, Y3] = Y2, [Y2, Y3] = Y1

LIEALG(3),COMTAB(5) [Y1, Y3] = −Y2, [Y2, Y3] = Y1

LIEALG(3),COMTAB(6) [Y1, Y3] = −Y1 + p1Y2, [Y2, Y3] = Y1, p1 6= 0

LIEALG(3),COMTAB(7) [Y1, Y2] = Y3, [Y1, Y3] = −Y2, [Y2, Y3] = Y1

LIEALG(3),COMTAB(8) [Y1, Y2] = Y3, [Y1, Y3] = Y2, [Y2, Y3] = Y1

LIEALG(4),COMTAB(0) commutative case
LIEALG(4),COMTAB(1) [Y1, Y4] = Y1

LIEALG(4),COMTAB(2) [Y2, Y4] = Y1

LIEALG(4),COMTAB(3) [Y1, Y3] = Y1, [Y2, Y4] = Y2

LIEALG(4),COMTAB(4) [Y1, Y3] = −Y2, [Y2, Y4] = Y2,
[Y1, Y4] = [Y2, Y3] = Y1

LIEALG(4),COMTAB(5) [Y2, Y4] = Y2, [Y1, Y4] = [Y2, Y3] = Y1

LIEALG(4),COMTAB(6) [Y2, Y4] = Y1, [Y3, Y4] = Y2

LIEALG(4),COMTAB(7) [Y2, Y4] = Y2, [Y3, Y4] = Y1

LIEALG(4),COMTAB(8) [Y1, Y4] = −Y2, [Y2, Y4] = Y1

LIEALG(4),COMTAB(9) [Y1, Y4] = −Y1 + p1Y2, [Y2, Y4] = Y1, p1 6= 0

LIEALG(4),COMTAB(10) [Y1, Y4] = Y1, [Y2, Y4] = Y2

LIEALG(4),COMTAB(11) [Y1, Y4] = Y2, [Y2, Y4] = Y1
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returned list LIE_CLASS the corresponding commutator relations

LIEALG(4),COMTAB(12) [Y1, Y4] = Y1 + Y2, [Y2, Y4] = Y2 + Y3,
[Y3, Y4] = Y3

LIEALG(4),COMTAB(13) [Y1, Y4] = Y1, [Y2, Y4] = p1Y2, [Y3, Y4] = p2Y3,
p1, p2 6= 0

LIEALG(4),COMTAB(14) [Y1, Y4] = p1Y1 + Y2, [Y2, Y4] = −Y1 + p1Y2,
[Y3, Y4] = p2Y3, p2 6= 0

LIEALG(4),COMTAB(15) [Y1, Y4] = p1Y1 + Y2, [Y2, Y4] = p1Y2,
[Y3, Y4] = Y3, p1 6= 0

LIEALG(4),COMTAB(16) [Y1, Y4] = 2Y1, [Y2, Y3] = Y1,
[Y2, Y4] = (1 + p1)Y2, [Y3, Y4] = (1− p1)Y3,
p1 ≥ 0

LIEALG(4),COMTAB(17) [Y1, Y4] = 2Y1, [Y2, Y3] = Y1,
[Y2, Y4] = Y2 − p1Y3, [Y3, Y4] = p1Y2 + Y3,
p1 6= 0

LIEALG(4),COMTAB(18) [Y1, Y4] = 2Y1, [Y2, Y3] = Y1,
[Y2, Y4] = Y2 + Y3, [Y3, Y4] = Y3

LIEALG(4),COMTAB(19) [Y2, Y3] = Y1, [Y2, Y4] = Y3, [Y3, Y4] = Y2

LIEALG(4),COMTAB(20) [Y2, Y3] = Y1, [Y2, Y4] = −Y3, [Y3, Y4] = Y2

LIEALG(4),COMTAB(21) [Y1, Y2] = Y3, [Y1, Y3] = −Y2, [Y2, Y3] = Y1

LIEALG(4),COMTAB(22) [Y1, Y2] = Y3, [Y1, Y3] = Y2, [Y2, Y3] = Y1
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16.38 LIMITS: A package for finding limits

This package loads automatically.

Author: Stanley L. Kameny.

LIMITS is a fast limit package for REDUCE for functions which are continuous
except for computable poles and singularities, based on some earlier work by Ian
Cohen and John P. Fitch. The Truncated Power Series package is used for non-
critical points, at which the value of the function is the constant term in the expan-
sion around that point. l’Hôpital’s rule is used in critical cases, with preprocessing
of∞−∞ forms and reformatting of product forms in order to apply l’Hôpital’s
rule. A limited amount of bounded arithmetic is also employed where applicable.

16.38.1 Normal entry points

LIMIT(〈EXPRN:algebraic〉, 〈VAR:kernel〉, 〈LIMPOINT:algebraic〉) : algebraic

This is the standard way of calling limit, applying all of the methods. The result is
the limit of EXPRN as VAR approaches LIMPOINT.

16.38.2 Direction-dependent limits

LIMIT!+(〈EXPRN:algebraic〉, 〈VAR:kernel〉, 〈LIMPOINT:algebraic〉) : algebraic
LIMIT!-(〈EXPRN:algebraic〉, 〈VAR:kernel〉, 〈LIMPOINT:algebraic〉) : algebraic

If the limit depends upon the direction of approach to the LIMPOINT, the functions
LIMIT!+ and LIMIT!- may be used. They are defined by:

LIMIT!+ (LIMIT!-) (EXP,VAR,LIMPOINT)→LIMIT(EXP*,ε,0),
EXP*=sub(VAR=VAR+(-)ε2,EXP)
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16.39 LINALG: Linear algebra package

This package provides a selection of functions that are useful in the world of linear
algebra.

Author: Matt Rebbeck.

16.39.1 Introduction

This package provides a selection of functions that are useful in the world of linear
algebra. These functions are described alphabetically in subsection 16.39.3 and are
labelled 16.39.3.1 to 16.39.3.53. They can be classified into four sections(n.b: the
numbers after the dots signify the function label in section 16.39.3).

Contributions to this package have been made by Walter Tietze (ZIB).

16.39.1.1 Basic matrix handling

add_columns . . . 16.39.3.1 add_rows . . . 16.39.3.2
add_to_columns . . . 16.39.3.3 add_to_rows . . . 16.39.3.4
augment_columns . . . 16.39.3.5 char_poly . . . 16.39.3.9
column_dim . . . 16.39.3.12 copy_into . . . 16.39.3.14
diagonal . . . 16.39.3.15 extend . . . 16.39.3.16
find_companion . . . 16.39.3.17 get_columns . . . 16.39.3.18
get_rows . . . 16.39.3.19 hermitian_tp . . . 16.39.3.21
matrix_augment . . . 16.39.3.28 matrix_stack . . . 16.39.3.30
minor . . . 16.39.3.31 mult_columns . . . 16.39.3.32
mult_rows . . . 16.39.3.33 pivot . . . 16.39.3.34
remove_columns . . . 16.39.3.37 remove_rows . . . 16.39.3.38
row_dim . . . 16.39.3.39 rows_pivot . . . 16.39.3.40
stack_rows . . . 16.39.3.43 sub_matrix . . . 16.39.3.44
swap_columns . . . 16.39.3.46 swap_entries . . . 16.39.3.47
swap_rows . . . 16.39.3.48

16.39.1.2 Constructors

Functions that create matrices.
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band_matrix . . . 16.39.3.6 block_matrix . . . 16.39.3.7
char_matrix . . . 16.39.3.8 coeff_matrix . . . 16.39.3.11
companion . . . 16.39.3.13 hessian . . . 16.39.3.22
hilbert . . . 16.39.3.23 mat_jacobian . . . 16.39.3.24
jordan_block . . . 16.39.3.25 make_identity . . . 16.39.3.27
random_matrix . . . 16.39.3.36 toeplitz . . . 16.39.3.50
Vandermonde . . . 16.39.3.52 Kronecker_Product . . . 16.39.3.53

16.39.1.3 High level algorithms

char_poly . . . 16.39.3.9 cholesky . . . 16.39.3.10
gram_schmidt . . . 16.39.3.20 lu_decom . . . 16.39.3.26
pseudo_inverse . . . 16.39.3.35 simplex . . . 16.39.3.41
svd . . . 16.39.3.45 triang_adjoint . . . 16.39.3.51

There is a separate NORMFORM[1] package for computing the following matrix
normal forms in REDUCE:

smithex, smithex_int, frobenius, ratjordan, jordansymbolic, jordan.

16.39.1.4 Predicates

matrixp . . . 16.39.3.29 squarep . . . 16.39.3.42
symmetricp . . . 16.39.3.49

Note on examples:

In the examples the matrix A will be

A =

1 2 3
4 5 6
7 8 9


Notation

Throughout I is used to indicate the identity matrix and AT to indicate the trans-
pose of the matrix A.

16.39.2 Getting started

If you have not used matrices within REDUCE before then the following may be
helpful.
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Creating matrices

Initialisation of matrices takes the following syntax:

mat1 := mat((a,b,c),(d,e,f),(g,h,i));

will produce

mat1 :=

a b c
d e f
g h i


Getting at the entries

The (i, j)th entry can be accessed by:

mat1(i,j);

Loading the linear_algebra package

The package is loaded by:

load_package linalg;

16.39.3 What’s available

16.39.3.1 add_columns, add_rows

Syntax:
add_columns(A,c1,c2,expr);
A :- a matrix.
c1, c2 :- positive integers.
expr :- a scalar expression.

Synopsis:
add_columns replaces column c2 of A by
expr ∗ column(A,c1) + column(A,c2).
add_rows performs the equivalent task on the rows of A.

Examples:

add_columns(A, 1, 2, x) =

1 x+ 2 3
4 4 ∗ x+ 5 6
7 7 ∗ x+ 8 9


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add_rows(A, 2, 3, 5) =

 1 2 3
4 5 6
27 33 39


Related functions:

add_to_columns, add_to_rows, mult_columns, mult_rows.

16.39.3.2 add_rows

See: add_columns.

16.39.3.3 add_to_columns, add_to_rows

Syntax:
add_to_columns(A,column_list,expr);
A :- a matrix.
column_list :- a positive integer or a list of positive integers.
expr :- a scalar expression.

Synopsis:
add_to_columns adds expr to each column specified in column_list of
A.

add_to_rows performs the equivalent task on the rows of A.

Examples:

add_to_columns(A, {1, 2}, 10) =

11 12 3
14 15 6
17 18 9


add_to_rows(A, 2,−x) =

 1 2 3
−x+ 4 −x+ 5 −x+ 6

7 8 9


Related functions:

add_columns, add_rows, mult_rows, mult_columns.

16.39.3.4 add_to_rows

See: add_to_columns.

16.39.3.5 augment_columns, stack_rows

Syntax:
augment_columns(A,column_list);
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A :- a matrix.
column_list :- either a positive integer or a list of positive integers.

Synopsis:
augment_columns gets hold of the columns of A specified in col-
umn_list and sticks them together.
stack_rows performs the same task on rows of A.

Examples:

augment_columns(A, {1, 2}) =

cc1 2
4 5
7 8


stack_rows(A, {1, 3}) =

(
1 2 3
7 8 9

)
Related functions:

get_columns, get_rows, sub_matrix.

16.39.3.6 band_matrix

Syntax:
band_matrix(expr_list,square_size);

expr_list :- either a single scalar expression or a list of an odd num-
ber of scalar expressions.

square_size :- a positive integer.

Synopsis:
band_matrix creates a square matrix of dimension square_size. The
diagonal consists of the middle expr of the expr_list. The expressions to
the left of this fill the required number of sub-diagonals and the expressions
to the right the super-diagonals.

Examples: band_matrix({x, y, z}, 6) =



y z 0 0 0 0
x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z
0 0 0 0 x y


Related functions:

diagonal.
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16.39.3.7 block_matrix

Syntax:
block_matrix(r,c,matrix_list);

r, c :- positive integers.
matrix_list :- a list of matrices.

Synopsis:
block_matrix creates a matrix that consists of r× c matrices filled from
the matrix_list row-wise.

Examples:

B =

(
1 0
0 1

)
, C =

(
5
5

)
, D =

(
22 33
44 55

)

block_matrix(2, 3, {B, C,D,D, C,B}) =


1 0 5 22 33
0 1 5 44 55
22 33 5 1 0
44 55 5 0 1


16.39.3.8 char_matrix

Syntax:
char_matrix(A, λ);
A :- a square matrix.
λ :- a symbol or algebraic expression.

Synopsis:
char_matrix creates the characteristic matrix C of A. This is C = λI −
A.

Examples: char_matrix(A, x) =

x− 1 −2 −3
−4 x− 5 −6
−7 −8 x− 9


Related functions:

char_poly.

16.39.3.9 char_poly

Syntax:
char_poly(A, λ);
A :- a square matrix.
λ :- a symbol or algebraic expression.
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Synopsis:
char_poly finds the characteristic polynomial of A.

This is the determinant of λI − A.

Examples:
char_poly(A, x) = x3 − 15 ∗ x2 − 18 ∗ x

Related functions:
char_matrix.

16.39.3.10 cholesky

Syntax:
cholesky(A);

A :- a positive definite matrix containing numeric entries.

Synopsis:
cholesky computes the cholesky decomposition of A.

It returns {L,U} where L is a lower matrix, U is an upper matrix,
A = LU , and U = LT .

Examples:

F =

1 1 0
1 3 1
0 1 1



cholesky(F) =


1 0 0

1
√

2 0
0 1√

2
1√
2

 ,

1 1 0

0
√

2 1√
2

0 0 1√
2




Related functions:
lu_decom.

16.39.3.11 coeff_matrix

Syntax:
coeff_matrix({lin_eqn1,lin_eqn2, ...,lin_eqnn}); 30

lin_eqn1,lin_eqn2, . . . ,lin_eqnn :- linear equations. Can be of the
form equation = number or just
equation which is equivalent to
equation = 0.

30If you’re feeling lazy then the {}’s can be omitted.
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Synopsis:
coeff_matrix creates the coefficient matrix C of the linear equations. It
returns {C,X ,B} such that CX = B.

Examples:
coeff_matrix({x+ y + 4 ∗ z = 10, y + x− z = 20, x+ y + 4}) =
 4 1 1
−1 1 1
0 1 1

 ,

zy
x

 ,

10
20
−4


16.39.3.12 column_dim, row_dim

Syntax:
column_dim(A);

A :- a matrix.

Synopsis:
column_dim finds the column dimension of A.
row_dim finds the row dimension of A.

Examples:
column_dim(A) = 3

16.39.3.13 companion

Syntax:
companion(poly,x);

poly :- a monic univariate polynomial in x.
x :- the variable.

Synopsis:
companion creates the companion matrix C of poly.

This is the square matrix of dimension n, where n is the degree of poly
w.r.t. x. The entries of C are: C(i, n) = −coeffn(poly, x, i − 1) for
i = 1, . . . , n, C(i, i− 1) = 1 for i = 2, . . . , n and the rest are 0.

Examples: companion(x4 + 17 ∗ x3 − 9 ∗ x2 + 11, x) =


0 0 0 −11
1 0 0 0
0 1 0 9
0 0 1 −17


Related functions:

find_companion.
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16.39.3.14 copy_into

Syntax:
copy_into(A,B,r,c);
A,B :- matrices.
r, c :- positive integers.

Synopsis:
copy_into copies matrix A into B with A(1, 1) at B(r, c).

Examples:

G =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



copy_into(A,G, 1, 2) =


0 1 2 3
0 4 5 6
0 7 8 9
0 0 0 0


Related functions:

augment_columns, extend, matrix_augment, matrix_stack,
stack_rows, sub_matrix.

16.39.3.15 diagonal

Syntax:
diagonal({mat1,mat2, ...,matn});31

mat1,mat2, . . . ,matn :- each can be either a scalar expr or a square
matrix.

Synopsis:
diagonal creates a matrix that contains the input on the diagonal.

Examples:

H =

(
66 77
88 99

)

diagonal({A, x,H}) =



1 2 3 0 0 0
4 5 6 0 0 0
7 8 9 0 0 0
0 0 0 x 0 0
0 0 0 0 66 77
0 0 0 0 88 99


31If you’re feeling lazy then the {}’s can be omitted.
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Related functions:
jordan_block.

16.39.3.16 extend

Syntax:
extend(A,r,c,expr);
A :- a matrix.
r, c :- positive integers.
expr :- algebraic expression or symbol.

Synopsis:
extend returns a copy of A that has been extended by r rows and c
columns. The new entries are made equal to expr.

Examples: extend(A, 1, 2, x) =


1 2 3 x x
4 5 6 x x
7 8 9 x x
x x x x x


Related functions:

copy_into, matrix_augment, matrix_stack, remove_columns,
remove_rows.

16.39.3.17 find_companion

Syntax:
find_companion(A,x);
A :- a matrix.
x :- the variable.

Synopsis:
Given a companion matrix, find_companion finds the polynomial from
which it was made.

Examples:

C =


0 0 0 −11
1 0 0 0
0 1 0 9
0 0 1 −17


find_companion(C, x) = x4 + 17 ∗ x3 − 9 ∗ x2 + 11

Related functions:
companion.
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16.39.3.18 get_columns, get_rows

Syntax:
get_columns(A,column_list);
A :- a matrix.
c :- either a positive integer or a list of positive integers.

Synopsis:
get_columns removes the columns ofA specified in column_list and
returns them as a list of column matrices.

get_rows performs the same task on the rows of A.

Examples:

get_columns(A, {1, 3}) =


1

4
7

 ,

3
6
9


get_rows(A, 2) =

{(
4 5 6

)}
Related functions:

augment_columns, stack_rows, sub_matrix.

16.39.3.19 get_rows

See: get_columns.

16.39.3.20 gram_schmidt

Syntax:
gram_schmidt({vec1,vec2, ...,vecn}); 32

vec1,vec2, . . . ,vecn :- linearly-independent vectors. Each vector must
be written as a list, eg:{1,0,0}.

Synopsis:
gram_schmidt performs the Gram-Schmidt orthonormalisation on the in-
put vectors. It returns a list of orthogonal normalised vectors.

Examples:
gram_schmidt({{1,0,0},{1,1,0},{1,1,1}}) = {{1,0,0},{0,1,0},{0,0,1}}

gram_schmidt({{1,2},{3,4}}) = {{ 1√
5
,

2√
5
}, {2 ∗

√
5

5
,
−
√

5

5
}}

32If you’re feeling lazy then the {}’s can be omitted.
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16.39.3.21 hermitian_tp

Syntax:
hermitian_tp(A);

A :- a matrix.

Synopsis:
hermitian_tp computes the hermitian transpose of A.

This is a matrix in which the (i, j)th entry is the conjugate of the (j, i)th
entry of A.

Examples:

J =

i+ 1 i+ 2 i+ 3
4 5 2
1 i 0


hermitian_tp(J ) =

−i+ 1 4 1
−i+ 2 5 −i
−i+ 3 2 0


Related functions:

tp33.

16.39.3.22 hessian

Syntax:
hessian(expr,variable_list);

expr :- a scalar expression.
variable_list :- either a single variable or a list of variables.

Synopsis:
hessian computes the hessian matrix of expr w.r.t. the varibles in
variable_list.

This is an n × n matrix where n is the number of variables and the (i, j)th
entry is df(expr,variable_list(i),variable_list(j)).

Examples: hessian(x ∗ y ∗ z + x2, {w, x, y, z}) =


0 0 0 0
0 2 z y
0 z 0 x
0 y x 0


Related functions:

df34.
33standard reduce call for the transpose of a matrix - see section 14.4.
34standard reduce call for differentiation - see section 7.7.
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16.39.3.23 hilbert

Syntax:
hilbert(square_size,expr);

square_size :- a positive integer.
expr :- an algebraic expression.

Synopsis:
hilbert computes the square hilbert matrix of dimension square_size.

This is the symmetric matrix in which the (i, j)th entry is 1/(i+ j−expr).

Examples: hilbert(3, y + x) =


−1

x+y−2
−1

x+y−3
−1

x+y−4
−1

x+y−3
−1

x+y−4
−1

x+y−5
−1

x+y−4
−1

x+y−5
−1

x+y−6


16.39.3.24 jacobian

Syntax:
mat_jacobian(expr_list,variable_list);

expr_list :- either a single algebraic expression or a list of algebraic
expressions.

variable_list :- either a single variable or a list of variables.

Synopsis:
mat_jacobian computes the jacobian matrix of expr_list w.r.t.
variable_list.

This is a matrix whose (i, j)th entry is df(expr_list(i),variable_list(j)).
The matrix is n ×m where n is the number of variables and m the number
of expressions.

Examples:
mat_jacobian({x4, x ∗ y2, x ∗ y ∗ z3}, {w, x, y, z}) =0 4 ∗ x3 0 0

0 y2 2 ∗ x ∗ y 0
0 y ∗ z3 x ∗ z3 3 ∗ x ∗ y ∗ z2


Related functions:

hessian, df35.

NOTE: The function mat_jacobian used to be called just "jacobian"
however us of that name was in conflict with another Reduce package.

35standard reduce call for differentiation - see REDUCE User’s Manual[2].
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16.39.3.25 jordan_block

Syntax:
jordan_block(expr,square_size);

expr :- an algebraic expression or symbol.
square_size :- a positive integer.

Synopsis:
jordan_block computes the square jordan block matrix J of dimension
square_size.

The entries of J are: J (i, i) = expr for i = 1, . . . , n, J (i, i+ 1) = 1 for
i = 1, . . . , n− 1, and all other entries are 0.

Examples: jordan_block(x,5) =


x 1 0 0 0
0 x 1 0 0
0 0 x 1 0
0 0 0 x 1
0 0 0 0 x


Related functions:

diagonal, companion.

16.39.3.26 lu_decom

Syntax:
lu_decom(A);
A :- a matrix containing either numeric entries or imaginary entries

with numeric coefficients.

Synopsis:
lu_decom performs LU decomposition on A, ie: it returns {L,U} where
L is a lower diagonal matrix, U an upper diagonal matrix and A = LU .

Caution: The algorithm used can swap the rows ofA during the calculation.
This means that LU does not equal A but a row equivalent of it. Due to this,
lu_decom returns {L,U ,vec}. The call convert(A,vec) will return
the matrix that has been decomposed, ie: LU = convert(A,vec).

Examples: K =

 1 3 5
−4 3 7
8 6 4


lu := lu_decom(K) =


 8 0 0
−4 6 0
1 2.25 1.1251

 ,

1 0.75 0.5
0 1 1.5
0 0 1

 , [ 3 2 3 ]


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first lu * second lu =

 8 6 4
−4 3 7
1 3 5


convert(K,third lu) =

 8 6 4
−4 3 7
1 3 5


P =

i+ 1 i+ 2 i+ 3
4 5 2
1 i 0



lu := lu_decom(P) =


 1 0 0

4 −4 ∗ i+ 5 0
i+ 1 3 0.41463 ∗ i+ 2.26829

 ,

1 i 0
0 1 0.19512 ∗ i+ 0.24390
0 0 1

 , [ 3 2 3 ]


first lu * second lu =

 1 i 0
4 5 2

i+ 1 i+ 2 i+ 3


convert(P, thirdlu) =

 1 i 0
4 5 2

i+ 1 i+ 2 i+ 3


Related functions:

cholesky.

16.39.3.27 make_identity

Syntax:
make_identity(square_size);

square_size :- a positive integer.

Synopsis:
make_identity creates the identity matrix of dimension square_size.

Examples: make_identity(4) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Related functions:

diagonal.
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16.39.3.28 matrix_augment, matrix_stack

Syntax:
matrix_augment({mat1,mat2, ...,matn});36

mat1,mat2, . . . ,matn :- matrices.

Synopsis:
matrix_augment sticks the matrices in matrix_list together hori-
zontally.

matrix_stack sticks the matrices in matrix_list together vertically.

Examples:

matrix_augment({A,A}) =

1 2 3 1 2 3
4 4 6 4 5 6
7 8 9 7 8 9



matrix_stack({A,A}) =



1 2 3
4 5 6
7 8 9
1 2 3
4 5 6
7 8 9


Related functions:

augment_columns, stack_rows, sub_matrix.

16.39.3.29 matrixp

Syntax:
matrixp(test_input);

test_input :- anything you like.

Synopsis:
matrixp is a boolean function that returns t if the input is a matrix and nil
otherwise.

Examples:
matrixp(A) = t

matrixp(doodlesackbanana) = nil

Related functions:
squarep, symmetricp.

36If you’re feeling lazy then the {}’s can be omitted.
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16.39.3.30 matrix_stack

See: matrix_augment.

16.39.3.31 minor

Syntax:
minor(A,r,c);
A :- a matrix.
r, c :- positive integers.

Synopsis:
minor computes the (r, c)th minor of A.

This is created by removing the rth row and the cth column from A.

Examples: minor(A, 1, 3) =

(
4 5
7 8

)
Related functions:

remove_columns, remove_rows.

16.39.3.32 mult_columns, mult_rows

Syntax:
mult_columns(A,column_list,expr);
A :- a matrix.
column_list :- a positive integer or a list of positive integers.
expr :- an algebraic expression.

Synopsis:
mult_columns returns a copy of A in which the columns specified in
column_list have been multiplied by expr.

mult_rows performs the same task on the rows of A.

Examples:

mult_columns(A, {1, 3}, x) =

 x 2 3 ∗ x
4 ∗ x 5 6 ∗ x
7 ∗ x 8 9 ∗ x


mult_rows(A, 2, 10) =

 1 2 3
40 50 60
7 8 9


Related functions:

add_to_columns, add_to_rows.
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16.39.3.33 mult_rows

See: mult_columns.

16.39.3.34 pivot

Syntax:
pivot(A,r,c);
A :- a matrix.
r, c :- positive integers such that A(r, c) 6= 0.

Synopsis:
pivot pivots A about its (r, c)th entry.

To do this, multiples of the r’th row are added to every other row in the
matrix.

This means that the c’th column will be 0 except for the (r,c)’th entry.

Examples: pivot(A, 2, 3) =

−1 −0.5 0
4 5 6
1 0.5 0


Related functions:

rows_pivot.

16.39.3.35 pseudo_inverse

Syntax:
pseudo_inverse(A);

A :- a matrix containing only real numeric entries.

Synopsis:
pseudo_inverse, also known as the Moore-Penrose inverse, computes
the pseudo inverse of A.

Given the singular value decomposition of A, i.e: A = UΣVT , then the
pseudo inverse A† is defined by A† = VΣ†UT . For the diagonal matrix
Σ, the pseudoinverse Σ† is computed by taking the reciprocal of only the
nonzero diagonal elements.

If A is square and non-singular, then A† = A. In general, however,
AA†A = A, and A†AA† = A†.
Perhaps more importantly, A† solves the following least-squares problem:
given a rectangular matrixA and a vector b, find the xminimizing ‖Ax−b‖2,
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and which, in addition, has minimum `2 (euclidean) Norm, ‖x‖2. This x is
A†b.

Examples:

R =

(
1 2 3 4
9 8 7 6

)
, pseudo_inverse(R) =


−0.2 0.1
−0.05 0.05

0.1 0
0.25 −0.05


Related functions:

svd.

16.39.3.36 random_matrix

Syntax:
random_matrix(r,c,limit);

r, c, limit :- positive integers.

Synopsis:
random_matrix creates an r× c matrix with random entries in the range
−limit < entry < limit.

Switches:
imaginary :- if on, then matrix entries are x+ iy where −limit <

x, y < limit.
not_negative :- if on then 0 < entry < limit. In the imaginary case

we have 0 < x, y < limit.
only_integer :- if on then each entry is an integer. In the imaginary

case x, y are integers.
symmetric :- if on then the matrix is symmetric.
upper_matrix :- if on then the matrix is upper triangular.
lower_matrix :- if on then the matrix is lower triangular.

Examples:

random_matrix(3, 3, 10) =

−4.729721 6.987047 7.521383
−5.224177 5.797709 −4.321952
−9.418455 −9.94318 −0.730980


on only_integer, not_negative, upper_matrix, imaginary;

random_matrix(4, 4, 10) =


2 ∗ i+ 5 3 ∗ i+ 7 7 ∗ i+ 3 6

0 2 ∗ i+ 5 5 ∗ i+ 1 2 ∗ i+ 1
0 0 8 i
0 0 0 5 ∗ i+ 9


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16.39.3.37 remove_columns, remove_rows

Syntax:
remove_columns(A,column_list);
A :- a matrix.
column_list :- either a positive integer or a list of positive integers.

Synopsis:
remove_columns removes the columns specified in column_list from A.

remove_rows performs the same task on the rows of A.

Examples:

remove_columns(A, 2) =

1 3
4 6
7 9


remove_rows(A, {1, 3}) =

(
4 5 6

)
Related functions:

minor.

16.39.3.38 remove_rows

See: remove_columns.

16.39.3.39 row_dim

See: column_dim.

16.39.3.40 rows_pivot

Syntax:
rows_pivot(A,r,c,{row_list});
A :- a matrix.
r,c :- positive integers such that A(r,c) neq 0.
row_list :- positive integer or a list of positive integers.

Synopsis:
rows_pivot performs the same task as pivot but applies the pivot only
to the rows specified in row_list.
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Examples:

N =


1 2 3
4 5 6
7 8 9
1 2 3
4 5 6



rows_pivot(N , 2, 3, {4, 5}) =


1 2 3
4 5 6
7 8 9

−0.75 0 0.75
−0.375 0 0.375


Related functions:

pivot.

16.39.3.41 simplex

Syntax:
simplex(max/min,objective function,{linear inequalities},[{bounds}]);

max/min :- either max or min (signifying maximise and
minimise).

objective function :- the function you are maximising or minimising.
linear inequalities :- the constraint inequalities. Each one must be of

the form sum of variables (<=,=, >=) num-
ber.

bounds :- bounds on the variables as specified for the LP
file format. Each bound is of one of the forms
l ≤ v, v ≤ u, or l ≤ v ≤ u, where v is a
variable and l, u are numbers or infinity or
-infinity

Synopsis:
simplex applies the revised simplex algorithm to find the optimal(either
maximum or minimum) value of the objective function under the linear in-
equality constraints.

It returns {optimal value,{ values of variables at this optimal}}.

The {bounds} argument is optional and admissible only when the switch
fastsimplex is on, which is the default.

Without a {bounds} argument, the algorithm implies that all the variables
are non-negative.

Examples: simplex(max,x+y,{x>=10,y>=20,x+y<=25});
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***** Error in simplex: Problem has no feasible solution.

simplex(max,10x+5y+5.5z,{5x+3z<=200,x+0.1y+0.5z<=12,
0.1x+0.2y+0.3z<=9, 30x+10y+50z<=1500});

{525.0,{x=40.0,y=25.0,z=0}}

16.39.3.42 squarep

Syntax:
squarep(A);

A :- a matrix.

Synopsis:
squarep is a boolean function that returns t if the matrix is square and nil
otherwise.

Examples:
L =

(
1 3 5

)
squarep(A) = t

squarep(L) = nil

Related functions:
matrixp, symmetricp.

16.39.3.43 stack_rows

See: augment_columns.

16.39.3.44 sub_matrix

Syntax:
sub_matrix(A,row_list,column_list);
A :- a matrix.
row_list, column_list :- either a positive integer or a list of positive in-

tegers.

Synopsis:
sub_matrix produces the matrix consisting of the intersection of the rows
specified in row_list and the columns specified in column_list.

Examples: sub_matrix(A, {1, 3}, {2, 3}) =

(
2 3
8 9

)
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Related functions:
augment_columns, stack_rows.

16.39.3.45 svd (singular value decomposition)

Syntax:
svd(A);

A :- a matrix containing only real numeric entries.

Synopsis:
svd computes the singular value decomposition of A. If A is an m× n real
matrix of (column) rank r, svd returns the 3-element list {U ,Σ,V} where
A = UΣVT .

Let k = min(m,n). Then U is m × k, V is n × k, and and Σ =
diag(σ1, . . . , σk), where σi ≥ 0 are the singular values of A; only r of
these are non-zero. The singular values are the non-negative square roots of
the eigenvalues of ATA.

U and V are such that UUT = VVT = VTV = Ik.

Note: there are a number of different definitions of SVD in the literature, in
some of which Σ is square and U and V rectangular, as here, but in others U
and V are square, and Σ is rectangular.

Examples:

Q =

 1 3
−4 3
3 6


svd(Q) =


0.0236042 0.419897
−0.969049 0.232684
0.245739 0.877237

 ,

(
4.83288 0

0 7.52618

)
,

(
0.959473 0.281799
−0.281799 0.959473

)}

svd(TP(Q)) =

{(
0.959473 0.281799
−0.281799 0.959473

)
,

(
4.83288 0

0 7.52618

)
,0.0236042 0.419897

−0.969049 0.232684
0.245739 0.877237


16.39.3.46 swap_columns, swap_rows

Syntax:
swap_columns(A,c1,c2);
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A :- a matrix.
c1,c1 :- positive integers.

Synopsis:
swap_columns swaps column c1 of A with column c2.

swap_rows performs the same task on 2 rows of A.

Examples: swap_columns(A, 2, 3) =

1 3 2
4 6 5
7 9 8


Related functions:

swap_entries.

16.39.3.47 swap_entries

Syntax:
swap_entries(A,{r1,c1},{r2,c2});
A :- a matrix.
r1,c1,r2,c2 :- positive integers.

Synopsis:
swap_entries swaps A(r1,c1) with A(r2,c2).

Examples: swap_entries(A, {1, 1}, {3, 3}) =

9 2 3
4 5 6
7 8 1


Related functions:

swap_columns, swap_rows.

16.39.3.48 swap_rows

See: swap_columns.

16.39.3.49 symmetricp

Syntax:
symmetricp(A);

A :- a matrix.

Synopsis:
symmetricp is a boolean function that returns t if the matrix is symmetric
and nil otherwise.
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Examples:

M =

(
1 2
2 1

)
symmetricp(A) = nil symmetricp(M) = t

Related functions:
matrixp, squarep.

16.39.3.50 toeplitz

Syntax:
toeplitz({expr1,expr2, ...,exprn}); 37

expr1,expr2, . . . ,exprn :- algebraic expressions.

Synopsis:
toeplitz creates the toeplitz matrix from the expression list.

This is a square symmetric matrix in which the first expression is placed on
the diagonal and the i’th expression is placed on the (i-1)’th sub and super
diagonals.

It has dimension n where n is the number of expressions.

Examples: toeplitz({w, x, y, z}) =


w x y z
x w x y
y x w x
z y x w


16.39.3.51 triang_adjoint

Syntax:
triang_adjoint(A);

A :- a matrix.

Synopsis: triang_adjoint computes the triangularizing adjoint F of matrix
A due to the algorithm of Arne Storjohann. F is lower triangular matrix and
the resulting matrix T of F ∗ A = T is upper triangular with the property
that the i-th entry in the diagonal of T is the determinant of the principal i-th
submatrix of the matrix A.

Examples:

triang_adjoint(A) =

 1 0 0
−4 1 0
−3 6 −3


37If you’re feeling lazy then the {}’s can be omitted.
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F ∗ A =

1 2 3
0 −3 −6
0 0 0


16.39.3.52 Vandermonde

Syntax:
vandermonde({expr1,expr2, . . . ,exprn}); 38

expr1,expr2, . . . ,exprn :- algebraic expressions.

Synopsis:
Vandermonde creates the Vandermonde matrix from the expression list.
This is the square matrix in which the (i, j)th entry is expr(j−1)

i . It has
dimension n, where n is the number of expressions.

Examples: vandermonde({x, 2 ∗ y, 3 ∗ z}) =

1 x x2

1 2 ∗ y 4 ∗ y2

1 3 ∗ z 9 ∗ z2


16.39.3.53 kronecker_product

Syntax:
kronecker_product(M1,M2)

M1,M2 :- Matrices

Synopsis:
kronecker_product creates a matrix containing the Kronecker product
(also called direct product or tensor product) of its arguments.

Examples: a1 := mat((1,2),(3,4),(5,6))$
a2 := mat((1,1,1),(2,z,2),(3,3,3))$
kronecker_product(a1,a2);



1 1 1 2 2 2
2 z 2 4 2 ∗ z 4
3 3 3 6 6 6
3 3 3 4 4 4
6 3 ∗ z 6 8 4 ∗ z 8
9 9 9 12 12 12
5 5 5 6 6 6
10 5 ∗ z 10 12 6 ∗ z 12
15 15 15 18 18 18


38If you’re feeling lazy then the {}’s can be omitted.
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16.39.4 Fast Linear Algebra

By turning the fast_la switch on, the speed of the following functions will be
increased:

add_columns add_rows augment_columns column_dim
copy_into make_identity matrix_augment matrix_stack
minor mult_column mult_row pivot
remove_columns remove_rows rows_pivot squarep
stack_rows sub_matrix swap_columns swap_entries
swap_rows symmetricp

The increase in speed will be insignificant unless you are making a significant num-
ber(i.e: thousands) of calls. When using this switch, error checking is minimised.
This means that illegal input may give strange error messages. Beware.

16.39.5 Acknowledgments

Many of the ideas for this package came from the Maple[3] Linalg package [4].

The algorithms for cholesky, lu_decom, and svd are taken from the book
Linear Algebra - J.H. Wilkinson & C. Reinsch[5].

The gram_schmidt code comes from Karin Gatermann’s Symmetry package[6]
for REDUCE.
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16.40 LISTVECOPS: Vector operations on lists

Author: Eberhard Schrüfer

This package implements vector operations on lists.. Addition, multiplication, di-
vision, and exponentiation work elementwise. For example, after

A := {a1,a2,a3,a4};
B := {b1,b2,b3,b4};

c*A will simplify to {c*a1,..,c*a4}, A + B to {a1+b1,...,a4+b4},
and A*B to {a1*b1,...,a4*b4}. Linear operations work as expected:

c1*A + c2*B;

{a1*c1 + b1*c2,

a2*c1 + b2*c2,

a3*c1 + b3*c2,

a4*c1 + b4*c2}

A division and an exponentation example:

{a,b,c}/{3,g,5};

a b c
{---,---,---}

3 g 5

ws^3;

3 3 3
a b c

{----,----,-----}
27 3 125

g

The new operator *. (ldot) implements the dot product:

{a,b,c,d} *. {5,7,9,11/d};

5*a + 7*b + 9*c + 11
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For accessing list elements, the new operator _ (lnth) can be used instead of the
PART operator:

l := {1,{2,3},4}$

lnth(l,3);

4

l _2*3;

{6,9}

l _2 _2;

3

It can also be used to modify a list (unlike PART, which returns a modified list):

part(l,2,2):=three;

{1,{2,three},4}

l;

{1,{2,3},4}

l _ 2 _2 :=three;

three

l;

{1,{2,three},4}

Operators are distributed over lists:

a *. log b;

log(b1)*a1 + log(b2)*a2 + log(b3)*a3 + log(b4)*a4

df({sin x*y,x^3*cos y},x,2,y);

{ - sin(x), - 6*sin(y)*x}
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int({sin x,cos x},x);

{ - cos(x),sin(x)}

By using the keyword listproc, an algebraic procedure can be declared to return a
list:

listproc spat3(u,v,w);
begin scalar x,y;

x := u *. w;
y := u *. v;
return v*x - w*y

end;
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16.41 LPDO: Linear Partial Differential Operators

Author: Thomas Sturm

16.41.1 Introduction

Consider the field F = Q(x1, . . . , xn) of rational functions and a set ∆ =
{∂x1 ,. . . , ∂xn} of commuting derivations acting on F . That is, for all ∂xi , ∂xj ∈ ∆
and all f , g ∈ F the following properties are satisfied:

∂xi(f + g) = ∂xi(f) + ∂xi(g),

∂xi(f · g) = f · ∂xi(g) + ∂xi(f) · g, (16.87)

∂xi(∂xj (f)) = ∂xj (∂xi(f)). (16.88)

Consider now the set F [∂x1 , . . . , ∂xn ], where the derivations are used as variables.
This set forms a non-commutative linear partial differential operator ring with
pointwise addition, and multiplication defined as follows: For f ∈ F and ∂xi ,
∂xj ∈ ∆ we have for any g ∈ F that

(f∂xi)(g) = f · ∂xi(g),

(∂xif)(g) = ∂xi(f · g), (16.89)

(∂xi∂xj )(g) = ∂xi(∂xj (g)). (16.90)

Here “ · ” denotes the multiplication in F . From (16.90) and (16.88) it follows that
∂xi∂xj = ∂xj∂xi , and using (16.89) and (16.87) the following commutator can be
proved:

∂xif = f∂xi + ∂xi(f).

A linear partial differential operator (LPDO) of order k is an element

D =
∑
|j|≤k

aj∂
j ∈ F [∂x1 , . . . , ∂xn ]

in canonical form. Here the expression |j| ≤ k specifies the set of all tuples of the
form j = (j1, . . . , jn) ∈ Nn with

∑n
i=1 ji ≤ k, and we define ∂j = ∂j1x1 · · · ∂

jn
xn .

A factorization of D is a non-trivial decomposition

D = D1 · · ·Dr ∈ F [∂x1 , . . . , ∂xn ]

into multiplicative factors, each of which is an LPDODi of order greater than 0 and
less than k. If such a factorization exists, then D is called reducible or factorable,
else irreducible.
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For the purpose of factorization it is helpful to temporarily consider as regular
commutative polynomials certain summands of the LPDO under consideration.
Consider a commutative polynomial ring over F in new indeterminates y1, . . . , yn.
Adopting the notational conventions above, for m ≤ k the symbol of D of order m
is defined as

Symm(D) =
∑
|j|=m

ajy
j ∈ F [y1, . . . , yn].

For m = k we obtain as a special case the symbol Sym(D) of D.

16.41.2 Operators

16.41.2.1 partial

There is a unary operator partial(·) denoting ∂.

〈partial-term〉 → partial ( 〈id〉 )

16.41.2.2 ***

There is a binary operator *** for the non-commutative multiplication involving
partials ∂x. All expressions involving *** are implicitly transformed into LPDOs,
i.e., into the following normal form:

〈normalized-lpdo〉 → 〈normalized-mon〉 [ + 〈normalized-lpdo〉 ]
〈normalized-mon〉 → 〈F-element〉 [ *** 〈partial-termprod〉 ]
〈partial-termprod〉 → 〈partial-term〉 [ *** 〈partial-termprod〉 ]

The summands of the normalized-lpdo are ordered in some canonical way. As an
example consider

input: a()***partial(y)***b()***partial(x);

(a()*b()) *** partial(x) *** partial(y) + (a()*diff(b(),y,1)) *** partial(x)

Here the F-elements are polynomials, where the unknowns are of the type constant-
operator denoting functions from F :

〈constant-operator〉 → 〈id〉 ( )

We do not admit division of such constant operators since we cannot exclude that
such a constant operator denotes 0.
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The operator notation on the one hand emphasizes the fact that the denoted el-
ements are functions. On the other hand it distinguishes a() from the variable
a of a rational function, which specifically denotes the corresponding projection.
Consider e.g.

input: (x+y)***partial(y)***(x-y)***partial(x);

2 2
(x - y ) *** partial(x) *** partial(y) + ( - x - y) *** partial(x)

Here we use as F-elements specific elements from F = Q(x, y).

16.41.2.3 diff

In our example with constant operators, the transformation into normal form in-
troduces a formal derivative operation diff(·,·,·), which cannot be evaluated.
Notice that we do not use the Reduce operator df(·,·,·) here, which for technical
reasons cannot smoothly handle our constant operators.

In our second example with rational functions as F-elements, derivative occurring
with commutation can be computed such that diff does not occur in the output.

16.41.3 Shapes of F-elements

Besides the generic computations with constant operators, we provide a mechanism
to globally fix a certain shape for F-elements and to expand constant operators
according to that shape.

16.41.3.1 lpdoset

We give an example for a shape that fixes all constant operators to denote generic
bivariate affine linear functions:

input: d := (a()+b())***partial(x1)***partial(x2)**2;

2
d := (a() + b()) *** partial(x1) *** partial(x2)

input: lpdoset {!#10*x1+!#01*x2+!#00,x1,x2};

{-1}

input: d;

2
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(a00 + a01*x2 + a10*x1 + b00 + b01*x2 + b10*x1) *** partial(x1) *** partial(x2)

Notice that the placeholder # must be escaped with !, which is a general conven-
tion for Rlisp/Reduce. Notice that lpdoset returns the old shape and that {-1}
denotes the default state that there is no shape selected.

16.41.3.2 lpdoweyl

The command lpdoweyl {n,x1,x2,...} creates a shape for generic poly-
nomials of total degree n in variables x1, x2, . . . .

input: lpdoweyl(2,x1,x2);

2 2
{#_00_ + #_01_*x2 + #_02_*x2 + #_10_*x1 + #_11_*x1*x2 + #_20_*x1 ,x1,x2}

input: lpdoset ws;

{#10*x1 + #01*x2 + #00,x1,x2}

input: d;

2 2
(a_00_ + a_01_*x2 + a_02_*x2 + a_10_*x1 + a_11_*x1*x2 + a_20_*x1 + b_00_

2 2
+ b_01_*x2 + b_02_*x2 + b_10_*x1 + b_11_*x1*x2 + b_20_*x1 ) *** partial(x1)

2

*** partial(x2)

16.41.4 Commands

16.41.4.1 General

lpdoord

The order of an lpdo:

input: lpdoord((a()+b())***partial(x1)***partial(x2)**2+3***partial(x1));

3

lpdoptl

Returns the list of derivations (partials) occurring in its argument LPDO d.
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input: lpdoptl(a()***partial(x1)***partial(x2)+partial(x4)+diff(a(),x3,1));

{partial(x1),partial(x2),partial(x4)}

That is the smallest set {. . . , ∂xi , . . . } such that d is defined in F [. . . , ∂xi , . . . ].
Notice that formal derivatives are not derivations in that sense.

lpdogp

Given a starting symbol a, a list of variables l, and a degree n, lpdogp(a,l,n)
generates a generic (commutative) polynomial of degree n in variables l with co-
efficients generated from the starting symbol a:

input: lpdogp(a,{x1,x2},2);

2 2
a_00_ + a_01_*x2 + a_02_*x2 + a_10_*x1 + a_11_*x1*x2 + a_20_*x1

lpdogdp

Given a starting symbol a, a list of variables l, and a degree n, lpdogp(a,l,n)
generates a generic differential polynomial of degree n in variables l with coeffi-
cients generated from the starting symbol a:

input: lpdogdp(a,{x1,x2},2);

2 2
a_20_ *** partial(x1) + a_02_ *** partial(x2)

+ a_11_ *** partial(x1) *** partial(x2) + a_10_ *** partial(x1)

+ a_01_ *** partial(x2) + a_00_

16.41.4.2 Symbols

lpdosym

The symbol of an lpdo. That is the differential monomial of highest order with the
partials replaced by corresponding commutative variables:

input: lpdosym((a()+b())***partial(x1)***partial(x2)**2+3***partial(x1));

2
y_x1_*y_x2_ *(a() + b())
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More generally, one can use a second optional arguments to specify a the order of
a different differential monomial to form the symbol of:

input: lpdosym((a()+b())***partial(x1)***partial(x2)**2+3***partial(x1),1);

3*y_x1_

Finally, a third optional argument can be used to specify an alternative starting sym-
bol for the commutative variable, which is y by default. Altogether, the optional
arguments default like lpdosym(·)=lpdosym(·,lpdoord(·),y).

lpdosym2dp

This converts a symbol obtained via lpdosym back into an LPDO resulting in the
corresponding differential monomial of the original LPDO.

input: d := a()***partial(x1)***partial(x2)+partial(x3)$

input: s := lpdosym d;

s := a()*y_x1_*y_x2_

input: lpdosym2dp s;

a() *** partial(x1) *** partial(x2)

In analogy to lpdosym there is an optional argument for specifying an alternative
starting symbol for the commutative variable, which is y by default.

lpdos

Given LPDOs p, q and m ∈ N the function lpdos(p,q,m) computes the com-
mutative polynomial

Sm =
∑
|j|=m
|j|<k

(
n∑
i=1

pi∂i(qj) + p0qj

)
yj .

This is useful for the factorization of LPDOs.

input: p := a()***partial(x1)+b()$

input: q := c()***partial(x1)+d()***partial(x2)$

input: lpdos(p,q,1);
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a()*diff(c(),x1,1)*y_x1_ + a()*diff(d(),x1,1)*y_x2_ + b()*c()*y_x1_

+ b()*d()*y_x2_

16.41.4.3 Factorization

lpdofactorize

Factorize the argument LPDO d. The ground field F must be fixed via lpdoset.
The result is a list of lists {. . . , (Ai, Li), . . . }. Ai is is genrally the identifiers
true, which indicates reducibility. The respective Li is a list of two differential
polynomial factors, the first of which has order 1.

input: bk := (partial(x)+partial(y)+(a10-a01)/2) ***
(partial(x)-partial(y)+(a10+a01)/2);

2 2
bk := partial(x) - partial(y) + a10 *** partial(x) + a01 *** partial(y)

2 2
- a01 + a10

+ ----------------
4

input: lpdoset lpdoweyl(1,x,y);

{#_00_ + #_01_*y + #_10_*x,x,y}

input: lpdofactorize bk;

{{true,

a01 - a10
{ - partial(x) - partial(y) + -----------,

2

- a01 - a10
- partial(x) + partial(y) + --------------}}}

2

If the result is the empty list, then this guarantees that there is no approximate fac-
torization possible. In general it is possible to obtain several sample factorizations.
Note, however, that the result does not provide a complete list of possible factor-
izations with a left factor of order 1 but only at least one such sample factorization
in case of reducibility.

Furthermore, the procedure might fail due to polynomial degrees exceeding cer-
tain bounds for the extended quantifier elimination by virtual substitution used in-
ternally. In this case there is the identifier failed returned. This must not be
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confused with the empty list indicating irreducibility as described above.

Besides

1. the LPDO d,

lpdofactorizex accepts several optional arguments:

2. An LPDO of order 1, which serves as a template for the left (linear) factor.
The default is a generic linear LPDO with generic coefficient functions ac-
cording from the ground field specified via lpdoset. The principle idea is
to support the factorization by guessing that certain differential monomials
are not present.

3. An LPDO of order ord(d)−1, which serves as a template for the right factor.
Similarly to the previous argument the default is fully generic.

lpdofac

This is a low-level entry point to the factorization lpdofactorize. It accepts
the same arguments as lpdofactorize. It generates factorization conditions
as a quite large first-order formula over the reals. This can be passed to ex-
tended quantifier elimination. For example, consider bk as in the example for
lpdofactorize above:

input: faccond := lpdofac bk$

input: rlqea faccond;

{{true,

a01 - a10
{p_00_00_ = -----------,

2

p_00_01_ = 0, p_00_10_ = 0, p_01_00_ = -1, p_01_01_ = 0, p_01_10_ = 0,

p_10_00_ = -1, p_10_01_ = 0, p_10_10_ = 0,

- a01 - a10
q_00_00_ = --------------,

2

q_00_01_ = 0, q_00_10_ = 0, q_01_00_ = 1, q_01_01_ = 0, q_01_10_ = 0,

q_10_00_ = -1, q_10_01_ = 0, q_10_10_ = 0}}}

The result of the extended quantifier elimination provides coefficient values for
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generic factor polynomials p and q. These are automatically interpreted and con-
verted into differential polynomials by lpdofactorize.

16.41.4.4 Approximate Factorization

lpdofactorizex

Approximately factorize the argument LPDO d. The ground field F must be fixed
via lpdoset. The result is a list of lists {. . . , (Ai, Li), . . . }. EachAi is quantifier-
free formula possibly containing a variable epsilon, which describes the preci-
sion of corresponding factorization Li. Li is a list containing two factors, the first
of which is linear.

input: off lpdocoeffnorm$

input: lpdoset lpdoweyl(0,x1,x2)$

input: f2 := partial(x1)***partial(x2) + 1$

input: lpdofactorizex f2;

{{epsilon - 1 >= 0,{partial(x1),partial(x2)}},

{epsilon - 1 >= 0,{partial(x2),partial(x1)}}}

If the result is the empty list, then this guarantees that there is no approximate
factorization possible. In our example we happen to obtain two possible factor-
izations. Note, however, that the result in general does not provide a complete
list of factorizations with a left factor of order 1 but only at least one such sample
factorization.

Furthermore, the procedure might fail due to polynomial degrees exceeding certain
bounds for the extended quantifier elimination by virtual substitution used inter-
nally. If this happens, the corresponding Ai will contain existential quantifiers ex,
and Li will be meaningless.
Da sollte besser ein failed kommen ...

The first of the two subresults above has the semantics that ∂x1∂x2 is an approxi-
mate factorization of f2 for all ε ≥ 1. Formally, ||f2 − ∂x1∂x2 || ≤ ε for all ε ≥ 1,
which is equivalent to ||f2 − ∂x1∂x2 || ≤ 1. That is, 1 is an upper bound for the ap-
proximation error over R2. Where there are two possible choices for the seminorm
|| · ||:

1. ...

2. ...
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explain switch lpdocoeffnorm ...

Besides

1. the LPDO d,

lpdofactorizex accepts several optional arguments:

2. A Boolean combination ψ of equations, negated equations, and (possibly
strict) ordering constraints. This ψ describes a (semialgebraic) region over
which to factorize approximately. The default is true specifying the entire
Rn. It is possible to choose ψ parametrically. Then the parameters will in
general occur in the conditions Ai in the result.

3., 4. An LPDO of order 1, which serves as a template for the left (linear) factor,
and an LPDO of order ord(d) − 1, which serves as a template for the right
factor. See the documentation of lpdofactorize for defaults and details.

5. A bound ε for describing the desired precision for approximate factoriza-
tion. The default is the symbol epsilon, i.e., a symbolic choice such that
the optimal choice (with respect to parameters in ψ) is obtained during fac-
torization. It is possible to fix ε ∈ Q. This does, however, not considerably
simplify the factorization process in most cases.

input: f3 := partial(x1) *** partial(x2) + x1$

input: psi1 := 0<=x1<=1 and 0<=x2<=1$

input: lpdofactorizex(f3,psi1,a()***partial(x1),b()***partial(x2));

{{epsilon - 1 >= 0,{partial(x1),partial(x2)}}}

lpdofacx

This is a low-level entry point to the factorization lpdofactorizex. It is analo-
gous to lpdofac for lpdofactorize; see the documentation there for details.

lpdohrect

lpdohcirc
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16.42 MODSR: Modular solve and roots

This package supports solve (M_SOLVE) and roots (M_ROOTS) operators for
modular polynomials and modular polynomial systems. The moduli need not be
primes. M_SOLVE requires a modulus to be set. M_ROOTS takes the modulus as
a second argument. For example:

on modular; setmod 8;
m_solve(2x=4); -> {{X=2},{X=6}}
m_solve({x^2-y^3=3});

-> {{X=0,Y=5}, {X=2,Y=1}, {X=4,Y=5}, {X=6,Y=1}}
m_solve({x=2,x^2-y^3=3}); -> {{X=2,Y=1}}
off modular;
m_roots(x^2-1,8); -> {1,3,5,7}
m_roots(x^3-x,7); -> {0,1,6}

The operator legendre_symbol(a,p) denotes the Legendre symbol(
a

p

)
≡ a

p−1
2 (mod p)

which, by its very definition can only have one of the values {−1, 0, 1}.

There is no further documentation for this package.

Author: Herbert Melenk.
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16.43 MRVLIMIT: A new exp-log limits package

Author: Neil Langmead

This package was written when the author was a placement student at ZIB Berlin.

16.43.1 The Exp-Log Limits package

This package arises from the PhD thesis of Dominik Gruntz, of the ETH Zürich.
He developed a new algorithm to compute limits of "exp-log" functions. Many of
the examples he gave were unable to be computed by the present limits package in
REDUCE, the simplest example being the following, whose limit is obviously 0:

load limits;

limit(x^7/e^x,x,infinity);

7
x

limit(----,x,infinity)
x
e

This particular problem arises, because L’Hopital’s rule for the computation of
indefinite forms (such as 0/0, or ∞∞ ) can only be applied in a CAS a finite num-
ber of times, and in REDUCE, this number is 3. Applied 7 times to the above
problem would have yielded the correct answer 0. The new algorithm solves this
particular problem, and enables the computation of many more limit calculations
in REDUCE. We first define the domain in which we work, and then give a state-
ment of the main algorithm that is used in this package.

Definition:
Let <[x] be the ring of polynomials in x with real coefficients, and let f be an
element in this ring. The field which is obtained from <[x] by closing it under the
operations f → exp(f) and f → log |f | is called the L- field (or logarithmico-
exponential field, or field of exp-log functions for short).

Hardy proved that every L function is ultimately continuous, of constant sign,
monotonic, and tends to ±∞ or to a finite real constant as x→ +∞.

Here are some examples of exp-log functions, which the package is able to deal
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with:

f(x) = ex ∗ log(log(x))

f(x) =
log(log(x+ e−x))

ex2 + log(log(x))

f(x) = log(x)log(x)

f(x) = ex∗log(x)

16.43.2 The Algorithm

A complete statement of the algorithm now follows: Let f be a log-exp function in
x, whose limit we wish to compute as x→ x0. The main steps of the algorithm to
do this are as follows:

• Determine the set Ω of the most rapidly varying subexpressions of f(x).
Limits may have to be computed recursively at this stage.

• Choose an expression ω such that ω > 0, limx→∞ ω = 0 and ω is in the same
comparability class as any element of Ω. Rewrite the other expressions in Ω
asA(x)ωc, whereA(x) only contains subexpressions in lower comparability
classes than Ω.

• Let f(ω) be the function obtained from f(x) by replacing all elements of Ω
by their representation in terms of ω. Consider all expressions independent
of ω as constants and compute the leading term of the power series of f(ω)
around ω = 0+

• If the leading exponent e0 > 0, then the limit is 0, and we stop. If the leading
exponent e0 < 0 then the limit is ±∞. The sign is defined by the sign of the
leading coefficient c0. If the leading exponent e0 = 0 then the limit is the
limit of the leading coeficient c0. If c0 6∈ C, where C = Const(L), the set of
exp-log constants, we apply the same algorithm recursively on c0.

The algorithm to compute the most rapidly varying subset (the mrv set) of a func-
tion f is given below:

procedure mrv(f)
% f an exp log function in x
if (not (depend(f,x)))→ return ({})

else if f = x→ return({x})
else if f = gh→ return(max(mrv(g),mrv(h)))

else if f = g + h→ return(max(mrv(g),mrv(h)))



742 CHAPTER 16. USER CONTRIBUTED PACKAGES

else if f = gc and c ∈ C → return(mrv(g))
else if f = log(g)→ return(mrv(g))
else if f = eg →

if limx→∞ g = ±∞→
return(max({eg}, mrv(g)))
else→ return mrv(g)

end

The function max() computes the maximum of the two sets of expressions. Max()
compares two elements of its argument sets and returns the set which is in the
higher comparability class or the union of both if they have the same order of vari-
ation.

For further details, proofs and explanations of the algorithm, please consult [Gru96].

For example, we have

mrv(ex) = {ex}
mrv(log(log(log(x+ x2 + x3)))) = {x}
mrv(x) = {x}
mrv(ex + e−x + x2 + x log(x)) = {ex, e−x}

mrv(ee
−x

) = {e−x}

16.43.2.1 Mrv_limit Examples

Consider the following in REDUCE:

mrv_limit(e^x,x,infinity);

infinity

mrv_limit(1/log(x),x,infinity);

0

b:=e^x*(e^(1/x-e^-x)-e^(1/x));

-1 - x
x + x - e

b := e *(e - 1)
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mrv_limit(b,x,infinity);

-1

-1
ex:= - log(log(log(log(x))) + log(x)) *log(x)

*(log(log(x)) - log(log(log(x)) + log(x)));

- log(x)*(log(log(x)) - log(log(log(x)) + log(x)))
ex:= -----------------------------------------------------

log(log(log(log(x))) + log(x))

off mcd;

mrv_limit(ex,x,infinity);

1

(log(x+e^-x)+log(1/x))/(log(x)*e^x);

- x -1 -1 - x
e *log(x) *(log(x ) + log(e + x));

mrv_limit(ws,x,infinity);

0

mrv_limit((log(x)*e^-x)/e^(log(x)+e^(x^2)),x,infinity);

0

16.43.3 The tracing facility

The package provides a means of tracing themrv_limit function at its main steps,
and is intended to help the user if he encounters problems. Messages are displayed
informing the user which Taylor expansion is being computed, all recursive calls
are listed, and the value returned by the mrv function is given. This information
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is displayed when a switch tracelimit is on. This is off by default, but can be
switched on with the command

on tracelimit;

For a more complete examination of the workings of the algorithm, the user could
also try the command

tr mrv_limit;

This is not recommended, as the amount of information returned is often huge and
difficult to wade through. Here is a simple example in REDUCE:

Loading image file: /silo/cons/reduce35/Alpha/binary/redu37a.img
REDUCE Development Version, 4-Nov-96 ...

1: load mrvlimit;

2: on tracelimit;

3: mrv_limit(e^x,x,infinity);

mrv_f is {x}

x
After move_up, f is e

-1
performing taylor on: ww

-1
series expansion is ww

-1
series is ww

exponent list is {expt,-1}

leading exponent e0 is {expt,-1}

x
mrv_f is {e }
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h is x

mrv_f is {x}

x
After move_up, f is e

-1
performing taylor on: ww

-1
series expansion is ww

-1
series is ww

exponent list is {expt,-1}

leading exponent e0 is {expt,-1}

- x
small has been changed to e

-1
After substitution to ww, f is ww

-1
performing taylor on: ww

-1
series expansion is ww

-1
series is ww

exponent list is {expt,-1}

leading exponent e0 is {expt,-1}

infinity



746 CHAPTER 16. USER CONTRIBUTED PACKAGES

Note that, due to the recursiveness of the functions mrv and mrv_limit, many
calls to each function are made, and information is given on all calls when the
tracelimit switch is on.



747

16.44 NCPOLY: Non–commutative polynomial ideals

This package allows the user to set up automatically a consistent environment for
computing in an algebra where the non–commutativity is defined by Lie-bracket
commutators. The package uses the REDUCE noncom mechanism for elementary
polynomial arithmetic; the commutator rules are automatically computed from the
Lie brackets.

Authors: Herbert Melenk and Joachim Apel.

16.44.1 Introduction

REDUCE supports a very general mechanism for computing with objects under a
non–commutative multiplication, where commutator relations must be introduced
explicitly by rule sets when needed. The package NCPOLY allows you to set
up automatically a consistent environment for computing in an algebra where the
non–commutativity is defined by Lie-bracket commutators. The package uses the
REDUCE noncom mechanism for elementary polynomial arithmetic; the commu-
tator rules are automatically computed from the Lie brackets. You can perform
polynomial arithmetic directly, including division and factorization. Additionally
NCPOLY supports computations in a one sided ideal (left or right), especially one
sided Gröbner bases and polynomial reduction.

16.44.2 Setup, Cleanup

Before the computations can start the environment for a non–commutative compu-
tation must be defined by a call to nc_setup:

nc_setup(<vars>[,<comms>][,<dir>]);

where

< vars > is a list of variables; these must include the non–commutative quantities.

< comms > is a list of equations <u>*<v> - <v>*<u>=<rh> where < u >
and < v > are members of < vars >, and < rh > is a polynomial.

< dir > is either left or right selecting a left or a right one sided ideal. The initial
direction is left.

nc_setup generates from < comms > the necessary rules to support an algebra
where all monomials are ordered corresponding to the given variable sequence.
All pairs of variables which are not explicitly covered in the commutator set are
considered as commutative and the corresponding rules are also activated.

The second parameter in nc_setup may be omitted if the operator is called for
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the second time, e.g. with a reordered variable sequence. In such a case the last
commutator set is used again.

Remarks:

• The variables need not be declared noncom - nc_setup performs all neces-
sary declarations.

• The variables need not be formal operator expressions; nc_setup encapsu-
lates a variable x internally as nc!*(!_x) expressions anyway where the
operator nc!∗ keeps the noncom property.

• The commands order and korder should be avoided because nc_setup sets
these such that the computation results are printed in the correct term order.

Example:

nc_setup({KK,NN,k,n},
{NN*n-n*NN= NN, KK*k-k*KK= KK});

NN*n; -> NN*n
n*NN; -> NN*n - NN
nc_setup({k,n,KK,NN});
NN*n - NN -> n*NN;

Here KK,NN, k, n are non–commutative variables where the commutators are
described as [NN,n] = NN , [KK, k] = KK.

The current term order must be compatible with the commutators: the product
< u > ∗ < v > must precede all terms on the right hand side < rh > under the
current term order. Consequently

• the maximal degree of < u > or < v > in < rh > is 1,

• in a total degree ordering the total degree of < rh > may be not higher than
1,

• in an elimination degree order (e.g. lex) all variables in < rh > must be
below the minimum of < u > and < v >.

• If < rh > does not contain any variables or has at most < u > or < v >,
any term order can be selected.

If you want to use the non–commutative variables or results from non–commutative
computations later in commutative operations it might be necessary to switch off
the non–commutative evaluation mode because not all operators in REDUCE are
prepared for that environment. In such a case use the command
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nc_cleanup;

without parameters. It removes all internal rules and definitions which nc_setup
had introduced. To reactive non–commutative call nc_setup again.

16.44.3 Left and right ideals

A (polynomial) left ideal L is defined by the axioms

u ∈ L, v ∈ L =⇒ u+ v ∈ L

u ∈ L =⇒ k ∗ u ∈ L for an arbitrary polynomial k

where “*” is the non–commutative multiplication. Correspondingly, a right ideal
R is defined by

u ∈ R, v ∈ R =⇒ u+ v ∈ R

u ∈ R =⇒ u ∗ k ∈ R for an arbitrary polynomial k

16.44.4 Gröbner bases

When a non–commutative environment has been set up by nc_setup, a basis for
a left or right polynomial ideal can be transformed into a Gröbner basis by the
operator nc_groebner:

nc_groebner(<plist>);

Note that the variable set and variable sequence must be defined before in the
nc_setup call. The term order for the Gröbner calculation can be set by using the
torder declaration. The internal steps of the Gröbner calculation can be watched
by setting the switches trgroeb (=list all internal basis polynomials) or trgroebs
(=list additionally the S-polynomials) 39.

For details about torder, trgroeb and trgroebs see the REDUCE GROEBNER
manual.

2: nc_setup({k,n,NN,KK},{NN*n-n*NN=NN,KK*k-k*KK=KK},left);

3: p1 := (n-k+1)*NN - (n+1);

p1 := - k*nn + n*nn - n + nn - 1

4: p2 := (k+1)*KK -(n-k);

39The command lisp(!*trgroebfull:=t); causes additionally all elementary polynomial
operations to be printed.
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p2 := k*kk + k - n + kk

5: nc_groebner ({p1,p2});

{k*nn - n*nn + n - nn + 1,

k*kk + k - n + kk,

n*nn*kk - n*kk - n + nn*kk - kk - 1}

Important: Do not use the operators of the GROEBNER package directly as they
would not consider the non–commutative multiplication.

16.44.5 Left or right polynomial division

The operator nc_divide computes the one sided quotient and remainder of two
polynomials:

nc_divide(<p1>,<p2>);

The result is a list with quotient and remainder. The division is performed as a
pseudo–division, multiplying < p1 > by coefficients if necessary. The result {<
q >,< r >} is defined by the relation

< c > ∗ < p1 >=< q > ∗ < p2 > + < r > for direction left and

< c > ∗ < p1 >=< p2 > ∗ < q > + < r > for direction right,

where < c > is an expression that does not contain any of the ideal variables, and
the leading term of < r > is lower than the leading term of < p2 > according to
the actual term order.

16.44.6 Left or right polynomial reduction

For the computation of the one sided remainder of a polynomial modulo a given
set of other polynomials the operator nc_preduce may be used:

nc_preduce(<polynomial>,<plist>);

The result of the reduction is unique (canonical) if and only if < plist > is a one
sided Gröbner basis. Then the computation is at the same time an ideal membership
test: if the result is zero, the polynomial is member of the ideal, otherwise not.
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16.44.7 Factorization

16.44.7.1 Technique

Polynomials in a non–commutative ring cannot be factored using the ordinary fac-
torize command of REDUCE. Instead one of the operators of this section must be
used:

nc_factorize(<polynomial>);

The result is a list of factors of < polynomial >. A list with the input expression
is returned if it is irreducible.

As non–commutative factorization is not unique, there is an additional operator
which computes all possible factorizations

nc_factorize_all(<polynomial>);

The result is a list of factor decompositions of < polynomial >. If there are no
factors at all the result list has only one member which is a list containing the input
polynomial.

16.44.7.2 Control of the factorization

In contrast to factoring in commutative polynomial rings, the non–commutative
factorization is rather time consuming. Therefore two additional operators allow
you to reduce the amount of computing time when you look only for isolated fac-
tors in special context, e.g. factors with a limited degree or factors which contain
only explicitly specified variables:

left_factor(<polynomial>[,<deg>[,<vars>]])
right_factor(<polynomial>[,<deg>[,<vars>]])
left_factors(<polynomial>[,<deg>[,<vars>]])

right_factors(<polynomial>[,<deg>[,<vars>]])

where < polynomial > is the form under investigation, < vars > is an optional
list of variables which must appear in the factor, and < deg > is an optional
integer degree bound for the total degree of the factor, a zero for an unbounded
search, or a monomial (product of powers of the variables) where each exponent is
an individual degree bound for its base variable; unmentioned variables are allowed
in arbitrary degree. The operators ∗_factor stop when they have found one factor,
while the operators ∗_factors select all one–sided factors within the given range.
If there is no factor of the desired type, an empty list is returned by ∗_factors
while the routines ∗_factor return the input polynomial.
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16.44.7.3 Time of the factorization

The share variable nc_factor_time sets an upper limit for the time to be spent
for a call to the non–commutative factorizer. If the value is a positive integer,
a factorization is terminated with an error message as soon as the time limit is
reached. The time units are milliseconds.

16.44.7.4 Usage of SOLVE

The factorizer internally uses solve, which is controlled by the REDUCE switch
varopt. This switch (which per default is set on) allows, to reorder the variable
sequence, which is favourable for the normal system. It should be avoided to set
varopt off , when using the non–commutative factorizer, unless very small poly-
nomials are used.

16.44.8 Output of expressions

It is often desirable to have the commutative parts (coefficients) in a non–
commutative operation condensed by factorization. The operator

nc_compact(<polynomial>)

collects the coefficients to the powers of the lowest possible non-commutative vari-
able.

load ncpoly;

nc_setup({n,NN},{NN*n-n*NN=NN})$
p1 := n**4 + n**2*nn + 4*n**2 + 4*n*nn + 4*nn + 4;

4 2 2
p1 := n + n *nn + 4*n + 4*n*nn + 4*nn + 4

nc_compact p1;

2 2 2
(n + 2) + (n + 2) *nn
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16.45 NORMFORM: Computation of matrix normal forms

This package contains routines for computing the following normal forms of ma-
trices:

• smithex_int

• smithex

• frobenius

• ratjordan

• jordansymbolic

• jordan.

Author: Matt Rebbeck.

16.45.1 Introduction

When are two given matrices similar? Similar matrices have the same trace, deter-
minant, characteristic polynomial, and eigenvalues, but the matrices

U =

(
0 1
0 0

)
and V =

(
0 0
0 0

)
are the same in all four of the above but are not similar. Otherwise there could exist
a nonsingular N∈M2 (the set of all 2 × 2 matrices) such that U = NVN−1 =
N 0 N−1 = 0 , which is a contradiction since U 6= 0 .

Two matrices can look very different but still be similar. One approach to deter-
mining whether two given matrices are similar is to compute the normal form of
them. If both matrices reduce to the same normal form they must be similar.

NORMFORM is a package for computing the following normal forms of matrices:

- smithex
- smithex_int
- frobenius
- ratjordan
- jordansymbolic
- jordan

The package is loaded by load_package normform;
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By default all calculations are carried out in Q (the rational numbers). For
smithex, frobenius, ratjordan, jordansymbolic, and jordan, this
field can be extended. Details are given in the respective sections.

The frobenius, ratjordan, and jordansymbolic normal forms can also
be computed in a modular base. Again, details are given in the respective sections.

The algorithms for each routine are contained in the source code.

NORMFORM has been converted from the normform and Normform packages
written by T.M.L. Mulders and A.H.M. Levelt. These have been implemented
in Maple [4].

16.45.2 Smith normal form

Function
smithex(A, x) computes the Smith normal form S of the matrix A.

It returns {S,P,P−1} where S,P , and P−1 are such that PSP−1 = A.

A is a rectangular matrix of univariate polynomials in x.

x is the variable name.

Field extensions
Calculations are performed in Q. To extend this field the ARNUM package
can be used. For details see subsection 16.45.8.

Synopsis: • The Smith normal form S of an n by m matrix A with univariate
polynomial entries in x over a field F is computed. That is, the poly-
nomials are then regarded as elements of the Euclidean domain F(x).

• The Smith normal form is a diagonal matrix S where:

– rank(A) = number of nonzero rows (columns) of S.
– S(i, i) is a monic polynomial for 0 < i ≤ rank(A).
– S(i, i) divides S(i+ 1, i+ 1) for 0 < i < rank(A).
– S(i, i) is the greatest common divisor of all i by i minors of A.

Hence, if we have the case that n = m, as well as rank(A) = n, then

n∏
i=1

S(i, i) =
det(A)

lcoeff(det(A), x)
.

• The Smith normal form is obtained by doing elementary row and col-
umn operations. This includes interchanging rows (columns), multi-
plying through a row (column) by −1, and adding integral multiples of
one row (column) to another.
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• Although the rank and determinant can be easily obtained from S, this
is not an efficient method for computing these quantities except that this
may yield a partial factorization of det(A) without doing any explicit
factorizations.

Example:
load_package normform;

A =

(
x x+ 1
0 3 ∗ x2

)

smithex(A, x) =

{(
1 0
0 x3

)
,

(
1 0

3 ∗ x2 1

)
,

(
x x+ 1
−3 −3

)}

16.45.3 smithex_int

Function
Given an n by m rectangular matrix A that contains only integer entries,
smithex_int(A) computes the Smith normal form S of A.

It returns {S,P,P−1} where S, P , and P−1 are such that PSP−1 = A.

Synopsis • The Smith normal form S of an n by m matrix A with integer
entries is computed.

• The Smith normal form is a diagonal matrix S where:

– rank(A) = number of nonzero rows (columns) of S.
– sign(S(i, i)) = 1 for 0 < i ≤ rank(A).
– S(i, i) divides S(i+ 1, i+ 1) for 0 < i < rank(A).
– S(i, i) is the greatest common divisor of all i by i minors of A.

Hence, if we have the case that n = m, as well as rank(A) = n, then

|det(A)| =
n∏
i=1

S(i, i).

• The Smith normal form is obtained by doing elementary row and col-
umn operations. This includes interchanging rows (columns), multi-
plying through a row (column) by −1, and adding integral multiples of
one row (column) to another.

Example
load_package normform;

A =

 9 −36 30
−36 192 −180
30 −180 180


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smithex_int(A) =


3 0 0

0 12 0
0 0 60

 ,

−17 −5 −4
64 19 15
−50 −15 −12

 ,

 1 −24 30
−1 25 −30
0 −1 1


16.45.4 frobenius

Function
frobenius(A) computes the Frobenius normal form F of the matrix A.

It returns {F ,P,P−1} where F , P , and P−1 are such that PFP−1 = A.

A is a square matrix.

Field extensions
Calculations are performed in Q. To extend this field the ARNUM package
can be used. For details see subsection 16.45.8

Modular arithmetic
frobenius can be calculated in a modular base. For details see subsection
16.45.9.

Synopsis • F has the following structure:

F =


Cp1

Cp2

. . .
Cpk


where the C(pi)’s are companion matrices associated with polynomials
p1, p2, . . . , pk, with the property that pi divides pi+1 for i = 1 . . . k−1.
All unmarked entries are zero.

• The Frobenius normal form defined in this way is unique (ie: if we
require that pi divides pi+1 as above).

Example
load_package normform;

A =

( −x2+y2+y
y

−x2+x+y2−y
y

−x2−x+y2+y
y

−x2+x+y2−y
y

)

frobenius(A) ={(
0 x∗(x2−x−y2+y)

y

1 −2∗x2+x+2∗y2
y

)
,

(
1 −x2+y2+y

y

0 −x2−x+y2+y
y

)
,

(
1 −x2+y2+y

x2+x−y2−y
0 −y

x2+x−y2−y

)}



757

16.45.5 ratjordan

Function
ratjordan(A) computes the rational Jordan normal formR of the matrix
A.

It returns {R,P,P−1} whereR, P , and P−1 are such that PRP−1 = A.

A is a square matrix.

Field extensions
Calculations are performed in Q. To extend this field the ARNUM package
can be used. For details see subsection 16.45.8.

Modular arithmetic
ratjordan can be calculated in a modular base. For details see subsection
16.45.9.

Synopsis • R has the following structure:

R =



r11

r12

. . .
r21

r22

. . .


The rij’s have the following shape:

rij =


C(p) I

C(p) I
. . . . . .
C(p) I

C(p)


where there are eij times C(p) blocks along the diagonal and C(p) is
the companion matrix associated with the irreducible polynomial p. All
unmarked entries are zero.

Example
load_package normform;

A =

(
x+ y 5
y x2

)
ratjordan(A) ={(

0 −x3 − x2 ∗ y + 5 ∗ y
1 x2 + x+ y

)
,

(
1 x+ y

0 y

)
,

(
1 −(x+y)

y

0 1
y

)}
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16.45.6 jordansymbolic

Function
jordansymbolic(A) computes the Jordan normal form J of the matrix
A.

It returns {J ,L,P,P−1}, where J , P , and P−1 are such that PJP−1 =
A. L = {ll, ξ}, where ξ is a name and ll is a list of irreducible factors of
p(ξ).

A is a square matrix.

Field extensions
Calculations are performed in Q. To extend this field the ARNUM package
can be used. For details see subsection 16.45.8.

Modular arithmetic
jordansymbolic can be calculated in a modular base. For details see
subsection 16.45.9.

Extras
If using xr, the X interface for REDUCE, the appearance of the output can

be improved by setting the switch looking_good to on. This converts
all lambda to ξ and improves the indexing, e.g., lambda12 ⇒ ξ12. The
example below shows the output when this switch is on.

Synopsis • A Jordan block k(λ) is a k by k upper triangular matrix of the
form:

k(λ) =


λ 1

λ 1
. . . . . .

λ 1
λ


There are k − 1 terms “+1” in the superdiagonal; the scalar λ appears
k times on the main diagonal. All other matrix entries are zero, and
1(λ) = (λ).

• A Jordan matrix J ∈ Mn (the set of all n by n matrices) is a direct
sum of jordan blocks

J =


n1(λ1)

n2(λ2)
. . .

nk(λk)

 , n1 + n2 + · · ·+ nk = n

in which the orders ni may not be distinct and the values λi need not
be distinct.
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• Here λ is a zero of the characteristic polynomial p of A. If p does
not split completely, symbolic names are chosen for the missing zeroes
of p. If, by some means, one knows such missing zeroes, they can
be substituted for the symbolic names. For this, jordansymbolic
actually returns {J ,L,P,P−1}. J is the Jordan normal form of A
(using symbolic names if necessary). L = {ll , ξ}, where ξ is a name
and ll is a list of irreducible factors of p(ξ). If symbolic names are used
then ξij is a zero of lli. P and P−1 are as above.

Example
load_package normform;
on looking_good;

A =

(
1 y
y2 3

)
jordansymbolic(A) ={(

ξ11 0
0 ξ12

)
,
{{
−y3 + ξ2 − 4 ∗ ξ + 3

}
, ξ
}
,

(
ξ11 − 3 ξ12 − 3

y2 y2

)
,

(
ξ11−2

2∗(y3−1)
ξ11+y3−1

2∗y2∗(y3+1)
ξ12−2

2∗(y3−1)
ξ12+y3−1

2∗y2∗(y3+1)

)}
solve(-yˆ3+xiˆ2-4*xi+3,xi);

{ξ =
√
y3 + 1 + 2, ξ = −

√
y3 + 1 + 2}

J = sub({xi(1,1)=sqrt(yˆ3+1)+2, xi(1,2)=-sqrt(yˆ3+1)+2},
first jordansymbolic (A))

J =

(√
y3 + 1 + 2 0

0 −
√
y3 + 1 + 2

)
For a similar example ot this in standard REDUCE (ie: not using xr), see
the normform.rlg file.

16.45.7 jordan

Function
jordan(A) computes the Jordan normal form J of the matrix A.

It returns {J ,P,P−1}, where J , P , and P−1 are such that PJP−1 = A.

A is a square matrix.

Field extensions
Calculations are performed in Q. To extend this field the ARNUM package
can be used. For details see subsection 16.45.8.
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Note
In certain polynomial cases the switch fullroots is turned on to compute
the zeroes. This can lead to the calculation taking a long time, as well as the
output being very large. In this case a message
***** WARNING: fullroots turned on. May take a while.
will be printed. It may be better to kill the calculation and compute
jordansymbolic instead.

Synopsis • The Jordan normal form J with entries in an algebraic extension
of Q is computed.

• A Jordan block k(λ) is a k by k upper triangular matrix of the form:

k(λ) =


λ 1

λ 1
. . . . . .

λ 1
λ


There are k − 1 terms “+1” in the superdiagonal; the scalar λ appears
k times on the main diagonal. All other matrix entries are zero, and
1(λ) = (λ).

• A Jordan matrix J ∈ Mn (the set of all n by n matrices) is a direct
sum of jordan blocks.

J =


n1(λ1)

n2(λ2)
. . .

nk(λk)

 , n1 + n2 + · · ·+ nk = n

in which the orders ni may not be distinct and the values λi need not
be distinct.

• Here λ is a zero of the characteristic polynomial p of A. The zeroes of
the characteristic polynomial are computed exactly, if possible. Other-
wise they are approximated by floating point numbers.

Example
load_package normform;

A =



−9 −21 −15 4 2 0
−10 21 −14 4 2 0
−8 16 −11 4 2 0
−6 12 −9 3 3 0
−4 8 −6 0 5 0
−2 4 −3 0 1 3


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J = first jordan(A);

J =



3 0 0 0 0 0
0 3 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 i+ 2 0
0 0 0 0 0 −i+ 2



16.45.8 Algebraic extensions: Using the ARNUM package

The package is loaded by the command load_package arnum;. The alge-
braic field Q can now be extended. For example, defpoly sqrt2**2-2; will
extend it to include

√
2 (defined here by sqrt2). The ARNUM package was writ-

ten by Eberhard Schrüfer and is described in section 16.3.

16.45.8.1 Example

load_package normform;
load_package arnum;
defpoly sqrt2**2-2;
(sqrt2 now changed to

√
2 for looks!)

A =

4 ∗
√

2− 6 −4 ∗
√

2 + 7 −3 ∗
√

2 + 6

3 ∗
√

2− 6 −3 ∗
√

2 + 7 −3 ∗
√

2 + 6

3 ∗
√

2 1− 3 ∗
√

2 −2 ∗
√

2



ratjordan(A) =



√

2 0 0

0
√

2 0

0 0 −3 ∗
√

2 + 1

 ,


7 ∗
√

2− 6 2∗
√

2−49
31

−21∗
√

2+18
31

3 ∗
√

2− 6 21∗
√

2−18
31

−21∗
√

2+18
31

3 ∗
√

2 + 1 −3∗
√

2+24
31

3∗
√

2−24
31

 ,

 0
√

2 + 1 1

−1 4 ∗
√

2 + 9 4 ∗
√

2

−1 −1
6 ∗
√

2 + 1 1


16.45.9 Modular arithmetic

Calculations can be performed in a modular base by setting the switch modular
to on. The base can then be set by setmod p; (p a prime). The normal form will
then have entries in Z/pZ .
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By also switching on balanced_mod the output will be shown using a symmetric
modular representation.

Information on this modular manipulation can be found in chapter 9.

16.45.9.1 Example

load_package normform;
on modular;
setmod 23;

A =

(
10 18
17 20

)
jordansymbolic(A) ={(

18 0
0 12

)
, {{λ+ 5, λ+ 11} , λ} ,

(
15 9
22 1

)
,

(
1 14
1 15

)}
on balanced_mod;

jordansymbolic(A) ={(
−5 0
0 −11

)
, {{λ+ 5, λ+ 11} , λ} ,

(
−8 9
−1 1

)
,

(
1 −9
1 −8

)}
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16.46 NUMERIC: Solving numerical problems

This package implements basic algorithms of numerical analysis. These include:

• solution of algebraic equations by Newton’s method

num_solve({sin x=cos y, x + y = 1},{x=1,y=2})

• solution of ordinary differential equations

num_odesolve(df(y,x)=y,y=1,x=(0 .. 1), iterations=5)

• bounds of a function over an interval

bounds(sin x+x,x=(1 .. 2));

• minimizing a function (Fletcher Reeves steepest descent)

num_min(sin(x)+x/5, x);

• Chebyshev curve fitting

chebyshev_fit(sin x/x,x=(1 .. 3),5);

• numerical quadrature

num_int(sin x,x=(0 .. pi));

Author: Herbert Melenk.

The NUMERIC package implements some numerical (approximative) algorithms
for REDUCE, based on the REDUCE rounded mode arithmetic. These algorithms
are implemented for standard cases. They should not be called for ill-conditioned
problems; please use standard mathematical libraries for these.

16.46.1 Syntax

16.46.1.1 Intervals, Starting Points

Intervals are generally coded as lower bound and upper bound connected by the
operator ‘..’, usually associated to a variable in an equation. E.g.

x= (2.5 .. 3.5)
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means that the variable x is taken in the range from 2.5 up to 3.5. Note, that the
bounds can be algebraic expressions, which, however, must evaluate to numeric
results. In cases where an interval is returned as the result, the lower and upper
bounds can be extracted by the PART operator as the first and second part respec-
tively. A starting point is specified by an equation with a numeric righthand side,
e.g.

x=3.0

If for multivariate applications several coordinates must be specified by intervals or
as a starting point, these specifications can be collected in one parameter (which is
then a list) or they can be given as separate parameters alternatively. The list form is
more appropriate when the parameters are built from other REDUCE calculations
in an automatic style, while the flat form is more convenient for direct interactive
input.

16.46.1.2 Accuracy Control

The keyword parameters accuracy = a and iterations = i, where a and imust be
positive integer numbers, control the iterative algorithms: the iteration is continued
until the local error is below 10−a; if that is impossible within i steps, the iteration
is terminated with an error message. The values reached so far are then returned as
the result.

16.46.1.3 tracing

Normally the algorithms produce only a minimum of printed output during their
operation. In cases of an unsuccessful or unexpected long operation a trace of the
iteration can be printed by setting

on trnumeric;

16.46.2 Minima

The Fletcher Reeves version of the steepest descent algorithms is used to find
the minimum of a function of one or more variables. The function must have
continuous partial derivatives with respect to all variables. The starting point of
the search can be specified; if not, random values are taken instead. The steepest
descent algorithms in general find only local minima.

Syntax:

NUM_MIN (exp, var1[= val1][, var2[= val2] . . .]
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[, accuracy = a][, iterations = i])

or

NUM_MIN (exp, {var1[= val1][, var2[= val2] . . .]}
[, accuracy = a][, iterations = i])

where exp is a function expression,

var1, var2, . . . are the variables in exp and val1, val2, . . . are the (optional)
start values.

NUM_MIN tries to find the next local minimum along the descending path
starting at the given point. The result is a list with the minimum function
value as first element followed by a list of equations, where the variables are
equated to the coordinates of the result point.

Examples:

num_min(sin(x)+x/5, x);

{4.9489585606,{X=29.643767785}}

num_min(sin(x)+x/5, x=0);

{ - 1.3342267466,{X= - 1.7721582671}}

% Rosenbrock function (well known as hard to minimize).
fktn := 100*(x1**2-x2)**2 + (1-x1)**2;
num_min(fktn, x1=-1.2, x2=1, iterations=200);

{0.00000021870228295,{X1=0.99953284494,X2=0.99906807238}}

16.46.3 Roots of Functions/ Solutions of Equations

An adaptively damped Newton iteration is used to find an approximative zero of
a function, a function vector or the solution of an equation or an equation sys-
tem. Equations are internally converted to a difference of lhs and rhs such that
the Newton method (=zero detection) can be applied. The expressions must have
continuous derivatives for all variables. A starting point for the iteration can be
given. If not given, random values are taken instead. If the number of forms is not
equal to the number of variables, the Newton method cannot be applied. Then the
minimum of the sum of absolute squares is located instead.

With ON COMPLEX solutions with imaginary parts can be found, if either the
expression(s) or the starting point contain a nonzero imaginary part.
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Syntax:

NUM_SOLVE (exp1, var1[= val1][, accuracy = a][, iterations = i])

or

NUM_SOLVE ({exp1, . . . , expn}, var1[= val1], . . . , varn[= valn]

[, accuracy = a][, iterations = i])

or

NUM_SOLVE ({exp1, . . . , expn}, {var1[= val1], . . . , varn[= valn]}

[, accuracy = a][, iterations = i])

where exp1, . . . , expn are function expressions,

var1, . . . , varn are the variables,

val1, . . . , valn are optional start values.

NUM_SOLVE tries to find a zero/solution of the expression(s). Result is a
list of equations, where the variables are equated to the coordinates of the
result point.

The Jacobian matrix is stored as a side effect in the shared variable JACO-
BIAN.

Example:

num_solve({sin x=cos y, x + y = 1},{x=1,y=2});

{X= - 1.8561957251,Y=2.856195584}

jacobian;

[COS(X) SIN(Y)]
[ ]
[ 1 1 ]

16.46.4 Integrals

For the numerical evaluation of univariate integrals over a finite interval the fol-
lowing strategy is used:

1. If the function has an antiderivative in close form which is bounded in the
integration interval, this is used.
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2. Otherwise a Chebyshev approximation is computed, starting with order 20,
eventually up to order 80. If that is recognized as sufficiently convergent
it is used for computing the integral by directly integrating the coefficient
sequence.

3. If none of these methods is successful, an adaptive multilevel quadrature
algorithm is used.

For multivariate integrals only the adaptive quadrature is used. This algorithm tol-
erates isolated singularities. The value iterations here limits the number of local
interval intersection levels. Accuracy is a measure for the relative total discretiza-
tion error (comparison of order 1 and order 2 approximations).

Syntax:

NUM_INT (exp, var1 = (l1..u1)[, var2 = (l2..u2) . . .]

[, accuracy = a][, iterations = i])

where exp is the function to be integrated,

var1, var2, . . . are the integration variables,

l1, l2, . . . are the lower bounds,

u1, u2, . . . are the upper bounds.

Result is the value of the integral.

Example:

num_int(sin x,x=(0 .. pi));

2.0000010334

16.46.5 Ordinary Differential Equations

A Runge-Kutta method of order 3 finds an approximate graph for the solution of a
ordinary differential equation real initial value problem.

Syntax:

NUM_ODESOLVE (exp,depvar = dv,indepvar=(from..to)

[, accuracy = a][, iterations = i])

where

exp is the differential expression/equation,
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depvar is an identifier representing the dependent variable (function to be
found),

indepvar is an identifier representing the independent variable,

exp is an equation (or an expression implicitly set to zero) which contains
the first derivative of depvar wrt indepvar,

from is the starting point of integration,

to is the endpoint of integration (allowed to be below from),

dv is the initial value of depvar in the point indepvar = from.

The ODE exp is converted into an explicit form, which then is used for a
Runge Kutta iteration over the given range. The number of steps is controlled
by the value of i (default: 20). If the steps are too coarse to reach the desired
accuracy in the neighborhood of the starting point, the number is increased
automatically.

Result is a list of pairs, each representing a point of the approximate solution
of the ODE problem.

Example:

num_odesolve(df(y,x)=y,y=1,x=(0 .. 1), iterations=5);

{{0.0,1.0},{0.2,1.2214},{0.4,1.49181796},{0.6,1.8221064563},

{0.8,2.2255208258},{1.0,2.7182511366}}

Remarks:

– If in exp the differential is not isolated on the lefthand side, please ensure
that the dependent variable is explicitly declared using a DEPEND statement,
e.g.

depend y,x;

otherwise the formal derivative will be computed to zero by REDUCE.

– The REDUCE package SOLVE is used to convert the form into an explicit
ODE. If that process fails or has no unique result, the evaluation is stopped
with an error message.
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16.46.6 Bounds of a Function

Upper and lower bounds of a real valued function over an interval or a rectangu-
lar multivariate domain are computed by the operator BOUNDS. The algorithmic
basis is the computation with inequalities: starting from the interval(s) of the vari-
ables, the bounds are propagated in the expression using the rules for inequality
computation. Some knowledge about the behavior of special functions like ABS,
SIN, COS, EXP, LOG, fractional exponentials etc. is integrated and can be eval-
uated if the operator BOUNDS is called with rounded mode on (otherwise only
algebraic evaluation rules are available).

If BOUNDS finds a singularity within an interval, the evaluation is stopped with
an error message indicating the problem part of the expression.

Syntax:

BOUNDS (exp, var1 = (l1..u1)[, var2 = (l2..u2) . . .])

BOUNDS (exp, {var1 = (l1..u1)[, var2 = (l2..u2) . . .]})
where exp is the function to be investigated,

var1, var2, . . . are the variables of exp,

l1, l2, . . . and u1, u2, . . . specify the area (intervals).

BOUNDS computes upper and lower bounds for the expression in the
given area. An interval is returned.

Example:

bounds(sin x,x=(1 .. 2));

{-1,1}

on rounded;
bounds(sin x,x=(1 .. 2));

0.84147098481 .. 1

bounds(x**2+x,x=(-0.5 .. 0.5));

- 0.25 .. 0.75
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16.46.7 Chebyshev Curve Fitting

The operator family Chebyshev_ . . . implements approximation and evaluation of
functions by the Chebyshev method. Let T (a,b)

n (x) be the Chebyshev polynomial
of order n transformed to the interval (a, b). Then a function f(x) can be approxi-
mated in (a, b) by a series

f(x) ≈
∑N

i=0 ciT
(a,b)
i (x)

The operator Chebyshev_fit computes this approximation and returns a list,
which has as first element the sum expressed as a polynomial and as second element
the sequence of Chebyshev coefficients ci. Chebyshev_df and Chebyshev_int
transform a Chebyshev coefficient list into the coefficients of the corresponding
derivative or integral respectively. For evaluating a Chebyshev approximation at a
given point in the basic interval the operator Chebyshev_eval can be used. Note
that Chebyshev_eval is based on a recurrence relation which is in general more
stable than a direct evaluation of the complete polynomial.

CHEBYSHEV_FIT (fcn, var = (lo..hi), n)

CHEBYSHEV_EVAL (coeffs, var = (lo..hi), var = pt)

CHEBYSHEV_DF (coeffs, var = (lo..hi))

CHEBYSHEV_INT (coeffs, var = (lo..hi))

where fcn is an algebraic expression (the function to be fitted), var is the
variable of fcn, lo and hi are numerical real values which describe an in-
terval (lo < hi), n is the approximation order,an integer > 0, set to 20 if
missing, pt is a numerical value in the interval and coeffs is a series of
Chebyshev coefficients, computed by one of CHEBY SHEV _COEFF ,
_DF or _INT .

Example:

on rounded;

w:=chebyshev_fit(sin x/x,x=(1 .. 3),5);

3 2
w := {0.03824*x - 0.2398*x + 0.06514*x + 0.9778,

{0.8991,-0.4066,-0.005198,0.009464,-0.00009511}}

chebyshev_eval(second w, x=(1 .. 3), x=2.1);
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0.4111

16.46.8 General Curve Fitting

The operator NUM_FIT finds for a set of points the linear combination of a
given set of functions (function basis) which approximates the points best under
the objective of the least squares criterion (minimum of the sum of the squares of
the deviation). The solution is found as zero of the gradient vector of the sum of
squared errors.

Syntax:

NUM_FIT (vals, basis, var = pts)

where vals is a list of numeric values,

var is a variable used for the approximation,

pts is a list of coordinate values which correspond to var,

basis is a set of functions varying in var which is used for the approxima-
tion.

The result is a list containing as first element the function which approximates the
given values, and as second element a list of coefficients which were used to build
this function from the basis.

Example:

% approximate a set of factorials by a polynomial
pts:=for i:=1 step 1 until 5 collect i$
vals:=for i:=1 step 1 until 5 collect

for j:=1:i product j$

num_fit(vals,{1,x,x**2},x=pts);

2
{14.571428571*X - 61.428571429*X + 54.6,{54.6,

- 61.428571429,14.571428571}}

num_fit(vals,{1,x,x**2,x**3,x**4},x=pts);
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4 3
{2.2083333234*X - 20.249999879*X

2
+ 67.791666154*X - 93.749999133*X

+ 44.999999525,

{44.999999525, - 93.749999133,67.791666154,

- 20.249999879,2.2083333234}}

16.46.9 Function Bases

The following procedures compute sets of functions e.g. to be used for approxima-
tion. All procedures have two parameters, the expression to be used as variable
(an identifier in most cases) and the order of the desired system. The functions are
not scaled to a specific interval, but the variable can be accompanied by a scale
factor and/or a translation in order to map the generic interval of orthogonality to
another (e.g. (x − 1/2) ∗ 2pi). The result is a function list with ascending order,
such that the first element is the function of order zero and (for the polynomial
systems) the function of order n is the n+ 1-th element.

monomial_base(x,n) {1,x,...,x**n}
trigonometric_base(x,n) {1,sin x,cos x,sin(2x),cos(2x)...}
Bernstein_base(x,n) Bernstein polynomials
Legendre_base(x,n) Legendre polynomials
Laguerre_base(x,n) Laguerre polynomials
Hermite_base(x,n) Hermite polynomials
Chebyshev_base_T(x,n) Chebyshev polynomials first kind
Chebyshev_base_U(x,n) Chebyshev polynomials second kind

Example:

Bernstein_base(x,5);

5 4 3 2
{ - X + 5*X - 10*X + 10*X - 5*X + 1,
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4 3 2
5*X*(X - 4*X + 6*X - 4*X + 1),

2 3 2
10*X *( - X + 3*X - 3*X + 1),

3 2
10*X *(X - 2*X + 1),

4
5*X *( - X + 1),

5
X }
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16.47 ODESOLVE:
Ordinary differential equations solver

The ODESOLVE package is a solver for ordinary differential equations. At the
present time it has very limited capabilities. It can handle only a single scalar
equation presented as an algebraic expression or equation, and it can solve only
first-order equations of simple types, linear equations with constant coefficients and
Euler equations. These solvable types are exactly those for which Lie symmetry
techniques give no useful information. For example, the evaluation of

depend(y,x);
odesolve(df(y,x)=x**2+e**x,y,x);

yields the result

X 3
3*E + 3*ARBCONST(1) + X

{Y=---------------------------}
3

Main Author: Malcolm A.H. MacCallum.

Other contributors: Francis Wright, Alan Barnes.

16.47.1 Introduction

ODESolve1+ is an experimental project to update and enhance the ordinary
differential equation (ODE) solver (odesolve) that has been distributed as a
standard component of REDUCE [Hea95, Mac95, Mac88] for about 10 years.
ODESolve1+ is intended to provide a strict superset of the facilities provided
by odesolve. This document describes a substantial re-implementation of pre-
vious versions of ODESolve1+ that now includes almost none of the original
odesolve code. This version is targeted at REDUCE 3.7 or later, and will not
run in earlier versions. This project is being conducted partly under the auspices
of the European CATHODE project [CAT]. Various test files, including three ver-
sions based on a published review of ODE solvers [PZ96], are included in the
ODESolve1+ distribution. For further background see [Wri97], which describes
version 1.03. See also [Wri99].

ODESolve1+ is intended to implement some solution techniques itself (i.e. most
of the simple and well known techniques [Zwi92]) and to provide an automatic in-
terface to other more sophisticated solvers, such as PSODE [Man94, MM97, PS83]
and CRACK [BW92], to handle cases where simple techniques fail. It is also in-
tended to provide a unified interface to other special solvers, such as Laplace trans-
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forms, series solutions and numerical methods, under user request. Although none
of these extensions is explicitly implemented yet, a general extension interface is
implemented (see §16.47.6).

The main motivation behind ODESolve1+ is pragmatic. It is intended to meet
user expectations, to have an easy user interface that normally does the right thing
automatically, and to return solutions in the form that the user wants and ex-
pects. Quite a lot of development effort has been directed toward this aim. Hence,
ODESolve1+ solves common text-book special cases in preference to esoteric
pathological special cases, and it endeavours to simplify solutions into convenient
forms.

16.47.2 Installation

The file odesolve.in inputs the full set of source files that are required to im-
plement ODESolve1+ assuming that the current directory is the ODESolve1+
source directory. Hence, ODESolve1+ can be run without compiling it in any im-
plementation of REDUCE 3.7 by starting REDUCE in the ODESolve1+ source
directory and entering the statement

1: in "odesolve.in"$

However, the recommended procedure is to compile it by starting REDUCE in the
ODESolve1+ source directory and entering the statements

1: faslout odesolve;
2: in "odesolve.in"$
3: faslend;

In CSL-REDUCE, this will work only if you have write access to the REDUCE
image file (reduce.img), so you may need to set up a private copy first. In
PSL-REDUCE, you may need to move the compiled image file odesolve.b to
a directory in your PSL load path, such as the main fasl directory. Please refer
to the documentation for your implementation of REDUCE for details. Once a
compiled version of ODESolve1+ has been correctly installed, it can be loaded
by entering the REDUCE statement

1: load_package odesolve;

A string describing the current version of ODESolve1+ is assigned to the
algebraic-mode variable odesolve_version, which can be evaluated to check
what version is actually in use.

In versions of REDUCE derived from the development source after 22 September



776 CHAPTER 16. USER CONTRIBUTED PACKAGES

2000, use of the normal algebraic-mode odesolve operator causes the package to
autoload. However, the ODESolve1+ global switches are not declared, and the
symbolic mode interface provided for backward compatibility with the previous
version is not defined, until after the package has loaded. The former is not a huge
problem because all ODESolve switches can be accessed as optional arguments,
and the backward compatibility interface should probably not be used in new code
anyway.

16.47.3 User interface

The principal interface is via the operator odesolve. (It also has a synonym
called dsolve to make porting of examples from Maple easier, but it does not
accept general Maple syntax!) For purposes of description I will refer to the de-
pendent variable as “y” and the independent variable as “x”, but of course the
names are arbitrary. The general input syntax is

odesolve(ode, y, x, conditions, options);

All arguments except the first are optional. This is possible because, if necessary,
ODESolve1+ attempts to deduce the dependent and independent variables used
and to make any necessary DEPEND declarations. Messages are output to indicate
any assumptions or dependence declarations that are made. Here is an example of
what is probably the shortest possible valid input:

odesolve(df(y,x));

*** Dependent var(s) assumed to be y

*** Independent var assumed to be x

*** depend y , x

{y=arbconst(1)}

Output of ODESolve1+ messages is controlled by the standard REDUCE switch
msg.

16.47.3.1 Specifying the ODE and its variables

The first argument (ode) is required, and must be either an ODE or a variable (or
expression) that evaluates to an ODE. Automatic dependence declaration works
only when the ODE is input directly as an argument to the odesolve operator.
Here, “ODE” means an equation or expression containing one or more derivatives
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of y with respect to x. Derivatives of y with respect to other variables are not
allowed because ODESolve1+ does not solve partial differential equations, and
symbolic derivatives of variables other than y are treated as symbolic constants.
An expression is implicitly equated to zero, as is usual in equation solvers.

The independent variable may be either an operator that explicitly depends on the
independent variable, e.g. y(x) (as required in Maple), or a simple variable that is
declared (by the user or automatically by ODESolve1+) to depend on the inde-
pendent variable. If the independent variable is an operator then it may depend on
parameters as well as the independent variable. Variables may be simple identifiers
or, more generally, REDUCE “kernels”, e.g.

operator x, y;
odesolve(df(y(x(a),b),x(a)) = 0);

*** Dependent var(s) assumed to be y(x(a),b)

*** Independent var assumed to be x(a)

{y(x(a),b)=arbconst(1)}

The order in which arguments are given must be preserved, but arguments may
be omitted, except that if x is specified then y must also be specified, although an
empty list {} can be used as a “place-holder” to represent “no specified argument”.
Variables are distinguished from options by requiring that if a variable is specified
then it must appear in the ODE, otherwise it is assumed to be an option.

Generally in REDUCE it is not recommended to use the identifier t as a variable,
since it is reserved in Lisp. However, it is very common practice in applied mathe-
matics to use it as a variable to represent time, and for that reason ODESolve1+
provides special support to allow it as either the independent or a dependent vari-
able. But, of course, its use may still cause trouble in other parts of REDUCE!

16.47.3.2 Specifying conditions

If specified, the “conditions” argument must take the form of an (unordered) list of
(unordered lists of) equations with either y, x, or a derivative of y on the left. A
single list of conditions need not be contained within an outer list. Combinations
of conditions are allowed. Conditions within one (inner) list all relate to the same
x value. For example:

Boundary conditions:
{{y=y0, x=x0}, {y=y1, x=x1}, ...}

Initial conditions:
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{x=x0, y=y0, df(y,x)=dy0, ...}

Combined conditions:
{{y=y0, x=x0}, {df(y,x)=dy1, x=x1}, {df(y,x)=dy2, y=y2, x=x2}, ...}

Here is an example of boundary conditions:

odesolve(df(y,x,2) = y, y, x, {{x = 0, y = A}, {x = 1, y = B}});

2*x 2*x 2
- e *a + e *b*e + a*e - b*e

{y=-----------------------------------}
x 2 x

e *e - e

Here is an example of initial conditions:

odesolve(df(y,x,2) = y, y, x, {x = 0, y = A, df(y,x) = B});

2*x 2*x
e *a + e *b + a - b

{y=-------------------------}
x

2*e

Here is an example of combined conditions:

odesolve(df(y,x,2) = y, y, x, {{x=0, y=A}, {x=1, df(y,x)=B}});

2*x 2*x 2
e *a + e *b*e + a*e - b*e

{y=--------------------------------}
x 2 x
e *e + e

Boundary conditions on the values of y at various values of x may also be speci-
fied by replacing the variables by equations with single values or matching lists of
values on the right, of the form

y = y0, x = x0

or

y = {y0, y1, ...}, x = {x0, x2, ...}
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For example

odesolve(df(y,x) = y, y = A, x = 0);

x
{y=e *a}

odesolve(df(y,x,2) = y, y = {A, B}, x = {0, 1});

2*x 2*x 2
- e *a + e *b*e + a*e - b*e

{y=-----------------------------------}
x 2 x

e *e - e

16.47.3.3 Specifying options and defaults

The final arguments may be one or more of the option identifiers listed in the table
below, which take precedence over the default settings. All options can also be
specified on the right of equations with the identifier “output” on the left, e.g. “out-
put = basis”. This facility if provided mainly for compatibility with other systems
such as Maple, although it also allows options to be distinguished from variables
in case of ambiguity. Some options can be specified on the left of equations that
assign special values to the option. Currently, only “trode” and its synonyms can
be assigned the value 1 to give an increased level of tracing.

The following switches set default options – they are all off by default. Options set
locally using option arguments override the defaults set by switches.

Switch Option Effect on solution
odesolve_explicit explicit fully explicit
odesolve_expand expand expand roots of unity
odesolve_full full fully explicit and expanded
odesolve_implicit implicit implicit instead of parametric

algint turn on algint
odesolve_noint noint turn off selected integrations
odesolve_verbose verbose display ODE and conditions
odesolve_basis basis output basis solution for linear ODE

trode
trode trace turn on algorithm tracing

tracing
odesolve_fast fast turn off heuristics
odesolve_check check turn on solution checking
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An “explicit” solution is an equation with y isolated on the left whereas an “im-
plicit” solution is an equation that determines y as one or more of its solutions. A
“parametric” solution expresses both x and y in terms of some additional param-
eter. Some solution techniques naturally produce an explicit solution, but some
produce either an implicit or a parametric solution. The “explicit” option causes
ODESolve1+ to attempt to convert solutions to explicit form, whereas the “im-
plicit” option causes ODESolve1+ to attempt to convert parametric solutions
(only) to implicit form (by eliminating the parameter). These solution conversions
may be slow or may fail in complicated cases.

ODESolve1+ introduces two operators used in solutions: root_of_unity
and plus_or_minus, the latter being a special case of the former, i.e. a sec-
ond root of unity. These operators carry a tag that associates the same root of unity
when it appears in more than one place in a solution (cf. the standard root_of
operator). The “expand” option expands a single solution expressed in terms of
these operators into a set of solutions that do not involve them. ODESolve1+
also introduces two operators expand_roots_of_unity [which should per-
haps be named expand_root_of_unity] and expand_plus_or_minus,
that are used internally to perform the expansion described above, and can be used
explicitly.

The “algint” option turns on “algebraic integration” locally only within ODESolve1+.
It also loads the algint package if necessary. Algint allows ODESolve1+ to
solve some ODEs for which the standard REDUCE integrator hangs (i.e. takes an
extremely long time to return). If the resulting solution contains unevaluated inte-
grals then the algint switch should be turned on outside ODESolve1+ before the
solution is re-evaluated, otherwise the standard integrator may well hang again!
For some ODEs, the algint option leads to better solutions than the standard RE-
DUCE integrator.

Alternatively, the “noint” option prevents REDUCE from attempting to evaluate
the integrals that arise in some solution techniques. If ODESolve1+ takes too
long to return a result then you might try adding this option to see if it helps
solve this particular ODE, as illustrated in the test files. This option is provided
to speed up the computation of solutions that contain integrals that cannot be eval-
uated, because in some cases REDUCE can spend a long time trying to evaluate
such integrals before returning them unevaluated. This only affects integrals eval-
uated within the ODESolve1+ operator. If a solution containing an unevaluated
integral that was returned using the “noint” option is re-evaluated, it may again
take REDUCE a very long time to fail to evaluate the integral, so considerable
caution is recommended! (A global switch called “noint” is also installed when
ODESolve1+ is loaded, and can be turned on to prevent REDUCE from attempt-
ing to evaluate any integrals. But this effect may be very confusing, so this switch
should be used only with extreme care. If you turn it on and then forget, you may
wonder why REDUCE seems unable to evaluate even trivial integrals!)
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The “verbose” option causes ODESolve1+ to display the ODE, variables and
conditions as it sees them internally, after pre-processing. This is intended for use
in demonstrations and possibly for debugging, and not really for general users.

The “basis” option causes ODESolve1+ to output the general solutions of linear
ODEs in basis format (explained below). Special solutions (of ODEs with condi-
tions) and solutions of nonlinear ODEs are not affected.

The “trode” (or “trace” or “tracing”) option turns on tracing of the algorithms used
by ODESolve1+. It reports its classification of the ODE and any intermediate
results that it computes, such as a chain of progressively simpler (in some sense)
ODEs that finally leads to a solution. Tracing can produce a lot of output, e.g. see
the test log file “zimmer.rlg”. The option “trode = 1” or the global assign-
ment “!*trode := 1” causes ODESolve1+ to report every test that it tries
in its classification process, producing even more tracing output. This is probably
most useful for debugging, but it may give the curious user further insight into the
operation of ODESolve1+.

The “fast” option disables all non-deterministic solution techniques (including
most of those for nonlinear ODEs of order > 1). It may be most useful if
ODESolve1+ is used as a subroutine, including calling it recursively in a hook.
It makes ODESolve1+ behave like the odesolve distributed with REDUCE
versions up to and including 3.7, and so does not affect the odesolve.tst file.
The “fast” option causes ODESolve1+ to return no solution fast in cases where,
by default, if would return either a solution or no solution (perhaps much) more
slowly. Solution of sufficiently simple “deterministically-solvable” ODEs is unaf-
fected.

The “check” option turns on checking of the solution. This checking is performed
by code that is largely independent of the solver, so as to perform a genuinely
independent check. It is not turned on by default so as to avoid the computa-
tional overhead, which is currently of the order of 30%. A check is made that
each component solution satisfies the ODE and that a general solution contains
at least enough arbitrary constants, or equivalently that a basis solution contains
enough basis functions. Otherwise, warning messages are output. It is possible
that ODESolve1+ may fail to verify a solution because the automatic simplifica-
tion fails, which indicates a failure in the checker rather than in the solver. This
option is not yet well tested; please report any checking failures to me (FJW).

In some cases, in particular when an implicit solution contains an unevaluated in-
tegral, the checker may need to differentiate an integral with respect to a variable
other than the integration variable. In order to do this, it turns on the differentiator
switch “allowdfint” globally. [I hope that this setting will eventually become the
default.] In some cases, in particular in symbolic solutions of Clairaut ODEs, the
checker may need to differentiate a composition of operators using the chain rule.
In order to do this, it turns on the differentiator switch “expanddf” locally only.
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Although the code to support both these differentiator facilities has been in RE-
DUCE for a while, they both require patches that are currently only applied when
ODESolve1+ is loaded. [I hope that these patches will eventually become part of
REDUCE itself.]

16.47.4 Output syntax

If ODESolve1+ is successful it outputs a list of sub-solutions that together rep-
resent the solution of the input ODE. Each sub-solution is either an equation that
defines a branch of the solution, explicitly or implicitly, or it is a list of equations
that define a branch of the solution parametrically in the form {y = G(p), x =
F (p), p}. Here p is the parameter, which is actually represented in terms of an
operator called arbparam which has an integer argument to distinguish it from
other unrelated parameters, as usual for arbitrary values in REDUCE.

A general solution will contain a number of arbitrary constants represented by an
operator called arbconst with an integer argument to distinguish it from other
unrelated arbitrary constants. A special solution resulting from applying conditions
will contain fewer (usually no) arbitrary constants.

The general solution of a linear ODE in basis format is a list consisting of a list of
basis functions for the solution space of the reduced ODE followed by a particular
solution if the input ODE had a y-independent “driver” term, i.e. was not reduced
(which is sometimes ambiguously called “homogeneous”). The particular solution
is normally omitted if it is zero. The dependent variable y does not appear in a
basis solution. The linear solver uses basis solutions internally.

Currently, there are cases where ODESolve1+ cannot solve a linear ODE using
its linear solution techniques, in which case it will try nonlinear techniques. These
may generate a solution that is not (obviously) a linear combination of basis so-
lutions. In this case, if a basis solution has been requested, ODESolve1+ will
report that it cannot separate the nonlinear combination, which it will return as the
default linear combination solution.

If ODESolve1+ fails to solve the ODE then it will return a list containing the in-
put ODE (always in the form of a differential expression equated to 0). At present,
ODESolve1+ does not return partial solutions. If it fails to solve any part of the
problem then it regards this as complete failure. (You can probably see if this has
happened by turning on algorithm tracing.)

16.47.5 Solution techniques

The ODESolve1+ interface module pre-processes the problem and applies any
conditions to the solution. The other modules deal with the actual solution.
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ODESolve1+ first classifies the input ODE according to whether it is linear or
nonlinear and calls the appropriate solver. An ODE that consists of a product of
linear factors is regarded as nonlinear. The second main classification is based on
whether the input ODE is of first or higher degree.

Solution proceeds essentially by trying to reduce nonlinear ODEs to linear ones,
and to reduce higher order ODEs to first order ODEs. Only simple linear ODEs and
simple first-order nonlinear ODEs can be solved directly. This approach involves
considerable recursion within ODESolve1+.

If all solution techniques fail then ODESolve1+ attempts to factorize the deriva-
tive of the whole ODE, which sometimes leads to a solution.

16.47.5.1 Linear solution techniques

ODESolve1+ splits every linear ODE into a “reduced ODE” and a “driver” term.
The driver is the component of the ODE that is independent of y, the reduced ODE
is the component of the ODE that depends on y, and the sign convention is such
that the ODE can be written in the form “reduced ODE = driver”. The reduced
ODE is then split into a list of “ODE coefficients”.

The linear solver now determines the order of the ODE. If it is 1 then the ODE
is immediately solved using an integrating factor (if necessary). For a higher or-
der linear ODE, ODESolve1+ considers a sequence of progressively more com-
plicated solution techniques. For most purposes, the ODE is made “monic” by
dividing through by the coefficient of the highest order derivative. This puts the
ODE into a standard form and effectively deals with arbitrary overall algebraic
factors that would otherwise confuse the solution process. (Hence, there is no need
to perform explicit algebraic factorization on linear ODEs.) The only situation in
which the original non-monic form of the ODE is considered is when checking for
exactness, which may depend critically on otherwise irrelevant overall factors.

If the ODE has constant coefficients then it can (in principle) be solved using ele-
mentary “D-operator” techniques in terms of exponentials via an auxiliary equat-
ion. However, this works only if the polynomial auxiliary equation can be solved.
Assuming that it can and there is a driver term, ODESolve1+ tries to use a
method based on inverse “D-operator” techniques that involves repeated integra-
tion of products of the solutions of the reduced ODE with the driver. Experience
(by Malcolm MacCallum) suggests that this normally gives the most satisfactory
form of solution if the integrals can be evaluated. If any integral fails to evaluate,
the more general method of “variation of parameters”, based on the Wronskian of
the solution set of the reduced ODE, is used instead. This involves only a single
integral and so can never lead to nested unevaluated integrals.

If the ODE has non-constant coefficients then it may be of Euler (sometimes am-
biguously called “homogeneous”) type, which can be trivially reduced to an ODE
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with constant coefficients. A shift in x is accommodated in this process. Next it
is tested for exactness, which leads to a first integral that is an ODE of order one
lower. After that it is tested for the explicit absence of y and low order derivatives,
which allows trivial order reduction. Then the monic ODE is tested for exactness,
and if that fails and the original ODE was non-monic then the original form is
tested for exactness.

Finally, pattern matching is used to seek a solution involving special functions,
such as Bessel functions. Currently, this is implemented only for second-order
ODEs satisfied by Bessel and Airy-integral functions. It could easily be extended
to other orders and other special functions. Shifts in x could also be accommodated
in the pattern matching. [Work to enhance this component of ODESolve1+ is
currently in progress.]

If all linear techniques fail then ODESolve1+ currently calls the variable inter-
change routine (described below), which takes it into the nonlinear solver. Occa-
sionally, this is successful in producing some, although not necessarily the best,
solution of a linear ODE.

16.47.5.2 Nonlinear solution techniques

In order to handle trivial nonlinearity, ODESolve1+ first factorizes the ODE al-
gebraically, solves each factor that depends on y and then merges the resulting
solutions. Other factors are ignored, but a warning is output unless they are purely
numerical.

If all attempts at solution fail then ODESolve1+ checks whether the original (un-
factored) ODE was exact, because factorization could destroy exactness. Currently,
ODESolve1+ handles only first and second order nonlinear exact ODEs.

A version of the main solver applied to each algebraic factor branches depending
on whether the ODE factor is linear or nonlinear, and the nonlinear solver branches
depending on whether the order is 1 or higher and calls one of the solvers described
in the next two sections. If that solver fails, ODESolve1+ checks for exactness (of
the factor). If that fails, it checks whether only a single order derivative is involved
and tries to solve algebraically for that. If successful, this decomposes the ODE
into components that are, in some sense, simpler and may be solvable. (However,
in some cases these components are algebraically very complicated examples of
simple types of ODE that the integrator cannot in practice handle, and it can take a
very long time before returning an unevaluated integral.)

If all else fails, ODESolve1+ interchanges the dependent and independent vari-
ables and calls the top-level solver recursively. It keeps a list of all ODEs that have
entered the top-level solver in order to break infinite loops that could arise if the
solution of the variable-interchanged ODE fails.
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First-order nonlinear solution techniques

If the ODE is a first-degree polynomial in the derivative then ODESolve1+ rep-
resents it in terms of the “gradient”, which is a function of x and y such that the
ODE can be written as “dy/dx = gradient”. It then checks in sequence for the
following special types of ODE, each of which it can (in principle) solve:

Separable The gradient has the form f(x)g(y), leading immediately to a solution
by quadrature, i.e. the solution can be immediately written in terms of indef-
inite integrals. (This is considered to be a solution of the ODE, regardless of
whether the integrals can be evaluated.) The solver recognises both explicit
and implicit dependence when detecting separable form.

Quasi-separable The gradient has the form f(y + kx), which is (trivially) sepa-
rable after a linear transformation. It arises as a special case of the “quasi-
homogeneous” case below, but is better treated earlier as a case in its own
right.

Homogeneous The gradient has the form f(y/x), which is algebraically homoge-
neous. A substitution of the form “y = vx” leads to a first-order linear ODE
that is (in principle) immediately solvable.

Quasi-homogeneous The gradient has the form f(a1x+b1y+c1
a2x+b2y+c2

), which is homo-
geneous after a linear transformation.

Bernoulli The gradient has the form P (x)y +Q(x)yn, in which case the ODE is
a first-order linear ODE for y1−n.

Riccati The gradient has the form a(x)y2 + b(x)y+ c(x), in which case the ODE
can be transformed into a linear second-order ODE that may be solvable.

If the ODE is not first-degree then it may be linear in either x or y. Solving by
taking advantage of this leads to a parametric solution of the original ODE, in
which the parameter corresponds to y′. It may then be possible to eliminate the
parameter to give either an implicit or explicit solution.

An ODE is “solvable for y” if it can be put into the form y = f(x, y′). Differenti-
ating with respect to x leads to a first-order ODE for y′(x), which may be easier to
solve than the original ODE. The special case that y = xF (y′) +G(y′) is called a
Lagrange (or d’Alembert) ODE. Differentiating with respect to x leads to a first-
order linear ODE for x(y′). The even more special case that y = xy′ + G(y′),
which may arise in the equivalent implicit form F (xy′ − y) = G(y′), is called a
Clairaut ODE. The general solution is given by replacing y′ by an arbitrary con-
stant, and it may be possible to obtain a singular solution by differentiating and
solving the resulting factors simultaneously with the original ODE.
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An ODE is “solvable for x” if it can be put into the form x = f(y, y′). Differenti-
ating with respect to y leads to a first-order ODE for y′(y), which may be easier to
solve than the original ODE.

Currently, ODESolve1+ recognises the above forms only if the ODE manifestly
has the specified form and does not try very hard to actually solve for x or y, which
perhaps it should!

Higher-order nonlinear solution techniques

The techniques used here are all special cases of Lie symmetry analysis, which is
not yet applied in any general way.

Higher-order nonlinear ODEs are passed through a number of “simplifier” filters
that are applied in succession, regardless of whether the previous filter simplifies
the ODE or not. Currently, the first filter tests for the explicit absence of y and
low order derivatives, which allows trivial order reduction. The second filter tests
whether the ODE manifestly depends on x+ k for some constant k, in which case
it shifts x to remove k.

After that, ODESolve1+ tests for each of the following special forms in sequence.
The sequence used here is important, because the classification is not unique, so it
is important to try the most useful classification first.

Autonomous An ODE is autonomous if it does not depend explicitly on x, in
which case it can be reduced to an ODE in y′ of order one lower.

Scale invariant or equidimensional in x An ODE is scale invariant if it is invari-
ant under the transformation x → ax, y → apy, where a is an arbitrary
indeterminate and p is a constant to be determined. It can be reduced to an
autonomous ODE, and thence to an ODE of order one lower. The special
case p = 0 is called equidimensional in x. It is the nonlinear generalization
of the (reduced) linear Euler ODE.

Equidimensional in y An ODE is equidimensional in y if it is invariant under the
transformation y → ay. An exponential transformation of y leads to an
ODE of the same order that may be “more linear” and so easier to solve,
but there is no guarantee of this. All (reduced) linear ODEs are trivially
equidimensional in y.

The recursive nature of ODESolve1+, especially the thread described in this sec-
tion, can lead to complicated “arbitrary constant expressions”. Arbitrary constants
must be included at the point where an ODE is solved by quadrature. Further
processing of such a solution, as may happen when a recursive solution stack is
unwound, can lead to arbitrary constant expressions that should be re-written as
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simple arbitrary constants. There is some simple code included to perform this
arbitrary constant simplification, but it is rudimentary and not entirely successful.

16.47.6 Extension interface

The idea is that the ODESolve extension interface allows any user to add solution
techniques without needing to edit and recompile the main source code, and (in
principle) without needing to be intimately familiar with the internal operation of
ODESolve1+.

The extension interface consists of a number of “hooks” at various critical places
within ODESolve1+. These hooks are modelled in part on the hook mechanism
used to extend and customize the Emacs editor, which is a large Lisp-based system
with a structure similar to that of REDUCE . Each ODESolve1+ hook is an
identifier which can be defined to be a function (i.e. a procedure), or have assigned
to it (in symbolic mode) a function name or a (symbolic mode) list of function
names. The function should be written to accept the arguments specified for the
particular hook, and it should return either a solution to the specified class of ODE
in the specified form or nil.

If a hook returns a non-nil value then that value is used by ODESolve1+ as the
solution of the ODE at that stage of the solution process. [If the ODE being solved
was generated internally by ODESolve1+ or conditions are imposed then the so-
lution will be re-processed before being finally returned by ODESolve1+.] If a
hook returns nil then it is ignored and ODESolve1+ proceeds as if the hook func-
tion had not been called at all. This is the same mechanism that it used internally by
ODESolve1+ to run sub-solvers. If a hook evaluates to a list of function names
then they are applied in turn to the hook arguments until a non-nil value is returned
and this is the value of the hook; otherwise the hook returns nil. The same code
is used to run all hooks and it checks that an identifier is the name of a function
before it tries to apply it; otherwise the identifier is ignored. However, the hook
code does not perform any other checks, so errors within functions run by hooks
will probably terminate ODESolve1+ and errors in the return value will probably
cause fatal errors later in ODESolve1+. Such errors are user errors rather than
ODESolve1+ errors!

Hooks are defined in pairs which are inserted before and after critical stages of the
solver, which currently means the general ODE solver, the nonlinear ODE solver,
and the solver for linear ODEs of order greater than one (on the grounds that solv-
ing first order linear ODEs is trivial and the standard ODESolve1+ code should
always suffice). The precise interface definition is as follows.

A reference to an “algebraic expression” implies that the REDUCE representation
is a prefix or pseudo-prefix form. A reference to a “variable” means an identifier
(and never a more general kernel). The “order” of an ODE is always an explicit
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positive integer. The return value of a hook function must always be either nil or
an algebraic-mode list (which must be represented as a prefix form). Since the
input and output of hook functions uses prefix forms (and never standard quotient
forms), hook functions can equally well be written in either algebraic or symbolic
mode, and in fact ODESolve1+ uses a mixture internally. (An algebraic-mode
procedure can return nil by returning nothing. The integer zero is not equivalent to
nil in the context of ODESolve1+ hooks.)

Hook names: ODESolve_Before_Hook, ODESolve_After_Hook.

Run before and after: The general ODE solver.

Arguments: 3

1. The ODE in the form of an algebraic expression with no denominator
that must be made identically zero by the solution.

2. The dependent variable.

3. The independent variable.

Return value: A list of equations exactly as returned by ODESolve1+ itself.

Hook names: ODESolve_Before_Non_Hook, ODESolve_After_Non_Hook.

Run before and after: The nonlinear ODE solver.

Arguments: 4

1. The ODE in the form of an algebraic expression with no denominator
that must be made identically zero by the solution.

2. The dependent variable.

3. The independent variable.

4. The order of the ODE.

Return value: A list of equations exactly as returned by ODESolve1+ itself.
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Hook names: ODESolve_Before_Lin_Hook, ODESolve_After_Lin_Hook.

Run before and after: The general linear ODE solver.

Arguments: 6

1. A list of the coefficient functions of the “reduced ODE”, i.e. the co-
efficients of the different orders (including zero) of derivatives of the
dependent variable, each in the form of an algebraic expression, in low
to high derivative order. [In general the ODE will not be “monic” so
the leading (i.e. last) coefficient function will not be 1. Hence, the ODE
may contain an essentially irrelevant overall algebraic factor.]

2. The “driver” term, i.e. the term involving only the independent variable,
in the form of an algebraic expression. The sign convention is such that
“reduced ODE = driver”.

3. The dependent variable.

4. The independent variable.

5. The (maximum) order (> 1) of the ODE.

6. The minimum order derivative present.

Return value: A list consisting of a basis for the solution space of the reduced
ODE and optionally a particular integral of the full ODE. This list does not
contain any equations, and the dependent variable never appears in it. The
particular integral may be omitted if it is zero. The basis is itself a list of
algebraic expressions in the independent variable. (Hence the return value is
always a list and its first element is also always a list.)

Hook names: ODESolve_Before_Non1Grad_Hook,
ODESolve_After_Non1Grad_Hook.

Run before and after: The solver for first-order first-degree nonlinear (“gradi-
ent”) ODEs, which can be expressed in the form dy/dx = gradient(y, x).

Arguments: 3

1. The “gradient”, which is an algebraic expression involving (in general)
the dependent and independent variables, to which the ODE equates
the derivative.

2. The dependent variable.

3. The independent variable.

Return value: A list of equations exactly as returned by ODESolve1+ itself. (In
this case the list should normally contain precisely one equation.)
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The file extend.tst contains a very simple test and demonstration of the oper-
ation of the first three classes of hook.

This extension interface is experimental and subject to change. Please check the
version of this document (or the source code) for the version of ODESolve1+
you are actually running.

16.47.7 Change log

27 February 1999 Version 1.06 frozen.

13 July 2000 Version 1.061 added an extension interface.

8 August 2000 Version 1.062 added the “fast” option.

21 September 2000 Version 1.063 added the “trace”, “check” and “algint” opt-
ions, the “Non1Grad” hooks, handling of implicit dependence in separable
ODEs, and handling of the general class of quasi-homogeneous ODEs.

28 September 2000 Version 1.064 added support for using ‘t’ as a variable and re-
placed the version identification output by the odesolve_version vari-
able.

14 August 2001 Version 1.065 fixed obscure bugs in the first-order nonlinear ODE
handler and the arbitrary constant simplifier, and revised some tracing mes-
sages slightly.

16.47.8 Planned developments

• Extend special-function solutions and allow shifts in x.

• Improve solution of linear ODEs, by (a) using linearity more generally to
solve as “CF + PI”, (b) finding at least polynomial solutions of ODEs with
polynomial coefficients, (c) implementing non-trivial reduction of order.

• Improve recognition of exact ODEs, and add some support for more general
use of integrating factors.

• Add a “classify” option, that turns on trode but avoids any actual solution, to
report all possible (?) top-level classifications.

• Improve arbconst and arbparam simplification.

• Add more standard elementary techniques and more general techniques such
as Lie symmetry, Prelle-Singer, etc.
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• Improve integration support, preferably to remove the need for the “noint”
option.

• Solve systems of ODEs, including under- and over-determined ODEs and
systems. Link to CRACK (Wolf) and/or DiffGrob2 (Mansfield)?

• Move more of the implementation to symbolic-mode code.
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16.48 ORTHOVEC: Manipulation of scalars and vectors

ORTHOVEC is a collection of REDUCE procedures and operations which provide
a simple-to-use environment for the manipulation of scalars and vectors. Opera-
tions include addition, subtraction, dot and cross products, division, modulus, div,
grad, curl, laplacian, differentiation, integration, and Taylor expansion.

Author: James W. Eastwood.

Version 2 is summarized in [Eas91]. It differs from the original ([Eas87]) in revised
notation and extended capabilities.

16.48.1 Introduction

The revised version of ORTHOVEC[Eas91] is, like the original[Eas87], a collec-
tion of REDUCE procedures and operators designed to simplify the machine aided
manipulation of vectors and vector expansions frequently met in many areas of ap-
plied mathematics. The revisions have been introduced for two reasons: firstly, to
add extra capabilities missing from the original and secondly, to tidy up input and
output to make the package easier to use.

The changes from Version 1 include:

1. merging of scalar and vector unary and binary operators, +,−, ∗, /

2. extensions of the definitions of division and exponentiation to vectors

3. new vector dependency procedures

4. application of l’Hôpital’s rule in limits and Taylor expansions

5. a new component selector operator

6. algebraic mode output of LISP vector components

The LISP vector primitives are again used to store vectors, although with the in-
troduction of LIST types in algebraic mode in REDUCE 3.4, the implementation
may have been more simply achieved using lists to store vector components.

The philosophy used in Version 2 follows that used in the original: namely, alge-
braic mode is used wherever possible. The view is taken that some computational
inefficiencies are acceptable if it allows coding to be intelligible to (and thence
adaptable by) users other than LISP experts familiar with the internal workings of
REDUCE.

Procedures and operators in ORTHOVEC fall into the five classes: initialisation,
input-output, algebraic operations, differential operations and integral operations.
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Definitions are given in the following sections, and a summary of the procedure
names and their meanings are give in Table 1. The final section discusses test
examples.

16.48.2 Initialisation

The procedure VSTART initialises ORTHOVEC. It may be called after OR-
THOVEC has been INputted (or LOADed if a fast load version has been made)
to reset coordinates. VSTART provides a menu of standard coordinate systems:-

1. cartesian (x, y, z) = (x, y, z)

2. cylindrical (r, θ, z) = (r, th, z)

3. spherical (r, θ, φ) = (r, th, ph)

4. general (u1, u2, u3) = (u1, u2, u3)

5. others

which the user selects by number. Selecting options (1)-(4) automatically sets up
the coordinates and scale factors. Selection option (5) shows the user how to select
another coordinate system. If VSTART is not called, then the default cartesian co-
ordinates are used. ORTHOVEC may be re-initialised to a new coordinate system
at any time during a given REDUCE session by typing

VSTART $.

16.48.3 Input-Output

ORTHOVEC assumes all quantities are either scalars or 3 component vectors. To
define a vector a with components (c1, c2, c3) use the procedure SVEC as follows

a := svec(c1, c2, c3);

The standard REDUCE output for vectors when using the terminator “;” is to list
the three components inside square brackets [· · · ], with each component in prefix
form. A replacement for the standard REDUCE procedure MAPRIN is included in
the package to change the output of LISP vector components to algebraic notation.
The procedure VOUT (which returns the value of its argument) can be used to give
labelled output of components in algebraic form: e.g.,

b := svec (sin(x)**2, y**2, z)$
vout(b)$
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The operator _ can be used to select a particular component (1, 2 or 3) for output
e.g.

b_1 ;

16.48.4 Algebraic Operations

Six infix operators, sum, difference, quotient, times, exponentiation and cross prod-
uct, and four prefix operators, plus, minus, reciprocal and modulus are defined in
ORTHOVEC. These operators can take suitable combinations of scalar and vector
arguments, and in the case of scalar arguments reduce to the usual definitions of
+,−, ∗, /, etc.

The operators are represented by symbols

+, -, /, *, ^, ><

The composite >< is an attempt to represent the cross product symbol × in ASCII
characters. If we let v be a vector and s be a scalar, then valid combinations
of arguments of the procedures and operators and the type of the result are as
summarised below. The notation used is
result :=procedure(left argument, right argument) or
result :=(left operand) operator (right operand) .
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Vector Addition
v := VECTORPLUS(v) or v := + v
s := VECTORPLUS(s) or s := + s
v := VECTORADD(v,v) or v := v + v
s := VECTORADD(s,s) or s := s + s

Vector Subtraction
v := VECTORMINUS(v) or v := - v
s := VECTORMINUS(s) or s := - s
v := VECTORDIFFERENCE(v,v) or v := v - v
s := VECTORDIFFERENCE(s,s) or s := s - s

Vector Division
v := VECTORRECIP(v) or v := / v
s := VECTORRECIP(s) or s := / s
v := VECTORQUOTIENT(v,v) or v := v / v
v := VECTORQUOTIENT(v, s ) or v := v / s
v := VECTORQUOTIENT( s ,v) or v := s / v
s := VECTORQUOTIENT(s,s) or s := s / s

Vector Multiplication
v := VECTORTIMES( s ,v) or v := s * v
v := VECTORTIMES(v, s ) or v := v * s
s := VECTORTIMES(v,v) or s := v * v
s := VECTORTIMES( s , s ) or s := s * s

Vector Cross Product
v := VECTORCROSS(v,v) or v := v × v

Vector Exponentiation
s := VECTOREXPT (v, s ) or s := v ˆ s
s := VECTOREXPT ( s , s ) or s := s ˆ s

Vector Modulus
s := VMOD (s)
s := VMOD (v)

All other combinations of operands for these operators lead to error messages being
issued. The first two instances of vector multiplication are scalar multiplication of
vectors, the third is the product of two scalars and the last is the inner (dot)
product. The unary operators +, -, / can take either scalar or vector arguments
and return results of the same type as their arguments. VMOD returns a scalar.

In compound expressions, parentheses may be used to specify the order of combi-
nation. If parentheses are omitted the ordering of the operators, in increasing order
of precedence is

+ | - | dotgrad | * | >< | ^ | _
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s := div (v)
v := grad(s)
v := curl(v)
v := delsq(v)
s := delsq(s)
v := v dotgrad v
s := v dotgrad s

Table 16.10: ORTHOVEC valid combinations of operator and argument

and these are placed in the precedence list defined in REDUCE after<. The differ-
ential operator DOTGRAD is defined in the following section, and the component
selector _ was introduced in section 3.

Vector divisions are defined as follows: If a and b are vectors and c is a scalar, then

a/b =
a · b
| b |2

c/a =
ca

| a |2

Both scalar multiplication and dot products are given by the same symbol, braces
are advisable to ensure the correct precedences in expressions such as (a ·b)(c ·d).

Vector exponentiation is defined as the power of the modulus:
an ≡ VMOD(a)n =| a |n

16.48.5 Differential Operations

Differential operators provided are div, grad, curl, delsq, and dotgrad. All
but the last of these are prefix operators having a single vector or scalar argument
as appropriate. Valid combinations of operator and argument, and the type of the
result are shown in table 16.10.

All other combinations of operator and argument type cause error messages to be
issued. The differential operators have their usual meanings [Spi59]. The coordi-
nate system used by these operators is set by invoking VSTART (cf. Sec. 16.48.2).
The names h1, h2 and h3 are reserved for the scale factors, and u1, u2 and u3
are used for the coordinates.

A vector extension, VDF, of the REDUCE procedure DF allows the differentiation
of a vector (scalar) with respect to a scalar to be performed. Allowed forms are
VDF(v, s)→ v and VDF(s, s)→ s , where, for example

vdf(B, x) ≡ ∂B

∂x
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VEX VX VPT VORDER

v v v v
v v v s
v s s s
s v v v
s v v s
s s s s

Table 16.11: ORTHOVEC valid combination of argument types.

The standard REDUCE procedures DEPEND and NODEPEND have been rede-
fined to allow dependences of vectors to be compactly defined. For example

a := svec(a1,a2,a3)$;
depend a,x,y;

causes all three components a1,a2 and a3 of a to be treated as functions of x and
y. Individual component dependences can still be defined if desired.

depend a3,z;

The procedure VTAYLOR gives truncated Taylor series expansions of scalar or
vector functions:-

vtaylor(vex,vx,vpt,vorder);

returns the series expansion of the expression VEX with respect to variable VX
about point VPT to order VORDER. Valid combinations of argument types are

shown in table 16.11.

Any other combinations cause error messages to be issued. Elements of VORDER
must be non-negative integers, otherwise error messages are issued. If scalar
VORDER is given for a vector expansion, expansions in each component are trun-
cated at the same order, VORDER.

The new version of Taylor expansion applies l’Hôpital’s rule in evaluating coef-
ficients, so handle cases such as sin(x)/(x) , etc. which the original version of
ORTHOVEC could not. The procedure used for this is LIMIT, which can be used
directly to find the limit of a scalar function ex of variable x at point pt:-

ans := limit(ex,x,pt);
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16.48.6 Integral Operations

Definite and indefinite vector, volume and scalar line integration procedures are
included in ORTHOVEC. They are defined as follows:

VINT(v, x) =

∫
v(x)dx

DVINT(v, x, a, b) =

∫ b

a
v(x)dx

VOLINT(v) =

∫
vh1h2h3du1du2du3

DVOLINT(v, l,u, n) =

∫ u

l
vh1h2h3du1du2du3

LINEINT(v, ω, t) =

∫
v · dr ≡

∫
vihi

∂ωi
∂t

dt

DLINEINT(v, ωt, a, b) =

∫ b

a
vihi

∂ωi
∂t

dt

In the vector and volume integrals, v are vector or scalar, a, b, x and n are scalar.
Vectors l and u contain expressions for lower and upper bounds to the integrals.
The integer index n defines the order in which the integrals over u1, u2 and u3 are
performed in order to allow for functional dependencies in the integral bounds:

n order
1 u1 u2 u3

2 u3 u1 u2

3 u2 u3 u1

4 u1 u3 u2

5 u2 u1 u3

otherwise u3 u2 u1

The vector ω in the line integral’s arguments contain explicit paramterisation of the
coordinates u1, u2, u3 of the line u(t) along which the integral is taken.

16.48.7 Test Cases

To use the REDUCE source version of ORTHOVEC, initiate a REDUCE session
and then IN the file orthovec.red containing ORTHOVEC. However, it is recom-
mended that for efficiency a compiled fast loading version be made and LOADed
when required (see Sec. 18 of the REDUCE manual). If coordinate dependent dif-
ferential and integral operators other than cartesian are needed, then VSTART must
be used to reset coordinates and scale factors.
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Procedures Description
VSTART select coordinate system

SVEC set up a vector
VOUT output a vector
VECTORCOMPONENT _ extract a vector component (1-3)

VECTORADD + add two vectors or scalars
VECTORPLUS + unary vector or scalar plus
VECTORMINUS - unary vector or scalar minus
VECTORDIFFERENCE - subtract two vectors or scalars
VECTORQUOTIENT / vector divided by scalar
VECTORRECIP / unary vector or scalar division

(reciprocal)
VECTORTIMES * multiply vector or scalar by

vector/scalar
VECTORCROSS >< cross product of two vectors
VECTOREXPT ˆ exponentiate vector modulus or scalar
VMOD length of vector or scalar

Table 16.12: Procedures names and operators used in ORTHOVEC (part 1)

Six simple examples are given in the Test Run Output file orthovectest.log to il-
lustrate the working of ORTHOVEC. The input lines were taken from the file
orthovectest.red (the Test Run Input), but could equally well be typed in at the
Terminal.

Example 34

Show that

(a× b) · (c× d)− (a · c)(b · d) + (a · d)(b · c) ≡ 0

Example 35

Write the equation of motion

∂v

∂t
+ v · ∇v +∇p− curl(B)×B

in cylindrical coordinates.

Example 36

Taylor expand

• sin(x) cos(y) + ez about the point (0, 0, 0) to third order in x, fourth order
in y and fifth order in z.



800 CHAPTER 16. USER CONTRIBUTED PACKAGES

Procedures Description
DIV divergence of vector
GRAD gradient of scalar
CURL curl of vector
DELSQ laplacian of scalar or vector
DOTGRAD (vector).grad(scalar or vector)

VTAYLOR vector or scalar Taylor series of vector or scalar
VPTAYLOR vector or scalar Taylor series of scalar
TAYLOR scalar Taylor series of scalar
LIMIT limit of quotient using l’Hôpital’s rule

VINT vector integral
DVINT definite vector integral
VOLINT volume integral
DVOLINT definite volume integral
LINEINT line integral
DLINEINT definite line integral

MAPRIN vector extension of REDUCE MAPRIN
DEPEND vector extension of REDUCE DEPEND
NODEPEND vector extension of REDUCE NODEPEND

Table 16.13: Procedures names and operators used in ORTHOVEC (part 2)
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• sin(x)/x about x to fifth order.

• v about x = (x, y, z) to fifth order, where v = (x/ sin(x), (ey − 1)/y, (1 +
z)10).

Example 37

Obtain the second component of the equation of motion in example 35, and the
first component of the final vector Taylor series in example 36.

Example 38

Evaluate the line integral ∫ r2

r1

A · dr

from point r1 = (1, 1, 1) to point r2 = (2, 4, 8) along the path (x, y, z) =
(s, s2, s3) where

A = (3x2 + 5y)i− 12xyj + 2xyz2k

and (i, j,k) are unit vectors in the (x, y, z) directions.

Example 39

Find the volume V common to the intersecting cylinders x2 + y2 = r2 and x2 +
z2 = r2 i.e. evaluate

V = 8

∫ r

0
dx

∫ ub

0
dy

∫ ub

0
dz

where ub =
√
r2 − x2
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16.49 PHYSOP: Operator calculus in quantum theory

This package has been designed to meet the requirements of theoretical physicists
looking for a computer algebra tool to perform complicated calculations in quan-
tum theory with expressions containing operators. These operations consist mainly
of the calculation of commutators between operator expressions and in the evalua-
tions of operator matrix elements in some abstract space.

Author: Mathias Warns.

16.49.1 Introduction

The package PHYSOP has been designed to meet the requirements of theoretical
physicists looking for a computer algebra tool to perform complicated calculations
in quantum theory with expressions containing operators. These operations consist
mainly in the calculation of commutators between operator expressions and in the
evaluations of operator matrix elements in some abstract space. Since the capabil-
ities of the current REDUCE release to deal with complex expressions containing
noncommutative operators are rather restricted, the first step was to enhance these
possibilities in order to achieve a better usability of REDUCE for these kind of
calculations. This has led to the development of a first package called NONCOM2
which is described in section 2. For more complicated expressions involving both
scalar quantities and operators the need for an additional data type has emerged
in order to make a clear separation between the various objects present in the cal-
culation. The implementation of this new REDUCE data type is realized by the
PHYSOP (for PHYSical OPerator) package described in section 3.

16.49.2 The NONCOM2 Package

The package NONCOM2 redefines some standard REDUCE routines in order to
modify the way noncommutative operators are handled by the system. In standard
REDUCE declaring an operator to be noncommutative using the NONCOM state-
ment puts a global flag on the operator. This flag is checked when the system has
to decide whether or not two operators commute during the manipulation of an
expression.

The NONCOM2 package redefines the NONCOM statement in a way more suitable
for calculations in physics. Operators have now to be declared noncommutative
pairwise, i.e. coding:

NONCOM A,B;

declares the operators A and B to be noncommutative but allows them to commute



803

with any other (noncommutative or not) operator present in the expression. In a
similar way if one wants e.g. A(X) and A(Y) not to commute, one has now to
code:

NONCOM A,A;

Each operator gets a new property list containing the operators with which it does
not commute. A final example should make the use of the redefined NONCOM
statement clear:

NONCOM A,B,C;

declares A to be noncommutative with B and C, B to be noncommutative with A
and C and C to be noncommutative with A and B. Note that after these declaration
e.g. A(X) and A(Y) are still commuting kernels.

Finally to keep the compatibility with standard REDUCE declaring a single iden-
tifier using the NONCOM statement has the same effect as in standard REDUCE
i.e., the identifier is flagged with the NONCOM tag.

From the user’s point of view there are no other new commands implemented by
the package. Commutation relations have to be declared in the standard way as
described in the manual i.e. using LET statements. The package itself consists
of several redefined standard REDUCE routines to handle the new definition of
noncommutativity in multiplications and pattern matching processes.

CAVEAT: Due to its nature, the package is highly version dependent. The current
version has been designed for the 3.3 and 3.4 releases of REDUCE and may not
work with previous versions. Some different (but still correct) results may occur
by using this package in conjunction with LET statements since part of the pattern
matching routines have been redesigned. The package has been designed to bridge
a deficiency of the current REDUCE version concerning the notion of noncommu-
tativity and it is the author’s hope that it will be made obsolete by a future release
of REDUCE.

16.49.3 The PHYSOP package

The package PHYSOP implements a new REDUCE data type to perform calcula-
tions with physical operators. The noncommutativity of operators is implemented
using the NONCOM2 package so this file should be loaded prior to the use of
PHYSOP40. In the following the new commands implemented by the package are

40To build a fast loading version of PHYSOP the NONCOM2 source code should be read in prior
to the PHYSOP code
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described. Beside these additional commands, the full set of standard REDUCE
instructions remains available for performing any other calculation.

16.49.3.1 Type declaration commands

The new REDUCE data type PHYSOP implemented by the package allows the
definition of a new kind of operators (i.e. kernels carrying an arbitrary number
of arguments). Throughout this manual, the name “operator” will refer, unless
explicitly stated otherwise, to this new data type. This data type is in turn divided
into 5 subtypes. For each of this subtype, a declaration command has been defined:

SCALOP A; declares A to be a scalar operator. This operator may carry an ar-
bitrary number of arguments i.e. after the declaration: SCALOP A; all
kernels of the form e.g. A(J), A(1,N), A(N,L,M) are recognized by
the system as being scalar operators.

VECOP V; declares V to be a vector operator. As for scalar operators, the vector
operators may carry an arbitrary number of arguments. For example V(3)
can be used to represent the vector operator ~V3. Note that the dimension of
space in which this operator lives is arbitrary. One can however address a
specific component of the vector operator by using a special index declared
as PHYSINDEX (see below). This index must then be the first in the argu-
ment list of the vector operator.

TENSOP C(3); declares C to be a tensor operator of rank 3. Tensor operators of
any fixed integer rank larger than 1 can be declared. Again this operator may
carry an arbitrary number of arguments and the space dimension is not fixed.
The tensor components can be addressed by using special PHYSINDEX in-
dices (see below) which have to be placed in front of all other arguments in
the argument list.

STATE U; declares U to be a state, i.e. an object on which operators have a
certain action. The state U can also carry an arbitrary number of arguments.

PHYSINDEX X; declares X to be a special index which will be used to address
components of vector and tensor operators.

It is very important to understand precisely the way how the type declaration com-
mands work in order to avoid type mismatch errors when using the PHYSOP pack-
age. The following examples should illustrate the way the program interprets type
declarations. Assume that the declarations listed above have been typed in by the
user, then:

• A,A(1,N),A(N,M,K) are SCALAR operators.
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• V,V(3),V(N,M) are VECTOR operators.

• C, C(5),C(Y,Z) are TENSOR operators of rank 3.

• U,U(P),U(N,L,M) are STATES.

BUT: V(X),V(X,3),V(X,N,M) are all scalar operators since the special index
X addresses a specific component of the vector operator (which is a scalar
operator). Accordingly, C(X,X,X) is also a scalar operator because the di-
agonal component Cxxx of the tensor operator C is meant here (C has rank 3
so 3 special indices must be used for the components).

In view of these examples, every time the following text refers to scalar operators,
it should be understood that this means not only operators defined by the SCALOP
statement but also components of vector and tensor operators. Depending on the
situation, in some case when dealing only with the components of vector or tensor
operators it may be preferable to use an operator declared with SCALOP rather than
addressing the components using several special indices (throughout the manual,
indices declared with the PHYSINDEX command are referred to as special indices).

Another important feature of the system is that for each operator declared using
the statements described above, the system generates 2 additional operators of the
same type: the adjoint and the inverse operator. These operators are accessible to
the user for subsequent calculations without any new declaration. The syntax is as
following:

If A has been declared to be an operator (scalar, vector or tensor) the adjoint oper-
ator is denoted A!+ and the inverse operator is denoted A!-1 (an inverse adjoint
operator A!+!-1 is also generated). The exclamation marks do not appear when
these operators are printed out by REDUCE (except when the switch NAT is set to
off) but have to be typed in when these operators are used in an input expression.
An adjoint (but no inverse) state is also generated for every state defined by the
user. One may consider these generated operators as ”placeholders” which means
that these operators are considered by default as being completely independent of
the original operator. Especially if some value is assigned to the original operator,
this value is not automatically assigned to the generated operators. The user must
code additional assignement statements in order to get the corresponding values.

Exceptions from these rules are (i) that inverse operators are always ordered at
the same place as the original operators and (ii) that the expressions A!-1*A and
A*A!-1 are replaced41 by the unit operator UNIT . This operator is defined as a
scalar operator during the initialization of the PHYSOP package. It should be used
to indicate the type of an operator expression whenever no other PHYSOP occur
in it. For example, the following sequence:

41This may not always occur in intermediate steps of a calculation due to efficiency reasons.
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SCALOP A;
A:= 5;

leads to a type mismatch error and should be replaced by:

SCALOP A;
A:=5*UNIT;

The operator UNIT is a reserved variable of the system and should not be used for
other purposes.

All other kernels (including standard REDUCE operators) occurring in expressions
are treated as ordinary scalar variables without any PHYSOP type (referred to as
scalars in the following). Assignement statements are checked to ensure correct
operator type assignement on both sides leading to an error if a type mismatch
occurs. However an assignement statement of the form A:= 0 or LET A = 0 is
always valid regardless of the type of A.

Finally a command CLEARPHYSOP has been defined to remove the PHYSOP type
from an identifier in order to use it for subsequent calculations (e.g. as an ordinary
REDUCE operator). However it should be remembered that no substitution rule
is cleared by this function. It is therefore left to the user’s responsibility to clear
previously all substitution rules involving the identifier from which the PHYSOP
type is removed.

Users should be very careful when defining procedures or statements of the type
FOR ALL ... LET ... that the PHYSOP type of all identifiers occurring
in such expressions is unambigously fixed. The type analysing procedure is rather
restrictive and will print out a ”PHYSOP type conflict” error message if such am-
biguities occur.

16.49.3.2 Ordering of operators in an expression

The ordering of kernels in an expression is performed according to the following
rules:
1. Scalars are always ordered ahead of PHYSOP operators in an expression. The
REDUCE statement KORDER can be used to control the ordering of scalars but
has no effect on the ordering of operators.

2. The default ordering of operators follows the order in which they have been
declared (and not the alphabetical one). This ordering scheme can be changed
using the command OPORDER. Its syntax is similar to the KORDER statement,
i.e. coding: OPORDER A,V,F; means that all occurrences of the operator A are
ordered ahead of those of V etc. It is also possible to include operators carrying
indices (both normal and special ones) in the argument list of OPORDER. However
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including objects not defined as operators (i.e. scalars or indices) in the argument
list of the OPORDER command leads to an error.

3. Adjoint operators are placed by the declaration commands just after the original
operators on the OPORDER list. Changing the place of an operator on this list
means not that the adjoint operator is moved accordingly. This adjoint operator can
be moved freely by including it in the argument list of the OPORDER command.

16.49.3.3 Arithmetic operations on operators

The following arithmetic operations are possible with operator expressions:

1. Multiplication or division of an operator by a scalar.

2. Addition and subtraction of operators of the same type.

3. Multiplication of operators is only defined between two scalar operators.

4. The scalar product of two VECTOR operators is implemented with a new func-
tion DOT . The system expands the product of two vector operators into an ordinary
product of the components of these operators by inserting a special index generated
by the program. To give an example, if one codes:

VECOP V,W;
V DOT W;

the system will transform the product into:

V(IDX1) * W(IDX1)

where IDX1 is a PHYSINDEX generated by the system (called a DUMMY INDEX
in the following) to express the summation over the components. The identifiers
IDXn (n is a nonzero integer) are reserved variables for this purpose and should
not be used for other applications. The arithmetic operator DOT can be used both
in infix and prefix form with two arguments.

5. Operators (but not states) can only be raised to an integer power. The sys-
tem expands this power expression into a product of the corresponding number of
terms inserting dummy indices if necessary. The following examples explain the
transformations occurring on power expressions (system output is indicated with
an ->):

SCALOP A; A**2;
- --> A*A
VECOP V; V**4;
- --> V(IDX1)*V(IDX1)*V(IDX2)*V(IDX2)
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TENSOP C(2); C**2;
- --> C(IDX3,IDX4)*C(IDX3,IDX4)

Note in particular the way how the system interprets powers of tensor operators
which is different from the notation used in matrix algebra.

6. Quotients of operators are only defined between scalar operator expressions.
The system transforms the quotient of 2 scalar operators into the product of the
first operator times the inverse of the second one. Example42:

SCALOP A,B; A / B;
-1

--> (B )*A

7. Combining the last 2 rules explains the way how the system handles negative
powers of operators:

SCALOP B;
B**(-3);

-1 -1 -1
--> (B )*(B )*(B )

The method of inserting dummy indices and expanding powers of operators has
been chosen to facilitate the handling of complicated operator expressions and par-
ticularly their application on states (see section 3.4.3). However it may be use-
ful to get rid of these dummy indices in order to enhance the readability of the
system’s final output. For this purpose the switch CONTRACT has to be turned
on (CONTRACT is normally set to OFF). The system in this case contracts over
dummy indices reinserting the DOT operator and reassembling the expanded pow-
ers. However due to the predefined operator ordering the system may not remove
all the dummy indices introduced previously.

16.49.3.4 Special functions

Commutation relations

If 2 PHYSOPs have been declared noncommutative using the (redefined) NONCOM
statement, it is possible to introduce in the environment elementary (anti-) com-
mutation relations between them. For this purpose, 2 scalar operators COMM and
ANTICOMM are available. These operators are used in conjunction with LET state-
ments. Example:

42This shows how inverse operators are printed out when the switch NAT is on
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SCALOP A,B,C,D;
LET COMM(A,B)=C;
FOR ALL N,M LET ANTICOMM(A(N),B(M))=D;
VECOP U,V,W; PHYSINDEX X,Y,Z;
FOR ALL X,Y LET COMM(V(X),W(Y))=U(Z);

Note that if special indices are used as dummy variables in FOR ALL ...
LET constructs then these indices should have been declared previously using the
PHYSINDEX command.

Every time the system encounters a product term involving 2 noncommutative
operators which have to be reordered on account of the given operator ordering,
the list of available (anti-) commutators is checked in the following way: First the
system looks for a commutation relation which matches the product term. If it fails
then the defined anticommutation relations are checked. If there is no successful
match the product term A*B is replaced by:

A*B;
--> COMM(A,B) + B*A

so that the user may introduce the commutation relation later on.

The user may want to force the system to look for anticommutators only; for this
purpose a switch ANTICOM is defined which has to be turned on (ANTICOM is
normally set to OFF). In this case, the above example is replaced by:

ON ANTICOM;
A*B;
--> ANTICOMM(A,B) - B*A

Once the operator ordering has been fixed (in the example above B has to be or-
dered ahead of A), there is no way to prevent the system from introducing (anti-
)commutators every time it encounters a product whose terms are not in the right
order. On the other hand, simply by changing the OPORDER statement and reeval-
uating the expression one can change the operator ordering without the need to
introduce new commutation relations. Consider the following example:

SCALOP A,B,C; NONCOM A,B; OPORDER B,A;
LET COMM(A,B)=C;
A*B;
- --> B*A + C;
OPORDER A,B;
B*A;
- --> A*B - C;
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The functions COMM and ANTICOMM should only be used to define elemen-
tary (anti-) commutation relations between single operators. For the calcula-
tion of (anti-) commutators between complex operator expressions, the functions
COMMUTE and ANTICOMMUTE have been defined. Example (is included as ex-
ample 1 in the test file):

VECOP P,A,K;
PHYSINDEX X,Y;
FOR ALL X,Y LET COMM(P(X),A(Y))=K(X)*A(Y);
COMMUTE(P**2,P DOT A);

Adjoint expressions

As has been already mentioned, for each operator and state defined using the dec-
laration commands quoted in section 3.1, the system generates automatically the
corresponding adjoint operator. For the calculation of the adjoint representation of
a complicated operator expression, a function ADJ has been defined. Example43:

SCALOP A,B;
ADJ(A*B);

+ +
--> (B )*(A )

Application of operators on states

For this purpose, a function OPAPPLY has been defined. It has 2 arguments and
is used in the following combinations:

(i) LET OPAPPLY(operator, state) = state; This is to define a elementary action
of an operator on a state in analogy to the way elementary commutation relations
are introduced to the system. Example:

SCALOP A; STATE U;
FOR ALL N,P LET OPAPPLY((A(N),U(P))= EXP(I*N*P)*U(P);

(ii) LET OPAPPLY(state, state) = scalar exp.; This form is to define scalar prod-
ucts between states and normalization conditions. Example:

STATE U;
FOR ALL N,M LET OPAPPLY(U(N),U(M)) = IF N=M THEN 1 ELSE 0;

43This shows how adjoint operators are printed out when the switch NAT is on
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(iii) state := OPAPPLY(operator expression, state); In this way, the action of
an operator expression on a given state is calculated using elementary relations
defined as explained in (i). The result may be assigned to a different state vector.

(iv) OPAPPLY(state, OPAPPLY(operator expression, state)); This is the way
how to calculate matrix elements of operator expressions. The system proceeds in
the following way: first the rightmost operator is applied on the right state, which
means that the system tries to find an elementary relation which match the appli-
cation of the operator on the state. If it fails the system tries to apply the leftmost
operator of the expression on the left state using the adjoint representations. If
this fails also, the system prints out a warning message and stops the evaluation.
Otherwise the next operator occuring in the expression is taken and so on until the
complete expression is applied. Then the system looks for a relation expressing the
scalar product of the two resulting states and prints out the final result. An example
of such a calculation is given in the test file.

The infix version of the OPAPPLY function is the vertical bar | . It is right asso-
ciative and placed in the precedence list just above the minus (−) operator. Some
of the REDUCE implementation may not work with this character, the prefix form
should then be used instead44.

16.49.4 Known problems in the current release of PHYSOP

(i) Some spurious negative powers of operators may appear in the result of a cal-
culation using the PHYSOP package. This is a purely ”cosmetic” effect which is
due to an additional factorization of the expression in the output printing routines
of REDUCE. Setting off the REDUCE switch ALLFAC (ALLFAC is normally on)
should make these terms disappear and print out the correct result (see example 1
in the test file).

(ii) The current release of the PHYSOP package is not optimized w.r.t. computa-
tion speed. Users should be aware that the evaluation of complicated expressions
involving a lot of commutation relations requires a significant amount of CPU time
and memory. Therefore the use of PHYSOP on small machines is rather limited.
A minimal hardware configuration should include at least 4 MB of memory and a
reasonably fast CPU (type Intel 80386 or equiv.).

(iii) Slightly different ordering of operators (especially with multiple occurrences
of the same operator with different indices) may appear in some calculations due
to the internal ordering of atoms in the underlying LISP system (see last example
in the test file). This cannot be entirely avoided by the package but does not affect
the correctness of the results.

44The source code can also be modified to choose another special character for the function
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16.49.5 Final remarks

The package PHYSOP has been presented by the author at the IV inter. Conference
on Computer Algebra in Physical Research, Dubna (USSR) 1990 (see M. Warns,
Software Extensions of REDUCE for Operator Calculus in Quantum Theory, Proc.
of the IV inter. Conf. on Computer Algebra in Physical Research, Dubna 1990,
to appear). It has been developed with the aim in mind to perform calculations
of the type exemplified in the test file included in the distribution of this package.
However it should also be useful in some other domains like e.g. the calculations of
complicated Feynman diagrams in QCD which could not be performed using the
HEPHYS package. The author is therefore grateful for any suggestion to improve
or extend the usability of the package. Users should not hesitate to contact the
author for additional help and explanations on how to use this package. Some bugs
may also appear which have not been discovered during the tests performed prior
to the release of this version. Please send in this case to the author a short input
and output listing displaying the encountered problem.
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16.49.6 Appendix: List of error and warning messages

In the following the error (E) and warning (W) messages specific to the PHYSOP
package are listed.

cannot declare x as data type (W): An attempt has been made to declare
an object x which cannot be used as a PHYSOP operator of the required type.
The declaration command is ignored.

x already defined as data type (W): The object x has already been de-
clared using a REDUCE type declaration command and can therefore not
be used as a PHYSOP operator. The declaration command is ignored.

x already declared as data type (W): The object x has already been de-
clared with a PHYSOP declaration command. The declaration command is
ignored.

x is not a PHYSOP (E): An invalid argument has been included in an OPORDER
command. Check the arguments.
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invalid argument(s) to function (E): A function implemented by the
PHYSOP package has been called with an invalid argument. Check type
of arguments.

Type conflict in operation (E): A PHYSOP type conflict has occured
during an arithmetic operation. Check the arguments.

invalid call of function with args: arguments (E): A function of the
PHYSOP package has been declared with invalid argument(s). Check the
argument list.

type mismatch in expression (E): A type mismatch has been detected in an
expression. Check the corresponding expression.

type mismatch in assignement (E): A type mismatch has been detected in
an assignment or in a LET statement. Check the listed statement.

PHYSOP type conflict in expr (E): A ambiguity has been detected dur-
ing the type analysis of the expression. Check the expression.

operators in exponent cannot be handled (E): An operator has
occurred in the exponent of an expression.

cannot raise a state to a power (E): states cannot be exponentiated
by the system.

invalid quotient (E): An invalid denominator has occurred in a quotient.
Check the expression.

physops of different types cannot be commuted (E): An invalid
operator has occurred in a call of the COMMUTE/ANTICOMMUTE function.

commutators only implemented between scalar operators (E):
An invalid operator has occurred in the call of the COMMUTE/ANTICOMMUTE
function.

evaluation incomplete due to missing elementary relations
(W):
The system has not found all the elementary commutators or application re-
lations necessary to calculate or reorder the input expression. The result may
however be used for further calculations.



814 CHAPTER 16. USER CONTRIBUTED PACKAGES

16.50 PM: A REDUCE pattern matcher

PM is a general pattern matcher similar in style to those found in systems such
as SMP and Mathematica, and is based on the pattern matcher described in Kevin
McIsaac, “Pattern Matching Algebraic Identities”, SIGSAM Bulletin, 19 (1985),
4-13.

Author: Kevin McIsaac.

PM is a general pattern matcher similar in style to those found in systems such
as SMP and Mathematica, and is based on the pattern matcher described in Kevin
McIsaac, “Pattern Matching Algebraic Identities”, SIGSAM Bulletin, 19 (1985),
4-13. The following is a description of its structure.

A template is any expression composed of literal elements, e.g. 5, a, or a+1, and
specially-denoted pattern variables, e.g. ?a or ??b. Atoms beginning with ? are
called generic variables and match any expression.

Atoms beginning with ?? are called multi-generic variables and match any ex-
pression or any sequence of expressions including the null or empty sequence. A
sequence is an expression of the form [a1,a2,...]. When placed in a func-
tion argument list the brackets are removed, i.e. f([a,1]) -> f(a,1) and
f(a,[1,2],b) -> f(a,1,2,b).

A template is said to match an expression if the template is literally equal to the ex-
pression, or if by replacing any of the generic or multi-generic symbols occurring in
the template, the template can be made to be literally equal to the expression. These
replacements are called the bindings for the generic variables. A replacement is
an expression of the form exp1 -> exp2, which means exp1 is replaced by
exp2, or exp1 -> exp2, which is the same except exp2 is not simplified until
after the substitution for exp1 is made. If the expression has any of the properties
associativity, commutativity, or an identity element, they are used to determine if
the expressions match. If an attempt to match the template to the expression fails
the matcher backtracks, unbinding generic variables, until it reaches a place where
it can make a different choice. It then proceeds along the new branch.

The current matcher proceeds from left to right in a depth-first search of the tem-
plate expression tree. Rearrangements of the expression are generated when the
match fails and the matcher backtracks.

The matcher also supports semantic matching. Briefly, if a subtemplate does not
match the corresponding subexpression because they have different structures, then
the two are equated and the matcher continues matching the rest of the expression
until all the generic variables in the subexpression are bound. The equality is then
checked. This is controlled by the switch semantic. By default it is on.
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16.50.1 M(exp,temp)

The template temp is matched against the expression exp. If the template is
literally equal to the expression T is returned. If the template is literally equal to
the expression after replacing the generic variables by their bindings then the set of
bindings is returned as a set of replacements. Otherwise 0 (nil) is returned.

Examples:

A “literal” template:

m(f(a), f(a));
t

Not literally equal:

m(f(a), f(b));
0

Nested operators:

m(f(a,h(b)), f(a,h(b)));
t

“Generic” templates:

m(f(a,b), f(a,?a));
{?a -> b}
m(f(a,b), f(?a,?b));
{?b -> b, ?a -> a}

The multi-generic symbol ??a matches the “rest” of the arguments:

m(f(a,b), f(??a));
{??a -> {[a, b]}

but the generic symbol ?a does not:

m(f(a,b), f(?a));
0

Flag h as “associative”:

flag(’(h), ’assoc);
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Associativity is used to group terms together:

m(h(a,b,d,e), h(?a,d,?b));
{?b -> e, ?a -> h(a,b)}

“plus” is a symmetric function:

m(a+b+c, c+?a+?b);
{?b -> a, ?a -> b}

and it is also associative

m(a+b+c, b+?a);
{?a -> c + a}

Note that the effect of using a multi-generic symbol is different:

m(a+b+c,b+??c);
{??c -> [c,a]}

16.50.2 temp _= logical_exp

A template may be qualified by the use of the conditional operator _=, such!-that.
When a such-that condition is encountered in a template, it is held until all
generic variables appearing in logical_exp are bound.

On the binding of the last generic variable, logical_exp is simplified and if
the result is not T the condition fails and the pattern matcher backtracks. When
the template has been fully parsed any remaining held such-that conditions are
evaluated and compared to T.

Examples:

m(f(a,b), f(?a,?b_=(?a=?b)));
0
m(f(a,a), f(?a,?b_=(?a=?b)));
{?b -> a, ?a -> a}

Note that f(?a,?b_=(?a=?b)) is the same as f(?a,?a).
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16.50.3 S(exp,{temp1→ sub1, temp2→ sub2, . . . }, rept, depth)

Substitute the set of replacements into exp, re-substituting a maximum of rept
times and to a maximum depth depth. rept and depth have the default values
of 1 and∞ respectively. Essentially, S is a breadth-first search-and-replace. (There
is also a depth-first version, Sd(...).) Each template is matched against exp
until a successful match occurs.

Any replacements for generic variables are applied to the r.h.s. of that replacement
and exp is replaced by the r.h.s. The substitution process is restarted on the new
expression starting with the first replacement. If none of the templates match exp
then the first replacement is tried against each sub-expression of exp. If a matching
template is found then the sub-expression is replaced and process continues with
the next sub-expression.

When all sub-expressions have been examined, if a match was found, the expres-
sion is evaluated and the process is restarted on the sub-expressions of the resulting
expression, starting with the first replacement. When all sub-expressions have been
examined and no match found the sub-expressions are reexamined using the next
replacement. Finally when this has been done for all replacements and no match
found then the process recures on each sub-expression. The process is terminated
after rept replacements or when the expression no longer changes.

The command

Si(exp, {temp1 -> sub1, temp2 -> sub2, ...}, depth)

means “substitute infinitely many times until expression stops changing”. It is
short-hand for S(exp,{temp1 -> sub1, temp2 -> sub2,...},Inf,
depth).

Examples:

s(f(a,b), f(a,?b) -> ?b\^{}2);
2
b
s(a+b, a+b -> a{*}b);
b*a

“Associativity” is used to group a+ b+ c to (a+ b) + c:

s(a+b+c, a+b -> a*b);
b*a + c

The next three examples use a rule set that defines the factorial function. Substitute
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once:

s(nfac(3), {nfac(0) -> 1, nfac(?x) -> ?x*nfac(?x-1)});
3*nfac(2)

Substitute twice:

s(nfac(3), {nfac(0) -> 1, nfac(?x) -> ?x*nfac(?x-1)}, 2);
6*nfac(1)

Substitute until expression stops changing:

si(nfac(3), {nfac(0) -> 1, nfac(?x) -> ?x{*}nfac(?x-1)});
6

Only substitute at the top level:

s(a+b+f(a+b), a+b -> a*b, inf, 0);
f(b+a) + b*a

16.50.4 temp :- exp and temp ::- exp

If during simplification of an expression, tempmatches some sub-expression, then
that sub-expression is replaced by exp. If there is a choice of templates to apply,
the least general is used.

If an old rule exists with the same template, then the old rule is replaced by the new
rule. If exp is nil the rule is retracted.

temp ::- exp is the same as temp :- exp, but the l.h.s. is not simplified
until the replacement is made.

Examples:

Define the factorial function of a natural number as a recursive function and a
termination condition. For all other values write it as a gamma function. Note that
the order of definition is not important, as the rules are re-ordered so that the most
specific rule is tried first. Note the use of ::- instead of :- to stop simplification
of the l.h.s. hold stops its arguments from being simplified.

fac(?x _= Natp(?x)) ::- ?x*fac(?x-1);
hold(fac(?X-1)*?X)
fac(0) :- 1;
1
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fac(?x) :- Gamma(?x+1);
gamma(?X + 1)
fac(3);
6
fac(3/2);
gamma(5/2)

16.50.5 Arep({rep1,rep2,. . . })

In future simplifications automatically apply replacements rep1, rep2, ...
until the rules are retracted. In effect, this replaces the operator -> by :- in the set
of replacements {rep1, rep2, ...}.

16.50.6 Drep({rep1,rep2,..})

Delete the rules rep1, rep2, ....

As we said earlier, the matcher has been constructed along the lines of the pat-
tern matcher described in McIsaac with the addition of such-that conditions and
“semantic matching” as described in Grief. To make a template efficient, some
consideration should be given to the structure of the template and the position of
such-that statements. In general the template should be constructed so that fail-
ure to match is recognized as early as possible. The multi-generic symbol should
be used whenever appropriate, particularly with symmetric functions. For further
details see McIsaac.

Examples:

f(?a,?a,?b) is better than f(?a,?b,?c_=(?a=?b)). ?a+??b is better
than ?a+?b+?c....

The template f(?a+?b,?a,?b), matched against f(3,2,1) is matched as
f(?e_=(?e=?a+?b),?a,?b) when semantic matching is allowed.

16.50.7 Switches

TRPM Produces a trace of the rules applied during a substitution. This is useful to
see how the pattern matcher works, or to understand an unexpected result.

In general usage the following switches need not be considered:

SEMANTIC Allow semantic matches, e.g. f(?a+?b,?a,?b) will match
f(3,2,1), even though the matcher works from left to right.
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SYM!-ASSOC Limits the search space of symmetric associative functions when
the template contains multi-generic symbols so that generic symbols will not
function. For example (a+b+c,?a+??b) will return

{?a -> a, ??b -> [b,c]} or
{?a -> b, ??b -> [a,c]} or
{?a -> c, ??b -> [a,b]}

but not {?a -> a+b, ??b -> c}, etc. No sane template should require
these types of matches. However they can be made available by turning the
switch off.
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16.51 QHULL: Compute the complex hull

This package is an interface to qhull (www.qhull.org), which has to be installed
externally. There are 3 options for this package to find the qhull program:

1. Put it into the path of your shell (recommended).

2. Set and export an environment variable QHULL to the complete path, e.g., in
the Bash:

export QHULL=/usr/bin/qhull

3. Inside Reduce set the variable qhull_call!* to the complete path, e.g.,

symbolic(qhull_call!* := "/usr/bin/qhull");

Example: Compute the convex hull of a list integer points as a subset of that list as
follows:

1: qhull {{2,0,0}, {0,2,0}, {0,2,2}, {0,0,0}, {1,1,1}};

{{2,0,0},{0,2,0},{0,2,2},{0,0,0}}

2: symbolic;

nil

3* qhull_qhull {{2,0,0}, {0,2,0}, {0,2,2}, {0,0,0}, {1,1,1}};

((2 0 0) (0 2 0) (0 2 2) (0 0 0))

Author: Thomas Sturm, March 2013

http://www.qhull.org
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16.52 QSUM: Indefinite and Definite Summation of q-
hypergeometric Terms

Authors: Harald Böing and Wolfram Koepf

16.52.1 Introduction

This package is an implementation of the q-analogues of Gosper’s and Zeil-
berger’s45 algorithm for indefinite, and definite summation of q-hypergeometric
terms, respectively.

An expression ak is called a q-hypergeometric term, if ak/ak−1 is a rational func-
tion with respect to qk. Most q-terms are based on the q-shifted factorial or
qpochhammer. Other typical q-hypergeometric terms are ratios of products of pow-
ers, q-factorials, q-binomial coefficients, and q-shifted factorials that are integer-
linear in their arguments.

16.52.2 Elementary q-Functions

Our package supports the input of the following elementary q-functions:

• qpochhammer(a,q,infinity)

(a; q)∞ :=

∞∏
j=0

(
1− a qj

)
• qpochhammer(a,q,k)

(a; q)k :=


∏k−1
j=0

(
1− a qj

)
if k > 0

1 if k = 0∏k
j=1

(
1− a q−j

)−1 if k < 0

• qbrackets(k,q)

[q, k] :=
qk − 1

q − 1

• qfactorial(k,q)
[k]q! :=

(q; q)k
(1− q)k

45The ZEILBERG package (see [Koe95b]) contains the hypergeometric versions. Those algo-
rithms are described in [Gos78],[Zei91],[Zei90] and [Koe95a].
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• qbinomial(n,k,q)(
n

k

)
q

:=
(q; q)n

(q; q)k · (q; q)n−k

Furthermore it is possible to use an abbreviation for the generalized q-hypergeometric
series (basic generalized hypergeometric series, see e. g. [GR90], Chapter 1) which
is defined as:

rφs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ q, z] :=

∞∑
k=0

(a1, a2, . . . , ar; q)k
(b1, b2, . . . , bs; q)k

zk

(q; q)k

[
(−1)k q(

k
2)
]1+s−r

where (a1, a2, . . . , ar; q)k is a short form to write the product
∏r
j=1 (aj ; q)k. An

rφs series terminates if one of its numerator parameters is of the form q−n with

n ∈ N. The additional factor
[
(−1)k q(

k
2)
]1+s−r

(which does not occur in the
corresponding definition of the generalized hypergeometric function) is due to a
confluence process. With this factor one gets the simple formula:

lim
ar→∞

rφs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ q, z] = r−1φs

[
a1, a2, . . . , ar−1

b1, b2, . . . , bs

∣∣∣∣ q, z].
Another variation is the bilateral basic hypergeometric series (see e. g. [GR90],
Chapter 5) that is defined as

rψs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ q, z] :=
∞∑

k=−∞

(a1, a2, . . . , ar; q)k
(b1, b2, . . . , bs; q)k

zk
[
(−1)k q(

k
2)
]s−r

.

The summands of those generalized q-hypergeometric series may be entered by

• qphihyperterm(a1,a2,...,a3,b1,b2,...,b3,q,z,k) and

• qpsihyperterm(a1,a2,...,a3,b1,b2,...,b3,q,z,k)

respectively.

16.52.3 q-Gosper Algorithm

The q-Gosper algorithm[Koo93] is a decision procedure, that decides by alge-
braic calculations whether or not a given q-hypergeometric term ak has a q-
hypergeometric term antidifference gk, i. e. ak = gk − gk−1 with gk/gk−1 rational
in qk. The ratio gk/ak is also rational in qk — an important fact which makes the
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rational certification (see § 16.52.4) of Zeilberger’s algorithm possible. If the pro-
cedure is successful it returns gk, in which case we call ak q-Gosper-summable.
Otherwise no q-hypergeometric antidifference exists. Therefore if the q-Gosper
algorithm does not return a q-hypergeometric antidifference, it has proved that no
such solution exists, an information that may be quite useful and important.

Any antidifference is uniquely determined up to a constant, and is denoted by

gk =
∑

ak δk .

Finding gk given ak is called indefinite summation. The antidifference operator Σ
is the inverse of the downward difference operator ∇ak = ak − ak−1. There is
an analogous summation theory corresponding to the upward difference operator
∆ak = ak+1 − ak.

In case, an antidifference gk of ak is known, any sum
∑n

k=m ak can be easily
calculated by an evaluation of g at the boundary points like in the integration case:

n∑
k=m

ak = gn − gm−1

16.52.4 q-Zeilberger Algorithm

The q-Zeilberger algorithm [Koo93] deals with the definite summation of q-hyper-
geometric terms f(n, k) wrt. n and k:

s(n) :=
∞∑

k=−∞
f(n, k)

Zeilberger’s idea is to use Gosper’s algorithm to find an inhomogeneous recurrence
equation with polynomial coefficients for f(n, k) of the form

J∑
j=0

σj(n) · f(n+ j, k) = g(k)− g(k − 1), (16.91)

where g(k)/f(k) is rational in qk and qn. Assuming finite support of f(n, k) wrt.
k (i. e. f(n, k) = 0 for any n and all sufficiently large k) we can sum equation
(16.91) over all k ∈ Z. Thus we receive a homogeneous recurrence equation with
polynomial coefficients (called holonomic equation) for s(n):

J∑
j=0

σj(n) · s(n+ j) = 0 (16.92)

At this stage the implementation assumes that the summation bounds are infinite
and the input term has finite support wrt. k. If those input requirements are not
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fulfilled the resulting recursion is probably not valid. Thus we strongly advise the
user to check those requirements.

Despite this restriction you may still be able to get valuable information by the
program: On request it returns the left hand side of the recurrence equation (16.92)
and the antidifference g(k) of equation (16.91).

Once you have the certificate g(k) it is trivial (at least theoretically) to prove equat-
ion (16.92) as long as the input requirements are fulfilled. Let’s assume somone
gives us equation (16.91). If we divide it by f(n, k) we get a rational identity (in
qn and qk) —due to the fact that g(k)/f(n, k) is rational in qn and qk. Once we
confirmed this identity we sum equation (16.91) over k ∈ Z:

∑
k∈Z

J∑
j=0

σj(n) · f(n+ j, k) =
∑
k∈Z

(g(k)− g(k − 1)), (16.93)

Again we exploit the fact that g(k) is a rational multiple of f(n, k) and thus g(k)
has finite support which makes the telescoping sum on the right hand side vanish.
If we exchange the order of summation we get equation (16.92) which finishes the
proof.

Note that we may relax the requirements for f(n, k): An infinite support is possible
as long as lim

k→∞
g(k) = 0. (This is certainly true if lim

k→∞
p(k) f(k) = 0 for all

polynomials p(k).)

For a quite general class of q-hypergeometric terms (proper q-hypergeometric
terms) the q-Zeilberger algorithm always finds a recurrence equation, not necessar-
ily of lowest order though. Unlike Zeilberger’s original algorithm its q-analogue
more often fails to determine the recursion of lowest possible order, however (see
[PR95]).

If the resulting recurrence equation is of first order

a(n) s(n− 1) + b(n) s(n) = 0 ,

s(n) turns out to be a q-hypergeometric term (as a and b are polynomials in qn),
and a q-hypergeometric solution can be easily established using a suitable initial
value.

If the resulting recurrence equation has order larger than one, this information can
be used for identification purposes: Any other expression satisfying the same re-
currence equation, and the same initial values, represents the same function.

Our implementation is mainly based on [Koo93] and on the hypergeometric ana-
logue described in [Koe95a]. More examples can be found in [GR90], [Gas95],
some of which are contained in the test file qsum.tst.
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16.52.5 REDUCE operator QGOSPER

The QSUM package must be loaded by:

1: load qsum;

The qgosper operator is an implementation of the q-Gosper algorithm.

• qgosper(a,q,k) determines a q-hypergeometric antidifference. (By de-
fault it returns a downward antidifference, which may be changed by the
switch qgosper_down; see also § 16.52.8.) If it does not return a q-
hypergeometric antidifference, then such an antidifference does not exist.

• qgosper(a,q,k,m,n) determines a closed formula for the definite sum
n∑

k=m

ak using the q-analogue of Gosper’s algorithm. This is only successful

if q-Gosper’s algorithm applies.

Examples: The following two examples can be found in [GR90] ((II.3) and
(2.3.4)).

2: qgosper(qpochhammer(a,q,k)*q^k/qpochhammer(q,q,k),q,k);

k
(q *a - 1)*qpochhammer(a,q,k)

-------------------------------
(a - 1)*qpochhammer(q,q,k)

3: qgosper(qpochhammer(a,q,k)*qpochhammer(a*q^2,q^2,k)*
qpochhammer(q^(-n),q,k)*q^(n*k)/(qpochhammer(a,q^2,k)*
qpochhammer(a*q^(n+1),q,k)*qpochhammer(q,q,k)),q,k);

k*n k k n 1
( - q *(q *a - 1)*(q - q )*qpochhammer(----,q,k)

n
q

2 2 2*k n

*qpochhammer(a*q ,q ,k)*qpochhammer(a,q,k))/((q *a - 1)*(q - 1)

n 2

*qpochhammer(q *a*q,q,k)*qpochhammer(a,q ,k)*qpochhammer(q,q,k))

Here are some other simple examples:

4: qgosper(qpochhammer(q^(-n),q,k)*z^k/qpochhammer(q,q,k),q,k);
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***** No q-hypergeometric antidifference exists.

5: off qgosper_down;

6: qgosper(q^k*qbrackets(k,q),q,k);

k k
- q *(q + 1 - q )*qbrackets(k,q)

-----------------------------------
k

(q - 1)*(q + 1)*(q - 1)

7: on qgosper_down;

8: qgosper(q^k,q,k,0,n);

n
q *q - 1
----------

q - 1

16.52.6 REDUCE operator QSUMRECURSION

The qsumrecursion operator is an implementation of the q-Zeilberger algo-
rithm. It tries to determine a homogeneous recurrence equation for summ(n) wrt.
n with polynomial coefficients (in n), where

summ(n) :=
∞∑

k=−∞
f(n, k).

If successful the left hand side of the recurrence equation (16.92) is returned.

There are three different ways to pass a summand f(n, k) to qsumrecursion:

• qsumrecursion(f,q,k,n), where f is a q-hypergeometric term wrt.
k and n, k is the summation variable and n the recursion variable, q is a
symbol.

• qsumrecursion(upper,lower,q,z,n) is a shortcut for
qsumrecursion(qphihyperterm(upper,lower,q,z,k),q,k,n)

• qsumrecursion(f,upper,lower,q,z,n) is a similar shortcut for
qsumrecursion(f*qphihyperterm(upper,lower,q,z,k),q,k,n),
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i. e. upper and lower are lists of upper and lower parameters of the generalized
q-hypergeometric function. The third form is handy if you have any additional
factors.

For all three instances the following variations are allowed:

• If for some reason the recursion order is known in advance you can spec-
ify it as an additional (optional ) argument at the very end of the parame-
ter sequence. There are two ways. If you just specify a positive integer,
qsumrecursion looks only for a recurrence equation of this order. You
can also specify a range by a list of two positive integers, i. e. the first one
specifying the lowest and the second one the highest order.

By default qsumrecursion will search for recurrences of order from 1
to 5. (The global variable qsumrecursion_recrange!* controls this
behavior, see § 16.52.8.)

• Usually qsumrecursion uses summ as a name for the summ-function
defined above. If you want to use another operator, say e. g. s, then the
following syntax applies: qsumrecursion(f,q,k,s(n))

As a first example we want to consider the q-binomial theorem:

∞∑
k=0

(a; q)k
(q; q)k

zk =
(a z; q)∞
(z; q)∞

,

provided that |z|, |q| < 1. It is the q-analogue of the binomial theorem in the sense
that

lim
q→1−

∞∑
k=0

(qa; q)k
(q; q)k

zk =
∞∑
k=0

(a)k
k!

zk = (1− z)−a .

For a := q−n with n ∈ N our implementation gets:

9: qsumrecursion(qpochhammer(q^(-n),q,k)*z^k/
qpochhammer(q,q,k),q,k,n);

n n
- ((q - z)*summ(n - 1) - q *summ(n))

Notice that the input requirements are fulfilled. For n ∈ N the summand is zero
for all k > n as (q−n; q)k = 0 and the (q; q)k-term in the denominator makes the
summand vanish for all k < 0.

With the switch qsumrecursion_certificate it is possible to get the an-
tidifference gk described above. When switched on, qsumrecursion returns a
list with five entries, see § 16.52.8. For the last example we get:
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10: on qsumrecursion_certificate;

11: proof:= qsumrecursion(qpochhammer(q^(-n),q,k)*z^k/
qpochhammer(q,q,k),q,k,n);

n n
proof := - ((q - z)*summ(n - 1) - q *summ(n)),

k n
- (q - q )*z

----------------,
n
q - 1

k 1
z *qpochhammer(----,q,k)

n
q

--------------------------,
qpochhammer(q,q,k)

k,

downward_antidifference

12: off qsumrecursion_certificate;

Let’s define the list entries as {rec,cert,f,k,dir}. If you substitute
summ(n+ j) by f(n+ j, k) in rec then you obtain the left hand side of equation
(16.91), where f is the input summand. The function g(k) := f*cert is the cor-
responding antidifference, where dir states which sort of antidifference was cal-
culated downward_antidifference or upward_antidifference, see
also § 16.52.8. Those informations enable you to prove the recurrence equation for
the sum or supply you with the necessary informations to determine an inhomoge-
neous recurrence equation for a sum with nonnatural bounds.

For our last example we can now calculate both sides of equation (16.91):

13: lhside:= qsimpcomb(sub(summ(n)=part(proof,3),
summ(n-1)=sub(n=n-1,part(proof,3)),part(proof,1)));

k k n n 1
z *(q *(q - z) + q *(z - 1))*qpochhammer(----,q,k)

n
q

lhside := -----------------------------------------------------
n

(q - 1)*qpochhammer(q,q,k)
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14: rhside:= qsimpcomb((part(proof,2)*part(proof,3)-
sub(k=k-1,part(proof,2)*part(proof,3))));

k k n n k 1
- z *((q - q )*z - q *(q - 1))*qpochhammer(----,q,k)

n
q

rhside := ---------------------------------------------------------
n

(q - 1)*qpochhammer(q,q,k)

15: qsimpcomb((rhside-lhside)/part(proof,3));

0

Thus we have proved the validity of the recurrence equation.

As some other examples we want to consider some generalizations of orthogonal
polynomials from the Askey–Wilson–scheme [KS94]: The q-Laguerre (3.21), q-
Charlier (3.23) and the continuous q-Jacobi (3.10) polynomials.

16: operator qlaguerre,qcharlier;

17: qsumrecursion(qpochhammer(q^(alpha+1),q,n)/qpochhammer(q,q,n),
{q^(-n)}, {q^(alpha+1)}, q, -x*q^(n+alpha+1), qlaguerre(n));

n alpha + n n
((q + 1 - q )*q - q *(q *x + q))*qlaguerre(n - 1)

alpha + n n
+ ((q - q)*qlaguerre(n - 2) + (q - 1)*qlaguerre(n))*q

18: qsumrecursion({q^(-n),q^(-x)},{0},q,-q^(n+1)/a,qcharlier(n));

x n n 2*n
- ((q *((q + 1 - q )*a + q )*q - q )*qcharlier(n - 1)

x n n
+ q *((q + a*q)*(q - q)*qcharlier(n - 2) - qcharlier(n)*a*q))

19: on qsum_nullspace;

20: term:= qpochhammer(q^(alpha+1),q,n)/qpochhammer(q,q,n)*
qphihyperterm({q^(-n),q^(n+alpha+beta+1),
q^(alpha/2+1/4)*exp(I*theta), q^(alpha/2+1/4)*exp(-I*theta)},
{q^(alpha+1), -q^((alpha+beta+1)/2), -q^((alpha+beta+2)/2)},
q,q,k)$



831

21: qsumrecursion(term,q,k,n,2);

n i*theta alpha beta n
- ((q *e *(q *(q *(q *(q + 1) - q) - q

alpha + beta + n n beta + n
+ q *(q + 1 - q - q )) -

(alpha + beta)/2 alpha n beta + n n
q *(q *(q *(q + 1) - q + q *(q + 1 - q ))

2*alpha + beta + 2*n
- (q + q)))*(sqrt(q) + q) +

(2*alpha + 1)/4 2*i*theta alpha + beta + 2*n 2
q *(e + 1)*(q - q )

alpha + beta + 2*n alpha + beta + 2*n

*(q - 1))*(q - q)*summ(n - 1) -

i*theta (alpha + beta + 2*n)/2 (alpha + beta + 2*n)/2
e *((q *(q + q)

(alpha + beta + 2*n)/2

*(q - q)*(sqrt(q) + q) +

(2*alpha + 2*beta + 4*n + 1)/2
(q + q)

alpha + beta + 2*n 2 alpha + beta + n

*(q - q ))*(q - 1)

n alpha alpha + beta + 2*n

*(q - 1)*summ(n) + (q *(sqrt(q)*q + q )

(3*alpha + beta + 2*n)/2
+ q *(sqrt(q) + q))

alpha + beta + 2*n alpha + n beta + n

*(q - 1)*(q - q)*(q - q)

*summ(n - 2)))

22: off qsum_nullspace;

The setting of qsum_nullspace (see [PR95] and § 16.52.8) results in a faster
calculation of the recurrence equation for this example.
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16.52.7 Simplification Operators

An essential step in the algorithms introduced above is to decide whether a term ak
is q-hypergeometric, i. e. if the ratio ak/ak−1 is rational in qk.

The procedure qsimpcomb provides this facility. It tries to simplify all expo-
nential expressions in the given term and applies some transformation rules to the
known elementary q-functions as qpochhammer, qbrackets, qbinomial
and qfactorial. Note that the procedure may fail to completely simplify some
expressions. This is due to the fact that the procedure was designed to simplify
ratios of q-hypergeometric terms in the form f(k)/f(k − 1) and not arbitrary q-
hypergeometric terms.

E. g. an expression like (a; q)−n · (a/qn; q)n is not recognized as 1, despite the
transformation formula

(a; q)−n =
1

(a/qn; q)n
,

which is valid for n ∈ N.

Note that due to necessary simplification of powers, the switch precise is (lo-
cally) turned off in qsimpcomb. This might produce wrong results if the input
term contains e. g. complex variables.

The following synomyms may be used:

• up_qratio(f,k) or qratio(f,k) for qsimpcomb(sub(k=k+1,f)/f)
and

• down_qratio(f,k) for qsimpcomp(f/sub(k=k-1,f)).

16.52.8 Global Variables and Switches

The following switches can be used in connection with the QSUM package:

• qsum_trace, default setting is off. If it is turned on some intermediate
results are printed.

• qgosper_down, default setting is on. It determines whether qgosper
returns a downward or an upward antidifference gk for the input term ak,
i. e. ak = gk − gk−1 or ak = gk+1 − gk respectively.

• qsumrecursion_down, default setting is on. If it is switched on a down-
ward recurrence equation will be returned by qsumrecursion. Switching
it off leads to an upward recurrence equation.
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• qsum_nullspace, default setting is off. The antidifference g(k) is al-
ways a rational multiple (in qk) of the input term f(k). qgosper and
qsumrecursion determine this certificate, which requires solving a set of
linear equations. If the switch qsum_nullspace is turned on a modified
nullspace-algorithm will be used for solving those equations. In general this
method is slower. However if the resulting recurrence equation is quite com-
plicated it might help to switch on qsum_nullspace. See also [Knu81]
and [PR95].

• qgosper_specialsol, default setting is on. The antidifference g(k)
which is determined by qgosper might not be unique. If this switch is
turned on, just one special solution is returned. If you want to see all solu-
tions, you should turn the switch off.

• qsumrecursion_exp, default setting is off. This switch determines if the
coefficients of the resulting recurrence equation should be factored. Turning
it off might speed up the calculation (if factoring is complicated). Note that
when turning on qsum_nullspace usually no speedup occurs by switch-
ing qsumrecursion_exp on.

• qsumrecursion_certificate, default off. As Zeilberger’s algorithm
delivers a recurrence equation for a q-hypergeometric term f(n, k), see equat-
ion (16.91), this switch is used to get all necessary informations for proving
this recurrence equation.

If it is set on, instead of simply returning the resulting recurrence equation
(for the sum)—if one exists—qsumrecursion returns a list {rec,cert,f,k,dir}
with five items: The first entry contains the recurrence equation, while the
other items enable you to prove the recurrence a posteriori by rational arith-
metic.

If we denote by r the recurrence rec where we substituted the summ-
function by the input term f (with the corresponding shifts in n) then the
following equation is valid:

r = cert*f - sub(k=k-1,cert*f)

or
r = sub(k=k+1,cert*f) - cert*f

if dir=downward_antidifference or dir=upward_antidifference
respectively.

The global variable qsumrecursion_recrange!* controls for which recur-
sion orders the procedure qsumrecursion looks. It has to be a list with two
entries, the first one representing the lowest and the second one the highest order
of a recursion to search for. By default it is set to {1,5}.
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16.52.9 Messages

The following messages may occur:

• If your call to qgosper or qsumrecursion reveals some incorrect syn-
tax, e. g. wrong number of arguments or wrong type you may receive the
following messages:

***** Wrong number of arguments.

or

***** Wrong type of arguments.

• If you call qgosper with a summand term that is free of the summation
variable you get

WARNING: Summand is independent of summation variable.

***** No q-hypergeometric antidifference exists.

• If qgosper finds no antidifference it returns:

***** No q-hypergeometric antidifference exists.

• If qsumrecursion finds no recursion in the specified range it returns:

***** Found no recursion. Use higher order.

(If you do not pass a range as an argument to qsumrecursion the default
range in qsumrecursion_recrange!* will be used.)

• If the input term passed to qgosper (qsumrecursion) is not q-hyper-
geometric wrt. the summation variable — say k — (and the recursion vari-
able) then you get

***** Input term is probably not q-hypergeometric.

With all the examples we tested, our procedures decided properly whether
the input term was q-hypergeometric or not. However, we cannot guarantee
in general that qsimpcomb always returns an expression that looks rational
in qk if it actually is.

• If the global variable qsumrecursion_recrange!* was assigned an
invalid value:

Global variable qsumrecursion_recrange!* must be a list
of two positive integers: {lo,hi} with lo<=hi.

***** Invalid value of qsumrecursion_recrange!*
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16.53 RANDPOLY: A random polynomial generator

This package is based on a port of the Maple random polynomial generator together
with some support facilities for the generation of random numbers and anonymous
procedures.

Author: Francis J. Wright.

This package is based on a port of the Maple random polynomial generator together
with some support facilities for the generation of random numbers and anonymous
procedures.

16.53.1 Introduction

The operator randpoly is based on a port of the Maple random polynomial gen-
erator. In fact, although by default it generates a univariate or multivariate poly-
nomial, in its most general form it generates a sum of products of arbitrary integer
powers of the variables multiplied by arbitrary coefficient expressions, in which the
variable powers and coefficient expressions are the results of calling user-supplied
functions (with no arguments). Moreover, the “variables” can be arbitrary expres-
sions, which are composed with the underlying polynomial-like function.

The user interface, code structure and algorithms used are essentially identical to
those in the Maple version. The package also provides an analogue of the Maple
rand random-number-generator generator, primarily for use by randpoly.
There are principally two reasons for translating these facilities rather than de-
signing comparable facilites anew: (1) the Maple design seems satisfactory and
has already been “proven” within Maple, so there is no good reason to repeat the
design effort; (2) the main use for these facilities is in testing the performance of
other algebraic code, and there is an advantage in having essentially the same test
data generator implemented in both Maple and REDUCE. Moreover, it is interest-
ing to see the extent to which a facility can be translated without change between
two systems. (This aspect will be described elsewhere.)

Sections 16.53.2 and 16.53.3 describe respectively basic and more advanced use of
randpoly; §16.53.4 describes subsidiary functions provided to support advanced
use of randpoly; §16.53.5 gives examples; an appendix gives some details of the
only non-trivial algorithm, that used to compute random sparse polynomials. Ad-
ditional examples of the use of randpoly are given in the test and demonstration
file randpoly.tst.
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16.53.2 Basic use of randpoly

The operator randpoly requires at least one argument corresponding to the poly-
nomial variable or variables, which must be either a single expression or a list of
expressions.46 In effect, randpoly replaces each input expression by an internal
variable and then substitutes the input expression for the internal variable in the
generated polynomial (and by default expands the result as usual), although in fact
if the input expression is a REDUCE kernel then it is used directly. The rest of
this document uses the term “variable” to refer to a general input expression or the
internal variable used to represent it, and all references to the polynomial structure,
such as its degree, are with respect to these internal variables. The actual degree of
a generated polynomial might be different from its degree in the internal variables.

By default, the polynomial generated has degree 5 and contains 6 terms. Therefore,
if it is univariate it is dense whereas if it is multivariate it is sparse.

16.53.2.1 Optional arguments

Other arguments can optionally be specified, in any order, after the first compulsory
variable argument. All arguments receive full algebraic evaluation, subject to the
current switch settings etc. The arguments are processed in the order given, so that
if more than one argument relates to the same property then the last one specified
takes effect. Optional arguments are either keywords or equations with keywords
on the left.

In general, the polynomial is sparse by default, unless the keyword dense is spec-
ified as an optional argument. (The keyword sparse is also accepted, but is the
default.) The default degree can be changed by specifying an optional argument of
the form

degree = natural number.

In the multivariate case this is the total degree, i.e. the sum of the degrees with
respect to the individual variables. The keywords deg and maxdeg can also be
used in place of degree. More complicated monomial degree bounds can be
constructed by using the coefficient function described below to return a monomial
or polynomial coefficient expression. Moreover, randpoly respects internally
the REDUCE “asymptotic” commands let, weight etc. described in §10.4 of
the REDUCE 3.6 manual, which can be used to exercise additional control over
the polynomial generated.

46If it is a single expression then the univariate code is invoked; if it is a list then the multivariate
code is invoked, and in the special case of a list of one element the multivariate code is invoked to
generate a univariate polynomial, but the result should be indistinguishable from that resulting from
specifying a single expression not in a list.
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In the sparse case (only), the default maximum number of terms generated can be
changed by specifying an optional argument of the form

terms = natural number.

The actual number of terms generated will be the minimum of the value of terms
and the number of terms in a dense polynomial of the specified degree, number of
variables, etc.

16.53.3 Advanced use of randpoly

The default order (or minimum or trailing degree) can be changed by specifying an
optional argument of the form

ord = natural number.

The keyword is ord rather than order because order is a reserved command
name in REDUCE. The keyword mindeg can also be used in place of ord. In the
multivariate case this is the total degree, i.e. the sum of the degrees with respect to
the individual variables. The order normally defaults to 0.

However, the input expressions to randpoly can also be equations, in which case
the order defaults to 1 rather than 0. Input equations are converted to the difference
of their two sides before being substituted into the generated polynomial. The
purpose of this facility is to easily generate polynomials with a specified zero – for
example

randpoly(x = a);

generates a polynomial that is guaranteed to vanish at x = a, but is otherwise
random.

Order specification and equation input are extensions of the current Maple version
of randpoly.

The operator randpoly accepts two further optional arguments in the form of
equations with the keywords coeffs and expons on the left. The right sides of
each of these equations must evaluate to objects that can be applied as functions of
no variables. These functions should be normal algebraic procedures (or something
equivalent); the coeffs procedure may return any algebraic expression, but the
expons procedure must return an integer (otherwise randpoly reports an error).
The values returned by the functions should normally be random, because it is the
randomness of the coefficients and, in the sparse case, of the exponents that makes
the constructed polynomial random.

A convenient special case is to use the function rand on the right of one or both of
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these equations; when called with a single argument rand returns an anonymous
function of no variables that generates a random integer. The single argument of
rand should normally be an integer range in the form a .. b, where a, b are integers
such that a < b. The spaces around (or at least before) the infix operator “..” are
necessary in some cases in REDUCE and generally recommended. For example,
the expons argument might take the form

expons = rand(0 .. n)

where n will be the maximum degree with respect to each variable independently.
In the case of coeffs the lower limit will often be the negative of the upper limit
to give a balanced coefficient range, so that the coeffs argument might take the
form

coeffs = rand(-n .. n)

which will generate random integer coefficients in the range [−n, n].

16.53.4 Subsidiary functions: rand, proc, random

16.53.4.1 Rand: a random-number-generator generator

The first argument of randmust be either an integer range in the form a .. b, where
a, b are integers such that a < b, or a positive integer n which is equivalent to the
range 0 .. n − 1. The operator rand constructs a function of no arguments that
calls the REDUCE random number generator function random to return a random
integer in the range specified; in the case that the first argument of rand is a single
positive integer n the function constructed just calls random(n), otherwise the
call of random is scaled and shifted.

As an additional convenience, if rand is called with a second argument that is an
identifier then the call of rand acts exactly like a procedure definition with the
identifier as the procedure name. The procedure generated can then be called with
an empty argument list by the algebraic processor.

[Note that rand() with no argument is an error in REDUCE and does not return
directly a random number in a default range as it does in Maple – use instead the
REDUCE function random (see below).]

16.53.4.2 Proc: an anonymous procedure generator

The operator proc provides a generalization of rand, and is primarily intended to
be used with expressions involving the random function (see below). Essentially,
it provides a mechanism to prevent functions such as random being evaluated
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when the arguments to randpoly are evaluated, which is too early. Proc accepts
a single argument which is converted into the body of an anonymous procedure,
which is returned as the value of proc. (If a named procedure is required then the
normal REDUCE procedure statement should be used instead.) Examples are
given in the following sections, and in the file randpoly.tst.

16.53.4.3 Random: a generalized interface

As an additional convenience, this package extends the interface to the standard
REDUCE random function so that it will directly accept either a natural number
or an integer range as its argument, exactly as for the first argument of rand.
Hence effectively

rand(X) = proc random(X)

although rand is marginally more efficient. However, proc and the generalized
random interface allow expressions such as the following anonymous random
fraction generator to be easily constructed:

proc(random(-99 .. 99)/random(1 .. 99))

16.53.4.4 Further support for procs

Rand is a special case of proc, and (for either) if the switch comp is on (and the
compiler is available) then the generated procedure body is compiled.

Rand with a single argument and proc both return as their values anonymous
procedures, which if they are not compiled are Lisp lambda expressions. However,
if compilation is in effect then they return only an identifier that has no external
significance47 but which can be applied as a function in the same way as a lambda
expression.

It is primarily intended that such “proc expressions” will be used immediately as
input to randpoly. The algebraic processor is not intended to handle lambda ex-
pressions. However, they can be output or assigned to variables in algebraic mode,
although the output form looks a little strange and is probably best not displayed.
But beware that lambda expressions cannot be evaluated by the algebraic processor
(at least, not without declaring some internal Lisp functions to be algebraic oper-
ators). Therefore, for testing purposes or curious users, this package provides the
operators showproc and evalproc respectively to display and evaluate “proc
expressions” output by rand or proc (or in fact any lambda expression), in the
case of showproc provided they are not compiled.

47It is not interned on the oblist.
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16.53.5 Examples

The file randpoly.tst gives a set of test and demonstration examples.

The following additional examples were taken from the Maple randpoly help
file and converted to REDUCE syntax by replacing [ ] by { } and making the other
changes shown explicitly:

randpoly(x);

5 4 3 2
- 54*x - 92*x - 30*x + 73*x - 69*x - 67

randpoly({x, y}, terms = 20);

5 4 4 3 2 3 3
31*x - 17*x *y - 48*x - 15*x *y + 80*x *y + 92*x

2 3 2 2 4 3 2
+ 86*x *y + 2*x *y - 44*x + 83*x*y + 85*x*y + 55*x*y

5 4 3 2
- 27*x*y + 33*x - 98*y + 51*y - 2*y + 70*y - 60*y - 10

randpoly({x, sin(x), cos(x)});

4 3 3
sin(x)*( - 4*cos(x) - 85*cos(x) *x + 50*sin(x)

2
- 20*sin(x) *x + 76*sin(x)*x + 96*sin(x))

% randpoly(z, expons = rand(-5..5)); % Maple
% A generalized random "polynomial"!
% Note that spaces are needed around .. in REDUCE.
on div; off allfac;
randpoly(z, expons = rand(-5 .. 5));

4 3 -3 -4 -5
- 39*z + 14*z - 77*z - 37*z - 8*z
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off div; on allfac;
% randpoly([x], coeffs = proc() randpoly(y) end); % Maple
randpoly({x}, coeffs = proc randpoly(y));

5 5 5 4 5 3 5 2 5 5
95*x *y - 53*x *y - 78*x *y + 69*x *y + 58*x *y - 58*x

4 5 4 4 4 3 4 2 4
+ 64*x *y + 93*x *y - 21*x *y + 24*x *y - 13*x *y

4 3 5 3 4 3 3 3 2
- 28*x - 57*x *y - 78*x *y - 44*x *y + 37*x *y

3 3 2 5 2 4 2 3 2 2
- 64*x *y - 95*x - 71*x *y - 69*x *y - x *y - 49*x *y

2 2 5 4 3 2
+ 77*x *y + 48*x + 38*x*y + 93*x*y - 65*x*y - 83*x*y

5 4 3 2
+ 25*x*y + 51*x + 35*y - 18*y - 59*y + 73*y - y + 31

% A more conventional alternative is ...
% procedure r; randpoly(y)$ randpoly({x}, coeffs = r);
% or, in fact, equivalently ...
% randpoly({x}, coeffs = procedure r; randpoly(y));

randpoly({x, y}, dense);

5 4 4 3 2 3 3
85*x + 43*x *y + 68*x + 87*x *y - 93*x *y - 20*x

2 2 2 2 4 3 2
- 74*x *y - 29*x *y + 7*x + 10*x*y + 62*x*y - 86*x*y

5 4 3 2
+ 15*x*y - 97*x - 53*y + 71*y - 46*y - 28*y + 79*y + 44

16.53.6 Appendix: Algorithmic background

The only part of this package that involves any mathematics that is not completely
trivial is the procedure to generate a sparse set of monomials of specified maximum
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and minimum total degrees in a specified set of variables. This involves some com-
binatorics, and the Maple implementation calls some procedures from the Maple
Combinatorial Functions Package combinat (of which I have implemented re-
stricted versions in REDUCE).

Given the maximum possible number N of terms (in a dense polynomial), the re-
quired number of terms (in the sparse polynomial) is selected as a random subset of
the natural numbers up to N , where each number indexes a term. In the univariate
case these indices are used directly as monomial exponents, but in the multivari-
ate case they are converted to monomial exponent vectors using a lexicographic
ordering.

16.53.6.1 Numbers of polynomial terms

By explicitly enumerating cases with 1, 2, etc. variables, as indicated by the induc-
tive proof below, one deduces that:

Proposition 1. In n variables, the number of distinct monomials having total de-
gree precisely r is r+n−1Cn−1, and the maximum number of distinct monomials in
a polynomial of maximum total degree d is d+nCn.

Proof Suppose the first part of the proposition is true, namely that there are at most

Nh(n, r) = r+n−1Cn−1

distinct monomials in an n-variable homogeneous polynomial of total degree r.
Then there are at most

N(d, r) =

d∑
r=0

r+n−1Cn−1 = d+nCn

distinct monomials in an n-variable polynomial of maximum total degree d.

The sum follows from the fact that

r+nCn =
(r + n)n

n!

where xn = x(x− 1)(x− 2) · · · (x− n+ 1) denotes a falling factorial, and

∑
a≤x<b

xn =
xn+1

n+ 1

∣∣∣∣b
a

.

(See, for example, D. H. Greene & D. E. Knuth, Mathematics for the Analysis of
Algorithms, Birkhäuser, Second Edn. 1982, equation (1.37)). Hence the second
part of the proposition follows from the first.
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The proposition holds for 1 variable (n = 1), because there is clearly 1 distinct
monomial of each degree precisely r and hence at most d + 1 distinct monomials
in a polynomial of maximum degree d.

Suppose that the proposition holds for n variables, which are represented by the
vector X . Then a homogeneous polynomial of degree r in the n + 1 variables X
together with the single variable x has the form

xrP0(X) + xr−1P1(X) + · · ·+ x0Pr(X)

where Ps(X) represents a polynomial of maximum total degree s in the n variables
X , which therefore contains at most s+nCn distinct monomials. The homogeneous
polynomial of degree r in n+ 1 terms therefore contains at most

r∑
s=0

s+nCn = r+n+1Cn+1

distinct monomials. Hence the proposition holds for n+ 1 variables, and therefore
by induction it holds for all n. �

16.53.6.2 Mapping indices to exponent vectors

The previous proposition is also the basis of the algorithm to map term indices
m ∈ N to exponent vectors v ∈ Nn, where n is the number of variables.

Define a norm ‖ · ‖ on exponent vectors by ‖v‖ =
∑n

i=1 vi, which corresponds
to the total degree of the monomial. Then, from the previous proposition, the
number of exponent vectors of length n with norm ‖v‖ ≤ d is N(n, d) = d+nCn.
The elements of the mth exponent vector are constructed recursively by applying
the algorithm to successive tail vectors, so let a subscript denote the length of the
vector to which a symbol refers.

The aim is to compute the vector of length n with index m = mn. If this vector
has norm dn then the index and norm must satisfy

N(n, dn − 1) ≤ mn < N(n, dn),

which can be used (as explained below) to compute dn given n and mn. Since
there are N(n, dn − 1) vectors with norm less than dn, the index of the (n − 1)-
element tail vector must be given by mn−1 = mn − N(n, dn − 1), which can be
used recursively to compute the norm dn−1 of the tail vector. From this, the first
element of the exponent vector is given by v1 = dn − dn−1.

The algorithm therefore has a natural recursive structure that computes the norm of
each tail subvector as the recursion stack is built up, but can only compute the first
term of each tail subvector as the recursion stack is unwound. Hence, it constructs
the exponent vector from right to left, whilst being applied to the elements from



844 CHAPTER 16. USER CONTRIBUTED PACKAGES

left to right. The recursion is terminated by the observation that v1 = d1 = m1 for
an exponent vector of length n = 1.

The main sub-procedure, given the required length n and index mn of an exponent
vector, must return its norm dn and the index of its tail subvector of length n −
1. Within this procedure, N(n, d) can be efficiently computed for values of d
increasing from 0, for which N(n, 0) = nCn = 1, until N(n, d) > m by using the
observation that

N(n, d) = d+nCn =
(d+ n)(d− 1 + n) · · · (1 + n)

d!
.
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16.54 RATAPRX: Rational Approximations Package for
REDUCE

Authors: Lisa Temme and Wolfram Koepf

16.54.1 Periodic Decimal Representation

The division of one integer by another often results in a period in the decimal
part. The rational2periodic function in this package can recognise and
represent such an answer in a periodic representation. The inverse function,
periodic2rational, converts a periodic representation back to a rational
number.

Periodic Representation of a Rational Number

SYNTAX: rational2periodic(n);
rational2periodic(n, b);

INPUT: n is a rational number
b is the number base, if absent the default is 10.

RESULT: periodic({a1,...,an},{b1,...,bm},{c1,...,ck},±b)
where {a1,...,an} is a list of the digits in the integer part,
{b1,...,bm} is a list of the digits in the non-periodic part,
{c1,...,ck} is a list of the digits in the periodic part
and ±b where b is the number base 2 ≤ b ≤ 16,
a minus indicating the rational number n was negative.

EXAMPLES:
−59/70 written as −0.8428571
1: rational2periodic(-59/70);
periodic({0}, {8}, {4,2,8,5,7,1}, -10)

1/80 written as a hexadecimal is 0.03
2: rational2periodic(1/80,16);
periodic({0}, {0}, {3}, 16)

Normally the operator periodic will not be seen as the output will be pret-
typrinted as −0.8428571 and 0.03 (base 16) respectively.

Rational Number of a Periodic Representation
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SYNTAX:
periodic2rational(periodic({a1,...,an},{b1...bm},{c1,...,ck},±b)
periodic2rational({a1,...,an},{b1...bm},{c1,...,ck},±b)

INPUT:
{a1,...,an} is a list of the digits in the integer part,
{b1,...,bm} is a list of the digits in the non-periodic part,
{c1,...,ck} is a list of the digits in the periodic part
and b is the number base 2 ≤ b ≤ 16, a minus
indicating the rational number result should be negative.
If the base is omitted, 10 is assumed.

RESULT:
A rational number.

EXAMPLES:

0.8428571 written as 59/70
3: periodic2rational(periodic({0},{8},{4,2,8,5,7,1}));

59
---
70

4: periodic2rational({0},{8},{4,2,8,5,7,1}, -10);

59
- ---

70

Note that periodic2rational will produce the correct rational result when
passed a parameter for the periodic part which is not minimal. Similarly, a par-
ameter for the periodic part which consists of all 9’s (or in base b, all (b − 1)’s)
is treated correctly although such periodic parts are not canonical and are never
generated by calls to rational2periodic.

For example,

periodic2rational({0}, {}, {1, 2, 1, 2});
periodic2rational({0}, {1}, {2, 1});
periodic2rational({0}, {1, 2}, {1, 2, 1, 2});

all produce the same rational result, namely 4
33 , as the canonical input

periodic2rational({0}, {}, {1, 2});
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Similarly,

periodic2rational({0}, {}, {9});
periodic2rational({0}, {9}, {9});
periodic2rational({0}, {}, {9, 9, 9, 9});

all produce the same rational result, namely 1, as the canonical input

periodic2rational({1}, {}, {});

Although the operators periodic2rational and rational2periodic
work even when ROUNDED is ON, they are best used when ROUNDED is OFF.
The input to rational2periodic should not be a rounded number, otherwise
an error results.

For example, the input rational2periodic(1/7); will produce the in-
tended periodic representation even with ROUNDED ON. However, the input

a := 1/7; rational2periodic(a);

will result in an error as the simplifier is applied in the assignment and rounds the
rational number.

Similarly, although the result of periodic2rational will always be a rational
number (represented by a QUOTIENT prefix form), if the simplifier is applied to
the result a rounded value will be produced.

16.54.2 Continued Fractions

A continued fraction (see [JT80]) has the general form

a0 +
a1

b1 + a2
b2+

a3
b3+...

.

A more compact way of writing this is as

a0 +
a1|
|b1

+
a2|
|b2

+
a3|
|b3

+ . . . .

Even more succinctly:

{a0, {a1, b1}, {a2, b2}, . . .}

This is represented in REDUCE as
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contfrac(Expression, Rational approximant,
{a0, {a1, b1}, {a2, b2}, . . . })

The operator CFRAC is used to generate a generalised continued fraction expansion
of an algebraic expression.

cfrac(〈num〉)
cfrac(〈num〉, 〈length〉)
cfrac(〈func〉, 〈var〉)
cfrac(〈func〉, 〈var〉, 〈length〉)

INPUT:
〈num〉 is any real number
〈func〉 is a function
〈var〉 is the function main variable
〈length〉 is the maximum number of terms (continuents) to be generated and is
optional.

For non-rational function or irrational number input the 〈length〉 argument specifies
the number of continuents (ordered pairs, {ai, bi}), to be returned. Its default value
is five. For rational function or rational number input the length argument can
only truncate the answer, it cannot return additional pairs even if the precision is
increased. The default for rational function or rational number input is the complete
continued fraction.

For a non-rational function, power series expansion is necessary. The new switch
cf_taylor controls whether the TAYLOR or the TPS package is used to produce
the power series required. By default this switch is OFF and so the TPS package is
normally employed. In most cases the choice is not important, but the TPS option
is somewhat better at handling cases where the series expansion is rather sparse. In
a few cases TPS may fail to produce a series expansion when TAYLOR succeeds
and vice-versa.

For numerical input the default value is exact for rational number arguments whilst
for irrational or rounded input it is dependent on the precision of the session. The
length argument will only take effect if is smaller than the number of ordered
pairs which the default value would return.

If the number of continuent pairs returned does not exceed twelve, the result will
usually be pretty-printed as a two element list consisting of the convergent followed
by a rendering of the traditional continued fraction expansion. For a larger number
of pairs the output is of the second element is printed as a list of pairs. Thus, usually
the operator contfrac is not seen in the output.

EXAMPLES

cfrac(pi, 4);
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355 1
{pi,-----,3 + ----------------}

113 1
7 + ----------

1
15 + ---

1

cfrac(sqrt 2, 5);

41 1
{sqrt(2),----,1 + ---------------------}

29 1
2 + ---------------

1
2 + ---------

1
2 + ---

2

cfrac(23.696, 4);

2962 237 1
{------,-----,23 + ---------------}

125 10 1
1 + ---------

1
2 + ---

3

cfrac((x+2/3)^2/(6*x-5), x, 10);

2
9*x + 12*x + 4

{-----------------, exact,
54*x - 45

6*x + 13 1
---------- + -------------}

36 24*x - 20
-----------

9
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cfrac(e^x, x);

3 2
x x + 9*x + 36*x + 60

{e , -----------------------,
2

3*x - 24*x + 60

x
1 + ---------------------------}

x
1 - ---------------------

x
2 + ---------------

x
3 - ---------

x
2 + ---

5

The operator CF is a synonym for the operator CONTINUED_FRACTION.

cf(〈num〉)
cf(〈num〉, 〈size〉)
cf(〈num〉, 〈size〉, 〈numterms〉)

The meaning of the arguments is the same as for the operator CONTINUED_FRACTION:
the original number to be expanded 〈num〉, an optional maximum size 〈size〉 per-
mitted for the denominator of the convergent and an optional maximum number of
continuents 〈numterms〉 to be generated.

The output is in the same format as that of CFRAC described above. As with the op-
erator CFRAC output of CF is normally pretty-printed so the operator confract
will not be seen.

The accessor operators CF_EXPRESSION, CF_CONVERGENT and CF_CONTINUENTS
allow the various parts of a continued fraction object 〈cf_object〉 (as returned by
any of the operators cf, cfrac, continued_fraction and cf_euler) to
be extracted.

These three operators return, respectively, the originating expression of the con-
tinued fraction object, the last convergent of the continued fraction, a list of its
continuents (that is a list of pairs of partial numerators and denominators).

The operator CF_CONVERGENTS returns a list of all the convergents of the ex-
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pansion.

cf_expression(〈cf_object〉)
cf_convergent(〈cf_object〉)
cf_continuents(〈cf_object〉)
cf_convergents(〈cf_object〉)

EXAMPLES

2: cf(6/11);

6 6 1
{----,----,---------------}

11 11 1
1 + ---------

1
1 + ---

5

3: a := cf(pi,1000);

355 1
a := {pi,-----,3 + ----------------}

113 1
7 + ----------

1
15 + ---

1

4: cf_convergents a;

22 333 355
{3,----,-----,-----}

7 106 113

5: cf_continuents a;

{3,7,15,1}

6: precision 20;

12

7: cf pi;
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21053343141
{pi,-------------,{3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1}}

6701487259

The operator CF_EULER is used to generate a generalised continued fraction
expansion of an algebraic expression using a formula due to Leonhard Euler
( [Eul48]).

cf_euler(〈func〉, 〈var〉)
cf_euler(〈func〉, 〈var〉, 〈length〉)

INPUT:
〈func〉 is a function
〈var〉 is the function main variable
〈length〉 is the maximum number of continuents to be generated and is optional.

The meaning of the parameters is similar to those of CFRAC, but the continued
fraction expansion generated will usually be different. Note that unlike CFRAC,
CF_EULER cannot currently generate continued fraction expansion of numbers
and for a rational function argument (with a non-constant denominator) the expan-
sion will not be exact.

A number of operators are provided for transforming their continued fraction argu-
ment 〈cf_object〉 into an equivalent expansion, that is one with exactly the same
convergents. They all accept as their single argument any continued fraction object
〈cf_object〉. These are:

cf_unit_denominators
converts all partial denominators to 1.

cf_unit_numerators
converts all partial numerators to 1.

cf_remove_fractions
converts the denominators of the partial numerators and partial denominators in the
continuents to 1.

cf_remove_constant
removes the zeroth continuent (if non-zero) absorbing it into the first continuent
pair.

The operator CF_TRANSFORM is a general purpose function for transforming its
continued fraction argument 〈cf_object〉 into an equivalent expansion. Unlike the
four preceding operators it requires a second argument: a list of multipliers used to
modify the partial numerators and denominators of the original expansion.
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cf_transform(〈cf_object〉, 〈multiplier-list〉)

To understand the operation of cf_transform consider first the special case
where 〈multiplier-list〉 is a list of the form {1, 1, . . . , 1, ln, 1, . . . , 1} whose nth
element is ln. Only the nth continuent pair {an, bn} and (n+1)th partial numer-
ator an+1 are altered and become {lnan, lnbn} and lnan+1 respectively. For a
〈multiplier-list〉 that has more than one non-unit element, the above transforma-
tions are applied sequentially from left to right.

If the number of continuent pairs in the 〈cf_object〉 is greater than the length of the
〈multiplier-list〉, the latter is (in effect) padded with 1’s. Conversely if it is shorter,
the surplus elements of 〈multiplier-list〉 are ignored.

The operator CF_EVEN_ODD splits its continued fraction argument 〈cf_object〉
into two continued fraction objects: namely its even and odd parts (in that order)
which are returned as a two-element list.

cf_even_odd(〈cf_object〉)

The convergents of the even part are the even-numbered convergents of the original
expansion and those of the odd part are the odd-numbered ones (except the zeroth
convergent which is necessarily zero). For the continued fraction expansions gen-
erated by the operators cf and cfrac with a numerical first argument 〈num〉.
The convergents of the even part form a monotonically increasing sequence whilst
those of the odd part (after the zeroth) form a monotonically decreasing sequence.

EXAMPLES

cf_remove_fractions(cf_euler(e^x, x, 4));

3 2
x x + 3*x + 6*x + 6

{e , ---------------------,
6

1
-------------------------------------}

x
1 - -------------------------------

x
(x + 1) - -------------------

2*x
(x + 2) - -------

x + 3

a := cf_remove_fractions(cf_euler(4*atan x, x, 4));
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a := {4*atan(x),

7 5 3
- 60*x + 84*x - 140*x + 420*x

-----------------------------------,
105

4*x
-----------------------------------------------------}

2
x

1 + -----------------------------------------------
2

2 9*x
( - x + 3) + -------------------------------

2
2 25*x

( - 3*x + 5) + -------------
2

- 5*x + 7

b := (a where x => 1);

304 4
b := {pi,-----,----------------------}

105 1
1 + ----------------

9
2 + ----------

25
2 + ----

2

c := cf(pi, 0, 6);

104348 1
c := {pi,--------,3 + ------------------------------}

33215 1
7 + ------------------------

1
15 + -----------------

1
1 + -----------
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1
292 + ---

1

cf_remove_constant c;

104348 22
{pi,--------,-------------------------------}

33215 1
7 + -------------------------

22
333 + -----------------

1
1 + -----------

1
292 + ---

1

c:= cf(pi, 0, 8)$
d := cf_even_odd c;

208341 15
d := {{pi,--------,3 + ----------------------},

66317 292
106 - --------------

15
4687 - -----

585

312689 22
{pi,--------,-------------------------}}

99532 1
7 + -------------------

22
355 - -----------

1
294 - ---

3
cf_convergents c;

22 333 355 103993 104348 208341 312689
{3,----,-----,-----,--------,--------,--------,--------}

7 106 113 33102 33215 66317 99532
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cf_convergents first d;

333 103993 208341
{3,-----,--------,--------}

106 33102 66317

cf_convergents second d;

22 355 104348 312689
{0,----,-----,--------,--------}

7 113 33215 99532

16.54.3 Padé Approximation

The Padé approximant represents a function by the ratio of two polynomials. The
coefficients of the powers occuring in the polynomials are determined by the co-
efficients in the Taylor series expansion of the function (see [BGM96]). Given a
power series

f(x) = c0 + c1(x− h) + c2(x− h)2 . . .

and the degree of numerator, n, and of the denominator, d, the pade function finds
the unique coefficients ai, bi in the Padé approximant

a0 + a1x+ · · ·+ anx
n

b0 + b1x+ · · ·+ bdxd
.

SYNTAX: pade(f, x, h, n, d);

INPUT:

f the funtion to be approximated
x the function variable
h the point at which the approximation is evaluated
n the (specified) degree of the numerator
d the (specified) degree of the denominator

RESULT:
Padé Approximant, ie. a rational function.

ERROR MESSAGES:
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***** not yet implemented

The Taylor series expansion for the function, f, has not yet been implemented in
the REDUCE Taylor Package.

***** no Pade Approximation exists

A Padé Approximant of this function does not exist.

***** Pade Approximation of this order does not exist

A Padé Approximant of this order (ie. the specified numerator and denominator
orders) does not exist but one of a different order may exist.

EXAMPLES

23: pade(sin(x),x,0,3,3);

2
x*( - 7*x + 60)
------------------

2
3*(x + 20)

24: pade(tanh(x),x,0,5,5);

4 2
x*(x + 105*x + 945)
-----------------------

4 2
15*(x + 28*x + 63)

25: pade(atan(x),x,0,5,5);

4 2
x*(64*x + 735*x + 945)
--------------------------

4 2
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15*(15*x + 70*x + 63)

26: pade(exp(1/x),x,0,5,5);

***** no Pade Approximation exists

27: pade(factorial(x),x,1,3,3);

***** not yet implemented

28: pade(asech(x),x,0,3,3);

2 2 2
- 3*log(x)*x + 8*log(x) + 3*log(2)*x - 8*log(2) + 2*x
--------------------------------------------------------

2
3*x - 8

29: taylor(ws-asech(x),x,0,10);

11
log(x)*(0 + O(x ))

13 6 43 8 1611 10 11
+ (-----*x + ------*x + -------*x + O(x ))

768 2048 81920

30: pade(sin(x)/x^2,x,0,10,0);

***** Pade Approximation of this order does not exist

31: pade(sin(x)/x^2,x,0,10,2);

10 8 6 4 2
( - x + 110*x - 7920*x + 332640*x - 6652800*x

+ 39916800)/(39916800*x)

32: pade(exp(x),x,0,10,10);

10 9 8 7 6
(x + 110*x + 5940*x + 205920*x + 5045040*x

5 4 3
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+ 90810720*x + 1210809600*x + 11762150400*x

2
+ 79394515200*x + 335221286400*x + 670442572800)/

10 9 8 7 6
(x - 110*x + 5940*x - 205920*x + 5045040*x

5 4
- 90810720*x + 1210809600*x

3 2
- 11762150400*x + 79394515200*x

- 335221286400*x + 670442572800)

33: pade(sin(sqrt(x)),x,0,3,3);

(sqrt(x)*
3 2

(56447*x - 4851504*x + 132113520*x - 885487680))\

3 2
(7*(179*x - 7200*x - 2209680*x - 126498240))
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16.55 RATINT: Integrate Rational Functions using the
Minimal Algebraic Extension to the Constant Field

Author: Neil Langmead

This package was written when the author was a placement student at ZIB Berlin.

16.55.1 Rational Integration

This package implements the Horowitz/ Rothstein/ Trager algorithms [GCL92]
for the integration of rational functions in REDUCE. We work within a field K of
characteristic 0 and functions p, q ∈ K[x]. K is normally the field Q of rational
numbers, but not always. These procedures return

∫ p
qdx. The aim is to be able to

integrate any function of the form p/q in x, where p and q are polynomials in the
fieldQ. The algorithms used avoid algebraic number extensions wherever possible,
and in general, express the integral using the minimal algebraic extension field.

16.55.1.1 Syntax of ratint

This function has the following syntax:

ratint(p,q,var)

where p/q is a rational function in var. The output of ratint is a list of two ele-
ments: the first is the polynomial part of the integral, the second is the logarithmic
part. The integral is the sum of these parts.

16.55.1.2 Examples

consider the following examples in REDUCE:

ratint(1,x^2-2,x);

sqrt(2)*x-2 sqrt(2)*x+2
log(-------------) - log(-------------)

sqrt(2) sqrt(2)
{ 0, --------------------------------------- }

2*sqrt(2)

p:=441*x^7+780*x^6-2861*x^5+4085*x^4+7695*x^3+3713*x^2-43253*x
+24500;
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q:=9*x^6+6*x^5-65*x^4+20*x^3+135*x^2-154*x+49;

ratint(p,q,x);

49 6 226 5 268 4 1332 3 2809 2 752 256
---*(x + ---*x - ---*x + ----*x - ----*x - ---*x + ---)
2 147 49 49 147 21 9

{----------------------------------------------------------- , 0 }
4 2 3 2 7
x - ---*x - 4*x + 6*x - ---

3 3

k:=36*x^6+126*x^5+183*x^4+(13807/6)*x^3-407*x^2-(3242/5)*x+(3044/15);
l:=(x^2+(7/6)*x+(1/3))^2*(x-(2/5))^3;

ratint(k,l,x);

5271 3 39547 2 31018 7142
------*(x + -------*x - -------*x + -------)

5 52710 26355 26355
{------------------------------------------------,

4 11 3 11 2 2 4
x + ----*x - ----*x - ----*x + ----

30 25 25 75

37451 2 91125 2 128000 1
-------*(log(x - ---) + -------*log(x + ---) - --------*log(x + ---))}

16 5 37451 3 37451 2

ratint(1,x^2+1,x);

2 1
{0,log_sum(beta,beta + ---,0,log(2*beta*x - 1)*beta)}

4

The meaning of the log_sum function will be explained later.
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16.55.2 The Algorithm

The following main algorithm is used:

procedure ratint(p, q, x);
% p and q are polynomials in x, with coefficients in the
% constant field Q
solution_list← HorowitzReduction(p, q, x)
c/d← part(solution_list,1)
poly_part← part(solution_list,2)
rat_part← part(solution_list,3)
rat_part← LogarithmicPartIntegral(rat_part, x)
return(rat_part+ c/d+ poly_part)
end

The algorithm contains two subroutines, HorowitzReduction and rt. HorowitzRe-
duction is an implementation of Horowitz’ method to reduce a given rational func-
tion into a polynomial part and a logarithmic part. The integration of the polyno-
mial part is a trivial task, and is done by the int operator in REDUCE. The integra-
tion of the logarithmic part is done by the routine rt, which is an impementation
of the Rothstein and Trager method. These two answers are outputed in a list, the
complete answer being the sum of these two parts.
These two algorithms are as follows:

procedure how(p, q, x)

for a given rational function p/q in x, this algorithm calculates the
reduction of

∫
(p/q) into a polynomial part and logarithmic part.

poly_part← quo(p, q); p← rem(p, q);

d← GCD(q, q′); b← quo(q, d); m← deg(b);
n← deg(d);

a←
∑m−1

i=1 aix
i; c←

∑n−1
i=1 cix

i;
r ← b ∗ c′ − quo(b ∗ d′, d) + d ∗ a;

for i from 0 to m+ n− 1 do
{
eqns(i)← coeff(p, i) = coeff(r, i);

};

solve(eqns, {a(0), ...., a(m− 1), c(0), ...., c(n− 1)});

return(c/d+
∫
poly_part+

∫
a/b);

end;
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procedure RothsteinTrager(a, b, x)

% Given a rational function a/b in x with deg(a) < deg(b),
with b monic and square free, we calculate

∫
(a/b)

R(z)← residue(a− zb′, b)
(r1(z)...rk(z))← factors(R(z))
integral← 0

for i from 1 to k do
{
d← degree(ri(z))
if d = 1 then {

c← solve(ri(z) = 0, z)
v← GCD(a− cb′, b)
v← v/lcoeff(v)
integral← integral + c ∗ log(v)
}

else {
% we need to do a GCD over algebraic number field
v← GCD(a− α ∗ b′, b)
v← v/lcoff(v), where α = roof_of(ri(z))

if d = 2 then {
% give answer in terms of radicals
c← solve(ri(z) = 0, z)
for j from 1 to 2 do {
v[j]← substitute(α = c[j], v)
integral← integral + c[j] ∗ log(v[j])
}
else {
% Need answer in terms of root_of notation
for j from 1 to d do {
v[j]← substitute(α = c[j], v)
integral← integral + c[j] ∗ log(v[j])
% where c[j] = root_of(ri(z)) }
}

}
}

return(integral)
end
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16.55.3 The log_sum operator

The algorithms above returns a sum of terms of the form∑
α|R(α)=0

log(S(α, x)),

where R ∈ K[z] is square free, and S ∈ K[z, x]. In the cases where the degree
of R(α) is less than two, this is merely a sum of logarithms. For cases where the
degree is two or more, I have chosen to adopt this notation as the answer to the
original problem of integrating the rational function. For example, consider the
integral ∫

a

b
=

∫
2x5 − 19x4 + 60x3 − 159 + x2 + 50x+ 11

x6 − 13x5 + 58x4 − 85x3 − 66x2 − 17x+ 1
dx

Calculating the resultant R(z) = resx(a− zb′, b) and factorising gives

R(z) = −190107645728000(z3 − z2 + z + 1)2

Making the result monic, we have

R2(z) = z3 − z2 + z + 1

which does not split over the constant field Q. Continuting with the Rothstein
Trager algorithm, we now calculate

gcd(a− α b′, b) = z2 + (2 ∗ α− 5) ∗ z + α2,

where α is a root of R2(z).
Thus we can write∫

a

b
=

∑
α|α3−α2+α+1=0

α ∗ log(x2 + 2αx− 5x+ α2),

and this is the answer now returned by REDUCE, via a function called log_sum.
This has the following syntax:

log_sum(α, eqn(α), 0, sum_term, var)

where α satisfies eqn = 0, and sum_term is the term of the summation in the
variable var. Thus in the above example, we have∫

a

b
dx = log_sum(α, α3 − α2 + α+ 1, 0, α ∗ log(x2 + 2αx− 5x+ α2), x)

Many rational functions that could not be integrated by REDUCE previously can
now be integrated with this package. The above is one example; some more are
given on the next page.
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16.55.3.1 More examples∫
1

x5 + 1
dx =

1

5
log(x+ 1)

+ 5log_sum(β, β4 +
1

5
β3 +

1

25
β2 +

1

125
β +

1

625
, 0, log(5 ∗ β + x) ∗ β)

which should be read as∫
1

x5 + 1
dx =

1

5
log(x+ 1) +

∑
β|β4+ 1

5
β3+ 1

25
β2+ 1

125
β+ 1

625
=0

log(5 ∗ β + x)β

∫
7x13 + 10x8 + 4x7 − 7x6 − 4x3 − 4x2 + 3x+ 3

x14 − 2x8 − 2x7 − 2x4 − 4x3 − x2 + 2x+ 1
dx =

log_sum(α, α2 − α− 1

4
, 0, log(−2αx2 − 2αx+ x7 + x2 − 1) ∗ α, x),∫

1

x3 + x+ 1
dx = log_sum(β, β3− 3

31
β2− 1

31
, 0, β log(−62

9
β2+

31

9
β+x+

4

9
)).

16.55.4 Options

There are several alternative forms that the answer to the integration problem can
take. One output is the log_sum form shown in the examples above. There is an
option with this package to convert this to a “normal” sum of logarithms in the case
when the degree of eqn in α is two, and α can be expressed in surds. To do this,
use the function convert, which has the following syntax:

convert(exp)

If exp is free of log_sum terms, then exp itself is returned. If exp contains
log_sum terms, then α is represented as surds, and substituted into the log_sum
expression. For example, using the last example, we have in REDUCE:

2: ratint(a,b,x);

{0,

2 1
log_sum(alpha,alpha - alpha - ---,0,

4
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2 7 2
log( - 2*alpha*x - 2*alpha*x + x + x - 1)*alpha,x)}

3: convert(ws);

1 2 7
---*(sqrt(2)*log( - sqrt(2)*x - sqrt(2)*x + x - x - 1)
2

2 7
- sqrt(2)*log(sqrt(2)*x + sqrt(2)*x + x - x - 1)

2 7
+ log( - sqrt(2)*x - sqrt(2)*x + x - x - 1)

2 7
+ log(sqrt(2)*x + sqrt(2)*x + x - x - 1))

16.55.4.1 LogtoAtan function

The user could then combine these to form a more elegant answer, using the switch
combinelogs if one so wished. Another option is to convert complex logarithms
to real arctangents [Bro97], which is recommended if definite integration is the
goal. This is implemented in REDUCE via a function convert_log, which has the
following syntax:

convert_log(exp),

where exp is any log_sum expression.

The procedure to convert complex logarithms to real arctangents is based on an
algorithm by Rioboo. Here is what it does:

Given a field K of characteristic 0 such that
√
−1 6∈ K and A,B ∈ K[x] with

B 6= 0, return a sum f of arctangents of polynomials in K[x] such that

df

dx
=

d

dx
i log(

A+ iB

A− iB
)

Example:∫
x4 − 3 ∗ x2 + 6

x6 − 5 ∗ x4 + 5 ∗ x2 + 4
dx =

∑
α|4α+1=0

α log(x3 + 2αx2 − 3x− 4α)
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Substituting α = i/2 and α = −i/2 gives the result

i

2
log(

(x3 − 3x) + i(x2 − 2)

(x3 − 3x)− i(x2 − 2)
)

Applying logtoAtan now with A = x3 − 3x, and B = x2 − 2 we obtain

∫
x4 − 3 ∗ x2 + 6

x6 − 5 ∗ x4 + 5 ∗ x2 + 4
dx = arctan(

x5 − 3x3 + x

2
)+arctan(x3)+arctan(x),

and this is the formula which should be used for definite integration.

Another example in REDUCE is given below:

1: ratint(1,x^2+1,x);

*** Domain mode rational changed to arnum

2 1
{0,log_sum(beta,beta + ---,0,log(2*beta*x - 1)*beta)}

4

13: part(ws,2);

2 1
log_sum(beta,beta + ---,0,log(2*beta*x - 1)*beta)

4

14: on combinelogs;

15: convertlog(ws);

1 - i*x + 1
---*log(------------)*i
2 i*x + 1

logtoAtan(-x,1,x);

2*atan(x)
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16.55.5 Hermite’s method

The package also implements Hermite’s method to reduce the integral into its poly-
nomial and logarithmic parts, but occasionally, REDUCE returns the incorrect an-
swer when this algorithm is used. This is due to the REDUCE operator pf, which
performs a complete partial fraction expansion when given a rational function as
input. Work is presently being done to give the pf operator a facility which tells
it that the input is already factored. This would then enable REDUCE to perform
a partial fraction decomposition with respect to a square free denominator, which
may not necessarily be fully factored over Q.

For a complete explanation of this and the other algorithms used in this package,
including the theoretical justification and proofs, please consult [GCL92].

16.55.6 Tracing the ratint program

The package includes a facility to trace in some detail the inner workings of the
ratint program. Messages are given at the key stages of the algorithm, together with
the results obtained. These messages are displayed when the switch traceratint is
on, which is done in REDUCE with the command

on traceratint;

This switch is off by default. Here is an example of the output obtained with this
switch on:

Loading image file: /silo/tony/red/lisp/psl/solaris/red/reduce.img
REDUCE Development Version, 21-May-97 ...

1: load_package ratint;

2: on traceratint;

3: ratint(1+x,x^2-2*x+1,x);

x + 1
performing Howoritz reduction on --------------

2
x - 2*x + 1

- 2 1
Howoritz gives: {-------,0,-------}

x - 1 x - 1
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1
computing Rothstein Trager on -------

x - 1

integral in Rothstein T is log(x - 1)

- 2
{-------,log(x - 1)}

x - 1

16.55.7 Bugs, suggestions and comments

This package was written when the author was working as a placement student at
ZIB Berlin.
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16.56 REACTEQN: Support for chemical reaction equat-
ion systems

This package allows a user to transform chemical reaction systems into ordinary
differential equation systems (ODE) corresponding to the laws of pure mass action.

Author: Herbert Melenk.

A single reaction equation is an expression of the form

〈n1〉〈s1〉 + 〈n2〉〈s2〉 + . . .-> 〈n3〉〈s3〉 + 〈n4〉〈s4〉 + . . .

or

〈n1〉〈s1〉 + 〈n2〉〈s2〉 + . . .<> 〈n3〉〈s3〉 + 〈n4〉〈s4〉 + . . .

where the 〈si〉 are arbitrary names of species (REDUCE symbols) and the 〈ni〉
are positive integer numbers. The number 1 can be omitted. The connector ->
describes a one way reaction, while <> describes a forward and backward reaction.

A reaction system is a list of reaction equations, each of them optionally followed
by one or two expressions for the rate constants. A rate constant can a number, a
symbol or an arbitrary REDUCE expression. If a rate constant is missing, an auto-
matic constant of the form RATE(n) (where n is an integer counter) is generated.
For double reactions the first constant is used for the forward direction, the second
one for the backward direction.

The names of the species are collected in a list bound to the REDUCE variable
SPECIES. This list is automatically filled during the processing of a reaction sys-
tem. The species enter in an order corresponding to their appearance in the reaction
system and the resulting ode’s will be ordered in the same manner.

If a list of species is preassigned to the variable SPECIES either explicitly or from
previous operations, the given order will be maintained and will dominate the for-
matting process. So the ordering of the result can be easily influenced by the user.

Syntax:

reac2ode { 〈reaction〉 [,〈rate〉 [,〈rate〉]] [,〈reaction〉 [,〈rate〉 [,〈rate〉]]] .... };

where two rates are applicable only for <> reactions.

Result is a system of explicit ordinary differential equations with polynomial right-
hand sides. As side effect the following variables are set:

lists:

rates: list of the rates in the system

species: list of the species in the system
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matrices:

inputmat: matrix of the input coefficients

outputmat: matrix of the output coefficients

In the matrices the row number corresponds to the input reaction number, while the
column number corresponds to the species index. Note: if the rates are numerical
values, it will be in most cases appropriate to switch on REDUCE rounded mode
for floating point numbers. That is

on rounded;

Inputmat and outputmat can be used for linear algebra type investigations of the
reaction system. The classical reaction matrix is the difference of these matrices;
however, the two matrices contain more information than their differences because
the appearance of a species on both sides is not reflected by the reaction matrix.

EXAMPLES: This input

% Example taken from Feinberg (Chemical Engineering):

species := {A1,A2,A3,A4,A5};

reac2ode { A1 + A4 <> 2A1, rho, beta,
A1 + A2 <> A3, gamma, epsilon,
A3 <> A2 + A5, theta, mue};

gives the output

2
{DF(A1,T)=RHO*A1*A4 - BETA*A1 - GAMMA*A1*A2 + EPSILON*A3,

DF(A2,T)= - GAMMA*A1*A2 + EPSILON*A3 + THETA*A3 - MUE*A2*A5,

DF(A3,T)=GAMMA*A1*A2 - EPSILON*A3 - THETA*A3 + MUE*A2*A5,

2
DF(A4,T)= - RHO*A1*A4 + BETA*A1 ,

DF(A5,T)=THETA*A3 - MUE*A2*A5}

The corresponding matrices are

inputmat;

[ 1 0 0 1 0 ]
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[ ]
[ 1 1 0 0 0 ]
[ ]
[ 0 0 1 0 0 ]

outputmat;

[ 2 0 0 0 0 ]
[ ]
[ 0 0 1 0 0 ]
[ ]
[ 0 1 0 0 1 ]

% computation of the classical reaction matrix as difference
% of output and input matrix:

reactmat := outputmat-inputmat;

[ 1 0 0 -1 0 ]
[ ]

REACTMAT := [ -1 -1 1 0 0 ]
[ ]
[ 0 1 -1 0 1 ]

% Example with automatic generation of rate constants
% and automatic extraction of species

species := {};

reac2ode { A1 + A4 <> 2A1,
A1 + A2 <> A3,

a3 <> A2 + A5};

new species: A1
new species: A4
new species: A3
new species: A2
new species: A5

2
{DF(A1,T)= - A1 *RATE(2) + A1*A4*RATE(1) - A1*A2*RATE(3) +

A3*RATE(4),
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2
DF(A4,T)=A1 *RATE(2) - A1*A4*RATE(1),

DF(A2,T)= - A1*A2*RATE(3) - A2*A5*RATE(6) + A3*RATE(5) + A3*RATE(4),

DF(A3,T)=A1*A2*RATE(3) + A2*A5*RATE(6) - A3*RATE(5) - A3*RATE(4),

DF(A5,T)= - A2*A5*RATE(6) + A3*RATE(5)\}

% Example with rates computed from numerical expressions

species := {};

reac2ode { A1 + A4 <> 2A1, 17.3* 22.4^1.5,
0.04* 22.4^1.5 };

new species: A1
new species: A4

2
{DF(A1,T)= - 4.24065*A1 + 1834.08*A1*A4,

2
DF(A4,T)=4.24065*A1 - 1834.08*A1*A4}
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16.57 REDLOG: Extend REDUCE to a computer logic
system

The name REDLOG stand for REDuce LOGic system. Redlog implements symb-
olic algorithms on first-order formulas with respect to user-chosen first-order lan-
guages and theories. The available domains include real numbers, integers, com-
plex numbers, p-adic numbers, quantified propositional calculus, term algebras.

Documentation for this package can be found online.

Authors: Andreas Dolzmann and Thomas Sturm

16.58 RESET: Code to reset REDUCE to its initial state

This package defines a command RESETREDUCE that works through the history
of previous commands, and clears any values which have been assigned, plus any
rules, arrays and the like. It also sets the various switches to their initial values. It
is not complete, but does work for most things that cause a gradual loss of space. It
would be relatively easy to make it interactive, so allowing for selective resetting.

There is no further documentation on this package.

Author: John Fitch.

http://redlog.eu/
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16.59 RESIDUE: A residue package

This package supports the calculation of residues of arbitrary expressions.

Author: Wolfram Koepf.

The residue Res
z=a

f(z) of a function f(z) at the point a ∈ C is defined as

Res
z=a

f(z) =
1

2πi

∮
f(z) dz ,

with integration along a closed curve around z = a with winding number 1.

If f(z) is given by a Laurent series development at z = a

f(z) =
∞∑

k=−∞
ak (z − a)k ,

then
Res
z=a

f(z) = a−1 . (16.94)

If a =∞, one defines on the other hand

Res
z=∞

f(z) = −a−1 (16.95)

for given Laurent representation

f(z) =
∞∑

k=−∞
ak

1

zk
.

The package is loaded by the statement

1: load residue;

It contains two REDUCE operators:

• residue(f,z,a) determines the residue of f at the point z = a if f is
meromorphic at z = a. The calculation of residues at essential singularities
of f is not supported.

• poleorder(f,z,a) determines the pole order of f at the point z = a if
f is meromorphic at z = a.

Note that both functions use the taylor package in connection with representa-
tions (16.94)–(16.95).

Here are some examples:
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2: residue(x/(x^2-2),x,sqrt(2));

1
---
2

3: poleorder(x/(x^2-2),x,sqrt(2));

1

4: residue(sin(x)/(x^2-2),x,sqrt(2));

sqrt(2)*sin(sqrt(2))
----------------------

4

5: poleorder(sin(x)/(x^2-2),x,sqrt(2));

1

6: residue(1/(x-1)^m/(x-2)^2,x,2);

- m

7: poleorder(1/(x-1)/(x-2)^2,x,2);

2

8: residue(sin(x)/x^2,x,0);

1

9: poleorder(sin(x)/x^2,x,0);

1

10: residue((1+x^2)/(1-x^2),x,1);

-1

11: poleorder((1+x^2)/(1-x^2),x,1);

1
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12: residue((1+x^2)/(1-x^2),x,-1);

1

13: poleorder((1+x^2)/(1-x^2),x,-1);

1

14: residue(tan(x),x,pi/2);

-1

15: poleorder(tan(x),x,pi/2);

1

16: residue((x^n-y^n)/(x-y),x,y);

0

17: poleorder((x^n-y^n)/(x-y),x,y);

0

18: residue((x^n-y^n)/(x-y)^2,x,y);

n
y *n
------

y

19: poleorder((x^n-y^n)/(x-y)^2,x,y);

1

20: residue(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);

-2

21: poleorder(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);

1

22: for k:=1:2 sum residue((a+b*x+c*x^2)/(d+e*x+f*x^2),x,
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part(part(solve(d+e*x+f*x^2,x),k),2));

b*f - c*e
-----------

2
f

23: residue(x^3/sin(1/x)^2,x,infinity);

- 1
------

15

24: residue(x^3*sin(1/x)^2,x,infinity);

-1

Note that the residues of factorial and Γ function terms are not yet supported.
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16.60 RLFI: REDUCE LATEX formula interface

This package adds LATEX syntax to REDUCE. Text generated by REDUCE in this
mode can be directly used in LATEX source documents. Various mathematical con-
structions are supported by the interface including subscripts, superscripts, font
changing, Greek letters, divide-bars, integral and sum signs, derivatives, and so on.

Author: Richard Liska.

High quality typesetting of mathematical formulas is a quite tedious task. One of
the most sophisticated typesetting programs for mathematical text TEX [Knu84],
together with its widely used macro package LATEX [Lam86], has a strange syntax
of mathematical formulas, especially of the complicated type. This is the main rea-
son which lead us to designing the formula interface between the computer algebra
system REDUCE and the document preparation system LATEX. The other reason
is that all available syntaxes of the REDUCE formula output are line oriented and
thus not suitable for typesetting in mathematical text. The idea of interfacing a
computer algebra system to a typesetting program has already been used, eg. in
[Fat87] presenting the TEX output of the MACSYMA computer algebra system.

The formula interface presented here adds to REDUCE the new syntax of formula
output, namely LATEX syntax, and can also be named REDUCE - LATEX translator.
Text generated by REDUCE in this syntax can be directly used in LATEX source
documents. Various mathematical constructions are supported by the interface in-
cluding subscripts, superscripts, font changing, Greek letters, divide-bars, integral
and sum signs, derivatives etc.

The interface can be used in two ways:

• for typesetting of results of REDUCE algebraic calculations.

• for typesetting of users formulas.

The latter can even be used by users unfamiliar with the REDUCE system, because
the REDUCE input syntax of formulas is almost the same as the syntax of the ma-
jority of programming languages. We aimed at speeding up the process of formula
typesetting, because we are convinced, that the writing of correct complicated for-
mulas in the REDUCE syntax is a much more simpler task than writing them in the
LATEX syntax full of keywords and special characters \, {, ^ etc. It is clear,
that not every formula produced by the interface is typeset in the best format from
an aesthetic point of view. When a user is not satisfied with the result, he can add
some LATEX commands to the REDUCE output - LATEX input.

The interface is connected to REDUCE by three new switches and several state-
ments. To activate the LATEX output mode the switch latex must be set on. this
switch, similar to the switch fort producing FORTRAN output, being on causes
all outputs to be written in the LATEX syntax of formulas. The switch VERBATIM
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is used for input printing control. If it is on input to REDUCE system is typeset in
LATEX verbatim environment after the line containing the string REDUCE Input:.

The switch lasimp controls the algebraic evaluation of input formulas. If it is on
every formula is evaluated, simplified and written in the form given by ordinary
REDUCE statements and switches such as factor, order, rat etc. In the case
when the lasimp switch is off evaluation, simplification or reordering of formu-
las is not performed and REDUCE acts only as a formula parser and the form of the
formula output is exactly the same as that of the input, the only difference remains
in the syntax. The mode off lasimp is designed especially for typesetting of
formulas for which the user needs preservation of their structure. This switch has
no meaning if the switch Latex is off and thus is working only for LATEX output.

For every identifier used in the typeset REDUCE formula the following properties
can be defined by the statement defid:

• its printing symbol (Greek letters can be used).

• the font in which the symbol will be typeset.

• accent which will be typeset above the symbol.

Symbols with indexes are treated in REDUCE as operators. Each index corre-
sponds to an argument of the operator. The meaning of operator arguments (where
one wants to typeset them) is declared by the statement defindex. This state-
ment causes the arguments to be typeset as subscripts or superscripts (on left or
right-hand side of the operator) or as arguments of the operator.

The statement mathstyle defines the style of formula typesetting. The variable
laline!* defines the length of output lines.

The fractions with horizontal divide bars are typeset by using the new REDUCE
infix operator //. This operator is not algebraically simplified. During typesetting
of powers the checking on the form of the power base and exponent is performed to
determine the form of the typeset expression (eg. sqrt symbol, using parentheses).

Some special forms can be typeset by using REDUCE prefix operators. These are
as follows:

• int - integral of an expression.

• dint - definite integral of an expression.

• df - derivative of an expression.

• pdf - partial derivative of an expression.

• sum - sum of expressions.
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• product - product of expressions.

• sqrt - square root of expression.

There are still some problems unsolved in the present version of the interface as
follows:

• breaking the formulas which do not fit on one line.

• automatic decision where to use divide bars in fractions.

• distinction of two- or more-character identifiers from the product of one-
character symbols.

• typesetting of matrices.

Remark

After finishing presented interface, we have found another work [ASW89], which
solves the same problem. The RLFI package has been described in [DLS90] too.

16.60.1 APPENDIX: Summary and syntax

Warning

The RLFI package can be used only on systems supporting lower case letters with
off raise statement. The package distinquishes the upper and lower case let-
ters, so be carefull in typing them. In REDUCE 3.6 the REDUCE commands have
to be typed in lower-case while the switch latex is on, in previous versions the
commands had to be typed in upper-case.

Switches

latex - If on output is in LATEX format. It turns off the raise switch if it is
set on and on the raise switch if it is set off. By default is off.

lasimp - If on formulas are evaluated (simplified), REDUCE works as usually.
If off no evaluation is performed and the structure of formulas is preserved.
By default is on.

verbatim - If on the REDUCE input, while latex switch being on, is printed
in LATEX verbatim environment. The acutal REDUCE input is printed after
the line containing the string "REDUCE Input:". It turns on resp. off
the echo switch when turned on resp. off. by default is off.

Operators



882 CHAPTER 16. USER CONTRIBUTED PACKAGES

infix - //

prefix - int,dint,df,pdf,sum,product,sqrt and all REDUCE prefix
operators defined in the REDUCE kernel and the SOLVE module.

<alg. expression> // <alg. expression>
int(<function>,<variable>)
dint(<from>,<to>,<function>,<variable>)
df(<function>,<variables>)
<variables> ::= <o-variable>|<o-variable>,<variables>
<o-variable> ::= <variable>|<variable>,<order>
<variable> ::= <kernel>
<order> ::= <integer>
<function> ::= <alg. expression>
<from> ::= <alg. expression>
<to> ::= <alg. expression>
pdf(<function>,<variables>)
sum(<from>,<to>,<function>)
product(<from>,<to>,<function>)
sqrt(<alg. expression>)

<alg. expression> is any algebraic expression. Where appropriate, it can
include also relational operators (e.g. argument <from> of sum or product
operators is usually equation). <kernel> is identifier or prefix operator with
arguments as described in [Hea95]. Interface supports typesetting lists of algebraic
expressions.

Statements

mathstyle <m-style>;
<m-style> ::= math | displaymath | equation
defid <identifier>,<d-equations>;
<d-equations> ::= <d-equation> | <d-equation>,<d-equations>
<d-equation> ::= <d-print symbol> | <d-font>|<d-accent>
<d-print symbol> ::= name = <print symbol>
<d-font> ::= font = <font>
<d-accent> ::= accent = <accent>
<print symbol> ::= <character> | <special symbol>
<special symbol> ::= alpha|beta|gamma|delta|epsilon|

varepsilon|zeta|eta|theta|vartheta|iota|kappa|lambda|
mu|nu|xi|pi|varpi|rho|varrho|sigma|varsigma|tau|
upsilon|phi|varphi|chi|psi|omega|Gamma|Delta|Theta|
Lambda|Xi|Pi|Sigma|Upsilon|Phi|Psi|Omega|infty|hbar

<font> ::= bold|roman
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<accent> ::=hat|check|breve|acute|grave|tilde|bar|vec|
dot|ddot

For special symbols and accents see [Lam86], p. 43, 45, 51.

defindex <d-operators>;
<d-operators> ::= <d-operator> | <d-operator>,<d-operators>
<d-operator> ::= <prefix operator>(<descriptions>)
<prefix operator> ::= <identifier>
<descriptions> ::= <description> | <description>,

<descriptions>
<description> ::= arg | up | down | leftup | leftdown

The meaning of the statements is briefly described in the preceding text.
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16.61 ROOTS: A REDUCE root finding package

This root finding package can be used to find some or all of the roots of a univariate
polynomial with real or complex coefficients, to the accuracy specified by the user.

It is designed so that it can be used as an independent package, or it may be called
from SOLVE if ROUNDED is on. For example, the evaluation of

on rounded,complex;
solve(x**3+x+5,x);

yields the result

{X= - 1.51598,X=0.75799 + 1.65035*I,X=0.75799 - 1.65035*I}

This package loads automatically.

Author: Stanley L. Kameny.

16.61.1 Introduction

The root finding package is designed so that it can be used as an independent pack-
age, or it can be integrated with and called by SOLVE. This document describes
the package in its independent use. It can be used to find some or all of the roots of
univariate polynomials with real or complex coefficients, to the accuracy specified
by the user.

16.61.2 Root Finding Strategies

For all polynomials handled by the root finding package, strategies of factoring
are employed where possible to reduce the amount of required work. These in-
clude square-free factoring and separation of complex polynomials into a product
of a polynomial with real coefficients and one with complex coefficients. When-
ever these succeed, the resulting smaller polynomials are solved separately, except
that the root accuracy takes into account the possibility of close roots on different
branches. One other strategy used where applicable is the powergcd method of
reducing the powers of the initial polynomial by a common factor, and deriving
the roots in two stages, as roots of the reduced power polynomial. Again here, the
possibility of close roots on different branches is taken into account.
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16.61.3 Top Level Functions

The top level functions can be called either as symbolic operators from algebraic
mode, or they can be called directly from symbolic mode with symbolic mode
arguments. Outputs are expressed in forms that print out correctly in algebraic
mode.

16.61.3.1 Functions that refer to real roots only

Three top level functions refer only to real roots. Each of these functions can
receive 1, 2 or 3 arguments.

The first argument is the polynomial p, that can be complex and can have multiple
or zero roots. If arg2 and arg3 are not present, all real roots are found. If the
additional arguments are present, they restrict the region of consideration.

• If arguments are (p,arg2) then Arg2 must be POSITIVE or NEGATIVE. If
arg2=NEGATIVE then only negative roots of p are included; if arg2=POSITIVE
then only positive roots of p are included. Zero roots are excluded.

• If arguments are (p,arg2,arg3) then Arg2 and Arg3 must be r (a real
number) or EXCLUDE r, or a member of the list POSITIVE, NEGATIVE,
INFINITY, -INFINITY. EXCLUDE r causes the value r to be excluded
from the region. The order of the sequence arg2, arg3 is unimportant. As-
suming that arg2 ≤ arg3 when both are numeric, then

{-INFINITY,INFINITY} is equivalent to {} represents all roots;
{arg2,NEGATIVE} represents −∞ < r < arg2;
{arg2,POSITIVE} represents arg2 < r <∞;

In each of the following, replacing an arg with EXCLUDE arg converts the
corresponding inclusive ≤ to the exclusive <

{arg2,-INFINITY} represents −∞ < r ≤ arg2;
{arg2,INFINITY} represents arg2 ≤ r <∞;
{arg2,arg3} represents arg2 ≤ r ≤ arg3;

• If zero is in the interval the zero root is included.

REALROOTS This function finds the real roots of the polynomial p, using the
REALROOT package to isolate real roots by the method of Sturm sequences,
then polishing the root to the desired accuracy. Precision of computation is
guaranteed to be sufficient to separate all real roots in the specified region.
(cf. MULTIROOT for treatment of multiple roots.)
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ISOLATER This function produces a list of rational intervals, each containing a
single real root of the polynomial p, within the specified region, but does not
find the roots.

RLROOTNO This function computes the number of real roots of p in the speci-
fied region, but does not find the roots.

16.61.3.2 Functions that return both real and complex roots

ROOTS p; This is the main top level function of the roots package. It will find all
roots, real and complex, of the polynomial p to an accuracy that is sufficient
to separate them and which is a minimum of 6 decimal places. The value
returned by ROOTS is a list of equations for all roots. In addition, ROOTS
stores separate lists of real roots and complex roots in the global variables
ROOTSREAL and ROOTSCOMPLEX.

The order of root discovery by ROOTS is highly variable from system to
system, depending upon very subtle arithmetic differences during the com-
putation. In order to make it easier to compare results obtained on different
computers, the output of ROOTS is sorted into a standard order: a root with
smaller real part precedes a root with larger real part; roots with identical
real parts are sorted so that larger imaginary part precedes smaller imaginary
part. (This is done so that for complex pairs, the positive imaginary part is
seen first.)

However, when a polynomial has been factored (by square-free factoring or
by separation into real and complex factors) then the root sorting is applied
to each factor separately. This makes the final resulting order less obvious.
However it is consistent from system to system.

ROOTS_AT_PREC p; Same as ROOTS except that roots values are returned to
a minimum of the number of decimal places equal to the current system
precision.

ROOT_VAL p; Same as ROOTS_AT_PREC, except that instead of returning a
list of equations for the roots, a list of the root value is returned. This is the
function that SOLVE calls.

NEARESTROOT(p,s); This top level function uses an iterative method to find
the root to which the method converges given the initial starting origin s,
which can be complex. If there are several roots in the vicinity of s and s
is not significantly closer to one root than it is to all others, the convergence
could arrive at a root that is not truly the nearest root. This function should
therefore be used only when the user is certain that there is only one root in
the immediate vicinity of the starting point s.
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FIRSTROOT p; ROOTS is called, but only the first root determined by ROOTS is
computed. Note that this is not in general the first root that would be listed
in ROOTS output, since the ROOTS outputs are sorted into a canonical order.
Also, in some difficult root finding cases, the first root computed might be
incorrect.

16.61.3.3 Other top level functions

GETROOT(n,rr); If rr has the form of the output of ROOTS, REALROOTS, or
NEARESTROOTS; GETROOT returns the rational, real, or complex value
of the root equation. An error occurs if n < 1 or n > the number of roots in
rr.

MKPOLY rr; This function can be used to reconstruct a polynomial whose root
equation list is rr and whose denominator is 1. Thus one can verify that if
rr := ROOTS p, and rr1 := ROOTS MKPOLY rr, then rr1 = rr.
(This will be true if MULTIROOT and RATROOT are ON, and ROUNDED is
off.) However, MKPOLY rr −NUM p = 0 will be true if and only if all
roots of p have been computed exactly.

16.61.3.4 Functions available for diagnostic or instructional use only

GFNEWT(p,r,cpx); This function will do a single pass through the function
GFNEWTON for polynomial p and root r. If cpx=T, then any complex part
of the root will be kept, no matter how small.

GFROOT(p,r,cpx); This function will do a single pass through the function
GFROOTFIND for polynomial p and root r. If cpx=T, then any complex
part of the root will be kept, no matter how small.

16.61.4 Switches Used in Input

The input of polynomials in algebraic mode is sensitive to the switches COMPLEX,
ROUNDED, and ADJPREC. The correct choice of input method is important since
incorrect choices will result in undesirable truncation or rounding of the input co-
efficients.

Truncation or rounding may occur if ROUNDED is on and one of the following is
true:

1. a coefficient is entered in floating point form or rational form.

2. COMPLEX is on and a coefficient is imaginary or complex.
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Therefore, to avoid undesirable truncation or rounding, then:

1. ROUNDED should be off and input should be in integer or rational form; or

2. ROUNDED can be on if it is acceptable to truncate or round input to the
current value of system precision; or both ROUNDED and ADJPREC can be
on, in which case system precision will be adjusted to accommodate the
largest coefficient which is input; or

3. if the input contains complex coefficients with very different magnitude for
the real and imaginary parts, then all three switches ROUNDED, ADJPREC
and COMPLEX must be on.

integer and complex modes (off ROUNDED) any real polynomial can be input us-
ing integer coefficients of any size; integer or rational coefficients can be
used to input any real or complex polynomial, independent of the setting of
the switch COMPLEX. These are the most versatile input modes, since any
real or complex polynomial can be input exactly.

modes rounded and complex-rounded (on ROUNDED) polynomials can be input
using integer coefficients of any size. Floating point coefficients will be
truncated or rounded, to a size dependent upon the system. If complex is
on, real coefficients can be input to any precision using integer form, but
coefficients of imaginary parts of complex coefficients will be rounded or
truncated.

16.61.5 Internal and Output Use of Switches

The REDUCE arithmetic mode switches ROUNDED and COMPLEX control the be-
havior of the root finding package. These switches are returned in the same state
in which they were set initially, (barring catastrophic error).

COMPLEX The root finding package controls the switch COMPLEX internally,
turning the switch on if it is processing a complex polynomial. For a polyno-
mial with real coefficients, the starting point argument for NEARESTROOT
can be given in algebraic mode in complex form as rl + im * I and will be
handled correctly, independent of the setting of the switch COMPLEX. Com-
plex roots will be computed and printed correctly regardless of the setting of
the switch COMPLEX. However, if COMPLEX is off, the imaginary part will
print out ahead of the real part, while the reverse order will be obtained if
COMPLEX is on.

ROUNDED The root finding package performs computations using the arithmetic
mode that is required at the time, which may be integer, Gaussian integer,
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rounded, or complex rounded. The switch BFTAG is used internally to gov-
ern the mode of computation and precision is adjusted whenever necessary.
The initial position of switches ROUNDED and COMPLEX are ignored. At
output, these switches will emerge in their initial positions.

16.61.6 Root Package Switches

Note: switches AUTOMODE, ISOROOT and ACCROOT, present in earlier versions,
have been eliminated.

RATROOT (Default OFF) If RATROOT is on all root equations are output in rat-
ional form. Assuming that the mode is COMPLEX (i.e. ROUNDED is off,) the
root equations are guaranteed to be able to be input into REDUCE without
truncation or rounding errors. (Cf. the function MKPOLY described above.)

MULTIROOT (Default ON) Whenever the polynomial has complex coefficients
or has real coefficients and has multiple roots, as determined by the Sturm
function, the function SQFRF is called automatically to factor the polyno-
mial into square-free factors. If MULTIROOT is on, the multiplicity of the
roots will be indicated in the output of ROOTS or REALROOTS by print-
ing the root output repeatedly, according to its multiplicity. If MULTIROOT
is off, each root will be printed once, and all roots should be normally be
distinct. (Two identical roots should not appear. If the initial precision of
the computation or the accuracy of the output was insufficient to separate
two closely-spaced roots, the program attempts to increase accuracy and/or
precision if it detects equal roots. If, however, the initial accuracy specified
was too low, and it was not possible to separate the roots, the program will
abort.)

TRROOT (Default OFF) If switch TRROOT is on, trace messages are printed out
during the course of root determination, to show the progress of solution.

ROOTMSG (Default OFF) If switch ROOTMSG is on in addition to switch
TRROOT, additional messages are printed out to aid in following the progress
of Laguerre and Newton complex iteration. These messages are intended for
debugging use primarily.

16.61.7 Operational Parameters and Parameter Setting.

ROOTACC# (Default 6) This parameter can be set using the function ROOTACC
n; which causes ROOTACC!# to be set to MAX(n,6). If ACCROOT is on,
roots will be determined to a minimum of ROOTACC!# significant places.
(If roots are closely spaced, a higher number of significant places is com-
puted where needed.)
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system precision The roots package, during its operation, will change the value
of system precision but will restore the original value of system precision at
termination except that the value of system precision is increased if necessary
to allow the full roots output to be printed.

PRECISION n; If the user sets system precision, using the command PRECI-
SION n; then the effect is to increase the system precision to n, and to have
the same effect on ROOTS as ROOTACC n; ie. roots will now be printed with
minimum accuracy n. The original conditions can then be restored by using
the command PRECISION RESET; or PRECISION NIL;.

ROOTPREC n; The roots package normally sets the computation mode and pre-
cision automatically. However, if ROOTPREC n; is called and n is greater
than the initial system precision then all root computation will be done ini-
tially using a minimum system precision n. Automatic operation can be
restored by input of ROOTPREC 0;.

16.61.8 Avoiding truncation of polynomials on input

The roots package will not internally truncate polynomials. However, it is possible
that a polynomial can be truncated by input reading functions of the embedding
lisp system, particularly when input is given in floating point (rounded) format.

To avoid any difficulties, input can be done in integer or Gaussian integer format,
or mixed, with integers or rationals used to represent quantities of high precision.
There are many examples of this in the test package. It is usually best to let the
roots package determine the precision needed to compute roots.

The number of digits that can be safely represented in floating point in the lisp sys-
tem are contained in the global variable !!NFPD. Similarly, the maximum number
of significant figures in floating point output are contained in the global variable
!!FLIM. The roots package computes these values, which are needed to control
the logic of the program.

The values of intermediate root iterations (that are printed when TRROOT is on)
are given in bigfloat format even when the actual values are computed in floating
point. This avoids intrusive rounding of root printout.
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16.62 RSOLVE:
Rational/integer polynomial solvers

This package provides operators that compute the exact rational zeros of a single
univariate polynomial using fast modular methods. The algorithm used is that
described by R. Loos (1983): Computing rational zeros of integral polynomials by
p-adic expansion, SIAM J. Computing, 12, 286–293.

Author: Francis J. Wright.

This package provides the operators r/i_solve that compute respectively the
exact rational or integer zeros of a single univariate polynomial using fast modular
methods.

16.62.1 Introduction

This package provides operators that compute the exact rational zeros of a sin-
gle univariate polynomial using fast modular methods. The algorithm used is that
described by R. Loos (1983): Computing rational zeros of integral polynomials
by p-adic expansion, SIAM J. Computing, 12, 286–293. The operator r_solve
computes all rational zeros whereas the operator i_solve computes only integer
zeros in a way that is slightly more efficient than extracting them from the rat-
ional zeros. The r_solve and i_solve interfaces are almost identical, and are
intended to be completely compatible with that of the general solve operator, al-
though r_solve and i_solve give more convenient output when only rational
or integer zeros respectively are required. The current implementation appears to
be faster than solve by a factor that depends on the example, but is typically up
to about 2.

I plan to extend this package to compute Gaussian integer and rational zeros and
zeros of polynomial systems.

16.62.2 The user interface

The first argument is required and must simplify to either a univariate polynomial
expression or equation with integer, rational or rounded coefficients. Symbolic
coefficients are not allowed (and currently complex coefficients are not allowed
either.) The argument is simplified to a quotient of integer polynomials and the
denominator is silently ignored.

Subsequent arguments are optional. If the polynomial variable is to be specified
then it must be the first optional argument, and if the first optional argument is
not a valid option (see below) then it is (mis-)interpreted as the polynomial vari-
able. However, since the variable in a non-constant univariate polynomial can be
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deduced from the polynomial it is unnecessary to specify it separately, except in
the degenerate case that the first argument simplifies to either 0 or 0 = 0. In
this case the result is returned by i_solve in terms of the operator arbint and
by r_solve in terms of the (new) analogous operator arbrat. The operator
i_solve will generally run slightly faster than r_solve.

The (rational or integer) zeros of the first argument are returned as a list and the
default output format is the same as that used by solve. Each distinct zero is
returned in the form of an equation with the variable on the left and the multi-
plicities of the zeros are assigned to the variable root_multiplicities as
a list. However, if the switch multiplicities is turned on then each zero
is explicitly included in the solution list the appropriate number of times (and
root_multiplicities has no value).

Optional keyword arguments acting as local switches allow other output formats.
They have the following meanings:

separate: assign the multiplicity list to the global variable
root_multiplicities (the default);

expand or multiplicities: expand the solution list to include multiple ze-
ros multiple times (the default if the |multiplicities| switch is on);

together: return each solution as a list whose second element is the multiplic-
ity;

nomul: do not compute multiplicities (thereby saving some time);

noeqs: do not return univariate zeros as equations but just as values.

16.62.3 Examples

r_solve((9x^2 - 16)*(x^2 - 9), x);{
x =

−4

3
, x = 3, x = −3, x =

4

3

}
i_solve((9x^2 - 16)*(x^2 - 9), x);

{x = 3, x = −3}

See the test/demonstration file rsolve.tst for more examples.

16.62.4 Tracing

The switch trsolve turns on tracing of the algorithm. It is off by default.
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16.63 RTRACE: Tracing in REDUCE

Authors: Herbert Melenk and Francis J. Wright

16.63.1 Introduction

The package rtrace provides portable tracing facilities for REDUCE program-
ming. These include

• entry-exit tracing of procedures,

• assignment tracing of procedures,

• tracing of rules when they fire.

In contrast to conventional Lisp-level tracing, values are printed in algebraic style
whenever possible if the switch rtrace is on, which it is by default. The output
has been specially tailored for the needs of algebraic-mode programming. Most
features can be applied without explicitly modifying the target program, and they
can be turned on and off dynamically at run time. If the switch rtrace is turned
off then values are printed in conventional Lisp style, and the result should be
similar to the tracing provided by the underlying Lisp system.

To make the facilities available, load the package using the command

load_package rtrace;

Alternatively, the package can be set up to auto load by putting appropriate code in
your REDUCE initialisation file. An example is provided in the file reduce.rc
in the rtrace source directory.

16.63.2 RTrace versus RDebug

The rtrace package is a modification (by FJW) of the rdebug package (written
by HM, and included in the rtrace source directory). The modifications are
as follows. The procedure-tracing facilities in rdebug rely upon the low-level
tracing facilities in PSL; in rtrace these low-level facilities have been (partly)
re-implemented portably. The names of the tracing commands that have been re-
implemented portably have been changed to avoid conflicting with those provided
by the underlying Lisp system by preceding them with the letter “r”, and they
provide a generalized interface that supports algebraic mode better. An additional
set of rule tracing facilities for inactive rules has been provided. Beware that the
rtrace package is still experimental!
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This package is intended to be portable, and has been tested with both CSL- and
PSL-based REDUCE. However, it is intended not as a replacement for rdebug but
as a partial re-implementation of rdebug that works with CSL-REDUCE, and it
is assumed that PSL users will continue to use rdebug. It should, in principle,
be possible to use both. Any rtrace functions with the same names as rdebug
functions should either be identical or compatible; rtrace should be loaded after
rdebug in order to retain any enhancements provided by rtrace. Perhaps at
some future time the two packages should be merged. However, note that rtrace
currently provides only tracing (hence the name) and does not support break points.
(The current version also does not support conditional tracing.)

16.63.3 Procedure tracing: RTR, UNRTR

Tracing of one or more procedures is initiated by the command rtr:

rtr <proc1>, <proc2>, ..., <procn>;

and cancelled by the command unrtr:

unrtr <proc1>, <proc2>, ..., <procn>;

Every time a traced procedure is executed, a message is printed when the procedure
is entered or exited. The entry message displays the actual procedure arguments
equated to the dummy parameter names, and the exit message displays the value
returned by the procedure. Recursive calls are marked by a level number. Here is
a (simplistic) example, using first the default algebraic display and second conven-
tional Lisp display:

algebraic procedure power(x, n);
if n = 0 then 1 else x*power(x, n-1)$

rtr power;

(power)

power(x+1, 2);

Enter (1) power
x: x + 1$
n: 2$

Enter (2) power
x: x + 1$
n: 1$
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Enter (3) power
x: x + 1$
n: 0$

Leave (3) power = 1$
Leave (2) power = x + 1$
Leave (1) power = x**2 + 2*x + 1$

2
x + 2*x + 1

off rtrace;

power(x+1, 2);

Enter (1) power
x: (plus x 1)
n: 2

Enter (2) power
x: (plus x 1)
n: 1

Enter (3) power
x: (plus x 1)
n: 0

Leave (3) power = 1
Leave (2) power = (!*sq ((((x . 1) . 1) . 1) . 1) t)
Leave (1) power = (!*sq ((((x . 2) . 1) ((x . 1) . 2) . 1) . 1) t)

2
x + 2*x + 1

on rtrace;

unrtr power;

(power)

Many algebraic-mode operators are implemented as internal procedures with dif-
ferent names. If an internal procedure with the specified name does not exist then
rtrace tracing automatically applies to the appropriate internal procedure and
returns a list of the names of the internal procedures, e.g.

rtr int;

(simpint)
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This facility is an extension of the rdebug package.

Tracing of compiled procedures by the rtrace package is not completely reliable,
in that recursive calls may not be traced. This is essentially because tracing works
only when the procedure is called by name and not when it is called directly via
an internal compiled pointer. It may not be possible to avoid this restriction in
a portable way. Also, arguments of compiled procedures are not displayed using
the names given to them in the source code, because these names are no longer
available. Instead, they are displayed using the names Arg1, Arg2, etc.

16.63.4 Assignment tracing: RTRST, UNRTRST

One often needs information about the internal behaviour of a procedure, especially
if it is a longer piece of code. For an interpreted procedure declared in an rtrst
command:

rtrst <proc1>, <proc2>, ..., <procn>;

all explicit assignments executed (as either the symbolic-mode setq or the
algebraic-mode setk) inside these procedures are displayed during procedure
execution. All procedure tracing (assignment and entry-exit) is removed by the
command unrtrst (or unrtr, for which it is just a synonym):

unrtrst <proc1>, <proc2>, ..., <procn>;

Assignment tracing is not possible if a procedure is compiled, either because it
was loaded from a “fasl” file or image, or because it was compiled as it was read
in as source code. This is because assignment tracing works by modifying the
interpreted code of the procedure, which must therefore be available.

Applying rtr to a procedure that has been declared in an rtrst command, or
vice versa, toggles the type of tracing applied (and displays an explanatory mes-
sage).

Note that when a program contains a for loop, REDUCE translates this to a se-
quence of Lisp instructions. When using rtrst, the printout is driven by the
“unfolded” code. When the code contains a for each ... in statement, the
name of the control variable is internally used to keep the remainder of the list
during the loop, and you will see the corresponding assignments in the trace rather
than the individual values in the loop steps, e.g.

procedure fold u;
for each x in u sum x$

rtrst fold;
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(fold)

fold {z, z*y, y};

produces the following output (using CSL-REDUCE):

Enter (1) fold
u: {z,y*z,y}$

x := [z,y*z,y]$
G0 := 0$
G0 := z$
x := [y*z,y]$
G0 := z*(y + 1)$
x := [y]$
G0 := y*z + y + z$
x := []$
Leave (1) fold = y*z + y + z$

y*z + y + z

unrtrst fold;

(fold)

In this example, the printed assignments for x show the various stages of the loop.
The variable G0 is an internally generated place-holder for the sum, and may have
a slightly different name depending on the underlying Lisp systems.

16.63.5 Tracing active rules: TRRL, UNTRRL

The command trrl initiates tracing when they fire of individual rules or rule lists
that have been activated using let.

trrl <rl1>, <rl2>, ..., <rln>;

where each of the < rli > is:

• a rule or rule list;

• the name of a rule or rule list (that is, a non-indexed variable which is bound
to a rule or rule list);

• an operator name, representing the rules assigned to this operator.
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The specified rules are (re-) activated in REDUCE such that each of them prints
a report every time it fires. The report is composed of the name of the rule or
the name of the rule list together with the number of the rule in the list, the form
matching the left side (“input”) and the resulting right side (“output”). For an
explicitly given rule or rule list, trrl assigns a unique generated name.

Note, however, that trrl does not trace rules with constant expressions on the
left, on the assumption that they are not particularly interesting. [This behaviour
may be made user-controllable in a future version.]

The command untrrl removes the tracing from rules:

untrrl <rl1>, <rl2>, ..., <rln>;

where each of the < rli > is:

• a rule or rule list;

• the name of a rule or rule list (that is, a non-indexed variable which is bound
to a rule or rule list or a unique name generated by trrl);

• an operator name, representing the rules assigned to this operator.

The rules are reactivated in their original form. Alternatively you can use the com-
mand clearrules to remove the rules totally from the system. Please do not
modify the rules between trrl and untrrl – the result may be unpredictable.

Here are two simple examples that show tracing via the rule name and via the
operator name:

trigrules := {sin(~x)^2 => 1 - cos(x)^2};

2 2
trigrules := {sin(~x) => 1 - cos(x) }

let trigrules;
trrl trigrules;

1 - sin(x)^2;

Rule trigrules.1: sin(x)**2 => 1 - cos(x)**2$

2
cos(x)

untrrl trigrules;
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trrl sin;

1 - sin(x)^2;

Rule sin.23: sin(x)**2 => 1 - cos(x)**2$

2
cos(x)

untrrl sin;
clearrules trigrules;

16.63.6 Tracing inactive rules: TRRLID, UNTRRLID

The command trrlid initiates tracing of individual rule lists that have been as-
signed to variables, but have not been activated using let:

trrlid <rlid1>, <rlid2>, ..., <rlidn>;

where each of the < rlidi > is an identifier of a rule list (that is, a non-indexed
variable which is bound to a rule list). It is assumed that they will be activated
later, either via a let command or by using the where operator. When they are
activated and fire, tracing output will be as if they had been traced using trrl.
The command untrrlid clears the tracing. This facility is an extension of the
rdebug package.

Here is a simple example that continues the example above:

trrlid trigrules;

1 - sin(x)^2 where trigrules;

Rule trigrules.1: sin(x)**2 => 1 - cos(x)**2$

2
cos(x)

untrrlid trigrules;

16.63.7 Output control: RTROUT

The trace output (only) can be redirected to a separate file by using the command
rtrout, followed by a file name in string quotes. A second call of rtrout closes
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any current output file and opens a new one. The file name NIL (without string
quotes) closes any current output file and causes the trace output to be redirected
to the standard output device.

The rdebug variables trlimit and trprinter!* are not implemented in
rtrace. If you want to select Lisp-style tracing then turn off the switch rtrace:

off rtrace;

after loading the rtrace package. Note that the rtrace switch controls the
display format of both procedure and rule tracing.
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16.64 SCOPE: REDUCE source code optimization pack-
age

SCOPE is a package for the production of an optimized form of a set of expres-
sions. It applies an heuristic search for common (sub)expressions to almost any set
of proper REDUCE assignment statements. The output is obtained as a sequence
of assignment statements. GENTRAN is used to facilitate expression output.

Author: J.A. van Hulzen.



902 CHAPTER 16. USER CONTRIBUTED PACKAGES

16.65 SETS: A basic set theory package

Author: Francis J. Wright.

The SETS package for REDUCE 3.5 and later versions provides algebraic-
mode support for set operations on lists regarded as sets (or representing ex-
plicit sets) and on implicit sets represented by identifiers. It provides the set-
valued infix operators (with synonyms) union, intersection (intersect)
and setdiff (\, minus) and the Boolean-valued infix operators (predicates)
member, subset_eq, subset, set_eq. The union and intersection operators
are n-ary and the rest are binary. A list can be explicitly converted to the canonical
set representation by applying the operator mkset. (The package also provides an
operator not specifically related to set theory called evalb that allows the value
of any Boolean-valued expression to be displayed in algebraic mode.)

16.65.1 Introduction

REDUCE has no specific representation for a set, neither in algebraic mode nor
internally, and any object that is mathematically a set is represented in REDUCE as
a list. The difference between a set and a list is that in a set the ordering of elements
is not significant and duplicate elements are not allowed (or are ignored). Hence a
list provides a perfectly natural and satisfactory representation for a set (but not vice
versa). Some languages, such as Maple, provide different internal representations
for sets and lists, which may allow sets to be processed more efficiently, but this is
not necessary.

This package supports set theoretic operations on lists and represents the results
as normal algebraic-mode lists, so that all other REDUCE facilities that apply to
lists can still be applied to lists that have been constructed by explicit set opera-
tions. The algebraic-mode set operations provided by this package have all been
available in symbolic mode for a long time, and indeed are used internally by the
rest of REDUCE, so in that sense set theory facilities in REDUCE are far from
new. What this package does is make them available in algebraic mode, generalize
their operation by extending the arity of union and intersection, and allow their
arguments to be implicit sets represented by unbound identifiers. It performs some
simplifications on such symbolic set-valued expressions, but this is currently rather
ad hoc and is probably incomplete.

For examples of the operation of the SETS package see (or run) the test file
sets.tst. This package is experimental and developments are under consider-
ation; if you have suggestions for improvements (or corrections) then please send
them to me (FJW), preferably by email. The package is intended to be run under
REDUCE 3.5 and later versions; it may well run correctly under earlier versions
although I cannot provide support for such use.
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16.65.2 Infix operator precedence

The set operators are currently inserted into the standard REDUCE precedence list
(see page 28, §2.7, of the REDUCE 3.6 manual) as follows:

or and not member memq = set_eq neq eq >= > <= < subset_eq
subset freeof + - setdiff union intersection * / ^ .

16.65.3 Explicit set representation and mkset

Explicit sets are represented by lists, and this package does not require any restric-
tions at all on the forms of lists that are regarded as sets. Nevertheless, duplicate
elements in a set correspond by definition to the same element and it is conventional
and convenient to represent them by a single element, i.e. to remove any duplicate
elements. I will call this a normal representation. Since the order of elements in
a set is irrelevant it is also conventional and may be convenient to sort them into
some standard order, and an appropriate ordering of a normal representation gives
a canonical representation. This means that two identical sets have identical rep-
resentations, and therefore the standard REDUCE equality predicate (=) correctly
determines set equality; without a canonical representation this is not the case.

Pre-processing of explicit set-valued arguments of the set-valued operators to re-
move duplicates is always done because of the obvious efficiency advantage if
there were any duplicates, and hence explicit sets appearing in the values of such
operators will never contain any duplicate elements. Such sets are also currently
sorted, mainly because the result looks better. The ordering used satisfies the ordp
predicate used for most sorting within REDUCE, except that explicit integers are
sorted into increasing numerical order rather than the decreasing order that satisfies
ordp.

Hence explicit sets appearing in the result of any set operator are currently returned
in a canonical form. Any explicit set can also be put into this form by applying the
operator mkset to the list representing it. For example

mkset {1,2,y,x*y,x+y};

{x + y,x*y,y,1,2}

The empty set is represented by the empty list {}.

16.65.4 Union and intersection

The operator intersection (the name used internally) has the shorter synonym
intersect. These operators will probably most commonly be used as binary
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infix operators applied to explicit sets, e.g.

{1,2,3} union {2,3,4};

{1,2,3,4}

{1,2,3} intersect {2,3,4};

{2,3}

They can also be used as n-ary operators with any number of arguments, in which
case it saves typing to use them as prefix operators (which is possible with all
REDUCE infix operators), e.g.

{1,2,3} union {2,3,4} union {3,4,5};

{1,2,3,4,5}

intersect({1,2,3}, {2,3,4}, {3,4,5});

{3}

For completeness, they can currently also be used as unary operators, in which
case they just return their arguments (in canonical form), and so act as slightly less
efficient versions of mkset (but this may change), e.g.

union {1,5,3,5,1};

{1,3,5}

16.65.5 Symbolic set expressions

If one or more of the arguments evaluates to an unbound identifier then it is re-
garded as representing a symbolic implicit set, and the union or intersection will
evaluate to an expression that still contains the union or intersection operator.
These two operators are symmetric, and so if they remain symbolic their argu-
ments will be sorted as for any symmetric operator. Such symbolic set expressions
are simplified, but the simplification may not be complete in non-trivial cases. For
example:

a union b union {} union b union {7,3};

{3,7} union a union b
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a intersect {};

{}

In implementations of REDUCE that provide fancy display using mathematical
notation, the empty set, union, intersection and set difference are all displayed
using their conventional mathematical symbols, namely ∅, ∪, ∩, \.

A symbolic set expression is a valid argument for any other set operator, e.g.

a union (b intersect c);

b intersection c union a

Intersection distributes over union, which is not applied by default but is imple-
mented as a rule list assigned to the variable set_distribution_rule, e.g.

a intersect (b union c);

(b union c) intersection a

a intersect (b union c) where set_distribution_rule;

a intersection b union a intersection c

16.65.6 Set difference

The set difference operator is represented by the symbol \ and is always output
using this symbol, although it can also be input using either of the two names
setdiff (the name used internally) or minus (as used in Maple). It is a binary
operator, its operands may be any combination of explicit or implicit sets, and it
may be used in an argument of any other set operator. Here are some examples:

{1,2,3} \ {2,4};

{1,3}

{1,2,3} \ {};

{1,2,3}

a \ {1,2};
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a\{1,2}

a \ a;

{}

a \ {};

a

{} \ a;

{}

16.65.7 Predicates on sets

These are all binary infix operators. Currently, like all REDUCE predicates, they
can only be used within conditional statements (if, while, repeat) or within
the argument of the evalb operator provided by this package, and they cannot
remain symbolic – a predicate that cannot be evaluated to a Boolean value causes
a normal REDUCE error.

The evalb operator provides a convenient shorthand for an if statement designed
purely to display the value of any Boolean expression (not only predicates defined
in this package). It has some similarity with the evalb function in Maple, except
that the values returned by evalb in REDUCE (the identifiers true and false)
have no significance to REDUCE itself. Hence, in REDUCE, use of evalb is
never necessary.

if a = a then true else false;

true

evalb(a = a);

true

if a = b then true else false;

false

evalb(a = b);

false
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evalb 1;

true

evalb 0;

false

I will use the evalb operator in preference to an explicit if statement for pur-
poses of illustration.

16.65.7.1 Set membership

Set membership is tested by the predicate member. Its left operand is regarded
as a potential set element and its right operand must evaluate to an explicit set.
There is currently no sense in which the right operand could be an implicit set; this
would require a mechanism for declaring implicit set membership (akin to implicit
variable dependence) which is currently not implemented. Set membership testing
works like this:

evalb(1 member {1,2,3});

true

evalb(2 member {1,2} intersect {2,3});

true

evalb(a member b);

***** b invalid as list

16.65.7.2 Set inclusion

Set inclusion is tested by the predicate subset_eq where a subset_eq b is
true if the set a is either a subset of or equal to the set b; strict inclusion is tested by
the predicate subset where a subset b is true if the set a is strictly a subset
of the set b and is false is a is equal to b. These predicates provide some support
for symbolic set expressions, but this is not yet correct as indicated below. Here
are some examples:

evalb({1,2} subset_eq {1,2,3});
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true

evalb({1,2} subset_eq {1,2});

true

evalb({1,2} subset {1,2});

false

evalb(a subset a union b);

true

evalb(a\b subset a);

true

evalb(a intersect b subset a union b); %%% BUG

false

An undecidable predicate causes a normal REDUCE error, e.g.

evalb(a subset_eq {b});

***** Cannot evaluate a subset_eq {b} as Boolean-valued set
expression

evalb(a subset_eq b); %%% BUG

false

16.65.7.3 Set equality

As explained above, equality of two sets in canonical form can be reliably tested
by the standard REDUCE equality predicate (=). This package also provides the
predicate set_eq to test equality of two sets not represented canonically. The
two predicates behave identically for operands that are symbolic set expressions
because these are always evaluated to canonical form (although currently this is
probably strictly true only in simple cases). Here are some examples:
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evalb({1,2,3} = {1,2,3});

true

evalb({2,1,3} = {1,3,2});

false

evalb(mkset{2,1,3} = mkset{1,3,2});

true

evalb({2,1,3} set_eq {1,3,2});

true

evalb(a union a = a\{});

true

16.65.8 Possible future developments

• Unary union/intersection to implement repeated union/intersection on a set
of sets.

• More symbolic set algebra, canonical forms for set expressions, more com-
plete simplification.

• Better support for Boolean variables via a version (evalb10?) of evalb that
returns 1/0 instead of true/false, or predicates that return 1/0 directly.
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16.66 SPARSE: Sparse Matrix Calculations

Author: Stephen Scowcroft

16.66.1 Introduction

A very powerful feature of REDUCE is the ease with which matrix calculations
can be performed. This package extends the available matrix feature to enable cal-
culations with sparse matrices. This package also provides a selection of functions
that are useful in the world of linear algebra with respect to sparse matrices.

Loading the Package

The package is loaded by: load_package sparse;

16.66.2 Sparse Matrix Calculations

To extend the the syntax to this class of calculations we need to add an expression
type sparse.

16.66.2.1 Sparse Variables

An identifier may be declared a sparse variable by the declaration SPARSE. The
size of the sparse matrix must be declared explicitly in the matrix declaration. For
example,

sparse aa(10,1),bb(200,200);

declares AA to be a 10 x 1 (column) sparse matrix and Y to be a 200 x 200 sparse
matrix. The declaration SPARSE is similar to the declaration MATRIX. Once a
symbol is declared to name a sparse matrix, it can not also be used to name an
array, operator, procedure, or used as an ordinary variable. For more information
see the Matrix Variables section (14.2).

16.66.2.2 Assigning Sparse Matrix Elements

Once a matix has been declared a sparse matrix all elements of the matrix are
initialized to 0. Thus when a sparse matrix is initially referred to the message

"The matrix is dense, contains only zeros"
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is returned. When printing out a matrix only the non-zero elements are printed.
This is due to the fact that only the non-zero elements of the matrix are stored. To
assign the elements of the declared matrix we use the following syntax. Assuming
AA and BB have been declared as spasre matrices, we simply write,

aa(1,1):=10;
bb(100,150):=a;

etc. This then sets the element in the first row and first column to 10, or the element
in the 100th row and 150th column to a.

16.66.2.3 Evaluating Sparse Matrix Elements

Once an element of a sparse matrix has been assingned, it may be referred to in
standard array element notation. Thus aa(2,1) refers to the element in the sec-
ond row and first column of the sparse matrix AA.

16.66.3 Sparse Matrix Expressions

These follow the normal rules of matrix algebra. Sums and products must be of
compatible size; otherwise an error will result during evaluation. Similarly, only
square matrices may be raised to a power. A negative power is computed as the
inverse of the matrix raised to the corresponding positive power. For more infor-
mation and the syntax for matrix algebra see the Matrix Expressions section (14.3).

16.66.4 Operators with Sparse Matrix Arguments

The operators in the Sparse Matix Package are the same as those in the Matrix
Packge with the exception that the NULLSPACE operator is not defined. See sec-
tion Operators with Matrix Arguments (14.4) for more details.

16.66.4.1 Examples

In the examples the matrix AA will be

AA =


1 0 0 0
0 3 0 0
0 0 5 0
0 0 0 9


det ppp;
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135

trace ppp;

18

rank ppp;

4

spmateigen(ppp,eta);

{{eta - 1,1,

spm(1,1) := arbcomplex(4)$
},

{eta - 3,1,

spm(2,1) := arbcomplex(5)$
},

{eta - 5,1,

spm(3,1) := arbcomplex(6)$
},

{eta - 9,1,

spm(4,1) := arbcomplex(7)$
}}

16.66.5 The Linear Algebra Package for Sparse Matrices

This package is an extension of the Linear Algebra Package for REDUCE de-
scribed in section 16.39. These functions are described alphabetically in section
16.66.6. They can be classified into four sections(n.b: the numbers after the dots
signify the function label in section 6).
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16.66.5.1 Basic matrix handling

spadd_columns . . . 16.66.6.1 spadd_rows . . . 16.66.6.2
spadd_to_columns . . . 16.66.6.3 spadd_to_rows . . . 16.66.6.4
spaugment_columns . . . 16.66.6.5 spchar_poly . . . 16.66.6.9
spcol_dim . . . 16.66.6.12 spcopy_into . . . 16.66.6.14
spdiagonal . . . 16.66.6.15 spextend . . . 16.66.6.16
spfind_companion . . . 16.66.6.17 spget_columns . . . 16.66.6.18
spget_rows . . . 16.66.6.19 sphermitian_tp . . . 16.66.6.21
spmatrix_augment . . . 16.66.6.27 spmatrix_stack . . . 16.66.6.29
spminor . . . 16.66.6.30 spmult_columns . . . 16.66.6.31
spmult_rows . . . 16.66.6.32 sppivot . . . 16.66.6.33
spremove_columns . . . 16.66.6.35 spremove_rows . . . 16.66.6.36
sprow_dim . . . 16.66.6.37 sprows_pivot . . . 16.66.6.38
spstack_rows . . . 16.66.6.41 spsub_matrix . . . 16.66.6.42
spswap_columns . . . 16.66.6.44 spswap_entries . . . 16.66.6.45
spswap_rows . . . 16.66.6.46

16.66.5.2 Constructors

Functions that create sparse matrices.

spband_matrix . . . 16.66.6.6 spblock_matrix . . . 16.66.6.7
spchar_matrix . . . 16.66.6.11 spcoeff_matrix . . . 16.66.6.11
spcompanion . . . 16.66.6.13 sphessian . . . 16.66.6.22
spjacobian . . . 16.66.6.23 spjordan_block . . . 16.66.6.24
spmake_identity . . . 16.66.6.26

16.66.5.3 High level algorithms

spchar_poly . . . 16.66.6.9 spcholesky . . . 16.66.6.10
spgram_schmidt . . . 16.66.6.20 splu_decom . . . 16.66.6.25
sppseudo_inverse . . . 16.66.6.34 spsvd . . . 16.66.6.43

16.66.5.4 Predicates

matrixp . . . 16.66.6.28 sparsematp . . . 16.66.6.39
squarep . . . 16.66.6.40 symmetricp . . . 16.66.6.47

Note on examples:

In the examples the matrix A will be
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A =

1 0 0
0 5 0
0 0 9


Unfortunately, due to restrictions of size, it is not practical to use “large” sparse
matrices in the examples. As a result the examples shown may appear trivial, but
they give an idea of how the functions work.

Notation

Throughout I is used to indicate the identity matrix and AT to indicate the trans-
pose of the matrix A.

16.66.6 Available Functions

16.66.6.1 spadd_columns, spadd_rows

Syntax:
spadd_columns(A,c1,c2,expr);
A :- a sparse matrix.
c1, c2 :- positive integers.
expr :- a scalar expression.

Synopsis:
spadd_columns replaces column c2 of A by
expr ∗ column(A,c1) + column(A,c2).
add_rows performs the equivalent task on the rows of A.

Examples:

spadd_columns(A, 1, 2, x) =

1 x 0
0 5 0
0 0 9


spadd_rows(A, 2, 3, 5) =

1 0 0
0 5 0
0 25 9


Related functions:

spadd_to_columns, spadd_to_rows, spmult_columns, spmult_rows.

16.66.6.2 spadd_rows

See: spadd_columns.
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16.66.6.3 spadd_to_columns, spadd_to_rows

Syntax:
spadd_to_columns(A,column_list,expr);
A :- a sparse matrix.
column_list :- a positive integer or a list of positive integers.
expr :- a scalar expression.

Synopsis:
spadd_to_columns adds expr to each column specified in column_list
of A.

spadd_to_rows performs the equivalent task on the rows of A.

Examples:

spadd_to_columns(A, {1, 2}, 10) =

11 10 0
10 15 0
10 10 9


spadd_to_rows(A, 2,−x) =

 1 0 0
−x −x+ 5 −x
0 0 9


Related functions:

spadd_columns, spadd_rows, spmult_rows, spmult_columns.

16.66.6.4 spadd_to_rows

See: spadd_to_columns.

16.66.6.5 spaugment_columns, spstack_rows

Syntax:
spaugment_columns(A,column_list);
A :- a sparse matrix.
column_list :- either a positive integer or a list of positive integers.

Synopsis:
spaugment_columns gets hold of the columns of A specified in col-
umn_list and sticks them together.

spstack_rows performs the same task on rows of A.

Examples:

spaugment_columns(A, {1, 2}) =

1 0
0 5
0 0


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spstack_rows(A, {1, 3}) =

(
1 0 0
0 0 9

)
Related functions:

spget_columns, spget_rows, spsub_matrix.

16.66.6.6 spband_matrix

Syntax:
spband_matrix(expr_list,square_size);

expr_list :- either a single scalar expression or a list of an odd num-
ber of scalar expressions.

square_size :- a positive integer.

Synopsis:
spband_matrix creates a sparse square matrix of dimension square_size.

Examples: spband_matrix({x, y, z}, 6) =



y z 0 0 0 0
x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z
0 0 0 0 x y


Related functions:

spdiagonal.

16.66.6.7 spblock_matrix

Syntax:
spblock_matrix(r,c,matrix_list);

r,c :- positive integers.
matrix_list :- a list of matrices of either sparse or matrix type.

Synopsis:
spblock_matrix creates a sparse matrix that consists of r by c matrices
filled from the matrix_list row wise.

Examples:

B =

(
1 0
0 1

)
, C =

(
5
0

)
, D =

(
22 0
0 0

)

spblock_matrix(2, 3, {B, C,D,D, C,B}) =


1 0 5 22 0
0 1 0 0 0
22 0 5 1 0
0 0 0 0 1


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16.66.6.8 spchar_matrix

Syntax:
spchar_matrix(A, λ);
A :- a square sparse matrix.
λ :- a symbol or algebraic expression.

Synopsis:
spchar_matrix creates the characteristic matrix C of A.

This is C = λ ∗ I − A.

Examples: spchar_matrix(A, x) =

x− 1 0 0
0 x− 5 0
0 0 x− 9


Related functions:

spchar_poly.

16.66.6.9 spchar_poly

Syntax:
spchar_poly(A, λ);
A :- a sparse square matrix.
λ :- a symbol or algebraic expression.

Synopsis:
spchar_poly finds the characteristic polynomial of A.

This is the determinant of λ ∗ I − A.

Examples:
spchar_poly(A,x) = x3 − 15 ∗ x2 − 59 ∗ x− 45

Related functions:
spchar_matrix.

16.66.6.10 spcholesky

Syntax:
spcholesky(A);

A :- a positive definite sparse matrix containing numeric entries.

Synopsis:
spcholesky computes the cholesky decomposition of A.
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It returns {L,U} where L is a lower matrix, U is an upper matrix,
A = LU , and U = LT .

Examples:

F =

1 0 0
0 5 0
0 0 9


cholesky(F) =


1 0 0

0
√

5 0
0 0 3

 ,

1 0 0

0
√

5 0
0 0 3


Related functions:

splu_decom.

16.66.6.11 spcoeff_matrix

Syntax:
spcoeff_matrix({lin_eqn1,lin_eqn2, ...,lin_eqnn});

lin_eqn1,lin_eqn2, . . . ,lin_eqnn :- linear equations. Can be of the
form equation = number or just
equation which is equivalent to
equation = 0.

Synopsis:
spcoeff_matrix creates the coefficient matrix C of the linear equations.

It returns {C,X ,B} such that CX = B.

Examples:
spcoeff_matrix({y− 20 ∗w = 10, y− z = 20, y+ 4 + 3 ∗ z, w+ x+
50}) =


1 −20 0 0
1 0 −1 0
1 0 3 0
0 1 0 1

 ,


y
w
z
x

 ,


10
20
−4
50




16.66.6.12 spcol_dim, sprow_dim

Syntax:
column_dim(A);

A :- a sparse matrix.
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Synopsis:
spcol_dim finds the column dimension of A.
sprow_dim finds the row dimension of A.

Examples:
spcol_dim(A) = 3

16.66.6.13 spcompanion

Syntax:
spcompanion(poly,x);

poly :- a monic univariate polynomial in x.
x :- the variable.

Synopsis:
spcompanion creates the companion matrix C of poly.

This is the square matrix of dimension n, where n is the degree of poly w.r.t.
x. The entries of C are: C(i, n) = −coeffn(poly, x, i−1) for i = 1 . . . n,
C(i, i− 1) = 1 for i = 2 . . . n and the rest are 0.

Examples:

spcompanion(x4 + 17 ∗ x3 − 9 ∗ x2 + 11, x) =


0 0 0 −11
1 0 0 0
0 1 0 9
0 0 1 −17


Related functions:

spfind_companion.

16.66.6.14 spcopy_into

Syntax:
spcopy_into(A,B,r,c);
A,B :- matrices of type sparse or matrix.
r,c :- positive integers.

Synopsis:
spcopy_into copies matrix A into B with A(1,1) at B(r,c).

Examples:

G =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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spcopy_into(A,G, 1, 2) =


0 1 0 0
0 0 5 0
0 0 0 9
0 0 0 0


Related functions:

spaugment_columns, spextend, spmatrix_augment, spmatrix_stack,
spstack_rows, spsub_matrix.

16.66.6.15 spdiagonal

Syntax:
spdiagonal({mat1,mat2, ...,matn});48

mat1,mat2, . . . ,matn :- each can be either a scalar expr or a square
matrix of sparse or matrix type.

Synopsis:
spdiagonal creates a sparse matrix that contains the input on the diago-
nal.

Examples:

H =

(
66 77
88 99

)

spdiagonal({A, x,H}) =



1 0 0 0 0 0
0 5 0 0 0 0
0 0 9 0 0 0
0 0 0 x 0 0
0 0 0 0 66 77
0 0 0 0 88 99


Related functions:

spjordan_block.

16.66.6.16 spextend

Syntax:
spextend(A,r,c,expr);
A :- a sparse matrix.
r,c :- positive integers.
expr :- algebraic expression or symbol.

48The {}’s can be omitted.
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Synopsis:
spextend returns a copy of A that has been extended by r rows and c
columns. The new entries are made equal to expr.

Examples: spextend(A, 1, 2, 0) =


1 0 0 0 0
0 5 0 0 0
0 0 9 0 0
0 0 0 0 0


Related functions:

spcopy_into, spmatrix_augment, spmatrix_stack, spremove_columns,
spremove_rows.

16.66.6.17 spfind_companion

Syntax:
spfind_companion(A,x);
A :- a sparse matrix.
x :- the variable.

Synopsis:
Given a sparse companion matrix, spfind_companion finds the polyno-
mial from which it was made.

Examples:

C =


0 0 0 −11
1 0 0 0
0 1 0 9
0 0 1 −17


spfind_companion(C, x) = x4 + 17 ∗ x3 − 9 ∗ x2 + 11

Related functions:
spcompanion.

16.66.6.18 spget_columns, spget_rows

Syntax:
spget_columns(A,column_list);
A :- a sparse matrix.
c :- either a positive integer or a list of positive integers.

Synopsis:
spget_columns removes the columns of A specified in column_list and
returns them as a list of column matrices.
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spget_rows performs the same task on the rows of A.

Examples:

spget_columns(A, {1, 3}) =


1

0
0

 ,

0
0
9


spget_rows(A, 2) =

{(
0 5 0

)}
Related functions:

spaugment_columns, spstack_rows, spsub_matrix.

16.66.6.19 spget_rows

See: spget_columns.

16.66.6.20 spgram_schmidt

Syntax:
spgram_schmidt({vec1,vec2, ...,vecn});

vec1,vec2, . . . ,vecn :- linearly independent vectors. Each vector must
be written as a list of predefined sparse (col-
umn) matrices, eg: sparse a(4,1);, a(1,1):=1;

Synopsis:
spgram_schmidt performs the gram_schmidt orthonormalisation on the
input vectors.

It returns a list of orthogonal normalised vectors.

Examples:
Suppose a,b,c,d correspond to sparse matrices representing the following
lists: {{1,0,0,0},{1,1,0,0},{1,1,1,0},{1,1,1,1}}.

spgram_schmidt({{a},{b},{c},{d}}) =
{{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}

16.66.6.21 sphermitian_tp

Syntax:
sphermitian_tp(A);

A :- a sparse matrix.

Synopsis:
sphermitian_tp computes the hermitian transpose of A.
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Examples:

J =

i+ 1 i+ 2 i+ 3
0 0 0
0 i 0


sphermitian_tp(J ) =

−i+ 1 0 0
−i+ 2 0 −i
−i+ 3 0 0


Related functions:

tp49.

16.66.6.22 sphessian

Syntax:
sphessian(expr,variable_list);

expr :- a scalar expression.
variable_list :- either a single variable or a list of variables.

Synopsis:
sphessian computes the hessian matrix of expr w.r.t. the variables in
variable_list.

Examples: sphessian(x ∗ y ∗ z + x2, {w, x, y, z}) =


0 0 0 0
0 2 z y
0 z 0 x
0 y x 0


16.66.6.23 spjacobian

Syntax:
spjacobian(expr_list,variable_list);

expr_list :- either a single algebraic expression or a list of algebraic
expressions.

variable_list :- either a single variable or a list of variables.

Synopsis:
spjacobian computes the jacobian matrix of expr_list w.r.t. variable_list.

Examples:
spjacobian({x4, x ∗ y2, x ∗ y ∗ z3}, {w, x, y, z}) =0 4 ∗ x3 0 0

0 y2 2 ∗ x ∗ y 0
0 y ∗ z3 x ∗ z3 3 ∗ x ∗ y ∗ z2


49standard reduce call for the transpose of a matrix - see section 14.4.
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Related functions:
sphessian, df50.

16.66.6.24 spjordan_block

Syntax:
spjordan_block(expr,square_size);

expr :- an algebraic expression or symbol.
square_size :- a positive integer.

Synopsis:
spjordan_block computes the square jordan block matrix J of dimen-
sion square_size.

Examples: spjordan_block(x,5) =


x 1 0 0 0
0 x 1 0 0
0 0 x 1 0
0 0 0 x 1
0 0 0 0 x


Related functions:

spdiagonal, spcompanion.

16.66.6.25 splu_decom

Syntax:
splu_decom(A);
A :- a sparse matrix containing either numeric entries or imaginary

entries with numeric coefficients.

Synopsis:
splu_decom performs LU decomposition on A, ie: it returns {L,U}
where L is a lower diagonal matrix, U an upper diagonal matrix and A =
LU .

Caution: The algorithm used can swap the rows of A during the calcula-
tion. This means that LU does not equalA but a row equivalent of it. Due to
this, splu_decom returns {L,U ,vec}. The call spconvert(A,vec)
will return the sparse matrix that has been decomposed, ie: LU =
spconvert(A,vec).

Examples: K =

1 0 0
0 5 0
0 0 9


50standard reduce call for differentiation - see 7.7.
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lu := splu_decom(K) =


1 0 0

0 5 0
0 0 9

 ,

1 0 0
0 1 0
0 0 1

 , [ 1 2 3 ]


first lu * second lu =

1 0 0
0 5 0
0 0 9


convert(K,third lu) =

1 0 0
0 5 0
0 0 9


Related functions:

spcholesky.

16.66.6.26 spmake_identity

Syntax:
spmake_identity(square_size);

square_size :- a positive integer.

Synopsis:
spmake_identity creates the identity matrix of dimension square_size.

Examples: spmake_identity(4) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Related functions:

spdiagonal.

16.66.6.27 spmatrix_augment, spmatrix_stack

Syntax:
spmatrix_augment({mat1,mat2, ...,matn});51

mat1,mat2, . . . ,matn :- matrices.

Synopsis:
spmatrix_augment joins the matrices in matrix_list together horizon-
tally.

spmatrix_stack joins the matrices in matrix_list together vertically.
51The {}’s can be omitted.
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Examples:

spmatrix_augment({A,A}) =

1 0 0 1 0 0
0 5 0 0 5 0
0 0 9 0 0 9



spmatrix_stack({A,A}) =



1 0 0
0 5 0
0 0 9
1 0 0
0 5 0
0 0 9


Related functions:

spaugment_columns, spstack_rows, spsub_matrix.

16.66.6.28 matrixp

Syntax:
matrixp(test_input);

test_input :- anything you like.

Synopsis:
matrixp is a boolean function that returns t if the input is a matrix of type
sparse or matrix and nil otherwise.

Examples:
matrixp(A) = t

matrixp(doodlesackbanana) = nil

Related functions:
squarep, symmetricp, sparsematp.

16.66.6.29 spmatrix_stack

See: spmatrix_augment.

16.66.6.30 spminor

Syntax:
spminor(A,r,c);
A :- a sparse matrix.
r,c :- positive integers.
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Synopsis:
spminor computes the (r,c)’th minor of A.

Examples: spminor(A, 1, 3) =

(
0 5
0 0

)
Related functions:

spremove_columns, spremove_rows.

16.66.6.31 spmult_columns, spmult_rows

Syntax:
spmult_columns(A,column_list,expr);
A :- a sparse matrix.
column_list :- a positive integer or a list of positive integers.
expr :- an algebraic expression.

Synopsis:
spmult_columns returns a copy of A in which the columns specified in
column_list have been multiplied by expr.

spmult_rows performs the same task on the rows of A.

Examples:

spmult_columns(A, {1, 3}, x) =

x 0 0
0 5 0
0 0 9 ∗ x


spmult_rows(A, 2, 10) =

1 0 0
0 50 0
0 0 9


Related functions:

spadd_to_columns, spadd_to_rows.

16.66.6.32 spmult_rows

See: spmult_columns.

16.66.6.33 sppivot

Syntax:
sppivot(A,r,c);
A :- a sparse matrix.
r,c :- positive integers such that A(r,c) neq 0.
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Synopsis:
sppivot pivots A about it’s (r,c)’th entry.

To do this, multiples of the r’th row are added to every other row in the
matrix.

This means that the c’th column will be 0 except for the (r,c)’th entry.

Related functions:
sprows_pivot.

16.66.6.34 sppseudo_inverse

Syntax:
sppseudo_inverse(A);

A :- a sparse matrix containing only real numeric entries.

Synopsis:
sppseudo_inverse, also known as the Moore-Penrose inverse, com-
putes the pseudo inverse of A.

Given the singular value decomposition of A, i.e: A = UΣVT , then the
pseudo inverse A† is defined by A† = VΣ†UT . For the diagonal matrix
Σ, the pseudoinverse Σ† is computed by taking the reciprocal of only the
nonzero diagonal elements.

If A is square and non-singular, then A† = A. In general, however,
AA†A = A, and A†AA† = A†.
Perhaps more importantly, A† solves the following least-squares problem:
given a rectangular matrixA and a vector b, find the xminimizing ‖Ax−b‖2,
and which, in addition, has minimum `2 (euclidean) Norm, ‖x‖2. This x is
A†b.

Examples:

R =

(
0 0 3 0
9 0 7 0

)

sppseudo_inverse(R) =


−0.26 0.11

0 0
0.33 0
0.25 −0.05


Related functions:

spsvd.
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16.66.6.35 spremove_columns, spremove_rows

Syntax:
spremove_columns(A,column_list);
A :- a sparse matrix.
column_list :- either a positive integer or a list of positive integers.

Synopsis:
spremove_columns removes the columns specified in column_list from
A.

spremove_rows performs the same task on the rows of A.

Examples:

spremove_columns(A, 2) =

1 0
0 0
0 9


spremove_rows(A, {1, 3}) =

(
0 5 0

)
Related functions:

spminor.

16.66.6.36 spremove_rows

See: spremove_columns.

16.66.6.37 sprow_dim

See: spcolumn_dim.

16.66.6.38 sprows_pivot

Syntax:
sprows_pivot(A,r,c,{row_list});
A :- a sparse matrix.
r,c :- positive integers such that A(r,c) neq 0.
row_list :- positive integer or a list of positive integers.

Synopsis:
sprows_pivot performs the same task as sppivot but applies the pivot
only to the rows specified in row_list.

Related functions:
sppivot.
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16.66.6.39 sparsematp

Syntax:
sparsematp(A);

A :- a matrix.

Synopsis:
sparsematp is a boolean function that returns t if the matrix is declared
sparse and nil otherwise.

Examples:
L := mat((1,2,3),(4,5,6),(7,8,9));

sparsematp(A) = t

sparsematp(L) = nil

Related functions:
matrixp, symmetricp, squarep.

16.66.6.40 squarep

Syntax:
squarep(A);

A :- a matrix.

Synopsis:
squarep is a boolean function that returns t if the matrix is square and nil
otherwise.

Examples:
L =

(
1 3 5

)
squarep(A) = t

squarep(L) = nil

Related functions:
matrixp, symmetricp, sparsematp.

16.66.6.41 spstack_rows

See: spaugment_columns.
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16.66.6.42 spsub_matrix

Syntax:
spsub_matrix(A,row_list,column_list);
A :- a sparse matrix.
row_list, column_list :- either a positive integer or a list of positive in-

tegers.

Synopsis:
spsub_matrix produces the matrix consisting of the intersection of the
rows specified in row_list and the columns specified in column_list.

Examples: spsub_matrix(A, {1, 3}, {2, 3}) =

(
5 0
0 9

)
Related functions:

spaugment_columns, spstack_rows.

16.66.6.43 spsvd (singular value decomposition)

Syntax:
spsvd(A);

A :- a sparse matrix containing only real numeric entries.

Synopsis:
spsvd computes the singular value decomposition of A.

If A is an m × n real matrix of (column) rank r, svd returns the 3-element
list {U ,Σ,V} where A = UΣVT .

Let k = min(m,n). Then U is m × k, V is n × k, and and Σ =
diag(σ1, . . . , σk), where σi ≥ 0 are the singular values of A; only r of
these are non-zero. The singular values are the non-negative square roots of
the eigenvalues of ATA.

U and V are such that UUT = VVT = VTV = Ik.

Note: there are a number of different definitions of SVD in the literature, in
some of which Σ is square and U and V rectangular, as here, but in others U
and V are square, and Σ is rectangular.

Examples:

Q =

(
1 0
0 3

)
svd(Q) =

{(
−1 0
0 0

)
,

(
1.0 0
0 5.0

)
,

(
−1 0
0 −1

)}



932 CHAPTER 16. USER CONTRIBUTED PACKAGES

16.66.6.44 spswap_columns, spswap_rows

Syntax:
spswap_columns(A,c1,c2);
A :- a sparse matrix.
c1,c1 :- positive integers.

Synopsis:
spswap_columns swaps column c1 of A with column c2.

spswap_rows performs the same task on 2 rows of A.

Examples: spswap_columns(A, 2, 3) =

1 0 0
0 0 5
0 9 0


Related functions:

spswap_entries.

16.66.6.45 swap_entries

Syntax:
spswap_entries(A,{r1,c1},{r2,c2});
A :- a sparse matrix.
r1,c1,r2,c2 :- positive integers.

Synopsis:
spswap_entries swaps A(r1,c1) with A(r2,c2).

Examples: spswap_entries(A, {1, 1}, {3, 3}) =

9 0 0
0 5 0
0 0 1


Related functions:

spswap_columns, spswap_rows.

16.66.6.46 spswap_rows

See: spswap_columns.

16.66.6.47 symmetricp

Syntax:
symmetricp(A);

A :- a matrix.
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Synopsis:
symmetricp is a boolean function that returns t if the matrix is symmetric
and nil otherwise.

Examples:

M =

(
1 2
2 1

)
symmetricp(A) = nil

symmetricp(M) = t

Related functions:
matrixp, squarep, sparsematp.

16.66.7 Fast Linear Algebra

By turning the fast_la switch on, the speed of the following functions will be
increased:

spadd_columns spadd_rows spaugment_columns spcol_dim
spcopy_into spmake_identity spmatrix_augment spmatrix_stack
spminor spmult_column spmult_row sppivot
spremove_columns spremove_rows sprows_pivot squarep
spstack_rows spsub_matrix spswap_columns spswap_entries
spswap_rows symmetricp

The increase in speed will be insignificant unless you are making a significant num-
ber(i.e: thousands) of calls. When using this switch, error checking is minimised.
This means that illegal input may give strange error messages. Beware.

16.66.8 Acknowledgments

This package is an extention of the code from the Linear Algebra Package for
REDUCE by Matt Rebbeck (cf. section 16.39).

The algorithms for spcholesky, splu_decom, and spsvd are taken from the
book Linear Algebra – J.H. Wilkinson & C. Reinsch[3].

The spgram_schmidt code comes from Karin Gatermann’s Symmetry pack-
age[4] for REDUCE.
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16.67 SPDE: Finding symmetry groups of PDE’s

The package SPDE provides a set of functions which may be used to determine
the symmetry group of Lie- or point-symmetries of a given system of partial dif-
ferential equations. In many cases the determining system is solved completely
automatically. In other cases the user has to provide additional input information
for the solution algorithm to terminate.

Author: Fritz Schwarz.

The package SPDE provides a set of functions which may be applied to determine
the symmetry group of Lie- or point-symmetries of a given system of partial dif-
ferential equations. Preferably it is used interactively on a computer terminal. In
many cases the determining system is solved completely automatically. In some
other cases the user has to provide some additional input information for the solu-
tion algorithm to terminate. The package should only be used in compiled form.

For all theoretical questions, a description of the algorithm and numerous examples
the following articles should be consulted: “Automatically Determining Symme-
tries of Partial Differential Equations”, Computing vol. 34, page 91-106(1985)
and vol. 36, page 279-280(1986), “Symmetries of Differential Equations: From
Sophus Lie to Computer Algebra”, SIAM Review, to appear, and Chapter 2 of
the Lecture Notes “Computer Algebra and Differential Equations of Mathematical
Physics”, to appear.

16.67.1 Description of the System Functions and Variables

The symmetry analysis of partial differential equations logically falls into three
parts. Accordingly the most important functions provided by the package are:

Function name Operation
CRESYS(< arguments>) Constructs determining system

SIMPSYS() Solves determining system
RESULT() Prints infinitesimal generators

and commutator table

Table 16.14: SPDE Functions

Some other useful functions for obtaining various kinds of output are:
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Function name Operation
PRSYS() Prints determining system
PRGEN() Prints infinitesimal generators

COMM(U,V) Prints commutator of generators U and V

Table 16.15: SPDE Useful Output Functions

There are several global variables defined by the system which should not be used
for any other purpose than that given in Table 16.16 and 16.17. The three globals
of the type integer are:

Variable name Meaning
NN Number of independent variables
MM Number of dependent variables

PCLASS=0, 1 or 2 Controls amount of output

Table 16.16: SPDE Integer valued globals

In addition there are the following global variables of type operator:

Variable name Meaning
X(I) Independent variable xi

U(ALFA) Dependent variable ualfa

U(ALFA,I) Derivative of ualfa w.r.t. xi
DEQ(I) i-th differential equation

SDER(I) Derivative w.r.t. which DEQ(I) is resolved
GL(I) i-th equation of determining system

GEN(I) i-th infinitesimal generator
XI(I), ETA(ALFA) See definition given in the
ZETA(ALFA,I) references quoted in the introduction.

C(I) i-th function used for substitution

Table 16.17: SPDE Operator type global variables

The differential equations of the system at issue have to be assigned as values
to the operator deq i applying the notation which is defined in Table 16.17. The
entries in the third and the last line of that Table have obvious extensions to higher
derivatives.

The derivative w.r.t. which the i-th differential equation deq i is resolved has to
be assigned to sder i. Exception: If there is a single differential equation and no
assignment has been made by the user, the highest derivative is taken by default.
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When the appropriate assignments are made to the variable deq, the values of NN
and MM (Table 16.15) are determined automatically, i.e. they have not to be as-
signed by the user.

The function CRESYS may be called with any number of arguments, i.e.

CRESYS(); or CRESYS(deq 1,deq 2,... );

are legal calls. If it is called without any argument, all current assignments to deq
are taken into account. Example: If deq 1, deq 2 and deq 3 have been assigned
a differential equation and the symmetry group of the full system comprising all
three equations is desired, equivalent calls are

CRESYS(); or CRESYS(deq 1,deq 2,deq 3);

The first alternative saves some typing. If later in the session the symmetry group
of deq 1 alone has to be determined, the correct call is

CRESYS deq 1;

After the determining system has bee created, SIMPSYS which has no arguments
may be called for solving it. The amount of intermediate output produced by SIMP-
SYS is controlled by the global variable PCLASS with the default value 0. With
PCLASS equal to 0, no intermediate steps are shown. With PCLASS equal to 1,
all intermediate steps are displayed so that the solution algorithm may be followed
through in detail. Each time the algorithm passes through the top of the main solu-
tion loop the message

Entering main loop

is written. PCLASS equal 2 produces a lot of LISP output and is of no interest for
the normal user.

If with PCLASS=0 the procedure SIMPSYS terminates without any response, the
determining system is completely solved. In some cases SIMPSYS does not solve
the determining system completely in a single run. In general this is true if there
are only genuine differential equations left which the algorithm cannot handle at
present. If a case like this occurs, SIMPSYS returns the remaining equations of the
determining system. To proceed with the solution algorithm, appropriate assign-
ments have to be transmitted by the user, e.g. the explicit solution for one of the
returned differential equations. Any new functions which are introduced thereby
must be operators of the form c(k) with the correct dependencies generated by
a depend statement (see the “REDUCE User’s Guide”). Its enumeration has to be
chosen in agreement with the current number of functions which have alreday been
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introduced. This value is returned by SIMPSYS too.

After the determining system has been solved, the procedure RESULT, which has
no arguments, may be called. It displays the infinitesimal generators and its non-
vanishing commutators.

16.67.2 How to Use the Package

In this Section it is explained by way of several examples how the package SPDE
is used interactively to determine the symmetry group of partial differential equat-
ions. Consider first the diffusion equation which in the notation given above may
be written as

deq 1:=u(1,1)+u(1,2,2);

It has been assigned as the value of deq 1 by this statement. There is no need to
assign a value to sder 1 here because the system comprises only a single equation.

The determining system is constructed by calling

CRESYS(); or CRESYS deq 1;

The latter call is compulsory if there are other assignments to the operator deq i
than for i=1.

The error message

***** Differential equations not defined

appears if there are no differential equations assigned to any deq.

If the user wants the determining system displayed for inspection before starting
the solution algorithm he may call

PRSYS();

and gets the answer

GL(1):=2*DF(ETA(1),U(1),X(2)) - DF(XI(2),X(2),2) -
DF(XI(2),X(1))

GL(2):=DF(ETA(1),U(1),2) - 2*DF(XI(2),U(1),X(2))

GL(3):=DF(ETA(1),X(2),2) + DF(ETA(1),X(1))
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GL(4):=DF(XI(2),U(1),2)

GL(5):=DF(XI(2),U(1)) - DF(XI(1),U(1),X(2))

GL(6):=2*DF(XI(2),X(2)) - DF(XI(1),X(2),2) - DF(XI(1),X(1))

GL(7):=DF(XI(1),U(1),2)

GL(8):=DF(XI(1),U(1))

GL(9):=DF(XI(1),X(2))

The remaining dependencies

XI(2) depends on U(1),X(2),X(1)

XI(1) depends on U(1),X(2),X(1)

ETA(1) depends on U(1),X(2),X(1)

The last message means that all three functions XI(1), XI(2) and ETA(1) depend on
X(1), X(2) and U(1). Without this information the nine equations GL(1) to GL(9)
forming the determining system are meaningless. Now the solution algorithm may
be activated by calling

SIMPSYS();

If the print flag PCLASS has its default value which is 0 no intermediate output is
produced and the answer is

Determining system is not completely solved

The remaining equations are

GL(1):=DF(C(1),X(2),2) + DF(C(1),X(1))

Number of functions is 16

The remaining dependencies

C(1) depends on X(2),X(1)
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With PCLASS equal to 1 about 6 pages of intermediate output are obtained. It
allows the user to follow through each step of the solution algorithm.

In this example the algorithm did not solve the determining system completely
as it is shown by the last message. This was to be expected because the diffusion
equation is linear and therefore the symmetry group contains a generator depending
on a function which solves the original differential equation. In cases like this the
user has to provide some additional information to the system so that the solution
algorithm may continue. In the example under consideration the appropriate input
is

DF(C(1),X(1)) := - DF(C(1),X(2),2);

If now the solution algorithm is activated again by

SIMPSYS();

the solution algorithm terminates without any further message, i.e. there are no
equations of the determining system left unsolved. To obtain the symmetry gener-
ators one has to say finally

RESULT();

and obtains the answer

The differential equation

DEQ(1):=U(1,2,2) + U(1,1)

The symmetry generators are

GEN(1):= DX(1)

GEN(2):= DX(2)

GEN(3):= 2*DX(2)*X(1) + DU(1)*U(1)*X(2)

GEN(4):= DU(1)*U(1)

GEN(5):= 2*DX(1)*X(1) + DX(2)*X(2)

2
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GEN(6):= 4*DX(1)*X(1)

+ 4*DX(2)*X(2)*X(1)

2
+ DU(1)*U(1)*(X(2) - 2*X(1))

GEN(7):= DU(1)*C(1)

The remaining dependencies

C(1) depends on X(2),X(1)

Constraints

DF(C(1),X(1)):= - DF(C(1),X(2),2)

The non-vanishing commutators of the finite subgroup

COMM(1,3):= 2*DX(2)

COMM(1,5):= 2*DX(1)

COMM(1,6):= 8*DX(1)*X(1) + 4*DX(2)*X(2) - 2*DU(1)*U(1)

COMM(2,3):= DU(1)*U(1)

COMM(2,5):= DX(2)

COMM(2,6):= 4*DX(2)*X(1) + 2*DU(1)*U(1)*X(2)

COMM(3,5):= - (2*DX(2)*X(1) + DU(1)*U(1)*X(2))

2
COMM(5,6):= 8*DX(1)*X(1)

+ 8*DX(2)*X(2)*X(1)

2
+ 2*DU(1)*U(1)*(X(2) - 2*X(1))
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The message “Constraints” which appears after the symmetry generators are dis-
played means that the function c(1) depends on x(1) and x(2) and satisfies the
diffusion equation.

More examples which may used for test runs are given in the final section.

If the user wants to test a certain ansatz of a symmetry generator for given dif-
ferential equations, the correct proceeding is as follows. Create the determining
system as described above. Make the appropriate assignments for the generator
and call PRSYS() after that. The determining system with this ansatz substituted
is returned. Example: Assume again that the determining system for the diffusion
equation has been created. To check the correctness for example of generator GEN
3 which has been obtained above, the assignments

XI(1):=0; XI(2):=2*X(1); ETA(1):=X(2)*U(1);

have to be made. If now PRSYS() is called all GL(K) are zero proving the correct-
ness of this generator.

Sometimes a user only wants to know some of the functions ZETA for for various
values of its possible arguments and given values of MM and NN. In these cases
the user has to assign the desired values of MM and NN and may call the ZETAs
after that. Example:

MM:=1; NN:=2;

FACTOR U(1,2),U(1,1),U(1,1,2),U(1,1,1);

ON LIST;

ZETA(1,1);

-U(1,2)*U(1,1)*DF(XI(2),U(1))

-U(1,2)*DF(XI(2),X(1))

2
-U(1,1) *DF(XI(1),U(1))

+U(1,1)*(DF(ETA(1),U(1)) -DF(XI(1),X(1)))

+DF(ETA(1),X(1))

ZETA(1,1,1);
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-2*U(1,1,2)*U(1,1)*DF(XI(2),U(1))

-2*U(1,1,2)*DF(XI(2),X(1))

-U(1,1,1)*U(1,2)*DF(XI(2),U(1))

-3*U(1,1,1)*U(1,1)*DF(XI(1),U(1))

+U(1,1,1)*(DF(ETA(1),U(1)) -2*DF(XI(1),X(1)))

2
-U(1,2)*U(1,1) *DF(XI(2),U(1),2)

-2*U(1,2)*U(1,1)*DF(XI(2),U(1),X(1))

-U(1,2)*DF(XI(2),X(1),2)

3
-U(1,1) *DF(XI(1),U(1),2)

2
+U(1,1) *(DF(ETA(1),U(1),2) -2*DF(XI(1),U(1),X(1)))

+U(1,1)*(2*DF(ETA(1),U(1),X(1)) -DF(XI(1),X(1),2))

+DF(ETA(1),X(1),2)

If by error no values to MM or NN and have been assigned the message

***** Number of variables not defined

is returned. Often the functions ZETA are desired for special values of its argu-
ments ETA(ALFA) and XI(K). To this end they have to be assigned first to some
other variable. After that they may be evaluated for the special arguments. In the
previous example this may be achieved by

Z11:=ZETA(1,1)$ Z111:=ZETA(1,1,1)$

Now assign the following values to XI 1, XI 2 and ETA 1:

XI 1:=4*X(1)**2; XI 2:=4*X(2)*X(1);
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ETA 1:=U(1)*(X(2)**2 - 2*X(1));

They correspond to the generator GEN 6 of the diffusion equation which has been
obtained above. Now the desired expressions are obtained by calling

Z11;

2
- (4*U(1,2)*X(2) - U(1,1)*X(2) + 10*U(1,1)*X(1) + 2*U(1))

Z111;

2
- (8*U(1,1,2)*X(2) - U(1,1,1)*X(2) + 18*U(1,1,1)*X(1) +

12*U(1,1))

16.67.3 Test File

This appendix is a test file. The symmetry groups for various equations or systems
of equations are determined. The variable PCLASS has the default value 0 and
may be changed by the user before running it. The output may be compared with
the results which are given in the references.

%The Burgers equations

deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$

cresys deq 1$ simpsys()$ result()$

%The Kadomtsev-Petviashvili equation

deq 1:=3*u(1,3,3)+u(1,2,2,2,2)+6*u(1,2,2)*u 1

+6*u(1,2)**2+4*u(1,1,2)$

cresys deq 1$ simpsys()$ result()$

%The modified Kadomtsev-Petviashvili equation

deq 1:=u(1,1,2)-u(1,2,2,2,2)-3*u(1,3,3)

+6*u(1,2)**2*u(1,2,2)+6*u(1,3)*u(1,2,2)$
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cresys deq 1$ simpsys()$ result()$

%The real- and the imaginary part of the nonlinear
%Schroedinger equation

deq 1:= u(1,1)+u(2,2,2)+2*u 1**2*u 2+2*u 2**3$

deq 2:=-u(2,1)+u(1,2,2)+2*u 1*u 2**2+2*u 1**3$

%Because this is not a single equation the two assignments

sder 1:=u(2,2,2)$ sder 2:=u(1,2,2)$

%are necessary.

cresys()$ simpsys()$ result()$

%The symmetries of the system comprising the four equations

deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$

deq 2:=u(2,1)+u(2,2,2)$

deq 3:=u 1*u 2-2*u(2,2)$

deq 4:=4*u(2,1)+u 2*(u 1**2+2*u(1,2))$

sder 1:=u(1,2,2)$ sder 2:=u(2,2,2)$ sder 3:=u(2,2)$
sder 4:=u(2,1)$

%is obtained by calling

cresys()$ simpsys()$

df(c 5,x 1):=-df(c 5,x 2,2)$

df(c 5,x 2,x 1):=-df(c 5,x 2,3)$

simpsys()$ result()$

% The symmetries of the subsystem comprising equation 1
% and 3 are obtained by

cresys(deq 1,deq 3)$ simpsys()$ result()$
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% The result for all possible subsystems is discussed in
% detail in ‘‘Symmetries and Involution Systems: Some
% Experiments in Computer Algebra’’, contribution to the
% Proceedings of the Oberwolfach Meeting on Nonlinear
% Evolution Equations, Summer 1986, to appear.



946 CHAPTER 16. USER CONTRIBUTED PACKAGES

16.68 SPECFN: Package for special functions

This special function package is separated into two portions to make it easier to
handle. The packages are called SPECFN and SPECFN2. The first one is more
general in nature, whereas the second is devoted to special special functions. Ad-
ditional documentation and examples can be found in the files specfn.tex,
specfn.tst and specfn2.tst in the packages/specfn directory.

Author: Chris Cannam, with contributions from Winfried Neun, Herbert Melenk,
Victor Adamchik, Francis Wright, Alan Barnes and several others.

16.68.1 Special Functions: Introduction

The package SPECFN is designed to provide algebraic and numeric manipulations
of many common special functions, namely:

• The Exponential Integral, Sine & Cosine Integrals;

• The Hyperbolic Sine & Cosine Integrals;

• The Fresnel Integrals & Error function;

• The Gamma function;

• The Beta function;

• The psi function & its derivatives;

• The Bessel functions J and Y of the first and second kinds;

• The modified Bessel functions I and K;

• The Hankel functions H(1) and H(2);

• The Airy functions;

• The Kummer hypergeometric functions M and U;

• The Struve, Lommel and Whittaker functions;

• The Riemann Zeta function;

• The Dilog function;

• The Polylog and Lerch Phi functions;

• Lambert’s W function;

• Associated Legendre Functions (Spherical and Solid Harmonics);
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• 3j and 6j symbols, Clebsch-Gordan coefficients;

• Jacobi’s Elliptic Functions;

• Elliptic Integrals;

• Nome and Related Functions;

• Jacobi’s Theta Functions and their derivatives;

• Weierstrass Elliptic Functions and the Sigma Function;

• Other Sigma Functions;

• Period Lattice and Related Functions;

• Stirling Numbers;

• and some well-known constants.

All of the above functions (except Stirling numbers) are autoloading.

More information on all these functions may be found on the website DLMF:NIST
although currently not all functions may conform to these standards.

All algorithms whose sources are uncredited are culled from series or expressions
found in the Dover Handbook of Mathematical Functions[AS72].

There is a nice collection of plot calls for special functions in the file specplot.tst
in the subfolder plot of the packages folder. These examples will reproduce a
number of well-known pictures from [AS72].

16.68.2 Polynomial Functions: Introduction

Most of these polynomial functions are not autoloading. This package needs to be
loaded before they may be used with the command:

load_package specfn;

16.68.2.1 Orthogonal Polynomial Functions

The polynomial function sets available are:

• Hermite Polynomials;

• Legendre Polynomials;

• Laguerre Polynomials;

https://dlmf.nist.gov/
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• Chebyshev Polynomials;

• Jacobi Polynomials;

• Gegenbauer Polynomials;

16.68.2.2 Other Polynomial Functions

• Bernoulli Numbers & Polynomials;

• Euler Numbers & Polynomials;

• Fibonnacci Numbers & Polynomials;

16.68.3 Simplification and Approximation

All of the operators supported by this package have certain algebraic simplification
rules to handle special cases, poles, derivatives and so on. Such rules are applied
whenever they are appropriate. However, if the ROUNDED switch is on, numeric
evaluation is also carried out. Unless otherwise stated below, the result of an ap-
plication of a special function operator to real or complex numeric arguments in
rounded mode will be approximated numerically whenever it is possible to do so.
All approximations are to the current precision.

Most algebraic simplifications within the special function package are defined in
the form of a REDUCE ruleset. Therefore, in order to get a quick insight into the
simplification rules one can use the ShowRules operator, e.g.

ShowRules BesselI;

1 ~z - ~z
{besseli(~n,~z) => ---------------*(e - e )

sqrt(pi*2*~z)

1
when numberp(~n) and ~n=---,

2

1 ~z - ~z
besseli(~n,~z) => ---------------*(e + e )

sqrt(pi*2*~z)

1
when numberp(~n) and ~n= - ---,

2
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besseli(~n,~z) => 0

when numberp(~z) and ~z=0 and numberp(~n) and ~n neq 0,

besseli(~n,~z) => besseli( - ~n,~z) when numberp(~n)

and impart(~n)=0 and ~n=floor(~n) and ~n<0,

besseli(~n,~z) => do*i(~n,~z)

when numberp(~n) and numberp(~z) and *rounded,

df(besseli(~n,~z),~z)

besseli(~n - 1,~z) + besseli(~n + 1,~z)
=> -----------------------------------------,

2

df(besseli(~n,~z),~z)

=> besseli(1,~z) when numberp(~n) and ~n=0}

Several REDUCE packages (such as Sum or Limits) obtain different (hopefully
better) results for the algebraic simplifications when the SPECFN package is
loaded, because the latter package contains some information which may be useful
and directly applicable for other packages, e.g.:

sum(1/k^s,k,1,infinity); % evaluates to zeta(s)

A record is kept of all values previously approximated, so that should a value be
required which has already been computed to the current precision or greater, it
can be simply looked up. This can result in some storage overheads, particularly if
many values are computed which will not be needed again. In this case, the switch
savesfs may be turned off in order to inhibit the storage of approximated values.
The switch is on by default.

16.68.4 Integral Functions

The SPECFN package includes manipulation and limited numerical evaluation for
some integral functions, namely

erf, erfc, Si, Shi, si, Ci, Chi, Ei, Li, Fresnel_C, and Fresnel_S.
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The error function, its complement and the two Fresnel integrals are defined by:

erf(z) =
2√
π

∫ z

0
e−t

2
dt

erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt = 1− erf(z)

C(z) =

∫ z

0
cos
(π

2
t2
)

dt

S(z) =

∫ z

0
sin
(π

2
t2
)

dt

respectively.

The exponential and related integrals are defined by the following:

Ei(z) = e−z
∫ ∞
z

e−t

t+ z
dt

Li(z) =

∫ z

0

dt

log t

Si(z) =

∫ z

0

sin t

t
dt

si(z) = −
∫ ∞
z

sin t

t
dt = Si(z)− π

2

Ci(z) = −
∫ ∞
z

cos t

t
dt =

∫ z

0

cos t− 1

t
dt+ log z + γ

Shi(z) =

∫ z

0

sinh t

t
dt

Chi(z) =

∫ z

0

cosh t− 1

t
dt+ log z + γ

where γ is Euler’s constant (Euler_gamma).

The definitions of the exponential and related integrals, the derviatives and some
limits are known, together with some simple properties such as symmetry condi-
tions.

The numerical approximations for the integral functions suffer from the fact that
the precision is not set correctly for values of the argument above 10.0 (approx.)
and from the usage of summations even for large arguments.

Li(z) is simplified to Ei(ln(z)) .
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16.68.5 The Γ Function and Related Functions

16.68.5.1 The Γ Function

This is represented by the unary operator Gamma. The Gamma function is defined
by the integral:

Γ(a) =

∫ ∞
0

e−tta−1 dt.

Initial transformations applied with ROUNDED off are: Γ(n) for integral n is com-
puted, Γ(n+ 1/2) for integral n is rewritten to an expression in

√
π, Γ(n+ 1/m)

for natural n and m a positive integral power of 2 less than or equal to 64 is rewrit-
ten to an expression in Γ(1/m), expressions with arguments at which there is a
pole are replaced by INFINITY, and those with a negative (real) argument are
rewritten so as to have positive arguments.

The algorithm used for numerical approximation is an implementation of an
asymptotic series for ln(Γ), with a scaling factor obtained from the Pochhammer
symbols.

An expression for Γ′(z) in terms of Γ and ψ is included.

16.68.5.2 Incomplete Gamma Functions

The (unnormalised) incomplete gamma function is provided by the binary function
m_gamma. In the literature it is normally represented as γ(a, z) and is defined by

γ(a, z) =

∫ z

0
e−tta−1 dt.

The normalised incomplete gamma function P (a, z) is provided by the binary
function igamma and is defined as

P (a, z) =
γ(a, z)

Γ(a)
.

16.68.5.3 The Beta Functions

The binary function B(a, b) is related to the Γ function[AS72] and is defined by

B(a, b) =

∫ 1

0
ta(1− t)b dt =

Γ(a)Γ(b)

Γ(a+ b)
.

It is represented by the binary function Beta.
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The unnormalised and nomalised incomplete Beta funtions are defined by

Bx(a, b) =

∫ x

0
ta(1− t)b dt,

Ix(a, b) =
Bx(a, b)

B(a, b)

respectively. The normalised one is represented by the ternary function ibeta(a,b,x).

16.68.5.4 The Digamma Function, ψ

This is represented by the unary operator psi. It is defined as the logarithmic
derivative of the Γ function:

ψ(z) =
Γ′(z)

Γ(z)
.

Initial transformations for ψ are applied on a similar basis to those for Γ; where
possible, ψ(x) is rewritten in terms of ψ(1) and ψ(1

2), and expressions with nega-
tive arguments are rewritten to have positive ones.

The algorithm for numerical evaluation of ψ is based upon an asymptotic series,
with a suitable scaling.

Relations for the derivative and integral of ψ are included.

16.68.5.5 The Polygamma Functions, ψ(n)

The nth derivative of the ψ function is represented by the binary operator
Polygamma, whose first argument is n.

Initial manipulations on ψ(n) are few; where the second argument is 1 or 3/2, the
expression is rewritten to one involving the Riemann ζ function, and when the first
is zero it is rewritten to ψ; poles are also handled.

Numerical evaluation is available for real and complex arguments. The algorithm
used is again an asymptotic series with a scaling factor; for negative (second) ar-
guments, a Reflection Formula is used, introducing a term in the nth derivative of
cot(zπ).

Simple relations for derivatives and integrals are provided.

16.68.6 Bessel Functions

Support is provided for the Bessel functions J and Y , the modified Bessel functions
I andK, and the Hankel functions of the first and second kinds. The relevant oper-
ators are, respectively, BesselJ, BesselY, BesselI, BesselK, Hankel1
and Hankel2, which are all binary operators.
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The Bessel functions Jν(z) and Yν(z) are solutions of the Bessel equation:

z2 d2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0.

Bessel’s function of the first kind, Jν(z), has the series expansion:

Jν(z) =
(z

2

)ν ∞∑
k=0

(−1)k
(z/2)2k

k!Γ(ν + k + 1)
.

Bessel’s function of the second kind, Yν(z), (for non-integral ν) is defined by:

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)

or by its limiting value:

Yν(z) =
1

π

∂Jν(z)

∂ν

∣∣∣∣
ν=n

+
(−1)n

π

∂Jν(z)

∂ν

∣∣∣∣
ν=−n

.

It is sometimes known as Weber’s function.

The Hankel functions are alternative solutions of the Bessel equation distinguished
by their asymptotic behaviour as z →∞:

H(1)
ν (z) ∼

√
2

πz
exp

(
i
(
z − νπ

2
− π

4

))
,

H(2)
ν (z) ∼

√
2

πz
exp

(
−i
(
z − νπ

2
− π

4

))
.

The modified Bessel functions Iν(z) and Kν(z) are solutions of the modified
Bessel equation:

z2 d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0 .

Since they may be obtained by replacing z by ±iz the modified Bessel functions
are sometimes called Bessel functions of imaginary argument. Iν(z) has the series
expansion:

Iν(z) =
(z

2

)ν ∞∑
k=0

(z/2)2k

k!Γ(ν + k + 1)
,

whereas Kν(z) is distinguished by its asymptotic behaviour:

Kν(z) ∼
√

π

2z
e−z

as z → ∞. For more information, see the DLMF:NIST chapters on Hankel &
Bessel functions and Modified Bessel functions.

The following initial transformations are performed:

https://dlmf.nist.gov/10.2
https://dlmf.nist.gov/10.2
https://dlmf.nist.gov/10.25
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• trivial cases or poles of J , Y , I and K are handled;

• J , Y , I and K with negative first argument are transformed to have positive
first argument;

• J with negative second argument is transformed to have positive second
argument;

• Y or K with non-integral or complex second argument is transformed into
an expression in J or I respectively;

• derivatives of J , Y and I are carried out;

• derivatives of K with zero first argument are carried out;

• derivatives of Hankel functions are carried out.

Also, if the COMPLEX switch is on and ROUNDED is off, expressions in Hankel
functions are rewritten in terms of Bessel functions.

No numerical approximation is provided for the BesselK function, or for the Han-
kel functions for anything other than special cases. The algorithms used for the
other Bessel functions are generally implementations of standard ascending series
for J , Y and I , together with asymptotic series for J and Y ; usually, the asymptotic
series are tried first, and if the argument is too small for them to attain the current
precision, the standard series are applied. An obvious optimization prevents an
attempt with the asymptotic series if it is clear from the outset that it will fail.

There are no rules for the integration of Bessel and Hankel functions.

16.68.7 Airy Functions

Support is provided for the Airy Functions Ai and Bi and for their derivatives
Ai′ and Bi′. The relevant operators are respectively Airy_Ai, Airy_Bi,
Airy_Aiprime and Airy_Biprime, which are all unary.

Airy functions are solutions of the differential equation:

d2w

dz2
= zw.

Trivial cases of Airy_Ai and Airy_Bi and their primes are evaluated, and all funct-
ions accept both real and complex arguments.

The Airy Functions can also be represented in terms of Bessel Functions by acti-
vating an inactive rule set:

let Airy2Bessel_rules;
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As a result the Airy_Ai function will be evaluated using the formula:

Ai(z) =
1

3

√
z
[
I−1/3(ζ)− I1/3(ζ)

]
, where ζ =

2

3
z

2
3 .

Note: In order to obtain satisfactory approximations to numerical values both the
COMPLEX and ROUNDED switches must be on.

The algorithms used for the Airy Functions are implementations of standard as-
cending series, together with asymptotic series. At some point it is better to use
the asymptotic rather than the ascending series, which is calculated by the program
and depends on the given precision.

There are no rules for the integration of Airy Functions.

16.68.8 Hypergeometric and Other Functions

This package also provides some support for other functions, in the form of alge-
braic simplifications:

• The Struve H and L functions, through the binary operators StruveH and
StruveL, for which manipulations are provided to handle special cases,
simplify to more readily handled functions where appropriate, and differen-
tiate with respect to the second argument. These functions with arguments ν
and x are solutions of the differential equation:

d2w

dx2
+

1

x

dw

dx
+

(
1− ν2

x2

)
w =

(z/2)ν−1

√
πΓ(ν + 1/2)

.

• The Lommel functions of the first and second kinds, through the ternary
operators Lommel1 and Lommel2 with arguments ν, µ and x may be
considered generalisations of the Struve functions satisfying the differential
equation:

d2w

dx2
+

1

x

dw

dx
+

(
1− ν2

x2

)
w = zµ−1 .

Manipulations are provided to handle special cases and simplify where ap-
propriate.

• The Kummer confluent hypergeometric functions M and U (the hyper-
geometric 1F1 or Φ, and z−a2F0 or Ψ, respectively), represented by the
ternary operators KummerM and KummerU with arguments a, b and x, are
solutions of the differential equation:

d2w

dx2
+ (b− x)

dw

dx
− aw = 0 .

There are manipulations for special cases and simplifications, derivatives
and, for the M function, numerical approximations for real arguments.
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• The Whittaker M and W functions are variations upon the Kummer func-
tions, which are represented by the ternary operators WhittakerM and
WhittakerW with arguments κ, µ and x. They satisfy the Whittaker dif-
ferential equation:

d2W

dx2
+

(
1− 4µ2

4x2
+
κ

x
− 1

4

)
W = 0 ,

which is obtained from the Kummer differential equation via the substituions

W = ez/2zµ+1/2w, κ = b/2− a µ = (b− 1)/2 .

The Whittaker M and W functions with non-numeric arguments are simpli-
fied to expressions involving the Kummer M and U functions respectively.

16.68.9 The Riemann Zeta Function

This is represented by the unary operator Zeta and defined by the formula:

ζ(s) =

∞∑
n=1

1

ns
.

With ROUNDED off, ζ(z) is evaluated numerically for even integral arguments in
the range −31 < z < 31, and for odd integral arguments in the range −30 < z <
16. Outside this range the values become a little unwieldy.

Numerical evaluation of ζ is only carried out if the argument is real. The algo-
rithms used for ζ are: for odd integral arguments, an expression relating ζ(n) with
ψn−1(3); for even arguments, a trivial relationship with the Bernoulli numbers; and
for other arguments the approach is either (for larger arguments) to take the first
few primes in the standard over-all-primes expansion, and then continue with the
defining series with natural numbers not divisible by these primes, or (for smaller
arguments) to use a fast-converging series obtained from [BO78].

There are no rules for differentiation or integration of ζ.

16.68.10 Polylogarithm and Related Functions

The dilogarithm function Li2(z) is defined by

Li2(z) ≡
∞∑
n=1

zn

n2
= −

∫ z

0

log(1− t)
t

dt

and represented by the unary function dilog.
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The polylogarithm function Lis(z) is defined by

Lis(z) ≡
∞∑
n=1

zn

ns
=

z

Γ(s)

∫ ∞
0

ts−1

et − z
dt.

and represented by the binary function Polylog. The case s = 2 is, of course,
the dilogarithm function and the special case when z = 1 gives the Riemann zeta
function ζ(s). For s = 1, the polylogarithm reduces to the elementary function:
− log(1− t).

Lerch’s transcendent or Lerch Phi function is defined by

Φ(z, s, a) =

∞∑
n=0

zn

(n+ a)s
.

It is represented by the ternary function Lerch_Phi(z,s,a). For the special
case a = 1, Lerch’s function is related to a polylogarithm: zLis(z) = Φ(z, s, 1).

16.68.11 Lambert’s W Function

Lambert’s function ω(x), represented by the unary operator Lambert_W, is the
inverse of the function x = wew. Therefore it is an important contribution for the
solve package.

For real-valued arguments ω(x) is only real-valued in the interval (−1/e,∞). In
the interval (−1/e, 0), it is double-valued with a branch point at the point (-1/e, -1)
where ω′(x) is singular. The positive branch is defined on the interval (−1/e,∞)
where it is monotonically increasing with ω(x) > −1. The negative branch is
defined on the interval (−1/e, 0) where it is monotonically decreasing with ω(x) <
−1.

Simplification rules for ω(x) are provided for the special arguments 0 and −1/e
and for its logarithm, derivative and integral. A previous rule for its exponential
caused problems with power series expansions about zero and has been deactivated.
This does not seem to impact on the SOLVE package. However, this rule may be
reactivated if required by

let lambert_exp_rule;
% and deactivated again by

clear lambert_exp_rule;

The function is studied extensively in [HCGJ92]. The current implementation
will compute values on the principal branch for all complex numerical arguments
only if the switch ROUNDED is ON. However, since the numerical computations
are carried out in complex-rounded mode, it is also better to turn the switch
COMPLEX ON to avoid repeated irritating mode change warnings.
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The real positive branch is part of the principal branch and currently there is no
way of computing values on the real negative branch or indeed any non-principal
values.

16.68.12 Spherical and Solid Harmonics

The relevant operators are, respectively,
SolidHarmonicY and SphericalHarmonicY.

The SolidHarmonicY operator implements the Solid Harmonics described be-
low. It expects 6 parameter, namely n, m, x, y, z and r2 and returns a polynomial
in x, y, z and r2.

The operator SphericalHarmonicY is a special case of SolidHarmonicY
with the usual definition:

algebraic procedure SphericalHarmonicY(n,m,theta,phi);
SolidHarmonicY(n,m,sin(theta)*cos(phi),

sin(theta)*sin(phi),cos(theta),1)$

Solid Harmonics of order n (Laplace polynomials) are homogeneous polynomials
of degree n in x, y, z which are solutions of the Laplace equation:-

df(P,x,2) + df(P,y,2) + df(P,z,2) = 0.

There are 2n+ 1 independent such polynomials for any given n ≥ 0 and with:-

w!0 = z, w!+ = i*(x-i*y)/2, w!- = i*(x+i*y)/2,

they are given by the Fourier integral:-

S(n,m,w!-,w!0,w!+) =
(1/(2*pi)) *
for u:=-pi:pi integrate(w!0 + w!+ * exp(i*u)

+ w!- * exp(-i*u))^n * exp(i*m*u) * du;

which is obviously zero if |m| > n since then all terms in the expanded integrand
contain the factor eiku with k 6= 0.

S(n,m, x, y, z) is proportional to

r^n * Legendre(n,m,cos theta) * exp(i*phi)

where r2 = x2 + y2 + z2.
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The spherical harmonics are simply the restriction of the solid harmonics to the
surface of the unit sphere and the set of all spherical harmonics with n ≥ 0,−n ≤
m ≤ n form a complete orthogonal basis on it, i.e. 〈n,m|n′,m′〉 = δn,n′δm,m′

using 〈. . . | . . .〉 to designate the scalar product of functions over the spherical sur-
face.

The coefficients of the solid harmonics are normalised in what follows to yield an
orthonormal system of spherical harmonics.

Given their polynomial nature, there are many recursions formulae for the solid
harmonics and any recursion valid for Legendre functions can be ‘translated’ into
solid harmonics. However the direct proof is usually far simpler using Laplace’s
definition.

It is also clear that all differentiations of solid harmonics are trivial, qua polynom-
ials.

Some substantial reduction in the symbolic form would occur if one maintained
throughout the recursions the symbol r2 (r cannot occur as it is not rational in
x, y, z). Formally the solid harmonics appear in this guise as more compact poly-
nomials in x, y, z, r2.

Only two recursions are needed:-

(i) along the diagonal (n, n);

(ii) along a line of constant n: (m,m), (m+ 1,m), . . . , (n,m).

Numerically these recursions are stable.

For m < 0 one has:-

S(n,m, x, y, z) = (−1)mS(n,−m,x,−y, z).

16.68.13 3j symbols and Clebsch-Gordan Coefficients

The operators ThreeJSymbol and Clebsch_Gordan are defined as in [LB68]
or [Edm57] and expect as arguments three lists of values {ji,mi}, e.g.

ThreeJSymbol({J+1,M},{J,-M},{1,0});
Clebsch_Gordan({2,0},{2,0},{2,0});

16.68.14 6j symbols

The operator SixJSymbol is defined as in [LB68] or [Edm57] and expects two
lists of values {j1, j2, j3} and {l1, l2, l3} as arguments, e.g.

SixJSymbol({7,6,3},{2,4,6});
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In the current implementation of SixJSymbol there is only limited reasoning
about the minima and maxima of the summation using the INEQ package, such
that in most cases the special 6j-symbols (see e.g. [LB68]) will not be found.

16.68.15 Elliptic Functions

The implementation of the functions in this and the next two subsections have been
substantially revised by Alan Barnes in 2019. This is to bring the notation more into
line with standard (British) texts such as Whittaker & Watson [WW69] and Lawden
[Law89] and also to correct a number of errors and omissions. These changes
and additions will be itemised in the relevant sections below. A new subsection
has been added in 2021 to support Weierstrassian Elliptic functions and Sigma
functions. While the code for these is being updated, the autoloading properties of
all elliptic functions has been temporarily removed.

16.68.15.1 Jacobi Elliptic Functions

The following functions have been implemented:

• The Twelve Jacobi Functions

• Arithmetic Geometric Mean

• Descending Landen Transformation

The following Jacobi functions are available:-

• jacobisn(u,k)

• jacobidn(u,k)

• jacobicn(u,k)

• jacobicd(u,k)

• jacobisd(u,k)

• jacobind(u,k)

• jacobidc(u,k)

• jacobinc(u,k)

• jacobisc(u,k)

• jacobins(u,k)
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• jacobids(u,k)

• jacobics(u,k)

These differ somewhat from the originals implemented by Lisa Temme in that the
second argument is now the modulus (usually denoted by k in most texts rather
than its square m). The notation for the most part follows Lawden [Law89]. The
last nine Jacobi functions are related to the three basic ones: jacobisn(u,k),
jacobicn(u,k) and jacobidn(u,k) and use Glaisher’s notation. For ex-
ample

ns(x, k) =
1

sn(u, k)
, cs(x, k) =

cn(u, k)

sn(u, k)
, cd(x, k) =

cn(u, k)

dn(u, k)
.

Extended rule lists are provided for differentiation of these functions with respect to
either argument, to implement the standard addition formulae, argument shifts by
multiples of the two quarter-periods K and iK ′ and finally Jacobi’s transformation
for a purely imaginary first argument.

When their arguments are purely numerical, these functions will be evaluated nu-
merically if the rounded switch is used. For complex arguments it is also better
if the complex switch is on.

16.68.15.2 Jacobi Amplitude Function

The amplitude of u can be evaluated using the jacobiam(u,k) command. A
rule list is provided for differentiation of this functions with respect to either argu-
ment.

16.68.15.3 Arithmetic Geometric Mean (AGM)

A procedure to evaluate the AGM of initial values a0, b0, c0 exists as
AGM_function(a0, b0, c0) and will return
{N,AGM, {aN , . . . , a0}, {bN , . . . , b0}, {cN , . . . , c0}}, whereN is the number of
steps to compute the AGM to the desired accuracy.

To determine the Elliptic Integrals K(m), E(m) we use initial values a0 = 1; b0 =√
1− k2 ; c0 = k.

This procedure and the following one are primarily intended for use in the numer-
ical evaluation of the various elliptic functions and integrals rather than for direct
use by users.
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16.68.15.4 Descending Landen Transformation

The procedure to evaluate the Descending Landen Transformation of φ and α uses
the following equations:

(1 + sinαn+1)(1 + cosαn) = 2 where αn+1 < αn,

tan(φn+1 − φn) = cosαn tanφn where φn+1 > φn.

It can be called using landentrans(φ0, α0) and will return
{{φ0, . . . , φn}, {α0, . . . , αn}}.

16.68.16 Elliptic Integrals

The following functions have been implemented:

• Complete & Incomplete Elliptic Integrals of the First Kind

• Complete & Incomplete Elliptic Integrals of the Second Kind

• Jacobi’s Zeta Function

These again differ somewhat from the originals implemented by Lisa Temme as the
second argument is now the modulus k rather that its square. Also in the original
implementation there was some confusion between Legendre’s form and Jacobi’s
form of the incomplete elliptic integrals of the second kind; E(u, k) denoted the
first in numerical evaluations and the second in the derivative formulae for the
Jacobi elliptic functions with respect to their second argument. This confusion was
perhaps understandable as in the literature some authors use the notation E(u, k)
for the Legendre form and others for Jacobi’s form.

To bring the notation more into line with that in the NIST Digital Library of Mathe-
matical Functions and avoid any possible confusion, E(u, k) is used for the Legen-
dre form and E(u, k) for Jacobi’s form. This differs from the 2019 version of this
section which followed Lawden [Law89], where the notation D(φ, k) and E(u, k)
were used for the Legendre and Jacobi forms respectively.

A number of rule lists have been provided to implement, where appropriate, deriva-
tives of these functions, addition rules and periodicity and quasi-periodicity prop-
erties and to provide simplifications for special values of the arguments.

16.68.16.1 Elliptic F

The Elliptic F function can be used as EllipticF(phi,k) and will return the
value of the Incomplete Elliptic Integral of the First Kind:

F(φ, k) =

∫ φ

0
(1− k2 sin2 θ)−1/2dθ.
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16.68.16.2 Elliptic K

The Elliptic K function can be used as EllipticK(k) and will return the value
of the Complete Elliptic Integral of the First Kind:

K(k) = F(π/2, k) =

∫ π/2

0
(1− k2 sin2 θ)−1/2dθ.

This is one of the quarter periods of the Jacobi elliptic functions and is often used
in the calculation of other elliptic functions.

The complementary Elliptic K′ function can be used as EllipticK!′(k) and
will return the value

K(k′) = K(
√

1− k2)

which is the other quarter-period of the Jacobi elliptic functions.

16.68.16.3 Elliptic E

The Elliptic E function comes with either one or two arguments; used with two
arguments as EllipticE(u,k) it will return the value of Legendre’s form of
the Incomplete Elliptic Integral of the Second Kind:

E(φ, k) =

∫ φ

0

√
1− k2 sin2 θ dθ.

When called with one argument EllipticE(k)will return the value of the Com-
plete Elliptic Integral of the Second Kind:

E(k) = E(π/2, k) =

∫ π/2

0

√
1− k2 sin2 θ dθ.

The complementary Elliptic E′ function can be used as EllipticE!′(k) and
will return the value

E(k′) = E(
√

1− k2).

16.68.16.4 Jacobi E

The Jacobi E function can be used as JacobiE(u,k); it will return the value of
Jacobi’s form of the Incomplete Elliptic Integral of the Second Kind:

E(u, k) =

∫ u

0
dn2(v, k) dv.

The relationship between the two forms of incomplete elliptic integrals can be ex-
pressed as

E(u, k) = E(am(u), k).
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Note that

E(k) = E(K(k), k) =

∫ K(k)

0
dn2(v, k) dv.

On a GUI that supports calligraphic characters (NB. this is now the case with the
CSL GUI), there is no problem and it is rendered as E(u, k) in accordance with
NIST usage. On non-GUI interfaces the Jacobi E function is rendered as E_j.

16.68.16.5 Jacobi’s Zeta Function

This can be called as JacobiZeta(u,k) and refers to Jacobi’s (elliptic) Zeta
function Z(u, k) whereas the operator Zeta will invoke Riemann’s ζ function.

16.68.16.6 Some Numerical Utility Functions

Five utility functions are provided:

• nome2mod(q)

• nome2mod!′(q)

• nome2!K(q)

• nome2!K!′(q)

• nome(k)

These are only operative when the switch rounded is on and their argument is
numerical. The first pair relate the nome q of the theta functions with the moduli k
and k′ =

√
1− k2 of the associated Jacobi elliptic functions.

The second pair return the quarter-periods K and K′ respectively of the Jacobi
elliptic functions associated with the nome q.

Finally, nome(k) returns the nome q associated with the modulus k of a Jacobi
elliptic function and is essentially the inverse of nome2mod.

16.68.17 Jacobi Theta Functions

These theta functions differ from those originally defined by Lisa Temme in a num-
ber of respects. Firstly four separate functions of two arguments are defined:

• elliptictheta1(u,tau) ϑ1(u, τ)

• elliptictheta2(u,tau) ϑ2(u, τ)



965

• elliptictheta3(u,tau) ϑ3(u, τ)

• ellipticthetas(u,tau) ϑ4(u, τ)

rather than a single function with three arguments (with the first argument taking
integer values in the range 1 to 4). Secondly the periods are 2π, 2π, π and π re-
spectively (NOT 4K, 4K, 2K and 2K). Thirdly the second argument is the modulus
τ = a+ ib where b = =τ > 0 and hence the quasi-period is πτ .

The second parameter was previously the nome q where |q| < 1. As a conse-
quence elliptictheta1 and elliptictheta2 were multi-valued owing
to the appearance of q1/4 in their defining expansions. elliptictheta3 and
elliptictheta4 were, however, single-valued functions of q.

Regarded as functions of τ , elliptictheta1 and elliptictheta2 are
single-valued functions. The nome is given by q = exp(iπτ) so that the con-
dition =(τ) > 0 ensures that |q| < 1. Note also in this case q1/4 is inter-
preted as exp(iπτ/4) rather than the principal value of q1/4. Thus, τ , 2 + τ ,
4 + τ and 6 + τ produce four different values of both elliptictheta1 and
elliptictheta2 although they all correspond to the same nome q.

The four theta functions are defined by their Fourier series:

ϑ1(z, τ) = 2eiπτ/4
∞∑
n=0

(−1)nqn
2+n sin(2n+ 1)z

ϑ2(z, τ) = 2eiπτ/4
∞∑
n=0

qn
2+n cos(2n+ 1)z

ϑ3(z, τ) = 1 + 2
∞∑
n=1

qn
2

cos 2nz

ϑ4(z, τ) = 1 + 2

∞∑
n=1

(−1)nqn
2

cos 2nz.

Utilising the periodicity and quasi-periodicity of the theta functions some gener-
alised shift rules are implemented to shift their first argument into the base period
parallelogram with vertices

(π/2, πτ/2), (−π/2, πτ/2), (−π/2,−πτ/2), (π/2,−πτ/2).

Together with the relation ϑ1(0, τ) = 0, these shift rules serve to simplify all four
theta functions to zero when appropriate.

When the switches rounded and complex are on and the arguments are purely
numerical and the imaginary part of τ positive, the theta functions are evaluated
numerically. Note that as τ is necessarily complex, the switch complex must be
on.



966 CHAPTER 16. USER CONTRIBUTED PACKAGES

In what follows a and b will denote the real and imaginary parts of τ respectively
and so |q| = exp(−πb) and arg q = πa. The series for the theta functions are
fairly rapidly convergent due to the quadratic growth of the exponents of the nome
q – except for values of q for which |q| is near to 1 (i.e. b = =τ close to zero). In
such cases the direct algorithm would suffer from slow convergence and rounding
errors. For such values of |q|, Jacobi’s transformation τ ′ = −1/τ can be used to
produce a smaller value of the nome and so increase the rate of convergence. This
works very well for real values of q, or equivalently for τ purely imaginary since
q′ = q1/b2 , but for complex values the gains are somewhat smaller. The Jacobi
transformation produces a nome q′ for which |q′| = |q|1/(a2+b2).

When <q < 0, the Jacobi transformation is preceded by either the modular trans-
formation τ ′ = τ + 1 when =q < 0, or τ ′ = τ − 1 when =q > 0, which both
have the effect of multiplying q by −1, so that the new nome has a non-negative
real part and |a| ≤ 1/2. Thus the worst case occurs for values of the nome q near
to ±i where |q′| ≈ |q|4.

By using a series of Jacobi transformations preceded, if necessary by τ -shifts to
ensure |a| <= 1/2, |q| may be reduced to an acceptable level. Somewhat arbi-
trarily these Jacobi’s transformations are used until b > 0.6 (i.e. |q| < 0.15). This
seems to produce reasonable behaviour. In practice more than two applications of
Jacobi transformations are rarely necessary.

The previous version of the numerical code returned the principal values of ϑ1 and
ϑ2, that is the ones obtained by taking the principal value of q1/4 in their series
expansions. The current version replaces q1/4 by exp(iπτ/4). If the principal
value is required, it is easily obtained by multiplying by the ‘correcting’ factor
q1/4 exp(−iπτ/4).

Derivatives of Theta Functions

Four functions are provided:

• theta1d(u,ord,tau)

• theta2d(u,ord,tau)

• theta3d(u,ord,tau)

• theta4d(u,ord,tau)

These return the dth derivatives of the respective theta functions with respect to
their first argument u; τ is as usual the modulus of the theta function. These func-
tions are only operative when the switches ROUNDED and COMPLEX are ON and
their arguments are numeric with d being a positive integer. They are provided
mainly to support the implementation the Weierstrassian and Sigma functions dis-
cussed in the following subsection.
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The numeric code simply sums the Fourier series for the required derivatives. Un-
like the theta functions themselves the code does not use the quasi-periodicity nor
modular transformations to speed up the convergence of the series by reducing the
sizes of =u and |q|. In the numerical evaluation of the Weierstrassian and Sigma
functions these functions are only called after the necessary shifts of the argument
u and modular transformations of τ have been performed. These are much simpler
in this context.

Nevertheless they may be used from top level and numerical experiments reveal
that the rounding errors are not significant provided |q| is not near one (say |q| <
0.9) and u is real or at least has a relatively small imaginary part.

16.68.18 Weierstrass Elliptic & Sigma Functions

Three main functions of three arguments are defined:

• ℘(u, ω1, ω3) — weierstrass(u,omega1,omega3)

• ζw(u, ω1, ω3) — weierstrassZeta(u,omega1,omega3)

• σ(u, ω1, ω3) — sigma(u,omega1,omega3)

The notation used is broadly similar used by Lawden [Law89] which is also used in
the NIST Digital Library of Mathematical Functions DLMF:NIST. However, ζw is
used for the Weierstrassian Zeta function to distinguish it from the Riemann Zeta
function and the usual symbol ℘ is used for the Weierstrassian elliptic function
itself.

The two primitive periods of the Weierstrass function are 2ω1 and 2ω3 and these
must satisfy =(ω3/ω1) 6= 0. The two periods are normally numbered so that
τ = ω3/ω1 has a positive imaginary part and hence the nome q = exp(iπτ)
satisfies |q| < 1.

Any linear combination Ωm,n = 2mω1 + 2nω3 where m and n are integers (not
both zero) is also a period. The set of all such periods plus the origin form a lattice.
In the literature−(ω1 +ω3) is often denoted by ω2 and 2ω2 is clearly also a period;
this accounts for the gap in the numbering of primitive periods. The period ω2

is not used in REDUCE the rule sets for the Weierstrassian elliptic and related
functions.

The primitive periods are not unique; indeed any periods 2Ω1 and 2Ω3 defined by
the unimodular integer bilinear transformation:

Ω1 = aω1 + bω3, Ω3 = cω1 + dω3, where ad− bc = 1

are also primitive. This fact is very useful in the numerical evaluation of the Weier-
strassian and Sigma functions as a sequence of such transformations may be used

https://dlmf.nist.gov/
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to increase the size =τ and so reduce the size of |q|. Thus the Fourier series for the
theta functions and their derivatives will converge rapidly. In theory these transfor-
mations may be used to reduce the size of |q| until =τ ≥

√
3/2 when |q| < 0.06.

However, in numerical evaluations in REDUCE it is sufficient to use these trans-
formations only until =τ > 0.7, i.e. until |q| < 0.11. In practice only two or three
iterations are required and usually very much smaller values of |q| are achieved
particularly when τ is purely imaginary i.e. q is real.

In the numerical evaluations, if a result is real (or purely imaginary) it may happen
that the result returned has a very small imaginary part (resp. real part). The
ratio of the ‘deliquent’ part to the actual result is invariably smaller than current
PRECISION and is due to rounding. Similarly if the true result is actually zero
the result returned may have a very small absolute value – again smaller than the
current PRECISION.

The Weierstrassian function is even and has a pole of order 2 at all lattice points.
The Zeta and Sigma functions are only quasi-periodic on the lattice. Zeta is odd
and has simple poles of residue 1 at all lattice points. The basic Sigma function
σ(u, ω1, ω3) is odd and regular everywhere as is the function ϑ1(u, τ) to which it
is closely related. It has zeros at all lattice points. All three functions ℘, ζw and σ
are homogenous of degrees -2, -1 and +1 respectively. The functions are related by

℘(u) = −ζ ′w(u), ζw(u) = σ′(u)/σ(u),

where the lattice parameters have been omitted for conciseness.

Rule sets are provided which implement all the properties such as double peri-
odicity discussed above. For numerical evaluation the switches ROUNDED and
COMPLEX must both be ON and all three parameters must be numeric. It is not,
however, necessary to ensure =(ω3/ω1) > 0 as the second and third parameters
will be swapped if required.

Alternative forms of the Weierstrass Functions

Two commonly used alternative forms of the Weierstrassian functions in which
they are regarded as functions of the lattice invariants g2 and g3 rather than the
primitive periods ω1 and ω3 are provided:

• ℘(u | g2, g3) — weierstrass1(u,g2,g3)

• ζw(u | g2, g3) — weierstrassZeta1(u,g2,g3).

Note that for output they are distinguished from the two discussed above by sep-
arating the first and second arguments by a vertical bar rather than a comma. The
rule for differentiation of the Weierstrass function is simpler when expressed in this
alternative:

℘′(u | g2, g3)2 = 4℘(u | g2, g3)3 − g2 ℘(u | g2, g3)− g3.
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Other Sigma Functions

Three further Sigma functions are also provided:

• σ1(u, ω1, ω3) — sigma1(u,omega1,omega3)

• σ2(u, ω1, ω3) — sigma2(u,omega1,omega3)

• σ3(u, ω1, ω3) — sigma3(u,omega1,omega3)

These are all even functions, regular everywhere, homogenous of degree zero and
doubly quasi-periodic. They are closely related to the theta functions ϑ2, ϑ3 and
ϑ4 respectively; but note the difference in numbering. For more information on
the properties these sigma functions, see Lawden [Law89]; they do not appear in
the NIST Digital Library of Mathematical Functions, but are included here for
completeness.

16.68.18.1 Quasi-Period Factors & Lattice Functions

Ten functions are provided:

• e1(ω1, ω3) — lattice_e1(omega1, omega3);

• e2(ω1, ω3) — lattice_e2(omega1, omega3);

• e3(ω1, ω3) — lattice_e3(omega1, omega3);

• g2(ω1, ω3) — lattice_g2(omega1, omega3);

• g3(ω1, ω3) — lattice_g3(omega1, omega3);

• ∆(ω1, ω3) — lattice_delta(omega1, omega3);

• G(ω1, ω3) — lattice_g(omega1, omega3);

• η1(ω1, ω3) — eta_1(omega1, omega3);

• η2(ω1, ω3) — eta_2(omega1, omega3);

• η3(ω1, ω3) — eta_3(omega1, omega3).

These are operative when the switches ROUNDED and COMPLEX are ON and their
arguments are numerical. The first three are referred to as lattice roots and are
related to the invariants g2, g3, the discriminant ∆ = g3

2 − 27g2
3 and a closely

related invariant G = g3
2/(27g2

3) of the Weierstrassian elliptic function ℘. The
lattice roots also appear in the numerical evaluation of the Weierstrass function.
These lattice roots satisfy:

e1 + e2 + e3 = 0, g2 = 2(e2
1 + e2

2 + e2
3), g3 = 4e1e2e3.
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If the discriminant ∆ vanishes or equivalently if G = 1, there are at most two
distinct lattice roots and the elliptic function degenerates to an elementary one.
The advantage of the invariant G is that it is a function of τ = ω3/ω1 only.

The remaining three functions eta_1, eta_2 & eta_3 appear in the rules for
the quasi-periodicity of the four sigma functions and of the Weierstrassian Zeta
function. They are also used in the numerical evaluation of these functions when
the switches ROUNDED and COMPLEX are ON. The quasi-period relations are:

ζw(u+ 2ωj) = ζw(u) + 2ηj

σ(u+ 2ωj) = −exp(2ηj(u+ ωj))σ(u)

σk(u+ 2ωj) = exp(2ηj(u+ ωj))σk(u) if j 6= k

σj(u+ 2ωj) = −exp(2ηj(u+ ωj))σj(u)

ζw(ωj) = ηj

σj(ωj) = 0,

where the lattice parameters have been omitted for conciseness and j, k = 1 . . . 3.
The quasi-period factors satisfy

η1 + η2 + η3 = 0, η1ω3 − η3ω1 = η2ω1 − η1ω2 = η3ω2 − η2ω3 = iπ/2.

As well as the scalar-valued functions discussed above in this section, there are
four functions which return a list as their value:

• lattice_roots(omega1, omega3) — returns {e1, e2, e3};

• lattice_invariants(omega1, omega3)— returns {g2, g3, ∆, G};

• quasi_period_factors(omega1, omega3)— returns {η1, η2, η3};

• lattice_generators(g2, g3) — returns {ω1, ω3}.

The first three are actually more efficient than calling the requisite scalar-valued
functions individually and the fourth is used in the numerical evaluation of the
Weierstrass functions regarded as functions of the invariants. These functions are
only useful when the switches ROUNDED and COMPLEX are ON and their argu-
ments are all numerical. Note that the call sequence:

lattice_generators(g2,g3);
lattice_invariants(first ws, second ws);
{first ws, second ws};

should reproduce the list {g2, g3}, perhaps with small rounding errors. The corre-
sponding sequence with the calls to lattice_generators and lattice_invariants
interchanged (and g2 & g3 replaced by w1 & w3), in general, will not produce the
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same pair of lattice generators since the generators are only defined up to a uni-
modular bilinear transformation.

For details of the algorithm used to calculate the lattice generators from the invari-
ants see the DLMF:NIST chapter on Lattice Calculations.

16.68.19 Stirling Numbers

The Stirling numbers of the first and second kind are computed by calling the
binary operators Stirling1 and Stirling2 respectively.

Stirling numbers of the first kind have the generating function:

n∑
m=0

smn x
m = (x− n+ 1)n

where (x−n+1)n is the Pochhammer symbol. This provides a convenient way of
calculating these Stirling numbers by extracting coefficients of the polynomial ob-
tained by evaluating the Pochhammer symbol. REDUCE however uses an explicit
summation.

Stirling numbers of the second kind are defined by the formula:

Smn =
1

m!

m∑
k=0

(−1)m−k
(
m

k

)
kn.

REDUCE uses this explicit summation to evaluate Stirling numbers of the second
kind.

16.68.20 Constants

The following well-known constants are defined in the REDUCE core, but the code
for computing their numerical value when the switch ROUNDED is on is contained
in the special function package.

• Euler_Gamma : Euler’s constant, also available as −ψ(1);

• Catalan : Catalan’s constant;

• Khinchin : Khinchin’s constant, defined in [Khi64] (which takes a lot of
time to compute);

• Golden_Ratio :
1 +
√

5

2

https://dlmf.nist.gov/23.22#ii
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16.68.21 Orthogonal Polynomials

All the polynomials in this section take two or more parameters; the first is the de-
gree of the polynomial and the last is its argument. Any remaining arguments are
parameters which in the literature are normally rendered as subscripts and super-
scripts. First, the definitions appropriate to all the sets of orthogonal polynomials
in the following subsections are listed.

A set of polynomials {pn(x)}, n = 0, 1, . . . are said to be orthogonal on open
interval (a, b) (where a and/or b may be infinite) with positive weight function
w(x) if ∫ b

a
pn(x)pm(x)w(x)dx = 0 when m 6= n.

This defines each polynomial pn(x) up to a constant factor cn which is usually
fixed by normalisation. If these factors are chosen so that

hn =

∫ b

a
(pn(x))2w(x)dx = 1 i.e. cn =

√
hn

then the polynomial set is said to be orthonormal. An alternative normalisation,
that is sometimes used, is to set the leading term of each polynomial kn = 1. The
polynomial set is then said to be monic.

In REDUCE the normalisation is chosen so that the polynomial sets are orthonor-
mal and hence kn 6= 1 in general. In the subsections below on each of the polyno-
mial sets, the interval (a, b) over which the polynomials are orthogonal, the weight
function w(x) and the leading coefficient kn of the polynomial of degree n are
given together with any constraints on any additional parameters. Also given are
what might be called the ‘first moment’ h̃n of the nth polynomial defined by:

h̃n =

∫ b

a
x(pn(x))2w(x) dx

and the ratio

rn =
k̃n
kn

where pn(x) = knx
n + k̃nx

n−1 . . .

These quantities may be used in recurrence relations when generating the poly-
nomials.

16.68.21.1 Legendre Polynomials

The function call LegendreP(n,x) will return the nth Legendre polynomial if
n is a non-negative integer; otherwise the result will involve the original operator
LegendreP or on graphical interfaces Pn(x) will be output.

https://dlmf.nist.gov/18.2#iv
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The interval of definition is (−1, 1), the weight function w(x) = 1 and, for the
orthonormal case, the leading coefficients are given by kn = 2n(1

2)n/n! where
(1

2)n is the Pochhammer symbol. Also h̃n = 2
2n+1 and rn = 0.

16.68.21.2 Associated Legendre Functions

The function call LegendreP(n,m,x) will return the nth associated Legendre
function if n and m are integers with 0 ≤ m ≤ n; otherwise the result will in-
volve the original operator LegendreP or on graphical interfaces P (m)

n (x) will
be output.

They are defined by

P (m)
n (x) = (−1)m(1− x2)m/2

dmPn(x)

dxm
;

it should be noted that they are only polynomials if m is even. Currently the exten-
sion of these functions to negative n and m is not implemented in REDUCE.

For fixed m these functions are orthogonal over the interval (−1, 1); the weight
function being w(x) = 1. However, unlike the polynomials in the rest of this
section, they are not orthonormal:∫ 1

−1

(
P (m)
n (x)

)2
dx = hn =

2(l +m)!

(2l + 1)!(l −m)!
.

16.68.21.3 Chebyshev Polynomials

The function call ChebyshevT(n,x) will return the nth Chebyshev polynomial
of the first kind if n is a non-negative integer; otherwise the result will involve the
original operator ChebyshevT or on graphical interfaces Tn(x) will be output.

The interval of definition is (−1, 1), the weight function w(x) = (1−x2)−1/2 and,
for the orthonormal case, the leading coefficients are given by kn = 2n−1 for n >
0; k0 = 1. Also h̃n = π/2 for n > 0; h̃0 = π and rn = 0.

The function call ChebyshevU(n,x) will return the nth Chebyshev polynomial
of the second kind if n is a non-negative integer; otherwise the result will involve
the original operator ChebyshevU or on graphical interfaces Un(x) will be out-
put.

The interval of definition is (−1, 1), the weight function w(x) = (1−x2)−1/2 and,
for the orthonormal case, the leading coefficients are given by kn = 2n, h̃n = π/2
and rn = 0.
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16.68.21.4 Gegenbauer Polynomials

The function call GegenbauerP(n,a,x) will return the Gegenbauer polyno-
mial of degree n and parameter a if n is a non-negative integer and a is numerical;
otherwise the result will involve the original operator GegenbauerP or on graph-
ical interfaces C(a)

n (x) will be output.

The interval of definition is (−1, 1), the weight functionw(x) = (1−x2)a−1/2 and,
for the orthonormal case, the leading coefficients are given by kn = 2n(a)n/n!
where (a)n is the Pochhammer symbol. The parameter a should satisfy a >
−1/2, a 6= 0. Also

h̃n =
21−2aπΓ(n+ 2a)

(n+ a)(Γ(a))2n!
and rn = 0 .

16.68.21.5 Jacobi Polynomials

The function call JacobiP(n,a,b,x) will return the Jacobi polynomial of de-
gree n and parameters a and b if n is a non-negative integer and a and b are nu-
merical; otherwise the result will involve the original operator JacobiP or on
graphical interfaces P (a,b)

n (x) will be output.

The interval of definition is (−1, 1), the weight function w(x) = (1− x)a(1 + x)b

and, for the orthonormal case, the leading coefficients are given by

h̃n =
(n+ a+ b+ 1)n

2nn!

where (n+a+ b+1)n is the Pochhammer symbol. The parameters a and b should
satisfy a > −1, b > −1. Also

h̃0 = 2a+b+1 Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

h̃n = 2a+b+1 Γ(n+ a+ 1)Γ(n+ b+ 1)

(2n+ a+ b+ 1)Γ(n+ a+ b+ 1)n!
for n > 0

rn =
n(a− b)

2n+ a+ b
.

The Legendre, Chebyshev and Gegenbauer polynomials are all, in fact, special
cases of the Jacobi polynomials.

16.68.21.6 Laguerre Polynomials

The function call LaguerreP(n,x) will return the nth Laguerre polynomial if
n is a non-negative integer; otherwise the result will involve the original operator
LaguerreP or on graphical interfaces Ln(x) will be output.
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The interval of definition is (0,∞), the weight function w(x) = e−x and, for the
orthonormal case, the leading coefficients are given by kn = (−1)n/n!, h̃n = 1
and rn = −n2.

16.68.21.7 Generalised Laguerre Polynomials

If used with three arguments LaguerreP(n,a,x) returns the nth generalised
(or associated) Laguerre polynomial if n is a non-negative integer and a is nu-
meric; otherwise the result will involve the original operator LaguerreP or on
graphical interfaces L(a)

n (x) will be output. These are more properly called Sonin
polynomials after their discoverer N. Y. Sonin.

The interval of definition is (0,∞), the weight function w(x) = e−xxa and, for
the orthonormal case, the leading coefficients are given by kn = (−1)n/n!, h̃n =
Γ(n+ a+ 1)/n! and rn = −n(n+ a). The parameter a should satisfy a > −1.

16.68.21.8 Hermite Polynomials

The function call HermiteP(n,x) will return the nth Hermite polynomial if n
is a non-negative integer; otherwise the result will involve the original operator
HermiteP or on graphical interfaces Hn(x) will be output.

The interval of definition is (−∞,+∞), the weight function w(x) = e−x
2

and, for
the orthonormal case, the leading coefficients are given by kn = 2n, h̃n =

√
π2nn!

and rn = 0.

16.68.22 Other Polynomials and Related Numbers

16.68.22.1 Fibonacci Polynomials

FibonacciP(n,x) returns the nth Fibonacci polynomial in the variable x. If n
is an integer, it will be evaluated using the recursive definition:

F0(x) = 0; F1(x) = 1; Fn(x) = xFn−1(x) + Fn−2(x) .

The recursion is, of course, optimised as a simple loop to avoid repeated computa-
tion of lower-order polynomials.

16.68.22.2 Euler Numbers and Polynomials

Euler numbers are computed by the unary operator Euler; the call Euler(n)
returns the nth Euler number; all the odd Euler numbers are zero. The computation
is derived directly from Pascal’s triangle of binomial coefficients.
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The Euler numbers and polynomials have the following generating functions:

2et

1 + e2t
=

∞∑
n=0

Ent
n

n!
,

ext

1 + et
=

∞∑
n=0

En(x)tn

n!

respectively. ThusE0 = 1 andE1 = 0. Furthermore the numbers and polynomials
are related by the equations:

En = 2nEn

(
1

2

)
, En(x) =

n∑
k=0

(
n

k

)
Ek
2k

(
x− 1

2

)n−k
.

The Euler polynomials are evaluated for non-negative integer n by using the sum-
mation immediately above.

16.68.22.3 Bernoulli Numbers & Polynomials

The call Bernoulli(n) evaluates to the nth Bernoulli number; all of the odd
Bernoulli numbers, except Bernoulli(1), are zero.

The algorithms for Bernoulli numbers used are based upon those by Herbert Wilf,
presented by Sandra Fillebrown [Fil92]. If the ROUNDED switch is off, the algo-
rithms are exactly those; if it is on, some further rounding may be done to prevent
computation of redundant digits. Hence, these functions are particularly fast when
used to approximate the Bernoulli numbers in rounded mode.

The Bernoulli numbers and polynomials have the following generating functions:

t

et − 1
=
∞∑
n=0

Bnt
n

n!
,

text

et − 1
=
∞∑
n=0

Bn(x)tn

n!

respectively. Thus B0 = 1 and B1 = −1
2 . Furthermore the numbers and polynom-

ials are related by the equations:

Bn = Bn(0), Bn(x) =
n∑
k=0

(
n

k

)
Bkx

n−k.

The Bernoulli polynomials are evaluated for non-negative integer n by using the
summation immediately above.

Both the Bernoulli and Euler numbers and polynomials may also be calculated
directly by expanding the corresponding generating function as a power series in t
using either the TPS or TAYLOR package, extracting the nth term and multiplying
by n!. The use of the TPS package is probably preferable here as the series for
the generating function is extendible and need only be calculated once; it will be
extended automatically if higher order numbers or polynomials are required.
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16.68.24 Tables of Operators and Constants

Special Functions

Function Operator

Si(z) Si(z)
Si(z)− π/2 s_i(z)

Ci(z) Ci(z)
Shi(z) Shi(z)
Chi(z) Chi(z)
erf(z) Erf(z)

1− erf(z) erfc(z)
Ei(z) Ei(z)

Ei(log(z)) Li(z)
C(x) Fresnel_C(x)
S(x) Fresnel_S(x)

B(a, b) Beta(a,b)
Γ(a) Gamma(a)

normalized incomplete Beta Ix(a, b) =
Bx(a, b)
B(a, b)

iBeta(a,b,x)

normalized incomplete Gamma P (a, z) =
γ(a, z)
Γ(a)

iGamma(a,z)

incomplete Gamma γ(a, z) m_gamma(a,z)
(a)k Pochhammer(a,k)
ψ(z) Psi(z)

ψ(n)(z) Polygamma(n,z)

Jν(z) BesselJ(nu,z)
Yν(z) BesselY(nu,z)
Iν(z) BesselI(nu,z)
Kν(z) BesselK(nu,z)

H
(1)
n (z) Hankel1(n,z)

H
(2)
n (z) Hankel2(n,z)
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More Special Functions

Function Operator

Ai(z) Airy_Ai(z)
Bi(z) Airy_Bi(z)

Ai′(z) Airy_Aiprime(z)
Bi′(z) Airy_Biprime(z)
Hν(z) StruveH(nu,z)
Lν(z) StruveL(nu,z)
sa,b(z) Lommel1(a,b,z)
Sa,b(z) Lommel2(a,b,z)

M(a, b, z) or 1F1(a, b; z) or Φ(a, b; z) KummerM(a,b,z)
U(a, b, z) or z−a2F0(a, b; z) or Ψ(a, b; z) KummerU(a,b,z)

Expression in Kummer_M WhittakerM(kappa,mu,z)
Expression in Kummer_U WhittakerW(kappa,mu,z)

Riemann’s ζ(z) zeta(z)
Lambert ω(z) Lambert_W(z)

Li2(z) dilog(z)
Lin(z) Polylog(n,z)

Lerch’s transcendent Φ(z, s, a) Lerch_Phi(z,s,a)

Function Operator

Y m
n (x, y, z, r2) SolidHarmonicY(n,m,x,y,z,r2)

Y m
n (θ, φ) SphericalHarmonicY(n,m,theta,phi)(

j1 j2 j3
m1 m2 m3

)
ThreeJSymbol({j1,m1},{j2,m2},{j3,m3})

(j1m1j2m2 | j1j2j3 −m3) Clebsch_Gordan({j1,m1},{j2,m2},{j3,m3}){
j1 j2 j3
m1 m2 m3

}
SixJSymbol({j1,j2,j3},{l1,l2,l3})
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Elliptic Functions and Integrals

Function Operator

sn(u, k) jacobisn(u,k)
dn(u, k) jacobidn(u,k)
cn(u, k) jacobicn(u,k)
cd(u, k) jacobicd(u,k)
sd(u, k) jacobisd(u,k)
nd(u, k) jacobind(u,k)
dc(u, k) jacobidc(u,k)
nc(u, k) jacobinc(u,k)
sc(u, k) jacobisc(u,k)
ns(u, k) jacobins(u,k)
ds(u, k) jacobids(u,k)
cs(u, k) jacobics(u,k)

am(u, k) jacobiam(u,k)
Complete Integral (1st kind) K(k) ellipticK(k)

K′(k) ellipticK!’(k)
Incomplete Integral (1st kind) F(φ, k) ellipticF(phi,k)

Complete Integral (2nd kind) E(k) ellipticE(k)
E′(k) ellipticE!’(k)

Legendre Incomplete Int (2nd kind) E(u, k) ellipticE(u,k)
Jacobi Incomplete Int (2nd kind) E(u, k) JacobiE(u,k)

Jacobi’s Zeta Z(u, k) jacobizeta(u,k)
ϑ1(u, τ) elliptictheta1(u,tau)
ϑ2(u, τ) elliptictheta2(u,tau)
ϑ3(u, τ) elliptictheta3(u,tau)
ϑ4(u, τ) elliptictheta4(u,tau)

℘(u, ω1, ω3) weierstrass(u,omega1,omega3)
ζw(u, ω1, ω3) weierstrasszeta(u,omega1,omega3)
σ(u, ω1, ω3) sigma(u,omega1,omega3)
σ1(u, ω1, ω3) sigma1(u,omega1,omega3)
σ2(u, ω1, ω3) sigma2(u,omega1,omega3)
σ3(u, ω1, ω3) sigma3(u,omega1,omega3)
℘(u | g2, g3) weierstrass1(u,g2,g3)
ζw(u | g2, g3) weierstrasszeta1(u,g2,g3)
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Polynomial Functions

Function Operator

Fibonacci Polynomials Fn(x) FibonacciP(n,x)
Bn(x) BernoulliP(n,x)
En(x) EulerP(n,x)
Hn(x) HermiteP(n,x)
Ln(x) LaguerreP(n,x)

Generalised Laguerre L(m)
n (x) LaguerreP(n,m,x)
Pn(x) LegendreP(n,x)

Associated Legendre P (m)
n (x) LegendreP(n,m,x)
Un(x) ChebyshevU(n,x)
Tn(x) ChebyshevT(n,x)

C
(α)
n (x) GegenbauerP(n,alpha,x)

P
(α,β)
n (x) JacobiP(n,alpha,beta,x)

Well-known Numbers and Reserved Constants

Function Operator(
n

m

)
Binomial(n,m)

Fibonacci Numbers Fn Fibonacci(n)
smn Stirling1(n,m)
Smn Stirling2(n,m)

Bernoulli(n) or Bn Bernoulli(n)
Euler(n) or En Euler(n)

Motzkin(n) or Mn Motzkin(n)

Constant REDUCE name

Square root of (−1) i
π pi

Base of natural logarithms e
Euler’s γ constant Euler_gamma
Catalan’s constant Catalan

Khinchin’s constant Khinchin
Golden ratio Golden_ratio
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16.69 SPECFN2: Package for special special functions

This package provides algebraic manipulations of generalized hypergeometric
functions and Meijer’s G function. Generalized hypergeometric functions are sim-
plified towards special functions and Meijer’s G function is simplified towards spe-
cial functions or generalized hypergeometric functions.

Author: Victor Adamchik, with major updates by Winfried Neun.

The package SPECFN2 is designed to provide algebraic and numeric manipula-
tions for some less commonly used special functions:

• Hypergeometric function;

• Meijer’s G function.

These functions are from the non-core package SPECFN2, which needs to be
loaded before use with the command:

load_package specfn2;

More information on the functions provided may be found on the website
DLMF:NIST although currently not all functions may conform to these standards.

16.69.1 Hypergeometric Functions: Introduction

The (generalised) hypergeometric functions

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣∣z
)

are defined in textbooks on special functions as

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣∣z
)

=
∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!

where (a)n is the Pochhammer symbol

(a)n =
n−1∏
k=0

(a+ k).

The function

Gmnpq

(
z

∣∣∣∣∣ (ap)

(bq)

)

https://dlmf.nist.gov/
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has been studied by C. S. Meijer beginning in 1936 and has been called Meijer’s
G function later on. The complete definition of Meijer’s G function can be found
in [PBM89]. Many well-known functions can be written as G functions, e.g. expo-
nentials, logarithms, trigonometric functions, Bessel functions and hypergeometric
functions.

Several hundreds of particular values can be found in [PBM89].

16.69.2 The Hypergeometric Operator

The operator hypergeometric expects 3 arguments, namely the list of upper
parameters (which may be empty), the list of lower parameters (which may be
empty too), and the argument, e.g. the input:

hypergeometric ({},{},z);

yields the output

z
e

and the input

hypergeometric ({1/2,1},{3/2},-x^2);

gives

atan(abs(x))
--------------

abs(x)

Since hundreds of particular cases for the generalised hypergeometric functions
can be found in the literature, one cannot expect that all cases are known to the
hypergeometric operator. Nevertheless the set of special cases can be aug-
mented by adding rules to the REDUCE system, e.g.

let {hypergeometric({1/2,1/2},{3/2},-(~x)^2) => asinh(x)/x};

16.69.3 Meijer’s G Function

The operator MeijerG expects 3 arguments, namely the list of upper parameters
(which may be empty), the list of lower parameters (which may be empty too), and
the argument.
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The first element of the lists has to be the list of the first n or m respective param-
eters, e.g. to describe

G10
11

(
x

∣∣∣∣∣ 1

0

)
one has to write

MeijerG({{},1},{{0}},x); % and the result is:

sign( - x + 1) + sign(x + 1)
------------------------------

2

and for

G10
02

(
x2

4

∣∣∣∣∣ 1 + 1
4 , 1−

1
4

)

MeijerG({{}},{{1+1/4},1-1/4},(x^2)/4) * sqrt pi;

2 2
sqrt(pi)*sqrt(-----------)*sin(abs(x))*x

abs(x)*pi
-------------------------------------------

4
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16.70 SSTOOLS: Computations with supersymmetric al-
gebraic and differential expressions

Authors: Thomas Wolf and Eberhard Schruefer

16.70.1 Overview

A detailed description is available through the online tutorial
https://lie.ac.brocku.ca/crack/susy/. An essentially equivalent
description is available after loading SSTOOLS and issuing the command sshelp()$.
The correct functioning of all procedures is tested through reading in and running
sstools.tst. This test also illustrates the commutator rules for products of the
different fields and their derivatives with respect to besonic and fermionic variables.

The topics in the tutorial and in sshelp()$ are:

Purpose

Interactive Session

Loading Files

Notation

Initializations

The command coeffn

The procedure SSym

The procedure SSConL

The procedure FindSSWeights

The procedure Linearize

The procedure GenSSPoly

The procedure ToCoo

The procedure ToField

Discovery of recursion operators

Verification of symmetries

https://lie.ac.brocku.ca/crack/susy/
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16.71 SUM: A package for series summation

This package implements the Gosper algorithm for the summation of series. It
defines operators SUM and PROD. The operator SUM returns the indefinite or defi-
nite summation of a given expression, and PROD returns the product of the given
expression.

This package loads automatically.

Author: Fujio Kako.

This package implements the Gosper algorithm for the summation of series. It de-
fines operators SUM and PROD. The operator SUM returns the indefinite or defi-
nite summation of a given expression, and the operator PROD returns the product
of the given expression. These are used with the syntax:

SUM(EXPR:expression, K:kernel, [LOLIM:expression [, UPLIM:expression]])
PROD(EXPR:expression, K:kernel, [LOLIM:expression [, UPLIM:expression]])

If there is no closed form solution, these operators return the input unchanged.
UPLIM and LOLIM are optional parameters specifying the lower limit and upper
limit of the summation (or product), respectively. If UPLIM is not supplied, the
upper limit is taken as K (the summation variable itself).

For example:

sum(n**3,n);

sum(a+k*r,k,0,n-1);

sum(1/((p+(k-1)*q)*(p+k*q)),k,1,n+1);

prod(k/(k-2),k);

Gosper’s algorithm succeeds whenever the ratio

∑n
k=n0

f(k)∑n−1
k=n0

f(k)

is a rational function of n. The function SUM!-SQ handles basic functions such as
polynomials, rational functions and exponentials.

The trigonometric functions sin, cos, etc. are converted to exponentials and then
Gosper’s algorithm is applied. The result is converted back into sin, cos, sinh and
cosh.



987

Summations of logarithms or products of exponentials are treated by the formula:

n∑
k=n0

log f(k) = log
n∏

k=n0

f(k)

n∏
k=n0

exp f(k) = exp
n∑

k=n0

f(k)

Other functions, as shown in the test file for the case of binomials and formal
products, can be summed by providing LET rules which must relate the functions
evaluated at k and k − 1 (k being the summation variable).

There is a switch TRSUM (default OFF). If this switch is on, trace messages are
printed out during the course of Gosper’s algorithm.
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16.72 SYMMETRY: Operations on symmetric matrices

This package computes symmetry-adapted bases and block diagonal forms of ma-
trices which have the symmetry of a group. The package is the implementation
of the theory of linear representations for small finite groups such as the dihedral
groups.

Author: Karin Gatermann.

16.72.1 Introduction

The exploitation of symmetry is a very important principle in mathematics, physics
and engineering sciences. The aim of the SYMMETRY package is to give an easy
access to the underlying theory of linear representations for small groups. For
example the dihedral groups D3, D4, D5, D6 are included. For an introduction
to the theory see SERRE [Ser77] or STIEFEL and FÄSSLER [SF79]. For a given
orthogonal (or unitarian) linear representation

ϑ : G −→ GL(Kn), K = R,C.

the character ψ → K, the canonical decomposition or the bases of the isotypic
components are computed. A matrix A having the symmetry of a linear represen-
tation,e.g.

ϑtA = Aϑt ∀ t ∈ G,

is transformed to block diagonal form by a coordinate transformation. The depen-
dence of the algorithm on the field of real or complex numbers is controled by the
switch complex. An example for this is given in the testfile symmetry.tst.

As the algorithm needs information concerning the irreducible representations this
information is stored for some groups (see the operators in Section 3). It is assumed
that only orthogonal (unitar) representations are given.

The package is loaded by

load symmetry;

16.72.2 Operators for linear representations

First the data structure for a linear representation has to be explained. representa-
tion is a list consisting of the group identifier and equations which assign matrices
to the generators of the group.

Example:

rr:=mat((0,1,0,0),
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(0,0,1,0),
(0,0,0,1),
(1,0,0,0));

sp:=mat((0,1,0,0),
(1,0,0,0),
(0,0,0,1),
(0,0,1,0));

representation:={D4,rD4=rr,sD4=sp};

For orthogonal (unitarian) representations the following operators are available.

canonicaldecomposition(representation);

returns an equation giving the canonical decomposition of the linear representation.

character(representation);

computes the character of the linear representation. The result is a list of the group
identifier and of lists consisting of a list of group elements in one equivalence class
and a real or complex number.

symmetrybasis(representation,nr);

computes the basis of the isotypic component corresponding to the irreducible rep-
resentation of type nr. If the nr-th irreducible representation is multidimensional,
the basis is symmetry adapted. The output is a matrix.

symmetrybasispart(representation,nr);

is similar as symmetrybasis, but for multidimensional irreducible representa-
tions only the first part of the symmetry adapted basis is computed.

allsymmetrybases(representation);

is similar as symmetrybasis and symmetrybasispart, but the bases of all
isotypic components are computed and thus a complete coordinate transformation
is returned.

diagonalize(matrix,representation);

returns the block diagonal form of matrix which has the symmetry of the given
linear representation. Otherwise an error message occurs.

on complex;

Of course the property of irreducibility depends on the field K of real or complex
numbers. This is why the algorithm depends on K. The type of computation is set
by the switch complex.
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16.72.3 Display Operators

In this section the operators are described which give access to the stored informa-
tion for a group. First the operators for the abstract groups are given. Then it is
described how to get the irreducible representations for a group.

availablegroups();

returns the list of all groups for which the information such as irreducible represen-
tations is stored. In the following group is always one of these group identifiers.

printgroup(group);

returns the list of all group elements;

generators(group);

returns a list of group elements which generates the group. For the definition of a
linear representation matrices for these generators have to be defined.

charactertable(group);

returns a list of the characters corresponding to the irreducible representations of
this group.

charactern(group,nr);

returns the character corresponding to the nr-th irreducible representation of this
group as a list (see also character).

irreduciblereptable(group);

returns the list of irreducible representations of the group.

irreduciblerepnr(group,nr);

returns an irreducible representation of the group. The output is a list of the group
identifier and equations assigning the representation matrices to group elements.

16.72.4 Storing a new group

If the user wants to do computations for a group for which information is not pre-
defined, the package SYMMETRY offers the possibility to supply information for
this group.

For this the following data structures are used.

elemlist = list of identifiers.

relationlist = list of equations with identifiers and operators @ and ∗∗.

grouptable = matrix with the (1,1)-entry grouptable.

filename = "myfilename.new".
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The following operators have to be used in this order.

setgenerators(group,elemlist,relationlist);

Example:

setgenerators(K4,{s1K4,s2K4},
{s1K4^2=id,s2K4^2=id,s1K4@s2K4=s2K4@s1K4});

setelements(group,relationlist);

The group elements except the neutral element are given as product of the defined
generators. The neutral element is always called id.

Example:

setelements(K4,
{s1K4=s1K4,s2K4=s2K4,rK4=s1K4@s2K4});

setgrouptable(group,grouptable);

installs the group table.

Example:

tab:=
mat((grouptable, id, s1K4, s2K4, rK4),

(id , id, s1K4, s2K4, rK4),
(s1K4 , s1K4, id, rK4,s2K4),
(s2K4 , s2K4, rK4, id,s1K4),
(rK4 , rK4, s2K4, s1K4, id));

setgrouptable(K4,tab);

Rsetrepresentation(representation,type);

is used to define the real irreducible representations of the group. The variable
type is either realtype or complextype which indicates the type of the real irre-
ducible representation.

Example:

eins:=mat((1));
mineins:=mat((-1));
rep3:={K4,s1K4=eins,s2K4=mineins};
Rsetrepresentation(rep3,realtype);

Csetrepresentation(representation);



992 CHAPTER 16. USER CONTRIBUTED PACKAGES

This defines the complex irreducible representations.

setavailable(group);

terminates the installation of the group203. It checks some properties of the irre-
ducible representations and makes the group available for the operators in Sections
2 and 3.

storegroup(group,filename);

writes the information concerning the group to the file with name filename.

loadgroups(filename);

loads a user defined group from the file filename into the system.
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16.73 TAYLOR: Manipulation of Taylor series

This package carries out the Taylor expansion of an expression in one or more
variables and efficient manipulation of the resulting Taylor series. Capabilities
include basic operations (addition, subtraction, multiplication and division) and
also application of certain algebraic and transcendental functions.

Author: Rainer Schöpf.

16.73.1 Basic Use

The most important operator is ‘TAYLOR’. It is used as follows:

TAYLOR(EXP:algebraic,
VAR:kernel,VAR0:algebraic,ORDER:integer[,...])
:algebraic.

where EXP is the expression to be expanded. It can be any REDUCE object, even
an expression containing other Taylor kernels. VAR is the kernel with respect to
which EXP is to be expanded. VAR0 denotes the point about which and ORDER
the order up to which expansion is to take place. If more than one (VAR, VAR0,
ORDER) triple is specified TAYLOR will expand its first argument independently
with respect to each variable in turn. For example,

taylor(e^(x^2+y^2),x,0,2,y,0,2);

will calculate the Taylor expansion up to order X2 ∗ Y 2:

2 2 2 2 3 3
1 + y + x + y *x + O(x ,y )

Note that once the expansion has been done it is not possible to calculate higher
orders. Instead of a kernel, VARmay also be a list of kernels. In this case expansion
will take place in a way so that the sum of the degrees of the kernels does not exceed
ORDER. If VAR0 evaluates to the special identifier INFINITY, expansion is done
in a series in 1/VAR instead of VAR.

The expansion is performed variable per variable, i.e. in the example above by first
expanding exp(x2 + y2) with respect to x and then expanding every coefficient
with respect to y.

There are two extra operators to compute the Taylor expansions of implicit and
inverse functions:

IMPLICIT_TAYLOR(F:algebraic,
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VAR:kernel,DEPVAR:kernel,
VAR0:algebraic,DEPVAR0:algebraic,
ORDER:integer)

:algebraic

takes a function F depending on two variables VAR and DEPVAR and computes
the Taylor series of the implicit function DEPVAR(VAR) given by the equation
F(VAR,DEPVAR) = 0, around the point VAR0. (Violation of the necessary condi-
tion F(VAR0,DEPVAR0)=0 causes an error.) For example,

implicit_taylor(x^2 + y^2 - 1,x,y,0,1,5);

gives the output

1 2 1 4 6
1 - ---*x - ---*x + O(x )

2 8

The operator

INVERSE_TAYLOR(F:algebraic,VAR:kernel,DEPVAR:kernel,
VAR0:algebraic,ORDER:integer)

: algebraic

takes a function F depending on VAR1 and computes the Taylor series of the in-
verse of F with respect to VAR2. For example,

inverse_taylor(exp(x)-1,x,y,0,8);

yields

1 2 1 3 1 4 1 5 9
y - ---*y + ---*y - ---*y + ---*y + (3 terms) + O(y )

2 3 4 5

When a Taylor kernel is printed, only a certain number of (non-zero) coeffi-
cients are shown. If there are more, an expression of the form (n terms)
is printed to indicate how many non-zero terms have been suppressed. The
number of terms printed is given by the value of the shared algebraic variable
TAYLORPRINTTERMS. Allowed values are integers and the special identifier
ALL. The latter setting specifies that all terms are to be printed. The default setting
is 5.

The PART operator can be used to extract subexpressions of a Taylor expansion in
the usual way. All terms can be accessed, irregardless of the value of the variable
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TAYLORPRINTTERMS.

If the switch TAYLORKEEPORIGINAL is set to ON the original expression EXP
is kept for later reference. It can be recovered by means of the operator

TAYLORORIGINAL(EXP:exprn):exprn

An error is signalled if EXP is not a Taylor kernel or if the original expression was
not kept, i.e. if TAYLORKEEPORIGINAL was OFF during expansion. The tem-
plate of a Taylor kernel, i.e. the list of all variables with respect to which expansion
took place together with expansion point and order can be extracted using .

TAYLORTEMPLATE(EXP:exprn):list

This returns a list of lists with the three elements (VAR,VAR0,ORDER). As with
TAYLORORIGINAL, an error is signalled if EXP is not a Taylor kernel.

The operator
TAYLORTOSTANDARD(EXP:exprn):exprn

converts all Taylor kernels in EXP into standard form and resimplifies the result.

The boolean operator
TAYLORSERIESP(EXP:exprn):boolean

may be used to determine if EXP is a Taylor kernel. (Note that this operator is
subject to the same restrictions as, e.g., ORDP or NUMBERP, i.e. it may only be
used in boolean expressions in IF or LET statements.

Finally there is

TAYLORCOMBINE(EXP:exprn):exprn

which tries to combine all Taylor kernels found in EXP into one. Operations
currently possible are:

• Addition, subtraction, multiplication, and division.

• Roots, exponentials, and logarithms.

• Trigonometric and hyperbolic functions and their inverses.

Application of unary operators like LOG and ATAN will nearly always succeed.
For binary operations their arguments have to be Taylor kernels with the same
template. This means that the expansion variable and the expansion point must
match. Expansion order is not so important, different order usually means that one
of them is truncated before doing the operation.

If TAYLORKEEPORIGINAL is set to ON and if all Taylor kernels in exp have their
original expressions kept TAYLORCOMBINE will also combine these and store the
result as the original expression of the resulting Taylor kernel. There is also the
switch TAYLORAUTOEXPAND (see below).
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There are a few restrictions to avoid mathematically undefined expressions: it is
not possible to take the logarithm of a Taylor kernel which has no terms (i.e. is
zero), or to divide by such a beast. There are some provisions made to detect
singularities during expansion: poles that arise because the denominator has zeros
at the expansion point are detected and properly treated, i.e. the Taylor kernel will
start with a negative power. (This is accomplished by expanding numerator and
denominator separately and combining the results.) Essential singularities of the
known functions (see above) are handled correctly.

Differentiation of a Taylor expression is possible. If you differentiate with respect
to one of the Taylor variables the order will decrease by one.

Substitution is a bit restricted: Taylor variables can only be replaced by other ker-
nels. There is one exception to this rule: you can always substitute a Taylor variable
by an expression that evaluates to a constant. Note that REDUCE will not always
be able to determine that an expression is constant.

Only simple taylor kernels can be integrated. More complicated expressions that
contain Taylor kernels as parts of themselves are automatically converted into a
standard representation by means of the TAYLORTOSTANDARD operator. In this
case a suitable warning is printed.

It is possible to revert a Taylor series of a function f , i.e., to compute the first terms
of the expansion of the inverse of f from the expansion of f . This is done by the
operator

TAYLORREVERT(EXP:exprn,OLDVAR:kernel, NEWVAR:kernel):exprn

EXP must evaluate to a Taylor kernel with OLDVAR being one of its expansion
variables. Example:

taylor (u - u**2, u, 0, 5)$
taylorrevert (ws, u, x);

gives

2 3 4 5 6
x + x + 2*x + 5*x + 14*x + O(x )

This package introduces a number of new switches:

TAYLORAUTOCOMBINE causes Taylor expressions to be automatically com-
bined during the simplification process. This is equivalent to applying
TAYLORCOMBINE to every expression that contains Taylor kernels. Default
is ON.

TAYLORAUTOEXPAND makes Taylor expressions “contagious” in the sense that
TAYLORCOMBINE tries to Taylor expand all non-Taylor subexpressions and
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to combine the result with the rest. Default is OFF.

TAYLORKEEPORIGINAL forces the package to keep the original expression, i.e.
the expression that was Taylor expanded. All operations performed on the
Taylor kernels are also applied to this expression which can be recovered
using the operator TAYLORORIGINAL. Default is OFF.

TAYLORPRINTORDER causes the remainder to be printed in big-O notation.
Otherwise, three dots are printed. Default is ON.

VERBOSELOAD will cause REDUCE to print some information when the Taylor
package is loaded. This switch is already present in PSL systems. Default
is OFF.

16.73.2 Caveats

TAYLOR should always detect non-analytical expressions in its first argument. As
an example, consider the function xy/(x + y) that is not analytical in the neigh-
borhood of (x, y) = (0, 0): Trying to calculate

taylor(x*y/(x+y),x,0,2,y,0,2);

causes an error

***** Not a unit in argument to QUOTTAYLOR

Note that it is not generally possible to apply the standard REDUCE operators to
a Taylor kernel. For example, PART, COEFF, or COEFFN cannot be used. In-
stead, the expression at hand has to be converted to standard form first using the
TAYLORTOSTANDARD operator.

16.73.3 Warning messages

*** Cannot expand further... truncation done
You will get this warning if you try to expand a Taylor kernel to a higher
order.

*** Converting Taylor kernels to standard representation

This warning appears if you try to integrate an expression containing Taylor
kernels.
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16.73.4 Error messages

***** Branch point detected in ...
This occurs if you take a rational power of a Taylor kernel and raising the
lowest order term of the kernel to this power yields a non analytical term (i.e.
a fractional power).

***** Cannot replace part ... in Taylor kernel
The PART operator can only be used to either replace the template of a Taylor
kernel (part 2) or the original expression that is kept for reference (part 3).

***** Computation loops (recursive definition?): ...
Most probably the expression to be expanded contains an operator whose
derivative involves the operator itself.

***** Error during expansion (possible singularity)
The expression you are trying to expand caused an error. As far as I know
this can only happen if it contains a function with a pole or an essential
singularity at the expansion point. (But one can never be sure.)

***** Essential singularity in ...
An essential singularity was detected while applying a special function to a
Taylor kernel.

***** Expansion point lies on branch cut in ...
The only functions with branch cuts this package knows of are (natural) log-
arithm, inverse circular and hyperbolic tangent and cotangent. The branch
cut of the logarithm is assumed to lie on the negative real axis. Those of
the arc tangent and arc cotangent functions are chosen to be compatible with
this: both have essential singularities at the points ±i. The branch cut of
arc tangent is the straight line along the imaginary axis connecting +1 to
−1 going through∞ whereas that of arc cotangent goes through the origin.
Consequently, the branch cut of the inverse hyperbolic tangent resp. cotan-
gent lies on the real axis and goes from −1 to +1, that of the latter across 0,
the other across∞.

The error message can currently only appear when you try to calculate the
inverse tangent or cotangent of a Taylor kernel that starts with a negative
degree. The case of a logarithm of a Taylor kernel whose constant term is a
negative real number is not caught since it is difficult to detect this in general.

***** Input expression non-zero at given point
Violation of the necessary condition F(VAR0,DEPVAR0)=0 for the argu-
ments of IMPLICIT_TAYLOR.

***** Invalid substitution in Taylor kernel: ...
You tried to substitute a variable that is already present in the Taylor kernel
or on which one of the Taylor variables depend.
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***** Not a unit in ...
This will happen if you try to divide by or take the logarithm of a Taylor
series whose constant term vanishes.

***** Not implemented yet (...)
Sorry, but I haven’t had the time to implement this feature. Tell me if you
really need it, maybe I have already an improved version of the package.

***** Reversion of Taylor series not possible: ...
You tried to call the TAYLORREVERT operator with inappropriate argu-

ments. The second half of this error message tells you why this operation is
not possible.

***** Taylor kernel doesn’t have an original part
The Taylor kernel upon which you try to use TAYLORORIGINAL was cre-

ated with the switch TAYLORKEEPORIGINAL set to OFF and does there-
fore not keep the original expression.

***** Wrong number of arguments to TAYLOR
You try to use the operator TAYLOR with a wrong number of arguments.

***** Zero divisor in TAYLOREXPAND
A zero divisor was found while an expression was being expanded. This
should not normally occur.

***** Zero divisor in Taylor substitution
That’s exactly what the message says. As an example consider the case of a
Taylor kernel containing the term 1/x and you try to substitute x by 0.

***** ... invalid as kernel
You tried to expand with respect to an expression that is not a kernel.

***** ... invalid as order of Taylor expansion
The order parameter you gave to TAYLOR is not an integer.

***** ... invalid as Taylor kernel
You tried to apply TAYLORORIGINAL or TAYLORTEMPLATE to an ex-

pression that is not a Taylor kernel.

***** ... invalid as Taylor Template element
You tried to substitute the TAYLORTEMPLATE part of a Taylor kernel with
a list a incorrect form. For the correct form see the description of the
TAYLORTEMPLATE operator.

***** ... invalid as Taylor variable
You tried to substitute a Taylor variable by an expression that is not a kernel.
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***** ... invalid as value of TaylorPrintTerms
You have assigned an invalid value to TAYLORPRINTTERMS. Allowed val-
ues are: an integer or the special identifier ALL.

TAYLOR PACKAGE (...): this can’t happen ...
This message shows that an internal inconsistency was detected. This is
not your fault, at least as long as you did not try to work with the internal
data structures of REDUCE. Send input and output to me, together with the
version information that is printed out.

16.73.5 Comparison to other packages

At the moment there is only one REDUCE package that I know of: the extendible
power series package by Alan Barnes and Julian Padget. In my opinion there are
two major differences:

• The interface. They use the domain mechanism for their power series, I de-
cided to invent a special kind of kernel. Both approaches have advantages
and disadvantages: with domain modes, it is easier to do certain things auto-
matically, e.g., conversions.

• The concept of an extendible series: their idea is to remember the original
expression and to compute more coefficients when more of them are needed.
My approach is to truncate at a certain order and forget how the unexpanded
expression looked like. I think that their method is more widely usable,
whereas mine is more efficient when you know in advance exactly how many
terms you need.
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16.74 TPS: A extendible power series package

This package implements formal Laurent series expansions in one variable using
the domain mechanism of REDUCE. This means that power series objects can be
added, multiplied, differentiated etc., like other first class objects in the system.
A lazy evaluation scheme is used and thus terms of the series are not evaluated
until they are required for printing or for use in calculating terms in other power
series. The series are extendible giving the user the impression that the full infinite
series is being manipulated. The errors that can sometimes occur using series that
are truncated at some fixed depth (for example when a term in the required series
depends on terms of an intermediate series beyond the truncation depth) are thus
avoided.

Authors: Alan Barnes and Julian Padget.

16.74.1 Introduction

This package implements formal power series expansions in one variable using
the domain mechanism of REDUCE. This means that power series objects can be
added, multiplied, differentiated etc. like other first class objects in the system.
A lazy evaluation scheme is used in the package and thus terms of the series are
not evaluated until they are required for printing or for use in calculating terms in
other power series. The series are extendible giving the user the impression that
the full infinite series is being manipulated. The errors that can sometimes occur
using series that are truncated at some fixed depth (for example when a term in the
required series depends on terms of an intermediate series beyond the truncation
depth) are thus avoided.

Below we give a brief description of the operators available in the power series
package together with some examples of their use.

16.74.2 PS Operator

Syntax:

PS(EXPRN:algebraic,DEPVAR:kernel, ABOUT:algebraic):ps object

The PS operator returns a power series object (a tagged domain element) repre-
senting the univariate formal power series expansion of EXPRN with respect to
the dependent variable DEPVAR about the expansion point ABOUT. EXPRN may
itself contain power series objects.

The algebraic expression ABOUT should simplify to an expression which is in-
dependent of the dependent variable DEPVAR, otherwise an error will result. If



1002 CHAPTER 16. USER CONTRIBUTED PACKAGES

ABOUT is the identifier INFINITY then the power series expansion about DEP-
VAR =∞ is obtained in ascending powers of 1/DEPVAR.

If the command is terminated by a semi-colon, a power series object representing
EXPRN is compiled and then a number of terms of the power series expansion are
evaluated and printed. The expansion is carried out as far as the value specified
by PSEXPLIM. If, subsequently, the value of PSEXPLIM is increased, sufficient
information is stored in the power series object to enable the additional terms to be
calculated without recalculating the terms already obtained.

If the command is terminated by a dollar symbol, a power series object is compiled,
but at most one term is calculated at this stage.

If the function has a pole at the expansion point then the correct Laurent series
expansion will be produced.

The following examples are valid uses of PS:

psexplim 6;
ps(log x,x,1);
ps(e**(sin x),x,0);
ps(x/(1+x),x,infinity);
ps(sin x/(1-cos x),x,0);

New user-defined functions may be expanded provided the user provides LET rules
giving

1. the value of the function at the expansion point

2. a differentiation rule for the new function.

For example

operator sech;
forall x let df(sech x,x)= - sech x * tanh x;
let sech 0 = 1;
ps(sech(x**2),x,0);

The power series expansion of an integral may also be obtained (even if REDUCE
cannot evaluate the integral in closed form). An example of this is

ps(int(e**x/x,x),x,1);

Note that if the integration variable is the same as the expansion variable then
REDUCE’s integration package is not called; if on the other hand the two variables
are different then the integrator is called to integrate each of the coefficients in the
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power series expansion of the integrand. The constant of integration is zero by
default.

16.74.3 PSEXPLIM Operator

Syntax:

PSEXPLIM(UPTO:integer):integer

or

PSEXPLIM():integer

Calling this operator sets an internal variable of the TPS package to the value of
UPTO (which should evaluate to an integer).

This internal variable controls how many terms of a power series are printed. The
value returned by PSEXPLIM is the previous value of this variable. The default
value is six.

If PSEXPLIM is called with no argument, the current value for the expansion limit
is returned.

16.74.4 PSPRINTORDER Switch

Syntax:

ON PSPRINTORDER

or

OFF PSPRINTORDER

When ON this switch causes the remainder of the power series to be printed in
big-O notation. Otherwise, three dots are printed. The default is ON.

16.74.5 PSORDLIM Operator

Syntax:

PSORDLIM(UPTO:integer):integer

or

PSORDLIM():integer

An internal variable is set to the value of UPTO (which should evaluate to an inte-
ger). The value returned is the previous value of the variable. The default value is
15.
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If PSORDLIM is called with no argument, the current value is returned.

The significance of this control is that the system attempts to find the order of the
power series required, that is the order is the degree of the first non-zero term in the
power series. If the order is greater than the value of this variable an error message
is given and the computation aborts. This prevents infinite loops in examples such
as

ps(1 - (sin x)**2 - (cos x)**2,x,0);

where the expression being expanded is identically zero, but is not recognized as
such by REDUCE.

16.74.6 PSTERM Operator

Syntax:

PSTERM(TPS:power series object, NTH:integer):algebraic

The operator PSTERM returns the NTH term of the existing power series object
TPS. If NTH does not evaluate to an integer or TPS to a power series object an
error results. It should be noted that an integer is treated as a power series.

16.74.7 PSORDER Operator

Syntax:

PSORDER(TPS:power series object):integer

The operator PSORDER returns the order, that is the degree of the first non-zero
term, of the power series object TPS. TPS should evaluate to a power series object
or an error results. If TPS is zero, the identifier UNDEFINED is returned.

16.74.8 PSSETORDER Operator

Syntax:

PSSETORDER(TPS:power series object, ORD:integer):integer

The operator PSSETORDER sets the order of the power series TPS to the value
ORD, which should evaluate to an integer. If TPS does not evaluate to a power se-
ries object, then an error occurs. The value returned by this operator is the previous
order of TPS, or 0 if the order of TPS was undefined. This operator is useful for
setting the order of the power series of a function defined by a differential equat-
ion in cases where the power series package is inadequate to determine the order
automatically.
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16.74.9 PSDEPVAR Operator

Syntax:

PSDEPVAR(TPS:power series object) :identifier

The operator PSDEPVAR returns the expansion variable of the power series object
TPS. TPS should evaluate to a power series object or an integer, otherwise an error
results. If TPS is an integer, the identifier UNDEFINED is returned.

16.74.10 PSEXPANSIONPT operator

Syntax:

PSEXPANSIONPT(TPS:power series object):algebraic

The operator PSEXPANSIONPT returns the expansion point of the power series
object TPS. TPS should evaluate to a power series object or an integer, otherwise
an error results. If TPS is integer, the identifier UNDEFINED is returned. If the
expansion is about infinity, the identifier INFINITY is returned.

16.74.11 PSFUNCTION Operator

Syntax:

PSFUNCTION(TPS:power series object):algebraic

The operator PSFUNCTION returns the function whose expansion gave rise to the
power series object TPS. TPS should evaluate to a power series object or an integer,
otherwise an error results.

16.74.12 PSCHANGEVAR Operator

Syntax:

PSCHANGEVAR(TPS:power series object, X:kernel):power series object

The operator PSCHANGEVAR changes the dependent variable of the power series
object TPS to the variable X. TPS should evaluate to a power series object and X
to a kernel, otherwise an error results. Also X should not appear as a parameter in
TPS. The power series with the new dependent variable is returned.

16.74.13 PSREVERSE Operator

Syntax:
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PSREVERSE(TPS:power series object):power series

Power series reversion. The power series TPS is functionally inverted. Four cases
arise:

1. If the order of the series is 1, then the expansion point of the inverted series
is 0.

2. If the order is 0 and if the first order term in TPS is non-zero, then the ex-
pansion point of the inverted series is taken to be the coefficient of the zeroth
order term in TPS.

3. If the order is -1 the expansion point of the inverted series is the point at
infinity. In all other cases a REDUCE error is reported because the series
cannot be inverted as a power series. Puiseux expansion would be required
to handle these cases.

4. If the expansion point of TPS is finite it becomes the zeroth order term in the
inverted series. For expansion about 0 or the point at infinity the order of the
inverted series is one.

If TPS is not a power series object after evaluation an error results.

Here are some examples:

ps(sin x,x,0);
psreverse(ws); % produces series for asin x about x=0.
ps(exp x,x,0);
psreverse ws; % produces series for log x about x=1.
ps(sin(1/x),x,infinity);
psreverse(ws); % series for 1/asin(x) about x=0.

16.74.14 PSCOMPOSE Operator

Syntax:

PSCOMPOSE(TPS1:power series, TPS2:power series):power series

PSCOMPOSE performs power series composition. The power series TPS1 and
TPS2 are functionally composed. That is to say that TPS2 is substituted for the
expansion variable in TPS1 and the result expressed as a power series. The depen-
dent variable and expansion point of the result coincide with those of TPS2. The
following conditions apply to power series composition:

1. If the expansion point of TPS1 is 0 then the order of the TPS2 must be at
least 1.
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2. If the expansion point of TPS1 is finite, it should coincide with the coefficient
of the zeroth order term in TPS2. The order of TPS2 should also be non-
negative in this case.

3. If the expansion point of TPS1 is the point at infinity then the order of TPS2
must be less than or equal to -1.

If these conditions do not hold the series cannot be composed (with the current
algorithm terms of the inverted series would involve infinite sums) and a REDUCE
error occurs.

Examples of power series composition include the following.

a:=ps(exp y,y,0); b:=ps(sin x,x,0);
pscompose(a,b);
% Produces the power series expansion of exp(sin x)
% about x=0.

a:=ps(exp z,z,1); b:=ps(cos x,x,0);
pscompose(a,b);
% Produces the power series expansion of exp(cos x)
% about x=0.

a:=ps(cos(1/x),x,infinity); b:=ps(1/sin x,x,0);
pscompose(a,b);
% Produces the power series expansion of cos(sin x)
% about x=0.

16.74.15 PSSUM Operator

Syntax:

PSSUM(J:kernel = LOWLIM:integer, COEFF:algebraic, X:kernel,
ABOUT:algebraic, POWER:algebraic):power series

The formal power series sum for J from LOWLIM to INFINITY of

COEFF*(X-ABOUT)**POWER

or if ABOUT is given as INFINITY

COEFF*(1/X)**POWER

is constructed and returned. This enables power series whose general term is
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known to be constructed and manipulated using the other procedures of the power
series package.

J and X should be distinct simple kernels. The algebraics ABOUT, COEFF and
POWER should not depend on the expansion variable X, similarly the algebraic
ABOUT should not depend on the summation variable J. The algebraic POWER
should be a strictly increasing integer valued function of J for J in the range
LOWLIM to INFINITY.

pssum(n=0,1,x,0,n*n);
% Produces the power series summation for n=0 to
% infinity of x**(n*n).

pssum(m=1,(-1)**(m-1)/(2m-1),y,1,2m-1);
% Produces the power series expansion of atan(y-1)
% about y=1.

pssum(j=1,-1/j,x,infinity,j);
% Produces the power series expansion of log(1-1/x)
% about the point at infinity.

pssum(n=0,1,x,0,2n**2+3n) + pssum(n=1,1,x,0,2n**2-3n);
% Produces the power series summation for n=-infinity
% to +infinity of x**(2n**2+3n).

16.74.16 PSTAYLOR Operator

Syntax:

PSTAYLOR(EXPRN:algebraic,DEPVAR:kernel, ABOUT:algebraic):ps object

The PSTAYLOR operator returns a power series object (a tagged domain element)
representing the univariate formal Taylor series expansion of EXPRN with respect
to the dependent variable DEPVAR about the expansion point ABOUT. Unlike the
operator PS it directly evaluates the nth derivative of the expression EXPRN wrt the
variable DEPVAR at the expansion point ABOUT to find the nth term of the series.
Poles (and other singularities) at the expansion point will cause an error – PS and
TAYLOR are more robust in this respect. The PSTAYLOR operator may be useful
in contexts where PS fails to build a suitable recurrence relation automatically and
reports too deep a recursion in ps!:unknown!-crule. A typical example is the
expansion of the Γ function about an expansion point which is not a non-positive
integer.

The algebraic expression ABOUT should simplify to an expression which is inde-
pendent of the dependent variable DEPVAR, otherwise an error will result.
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If ABOUT is the identifier INFINITY then the power series expansion about DE-
PVAR =∞ is obtained in ascending powers of 1/DEPVAR.

16.74.17 PSCOPY Operator

Syntax:

PSCOPY(TPS:power series):power series

This procedure returns a copy of the power series TPS. The copy has no shared
sub-structures in common with the original series. This enables substitutions to be
performed on the series without side-effects on previously computed objects. For
example:

clear a;
b := ps(sin(a*x)), x, 0);
b where a => 1;

will result in a being set to 1 in each of the terms of the power series and the
resulting expressions being simplified. Owing to the way power series objects
are implemented using Lisp vectors, this has the side-effect that the value of b is
changed. This may be avoided by copying the series with PSCOPY before applying
the substitution, thus:

b := ps(sin(a*x)), x, 0);
pscopy b where a => 1;

16.74.18 PSTRUNCATE Operator

Syntax:

PSTRUNCATE(TPS:power series POWER: integer) :algebraic

This procedure truncates the power series TPS discarding terms of order higher
than POWER. The series is extended automtically if the value of POWER is greater
than the order of last term calculated to date.

b := ps(sin x, x, 0);
a := pstruncate(b, 11);

will result in a being set to the eleventh order polynomial resulting in truncating
the series for sinx after the term involving x11.

If POWER is less than the order of the series then 0 is returned. If POWER does
not simplify to an integer or if TPS is not a power series object then Reduce errors
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result.

16.74.19 Arithmetic Operations

As power series objects are domain elements they may be combined together in
algebraic expressions in algebraic mode of REDUCE in the normal way.

For example if A and B are power series objects then the commands such as:

a*b;
a/b;
a**2+b**2;

will produce power series objects representing the product,quotient and the sum of
the squares of the power series objects A and B respectively.

16.74.20 Differentiation

If A is a power series object depending on X then the input df(a, x); will
produce the power series expansion of the derivative of A with respect to X.

Note however that currently the input int(a, x); will not work as intended;
instead one must input ps(int(a, x),x,0); in order to obtain the power
series expansion of the integral of a.

16.74.21 Restrictions and Known Bugs

If A is a power series object and X is a variable which evaluates to itself then
currently expressions such as a*x do not evaluate to a single power series object
(although the result is formally valid). Instead use ps(a*x,x,0) etc..

Similarly expressions such as sin(A) where A is a PS object currently will not be
expanded. For example:

a:=ps(1/(1+x),x,0);
b:=sin a;

will not expand sin(1/(1+x)) as a power series. In fact

SIN(1 - X + X**2 - X**3 + .....)

will be returned. However,
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b:=ps(sin(a),x,0);

or

b:=ps(sin(1/(1+x)),x,0);

should work as intended.

The handling of functions with essential singularities is currently erratic: usually
an error message

***** Essential Singularity

or

***** Logarithmic Singularity

occurs but occasionally a division by zero error or some drastic error like (for PSL)
binding stack overflow may occur.

There is no simple way to write the results of power series calculation to a file and
read them back into REDUCE at a later stage.
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16.75 TRI: TeX REDUCE interface

This package provides facilities written in REDUCE-Lisp for typesetting RE-
DUCE formulas using TEX. The TEX-REDUCE-Interface incorporates three levels
of TEXoutput: without line breaking, with line breaking, and with line breaking
plus indentation.

Author: Werner Antweiler.
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16.76 TRIGD: Trigonometrical Functions with Degree
Arguments

This module provides facilities for the numerical evaluation and algebraic simpli-
fication of expressions involving trigonometrical functions with arguments given
in degrees rather than in radians. The degree-valued inverse functions are also
provided.

Author: Alan Barnes

16.76.1 Introduction

This module provides facilities for the numerical evaluation and algebraic simpli-
fication of expressions involving trigonometrical functions with arguments given
in degrees rather than in radians. The degree-valued inverse functions are also
provided.

Any user at all familiar with the normal trig functions in REDUCE should have
no trouble in using the facilities of this module. The names of the degree-based
functions are those of the normal trig functions with the letter D appended, for
example SIND, COSD and TAND denote the sine, cosine and tangent repectively
and their corresponding inverse functions are ASIND, ACOSD and ATAND. The
secant, cosecant and cotangent functions and their inverses are also supported and,
indeed, are treated more as first class objects than their corresponding radian-based
functions which are often converted to expressions involving sine and cosine by
some of the standard REDUCE simplifications rules.

Below I give a brief description of the facilities available together with a few ex-
amples of their use. More examples and the output that they should produce may
be found in the test files trigd-num.tst and trigd-simp.tst and their
corresponding log files with extension .rlg which may be found in the directory
packages/misc of the REDUCE distribution along with the source code of the
module.

These degree-based functions are probably best regarded as functions defined for
real values only, but complex arguments are supported for completeness. The nu-
merical evaluation routines are fairly comprehensive for both real and complex
arguments. However, few simplifications occur for trigd functions with complex
arguments.

The range of the principal values returned by the inverse functions is consis-
tent with those of the corresponding radian-valued functions. More precisely,
for ASIND, ATAND and ACSCD the (closure of the) range is [-90, 90] whilst for
ACOSD, ACOTD and ASECD the (closure of the) range is [0, 180]. In addition the
operator ATAN2D is the degree valued version of the two argument inverse tangent
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function which returns an angle in the interval (-180, 180] in the correct quadrant
depending on the signs of its two arguments. For X > 0, ATAN2D(Y, X) re-
turns the same numerical value as ATAND(Y/X). If X = 0 then ±90 is returned
depending on the sign of Y .

It might be thought that the facilities provided in this module couldbe easily pro-
vided by defining suitable rule lists to convert between the radian and degree-based
versions of the trig functions. For example:

1: operator sind, asind$
2: d2r_list := {sind(~x) =>

sin(x*pi/180), asind(~x) => 180*asin(x)/pi}$
3: r2d_list := {sin(~x) =>

sind(180x/pi), asin(~x) => pi*sind(x)/180}$
4: sind(x+360) where d2r_list$
5: ws where r2d_list;

sind(x)
6: sind(360) where d2r_list;

0

However, this approach seldom works — try it! The result produced by step 4
defeats the current rule52 used to simplify expressions of the form sin(x + 2π)
although it does manage step 6. The rule list approach is more reliable if differen-
tiation, integration or numerical evaluation of expressions involving SIND etc. is
required. However it is not particularly convenient even if the rules and operator
declarations are stored in a file so that they may be loaded at will.

This module aims to overcome these deficiences by providing the degree-based trig
functions as first class objects of the system just like their radian-based cousins.
The aim is to provide facilities for numerical evaluation, symbolic simplification
and differentiation totally analgous to those for the the basic trig functions and their
inverses. It is hoped that the module will be of value to students and teachers at
secondary school level as well as being sufficiently powerful and flexible to be of
genuine utility in fields where angles measured in degrees (and arc minutes and
seconds) are in common usage. For more advanced situations (involving integra-
tion, complex arguments and values etc.), users are urged to use the standard trig
functions already provided by the system.

16.76.2 Simplification

As in other parts of REDUCE, basic simplification of expressions involving the
trigd functions takes place automatically (bracketted terms are multiplied out,
like terms are gathered together, zero terms removed from sums and so on). The

52These rules may be improved in the next version of REDUCE.
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system knows and automatically applies the basic properties of the functions to
simplify the input. For example SIND(0) is replaced by 0 and SIND(-X) by
SIND(X). If the switch ROUNDED is OFF all arithmetic is exact and transcenden-
tal functions such as SIND are not evaluated numerically even if their arguments
are purely numerical.

The built-in simplification rules are totally analogous to those of the standard trig
functions namely:

• Replacement of a function application by its value if a simple analytical
value is known. For example cosd(60) => 1/2 and acscd(1) =>
90. Currently the only argument values where simplification takes place
correspond to angles that are integral multiples of 15o.

• Use of the odd and even properties of the trig. functions so that for example
sind(-x) => -sind(x), cosd(-x) => cosd(x) and
acosd(-x) => 180 - acosd(x).

• Argument shifts by integral multiples of 180o so that any residual numerical
argument lies in the range −90o . . . 90o.
Thus sind(x+540) => -sind(x), cosd(x+350) => cosd(x-10).

• Removal of argument shifts of ±90o so that for example
sind(x-90) => -cosd(x) and cotd(x+90) => -tand(x).

• Replacement of tand(x) by sind(x)/cosd(x), secd(x) by 1/cosd(x)
and the like, but only when the final result is simpler than the original.

• Basic properties relating a function and it inverse so that for example
sind(asind(x)) => x.

• A few basic rules for ATAN2D when the signs of its arguments can be deter-
mined. For example atan2d(Y, 0) is replaced by ±90 depending on the
sign of Y .

Extra rules can be added by the user for example addition formulae, double an-
gle rules and tangent half-angle formulae as and when required as described in
chapter 11.

Rules are provided for the symbolic differentiation of all the trig functions and
their inverses. These rules are sufficient fot the power series of the trig functions
and their inverses to be found using either the TPS or TAYLOR packages in the
standard way.
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16.76.3 Numerical Evaluation

When the switch ROUNDED is ON and the arguments of the operators evaluate
to numbers, then the floating point value of the expression is calculated to the
currently specified PRECISION in the normal way. The bigfloat capabilities are
the same as for the standard trig functions.

If these functions are supplied with complex numerical arguments, numerical eval-
uation will NOT be performed when the switch ROUNDED is ON, but the switch
COMPLEX is OFF — the input expression will be returned basically unaltered.
Similarly inputs such as ASIND(2) or ASECD(0.5) are not evaluated numeri-
cally. The values of these expressions are, of course, complex.

If the switch COMPLEX is also ON , numerical evaluation is performed. For exam-
ple:

1: load_package trigd$

2: on rounded;

3: asecd(2);

60.0

4: asecd(0.5);

asecd(0.5)

5: on complex;

*** Domain mode rounded changed to complex-rounded

6: asecd(0.5);

75.4561292902*i

The function ATAN2D (like ATAN2) is only defined if BOTH its arguments are real.
If they are also numerical, it will be evaluated whenever ROUNDED is ON. Attempt-
ing to evaluate it with complex numerical arguments will cause either the unaltered
expression to be returned or an error to be raised when the switch COMPLEX is OFF
or ON respectively.
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16.76.3.1 Conversion between Degrees and Radians

There are a number of utility routines for converting an angle in radians to de-
grees and vice-versa. RAD2DEG converts the radian value to an angle in degrees
expressed as a single floating point value (according to the currently specified
PRECISION). The value to be converted may be an integer, a rational or a float-
ing value or indeed any expression that simplies to a rounded value. In particular
numerical constants such as π may be used in the input expression.

RAD2DMS converts the radian value to an angle expressed in degrees, minutes and
seconds returned as a three element list. The degree and minute values are integers
the latter in the range 0 . . . 59 inclusive and the seconds value is a floating point
value in the interval [0, 60.0). There are also operators DEG2RAD and DEG2DMS
whose purpose should be obvious.

The purpose of the operators DMS2RAD and DMS2DEG should also be obvious.
The degree, minute and second value to be converted is passed to the conversion
function as a three element list. There is considerable flexibilty allowed in format
of the list supplied as parameter – all three values may be integers, rational numbers
or rounded values or any combination of these; the minute and second values need
not lie between zero and sixty. The list supplied is simplified with the appropriate
carrys and borrows performed (in effect at least) between the three values. For
example

{60.5, 9.2, 11.234} => {60, 39, 23.234}
{45, 0, -1} => {44, 59, 59}

These operators are not actually part of the TRIGD module but of the REDUCE
core system. However, they are not currently documented in the main manual.
Currently they are purely numeric operators; when ROUNDED is OFF they basically
return the input expression (perhaps with their parameter simplified somewhat).

Note the sine of an angle specified in degrees, minutes and seconds cannot be
calculated by calling SIND directly with a dms list (i.e. as a list of length 3).
Instead one must first convert the dms values to degrees using a call to DMS2DEG
and then call SIND on the result. Applied directly to a list (of any length) any
TRIGD function wil be applied to each member of the list separately just like most
other REDUCE operators. Here is an example illustrating tese points:

1: load_package trigd$

2: on rounded;

3: sind dms2deg {60, 45, 30};
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0.872567064923

4: sind {60,45, 30};

{0.866025403784,0.707106781187,0.5}

5: off rounded;

6: sind{60, 45, 30};

sqrt(3) sqrt(2) 1
{---------,---------,---}

2 2 2

Of course the results will be formatted much more attractively on a terminal sup-
porting nice graphics.

16.76.3.2 The operators ARGD and ARG

Although not directly related to the trig functions, the module TRIGD also pro-
vides an operator ARGD; when the switches ROUNDED and COMPLEX are both ON,
it will return the argument in degrees of the complex number supplied as its par-
ameter — supplying zero as the parameter causes an error to be raised. If only
ROUNDED is ON, ARGD will return the argument of the real numerical value sup-
plied as its parameter — this will be 0 or 180 when the value is positive or negative
respectively.

The operator ARG is similar to ARGD, but returns the argument expressed in radi-
ans. There is also an operator NORM which returns the modulus (or absolute value
or norm) of a complex number. ARG and NORM are actually part of the REDUCE
core system, but are not currently documented in the main manual. Currently they
are purely numeric operators; when ROUNDED is OFF they basically return the
input expression (perhaps with their parameter simplified).

Example

1: load_package trigd$

2: on rounded;

3: {argd(-5), argd(1+i)};

{180.0,argd(i + 1)}
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4: on complex;

*** Domain mode rounded changed to complex-rounded

5: {argd(1+i), argd(-1-i)};

{45.0, - 135.0}

6: {arg(3+4i), norm(3+4i)};

{0.927295218002,5.0}

16.76.4 Bugs, Restrictions and Planned Extensions

The behaviour of the numerical evaluation routines for inverse trig functions with
complex arguments at branch points could be improved; these values are undefined
and attempting to evaluate such a function at one of its branch points ought to raise
an error, however sometimes the input expression will be returned unaltered. It is
hoped to improve this behaviour in due course.

Currently there are no facilities analogous to those provided in the module
TRIGSIMP for the standard trig. functions. There users have a wide range of
standard simplification formulae available for use and can control which are to
be used depending on the requirements of their particular application: whether to
eliminate sin in favour of cos or vice-versa or to get rid of both in favour of
tan of half-angles; or whether to use the trigonometrical addition formulae in or-
der to transform trig functions whose arguments are sums into a form where the
arguments are single terms or whether to perform the inverse transformations. It is
hoped to make the TRIGSIMP faciliites available for use with the TRIGD funct-
ions in the near future.

Integration is not directly supported although the approach using rule-lists to con-
vert the TRIGD functions to standard trig ones should work well. Introducing
direct support for integration will not therefore be a priority.

For the standard sine function there is a rule for imaginary arguments namely:
sin(I*X) => I*sinh(X). The corresponding rule for the degree version is
sind(I*X) => I*sinh(X*PI/180). However, currently such rules are
NOT implemented by the system. They may be implemented in future, but it is
not a high priority as it is felt that the radian-based trig functions are best suited for
such symbolic calculations.

There are NO D versions of the hyperbolic functions — that would be a step too far!
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And should the new functions be called sinhd and so on? Or perhaps sindh53

etc?

53One is perhaps reminded here of the (in)famous bilingual pun: peccavi attributed to Charles
James Napier — apparently no relation to his logarithmic namesake – see Wikipedia for details!
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16.77 TRIGINT: Weierstrass substitution in REDUCE

Author: Neil Langmead

This package was written when the author was a placement student at ZIB Berlin.

16.77.1 Introduction

This package is an implementation of a new algorithm proposed by D.J. Jeffrey
and A.D. Rich [JR94] to remove "spurious" discontinuities from integrals. Their
paper focuses on the Weirstrass substitution, u = tan(x/2), currently used in con-
junction with the Risch algorithm in most computer algebra systems to evaluate
trigonometric integrals. Expressions obtained using this substitution sometimes
contain discontinuities, which limit the domain over which the expression is cor-
rect. The algorithm presented finds a better expression, in the sense that it is conti-
nous on wider intervals whilst still being an anti derivative of the integrand.

16.77.1.1 Example

Consider the following problem:∫
3

5− 4 cos(x)
dx

REDUCE computes an anti derivative to the given function using the Weirstrass
substitution u = tan(x2 ), and then the Risch algorithm is used, returning:

2 arctan(3 tan(x2 ))

3
,

which is discontinuous at all odd multiples of π. Yet our original function is con-
tinuous everywhere on the real line, and so by the Fundamental Theorem of Cal-
culus, any anti-derivative should also be everywhere continuous. The problem
arises from the substitution used to transform the given trigonometric function to
a rational function: often, the substituted function is discontinuous, and spurious
discontinuities are introduced as a result.

Jeffery and Richs’ algorithm returns the following to the given problem:∫
3

5− 4 cos(x)
dx = 2 arctan

(
3 tan

(x
2

))
+ 2π

⌊
x− π

2π

⌋
which differs from (2) by the constant 2π, and this is the correct way of removing
the discontinuity.
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16.77.2 Statement of the Algorithm

We define a Weierstrass substitution to be one that uses a function u = Φ(x)
appearing in the following table:

Choice Φ(x) sin(x) cos(x) dx b p

(a) tan(x/2) 2u
1+u2

1−u2
1+u2

2du
1+u2

π 2π

(b) tan(x2 + π
4 ) u2−1

u2+1
2u
u2+1

2du
1+u2

π
2 2π

(c) cot(x/2) 2u
1+u2

u2−1
1+u2

−2du
1+u2

0 2π

(d) tan(x) u√
1+u2

1√
1+u2

du
1+u2

π
2 π

Table 16.18: Functions u = Φ used in the Weirstrass Alg. and their corresponding
substitutions

There are of course, other trigonometric substitutions, used by REDUCE, such as
sin and cos, but since these are never singular, they cannot lead to problems with
discontinuities.

Given an integrable function f(sinx, cosx) whose indefinite integral is required,
select one of the substitutions listed in the table. The choice is based on the fol-
lowing heuristics: choice (a) is used for integrands not containing sinx, choice (b)
for integrands not containing cosx; (c) is useful in cases when (a) gives an integral
that cannot be evaluated by REDUCE, and (d) is good for conditions described in
Gradshteyn and Ryzhik (1979, sect 2.50). The integral is then transformed using
the entries in the table,; for example, with choice (c), we have:∫

f(sinx, cosx) dx =

∫
f

(
2u

1 + u2
,
u2 − 1

1 + u2

)
−2 du

1 + u2
.

The integral in u is now evaluated using the standard routines of the system, then
u is substituted for. Call the result ĝ(x). Next we calculate

K = lim
x→b−

ĝ(x)− lim
x→b+

ĝ(x),

where the point b is given in the table. the corrected integral is then

g(x) =

∫
f(sinx, cosx) dx = ĝ(x) +K

⌊
x− b
p

⌋
,

where the period p is taken from the table, and bxc is the floor function.

16.77.3 REDUCE implementation

The name of the function used in REDUCE to implement these ideas is trigint,
which has the following syntax:
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trigint(exp, var),

where exp is the expression to be integrated, and var is the variable of integration.

If trigint is used to calculate the integrals of trigonometric functions for which no
substitution is necessary, then non standard results may occur. For example, if we
calculate

trigint(cos(x), x),

we obtain
2 tan x

2

tan2 x
2 + 1

which, by using simple trigonometric identities, simplifies to:

2 tan x
2

tan2 x
2 + 1

→
2 tan x

2

sec2 x
2

→ 2 sin
x

2
cos

x

2
→ sin

(
2
x

2

)
→ sinx,

which is the answer we would normally expect. In the absence of a normal form
for trigonometric functions though, both answers are equally valid, although most
would prefer the simpler answer sinx. Thus, some interesting trigonometric iden-
tities could be derived from the program if one so wished.

16.77.3.1 Examples

Using our example in (1), we compute the corrected result, and show a few other
examples as well:

REDUCE Development Version, 4-Nov-96 ...

1: trigint(3/(5-4*cos(x)),x);

x - pi + x
2*(atan(3*tan(---)) + floor(-----------)*pi)

2 2*pi

2: trigint(3/(5+4*sin(x)),x);

2
pi + 2*x - pi + 2*pi*x

2*(atan(3*tan(----------)) + floor(-----------------)*pi
4 4
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- pi + 2*x
+ floor(-------------)*pi)

4*pi

3: trigint(15/(cos(x)*(5-4*cos(x))),x);

x - pi + x x
8*atan(3*tan(---)) + 8*floor(-----------)*pi - 3*log(tan(---) - 1)

2 2*pi 2

x
+ 3*log(tan(---) + 1)

2

16.77.4 Definite Integration

The corrected expressions can now be used to calculate some definite integrals,
provided the region of integration lies between adjacent singularities. For example,
using our earlier function, we can use the corrected primitive to calculate∫ 4π

0

1

2 + cosx
dx (16.96)

trigint returns the answer below to give an indefinite integral, F (x):

x
tan(---)

2 - pi + x
2*sqrt(3)*(atan(----------) + floor(-----------)*pi)

sqrt(3) 2*pi
------------------------------------------------------ (*)

3

And now, we can apply the Fundamental Theorem of Calculus to give∫ 4π

0

1

2 + cosx
dx = F (4π)− F (0) (16.97)

sub(x=4*pi,F)-sub(x=0,F);

4*sqrt(3)*pi
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-----------------
3

and this is the correct value of the definite integral. Note that although the expres-
sion in (*) is continuous, the functions value at the points x = π, 3π etc. must
be intepreted as a limit, and these values cannot substituted directly into the for-
mula given in (*). Hence care should be taken to ensure that the definite integral
is well defined, and that singularities are dealt with appropriately. For more details
of this in REDUCE, please see the documentation for the cwi addition to the defint
package.

16.77.5 Tracing the trigint function

The package includes a facility to trace in some detail the inner workings of the
ratint program. Messages are given at key points of the algorithm, together with
the results obtained. These messages are displayed whenever the switch tracetrig
is on, which is done in REDUCE with the following command:

on tracetrig;

This switch is off by default. In particular, the messages inform the user which
substitution is being tried, and the result of that substitution. The error message

cannot integrate after subs

means that REDUCE has tried all four of the Weierstraß substitutions, and the
system’s standard integrator is unable to integrate after the substitution has been
completed.

16.77.6 Bugs, comments, suggestions

This program was written whilst the author was a placement student at ZIB Berlin.
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16.78 TRIGSIMP: Simplification and factorization of trigono-
metric and hyperbolic functions

Author: Wolfram Koepf.

16.78.1 Introduction

The REDUCE package TRIGSIMP is a useful tool for all kinds of problems re-
lated to trigonometric and hyperbolic simplification and factorization. There are
three operators included in TRIGSIMP: trigsimp, trigfactorize and triggcd. The
first is for simplifying trigonometric or hyperbolic expressions and has many opt-
ions, the second is for factorizing them and the third is for finding the greatest
common divisor of two trigonometric or hyperbolic polynomials. This package is
automatically loaded when one of these operators is used.

16.78.2 Simplifying trigonometric expressions

As there is no normal form for trigonometric and hyperbolic expressions, the same
function can convert in many different directions, e.g. sin(2x) ↔ 2 sin(x) cos(x).
The user has the possibility to give several parameters to the operator trigsimp
in order to influence the transformations. It is possible to decide whether or not a
rational expression involving trigonometric and hyperbolic functions vanishes.

To simplify an expression f, one uses trigsimp(f[,options]). For exam-
ple:

trigsimp(sin(x)^2+cos(x)^2);

1

The possible options (where ∗ denotes the default) are:

1. sin∗ or cos;

2. sinh∗ or cosh;

3. expand∗, combine or compact;

4. hyp, trig or expon;

5. keepalltrig;

6. tan and/or tanh;

7. target arguments of the form variable / positive integer.
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From each of the first four groups one can use at most one option, otherwise an
error message will occur. Options can be given in any order.

The first group fixes the preference used while transforming a trigonometric ex-
pression:

trigsimp(sin(x)^2);

2
sin(x)

trigsimp(sin(x)^2, cos);

2
- cos(x) + 1

The second group is the equivalent for the hyperbolic functions.

The third group determines the type of transformation. With the default, expand,
an expression is transformed to use only simple variables as arguments:

trigsimp(sin(2x+y));

2
2*cos(x)*cos(y)*sin(x) - 2*sin(x) *sin(y) + sin(y)

With combine, products of trigonometric functions are transformed to trig-
onometric functions involving sums of variables:

trigsimp(sin(x)*cos(y), combine);

sin(x - y) + sin(x + y)
-------------------------

2

With compact, the REDUCE operator compact [Hea] is applied to f. This
often leads to a simple form, but in contrast to expand one does not get a normal
form. For example:

trigsimp((1-sin(x)^2)^20*(1-cos(x)^2)^20, compact);

40 40
cos(x) *sin(x)

With an option from the fourth group, the input expression is transformed to
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trigonometric, hyperbolic or exponential form respectively:

trigsimp(sin(x), hyp);

- sinh(i*x)*i

trigsimp(sinh(x), expon);

2*x
e - 1

----------
x

2*e

trigsimp(e^x, trig);

cos(i*x) - sin(i*x)*i

Usually, tan, cot, sec, csc are expressed in terms of sin and cos. It can
sometimes be useful to avoid this, which is handled by the option keepalltrig:

trigsimp(tan(x+y), keepalltrig);

- (tan(x) + tan(y))
----------------------

tan(x)*tan(y) - 1

Alternatively, the options tan and/or tanh can be given to convert the output to
the specified form as far as possible:

trigsimp(tan(x+y), tan);

- (tan(x) + tan(y))
----------------------

tan(x)*tan(y) - 1

By default, the other functions used will be cos and/or cosh, unless the other
desired functions are also specified in which case this choice will be respected.

The final possibility is to specify additional target arguments for the trigonometric
or hyperbolic functions, each of which should have the form of a variable divided
by a positive integer. These additional arguments are treated as if they had oc-
curred within the expression to be simplified, and their denominators are used in
determining the overall denominator to use for each variable in the simplified form:
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trigsimp(csc x - cot x + csc y - cot y, x/2, y/2, tan);

x y
tan(---) + tan(---)

2 2

It is possible to use the options of different groups simultaneously:

trigsimp(sin(x)^4, cos, combine);

cos(4*x) - 4*cos(2*x) + 3
---------------------------

8

Sometimes, it is necessary to handle an expression in separate steps:

trigsimp((sinh(x)+cosh(x))^n+(cosh(x)-sinh(x))^n, expon);

1 n n*x
(----) + e

x
e

trigsimp(ws, hyp);

2*cosh(n*x)

trigsimp((cosh(a*n)*sinh(a)*sinh(p)+cosh(a)*sinh(a*n)*sinh(p)+
sinh(a - p)*sinh(a*n))/sinh(a));

cosh(a*n)*sinh(p) + cosh(p)*sinh(a*n)

trigsimp(ws, combine);

sinh(a*n + p)

The trigsimp operator can be applied to equations, lists and matrices (and com-
positions thereof) as well as scalar expressions, and automatically maps itself re-
cursively over such non-scalar data structures:

trigsimp( { sin(2x) = cos(2x) } );

2
{2*cos(x)*sin(x)= - 2*sin(x) + 1}
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16.78.3 Factorizing trigonometric expressions

With trigfactorize(p,x) one can factorize the trigonometric or hyperbolic
polynomial p in terms of trigonometric functions of the argument x. The output
has the same format as that from the standard REDUCE operator factorize.
For example:

trigfactorize(sin(x), x/2);

x x
{{2,1},{sin(---),1},{cos(---),1}}

2 2

If the polynomial is not coordinated or balanced [Roa], the output will equal the
input. In this case, changing the value for x can help to find a factorization, e.g.

trigfactorize(1+cos(x), x);

{{cos(x) + 1,1}}

trigfactorize(1+cos(x), x/2);

x
{{2,1},{cos(---),2}}

2

The polynomial can consist of both trigonometric and hyperbolic functions:

trigfactorize(sin(2x)*sinh(2x), x);

{{4,1}, {sinh(x),1}, {cosh(x),1}, {sin(x),1}, {cos(x),1}}

The trigfactorize operator respects the standard REDUCE factorize
switch nopowers – see the REDUCE manual for details. Turning it on gives
the behaviour that was standard before REDUCE 3.7:

on nopowers;

trigfactorize(1+cos(x), x/2);

x x
{2,cos(---),cos(---)}

2 2
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16.78.4 GCDs of trigonometric expressions

The operator triggcd is essentially an application of the algorithm behind
trigfactorize. With its help the user can find the greatest common divisor
of two trigonometric or hyperbolic polynomials. It uses the method described in
[Roa]. The syntax is triggcd(p,q,x), where p and q are the trigonometric
polynomials and x is the argument to use. For example:

triggcd(sin(x), 1+cos(x), x/2);

x
cos(---)

2

triggcd(sin(x), 1+cos(x), x);

1

The polynomials p and q can consist of both trigonometric and hyperbolic funct-
ions:

triggcd(sin(2x)*sinh(2x), (1-cos(2x))*(1+cosh(2x)), x);

cosh(x)*sin(x)

16.78.5 Further Examples

With the help of this package the user can create identities:

trigsimp(tan(x)*tan(y));

sin(x)*sin(y)
---------------
cos(x)*cos(y)

trigsimp(ws, combine);

cos(x - y) - cos(x + y)
-------------------------
cos(x - y) + cos(x + y)

trigsimp((sin(x-a)+sin(x+a))/(cos(x-a)+cos(x+a)));
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sin(x)
--------
cos(x)

trigsimp(cosh(n*acosh(x))-cos(n*acos(x)), trig);

0

trigsimp(sec(a-b), keepalltrig);

csc(a)*csc(b)*sec(a)*sec(b)
-------------------------------
csc(a)*csc(b) + sec(a)*sec(b)

trigsimp(tan(a+b), keepalltrig);

- (tan(a) + tan(b))
----------------------

tan(a)*tan(b) - 1

trigsimp(ws, keepalltrig, combine);

tan(a + b)

Some difficult expressions can be simplified:

df(sqrt(1+cos(x)), x, 4);

5 4 3 2 3
( - 4*cos(x) - 4*cos(x) - 20*cos(x) *sin(x) + 12*cos(x)

2 2 2 4
- 24*cos(x) *sin(x) + 20*cos(x) - 15*cos(x)*sin(x)

2 4 2
+ 12*cos(x)*sin(x) + 8*cos(x) - 15*sin(x) + 16*sin(x) )/

(16*sqrt(cos(x) + 1)

4 3 2

*(cos(x) + 4*cos(x) + 6*cos(x) + 4*cos(x) + 1))

on rationalize;
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trigsimp(ws);

sqrt(cos(x) + 1)
------------------

16

off rationalize;
load_package taylor;

taylor(sin(x+a)*cos(x+b), x, 0, 4);

cos(b)*sin(a) + (cos(a)*cos(b) - sin(a)*sin(b))*x

2
- (cos(a)*sin(b) + cos(b)*sin(a))*x

2*( - cos(a)*cos(b) + sin(a)*sin(b)) 3
+ --------------------------------------*x

3

cos(a)*sin(b) + cos(b)*sin(a) 4 5
+ -------------------------------*x + O(x )

3

trigsimp(ws, combine);

sin(a - b) + sin(a + b) 2
------------------------- + cos(a + b)*x - sin(a + b)*x

2

2*cos(a + b) 3 sin(a + b) 4 5
- --------------*x + ------------*x + O(x )

3 3

Certain integrals whose evaluation was not possible in REDUCE (without prepro-
cessing) are now computable:

int(trigsimp(sin(x+y)*cos(x-y)*tan(x)), x);

2
(cos(x) *x - cos(x)*sin(x) - 2*cos(y)*log(cos(x))*sin(y)

2
+ sin(x) *x)/2
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int(trigsimp(sin(x+y)*cos(x-y)/tan(x)), x);

x 2
(cos(x)*sin(x) - 2*cos(y)*log(tan(---) + 1)*sin(y)

2

x
+ 2*cos(y)*log(tan(---))*sin(y) + x)/2

2

Without the package, the integration fails, and in the second case one does not
receive an answer for many hours.

trigfactorize(sin(2x)*cos(y)^2, y/2);

{{2*cos(x)*sin(x),1},

y y
{cos(---) - sin(---),2},

2 2

y y
{cos(---) + sin(---),2}}

2 2

trigfactorize(sin(y)^4-x^2, y);

2 2
{{sin(y) + x,1},{sin(y) - x,1}}

trigfactorize(sin(x)*sinh(x), x/2);

{{4,1},

x
{sinh(---),1},

2

x
{cosh(---),1},

2
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x
{sin(---),1},

2

x
{cos(---),1}}

2

triggcd(-5+cos(2x)-6sin(x), -7+cos(2x)-8sin(x), x/2);

x x
2*cos(---)*sin(---) + 1

2 2

triggcd(1-2cosh(x)+cosh(2x), 1+2cosh(x)+cosh(2x), x/2);

x 2
2*sinh(---) + 1

2
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16.79 TURTLE: Turtle Graphics Interface for REDUCE

Author: Caroline Cotter

This package is a simple implementation of the “Turtle Graphics” style of drawing
graphs in REDUCE. The background and ideas of “Turtle Graphics” are outlined
below.

16.79.1 Turtle Graphics

Turtle Graphics was originally developed in the 1960’s as part of the LOGO sys-
tem, and used in the classroom as an introduction to graphics and using computers
to help with mathematics.

The LOGO language was created as part of an experiment to test the idea that
programming may be used as an educational discipline to teach children. It was
first intended to be used for problem solving, for illustrating mathematical concepts
usually difficult to grasp, and for creation of experiments with abstract ideas.

At first LOGO had no graphics capabilities, but fast development enabled the in-
corporation of graphics, known as “Turtle Graphics” into the language. “Turtle
Graphics” is regarded by many as the main use of LOGO.

Main Idea: To use simple commands directing a turtle, such as forward, back,
turnleft, in order to construct pictures as opposed to drawing lines connecting carte-
sian coordinate points.

The ‘turtle’ is at all times determined by its state {x,y,a,p} – where x,y determine
its position in the (x,y)-plane, a determines the angle (which describes the direction
the turtle is facing) and p signals whether the pen is up or down (i.e. whether or not
it is drawing on the paper).

16.79.2 Implementation

Some alterations to the original “Turtle Graphics” commands have been made in
this implementation due to the design of the graphics package gnuplot used in
REDUCE.

• It is not possible to draw lines individually and to see each separate line as
it is added to the graph since gnuplot automatically replaces the last graph
each time it calls on the plot function.

Thus the whole sequence of commands must be input together if the com-
plete picture is to be seen.
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• This implementation does not make use of the standard turtle commands
‘pen-up’ or ‘pen-down’. Instead, ‘set’ commands are included which allow
the turtle to move without drawing a line.

• No facility is provided here to change the pen-colour, but gnuplot does have
the capability to handle a few different colours (which could be included
later).

• Many of the commands are long and difficult to type out repeatedly, there-
fore all the commands included under ‘Turtle Functions’ (below) are listed
alongside an equivalent abbreviated form.

• The user has no control over the range of output that can be seen on the
screen since the gnuplot program automatically adjusts the picture to fit the
window. Hence the size of each specified ‘step’ the turtle takes in any direc-
tion is not a fixed unit of length, rather it is relative to the scale chosen by
gnuplot.

16.79.3 Turtle Functions

As previously mentioned, the turtle is determined at all times by its state {x,y,a}:
its position on the (x,y)-plane and its angle(a) – its heading – which determines
the direction the turtle is facing, in degrees, relative anticlockwise to the positive
x-axis.

16.79.3.1 User Setting Functions

setheading Takes a number as its argument and resets the heading to this number.
If the number entered is negative or greater than or equal to 360 then it is
automatically checked to lie between 0 and 360.

Returns the turtle position {x,y}

SYNTAX: setheading(θ)

Abbreviated form: sh(θ)

leftturn The turtle is turned anticlockwise through the stated number of degrees.
Takes a number as its argument and resets the heading by adding this number
to the previous heading setting.

Returns the turtle position {x,y}

SYNTAX: leftturn(α)

Abbreviated form: slt(α)
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rightturn Similar to leftturn, but the turtle is turned clockwise through the
stated number of degrees. Takes a number as its argument and resets the
heading by subtracting this number from the previous heading setting.

Returns the turtle position {x,y}

SYNTAX: rightturn(β)

Abbreviated form: srt(β)

setx Relocates the turtle in the x direction. Takes a number as its argument and
repositions the state of the turtle by changing its x-coordinate.

Returns {}

SYNTAX: setx(x)

Abbreviated form: sx(x)

sety Relocates the turtle in the y direction. Takes a number as its argument and
repositions the state of the turtle by changing its y-coordinate.

Returns {}

SYNTAX: sety(y)

Abbreviated form: sy(y)

setposition Relocates the turtle from its current position to the new cartesian co-
ordinate position described. Takes a pair of numbers as its arguments and
repositions the state of the turtle by changing the x and y coordinates.

Returns {}

SYNTAX: setposition(x,y)

Abbreviated form: spn(x,y)

setheadingtowards Resets the heading so that the turtle is facing towards the
given point, with respect to its current position on the coordinate axes. Takes
a pair of numbers as its arguments and changes the heading, but the turtle
stays in the same place.

Returns the turtle position {x,y}

SYNTAX: setheadingtowards(x,y)

Abbreviated form: shto(x,y)

setforward Relocates the turtle from its current position by moving forward (in
the direction of its heading) the number of steps given. Takes a number as
its argument and repositions the state of the turtle by changing the x and y
coordinates.

Returns {}

SYNTAX: setforward(n)

Abbreviated form: sfwd(n)
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setback As with setforward, but moves back (in the opposite direction of its
heading) the number of steps given.

Returns {}

SYNTAX: setback(n)

Abbreviated form: sbk(n)

16.79.3.2 Line-Drawing Functions

forward Moves the turtle forward (in the direction its heading) the number of
steps given. Takes a number as its argument and draws a line from its current
position to a new position on the coordinate plane. The x and y coordinates
are reset to the new values.

Returns the list of points { {old x,old y}, {new x,new y} }

SYNTAX: forward(s)

Abbreviated form: fwd(s)

back As with forward except the turtle moves back (in the opposite direction to
its heading) the number of steps given.

Returns the list of points { {old x,old y}, {new x,new y} }

SYNTAX: back(s)

Abbreviated form: bk(s)

move Moves the turtle to a specified point on the coordinate plane. Takes a pair
of numbers as its arguments and draws a line from its current position to the
position described. The x and y coordinates are set to these new values.

Returns the list of points { {old x,old y}, {new x,new y} }

SYNTAX: move(x,y)

Abbreviated form: mv(x,y)

16.79.3.3 Plotting Functions

draw This is the function the user calls within REDUCE to draw the list of turtle
commands given into a picture. Takes a list as its argument, with each sepa-
rate command being separated by a comma, and returns the graph drawn by
following the commands.

SYNTAX: draw{command(command_args),...,command(command_args)}
Note: all commands may be entered in either long or shorthand form, and
with a space before the arguments instead of parentheses only if just one
argument is needed. Commands taking more than one argument must be
written with parentheses and arguments separated by a comma.
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fdraw This function is also called in REDUCE by the user and outputs the same as
the draw command, but it takes a filename as its argument. The file which
is called upon by fdraw must contain only the turtle commands and other
functions defined by the user for turtle graphics. (This is intended to make it
easier for the user to make small changes without constantly typing out long
series of commands.)

SYNTAX: fdraw{"filename"} Note: commands may be entered in
long or shorthand form but each command must be written on a separate
line of the file. Also, arguments are to be written without parentheses and
separated with a space, not a comma, regardless of the number of arguments
given to the function.

16.79.3.4 Other Important Functions

info This function is called on its own in REDUCE to tell user the current state of
the turtle. Takes no arguments but returns a list containing the current values
of the x and y coordinates and the heading variable.

Returns the list {x_coord,y_coord,heading}

SYNTAX: info() or simply info

clearscreen This is also called on its own in REDUCE to get rid of the last gnuplot
window, displaying the last turtle graphics picture, and to reset all the vari-
ables to 0. Takes no arguments and returns no printed output to the screen
but the graphics window is simply cleared.

SYNTAX: clearscreen() or simply clearscreen

Abbreviated form: cls() or cls

home This is a command which can be called within a plot function as well as out-
side of one. Takes no arguments, and simply resets the x and y coordinates
and the heading variable to 0. When used in a series of turtle commands, it
moves the turtle from its current position to the origin and sets the direction
of the turtle along the x-axis, without drawing a line.

Returns {0,0}

SYNTAX: home() or simply home

16.79.3.5 Defining Functions

It is possible to use conditional statements (if . . . then . . . else . . . ) and ‘for’ state-
ments (for i:=. . . collect{. . . }) in calls to draw. However, care must be taken – when
using conditional statements the final else statement must return a point or at least
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{x_coord,y_coord} if the picture is to be continued at that point. Also, ‘for’ state-
ments must include ‘collect’ followed by a list of turtle commands (in addition, the
variable must begin counting from 0 if it is to be joined to the previous list of turtle
commands at that point exactly, e.g. for i:=0:10 collect {. . . }).

SYNTAX: (For user-defined Turtle functions)

procedure func_name(func_args);
begin [scalar additional variables];

...
(the procedure body containing some turtle commands)
...
return (a list, or label to a list, of turtle commands

as accepted by draw)
end;

For convenience, it is recommended that all user defined functions, such as
those involving if...then...else... or for i:=...collect{...}
are defined together in a separate file, then called into REDUCE using the in
"filename" command.



1042 CHAPTER 16. USER CONTRIBUTED PACKAGES

16.79.4 Examples

The following examples are taken from the tur.tst file. Examples 1, 2, 5 & 6 are
simple calls to draw. Examples 3 & 4 show how more complicated commands can
be built (which can take their own set of arguments) using procedures. Examples 7
& 8 show the difference between the draw and fdraw commands.

% (1) Draw 36 rays of length 100

draw {for i:=1:36 collect{setheading(i*10), forward 100, back 100} };
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REDUCE Plot

% (2) Draw 12 regular polygons with 12 sides of length 40,each polygon
%forming an angle of 360/n degrees with the previous one.

draw {for i:=1:12 collect
{leftturn(30), for j:=1:12 collect

{forward 40, leftturn(30)}} };
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% (3) A "peak" pattern - an example of a recursive procedure.

procedure peak(r);
begin;

return for i:=0:r collect
{move(x_coord+5,y_coord-10), move(x_coord+10,y_coord+60),
move(x_coord+10,y_coord-60),move(x_coord+5,y_coord+10)};

end;

draw {home(), peak(3)};
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%This procedure can then be part of a longer chain of commands:

draw {home(), move(5,50), peak(3), move(x_coord+10,-100),
peak(2), move(x_coord+10,0)};
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% (4) Write a recursive procedure which draws "trees" such that every
%branch is half the length of the previous branch.
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procedure tree(a,b); %Here: a is the start length, b is the
%number of levels

begin;
return if fixpb and b>0 %checking b is a positive integer

then {leftturn(45), forward a, tree(a/2,b-1),
back a, rightturn(90), forward a, tree(a/2,b-1),
back a, leftturn(45)}

else {x_coord,y_coord}; %default: Turtle stays still
end;

draw {home(), tree(130,7)};
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% (5) A 36-point star.

draw {home(), for i:=1:36 collect
{leftturn(10), forward 100, leftturn(10), back 100} };
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% (6) Draw 100 equilateral triangles with the leading points
%equally spaced on a circular path.

draw {home(), for i:=1:100 collect
{forward 150, rightturn(60), back(150),
rightturn(60), forward 150, setheading(i*3.6)} };
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% (7) Two or more graphs can be drawn together (this is easier
%if the graphs are named). Here we show graphs 2 and 6 on top of one
%another:

gr2:={home(), for i:=1:12 collect
{leftturn(30), for j:=1:12 collect

{forward 40, leftturn(30)}} }$

gr6:={home(), for i:=1:100 collect
{forward 150, rightturn(60), back(150),
rightturn(60), forward 150, setheading(i*3.6)} }$

draw {gr2, gr6};
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% (8) Example 7 could have been tackled another way, which makes use of
%the fdraw command.
%By inputting gr2 and gr6 as procedures into reduce, they can then be
%used at any time in the same reduce session in a call to draw and even
%fdraw.

%First save the procedures in a file, say fxp (fdraw example procedures):

procedure gr2;
begin;

return {home, for i:=1:12 collect
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{leftturn(30), for j:=1:12 collect
{forward 40, leftturn(30)}} };

end;

procedure gr6;
begin;

return {home(), for i:=1:100 collect
{forward 150, rightturn(60), back(150),
rightturn(60), forward 150, setheading(i*3.6)} };

end;

%Then create another file where the functions may be called to fdraw,
%e.g. fx:

gr2
gr6

%Now in reduce, after loading the turtle package just type the following:

in "fxp";
fdraw ’"fx";

%..and the graphs will appear.

%This method is useful if the user wants to define many of their own
%functions, and, using fdraw, subtle changes can be made quickly without
%having to type out the whole string of commands to plot each time. It
%is particularly useful if there are several pictures to plot at once and
%it is an easy way to build pictures so that the difference an extra
%command makes to the overall picture can be clearly seen.
%(In the above example, the file called to fdraw was only 2 lines long,
%so this method did not have any advantage over the normal draw command.
%However, when the list of commands is longer it is clearly advantageous
%to use fdraw)

16.79.5 References

1. An Implementation of Turtle Graphics for Teaching Purposes
Zoran I. Putnik & Zoram d.Budimac

2. Mapletech - Maple in Mathematics and the Sciences,
Special Issue 1994
An Implementation of “Turtle Graphics” in Maple V
Eugenio Roanes Lozano & Eugenio Roanes Macias
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16.80 WU: Wu algorithm for polynomial systems

This is a simple implementation of the Wu algorithm implemented in REDUCE
working directly from “A Zero Structure Theorem for Polynomial-Equations-
Solving,” Wu Wen-tsun, Institute of Systems Science, Academia Sinica, Beijing.

Author: Russell Bradford.

Its purpose was to aid my understanding of the algorithm, so the code is simple,
and has a lot of tracing included. This is a working implementation, but there is
magnificent scope for improvement and optimisation. Things like using intelligent
sorts on polynomial lists, and avoiding the re-computation of various data spring
easily to mind. Also, an attempt at factorization of the input polynomials at each
pass might have beneficial results. Of course, exploitation of the natural parallel
structure is a must!

All bug fixes and improvements are welcomed.

The interface:

wu( {x^2+y^2+z^2-r^2, x*y+z^2-1, x*y*z-x^2-y^2-z+1}, {x,y,z});

calls wu with the named polynomials, and with the variable ordering x > y > z.
In this example, r is a parameter.

The result is

2 3 2
{{{r + z - z - 1,

2 2 2 2 4 2 2 2
r *y + r *z + r - y - y *z + z - z - 2,

2
x*y + z - 1},

y},

6 4 6 2 6 4 7 4 6 4 5 4 4
{{r *z - 2*r *z + r + 3*r *z - 3*r *z - 6*r *z + 3*r *z + 3*

4 3 4 2 4 2 10 2 9 2 8 2 7
r *z + 3*r *z - 3*r + 3*r *z - 6*r *z - 3*r *z + 6*r *z +

2 6 2 5 2 4 2 3 2 13 12 11
3*r *z + 6*r *z - 6*r *z - 6*r *z + 3*r + z - 3*z + z
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10 9 8 7 6 4 3 2
+ 2*z + z + 2*z - 6*z - z + 2*z + 3*z - z - 1,

2 2 3 2
y *(r + z - z - 1),

2
x*y + z - 1},

2 3 2
y*(r + z - z - 1)}}

namely, a list of pairs of characteristic sets and initials for the characteristic sets.

Thus, the first pair above has the characteristic set

r2 + z3 − z2 − 1, r2y2 + r2z + r2 − y4 − y2z2 + z2 − z − 2, xy + z2 − 1

and initial y.

According to Wu’s theorem, the set of roots of the original polynomials is the
union of the sets of roots of the characteristic sets, with the additional constraints
that the corresponding initial is non-zero. Thus, for the first pair above, we find
the roots of {r2 + z3 − z2 − 1, . . . } under the constraint that y 6= 0. These
roots, together with the roots of the other characteristic set (under the constraint of
y(r2 + z3 − z2 − 1) 6= 0), comprise all the roots of the original set.

Additional information about the working of the algorithm can be gained by

on trwu;

This prints out details of the choice of basic sets, and the computation of charac-
teristic sets.

The second argument (the list of variables) may be omitted, when all the variables
in the input polynomials are implied with some random ordering.
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16.81 XCOLOR: Color factor in some field theories

This package calculates the color factor in non-abelian gauge field theories using
an algorithm due to Cvitanovich.

Documentation for this package is in plain text.

Author: A. Kryukov.

Program "xCOLOR" is intended for calculation the colour factor in non-abelian
gauge field theories. It is realized Cvitanovich algorithm [Cvi76]. In comparison
to the program "COLOR" [KR88] many improvements were made. The package
was written in symbolic mode. This version is more than 10 times faster than the
one in [KR88].

After load the program by the following command load xcolor;
user can be able to use the next additional commands and operators.

Command SUdim.

Format: SUdim <any expression>;
Set the order of SU group.
The default value is 3, i.e. SU(3).

Command SpTT.

Format: SpTT <any expression>;
Set the normalization coefficient A: Sp(TiTj) = A*Delta(i,j). Default value is 1/2.

Operator QG.

Format: QG(inQuark,outQuark,Gluon)
Describe the quark-gluon vertex. Parameters may be any identifiers. First and
second of then must be in- and out- quarks correspondently. Third one is a gluon.

Operator G3.

Format: G3(Gluon1,Gluon2,Gluon3)
Describe the three-gluon vertex. Parameters may be any identifiers. The order of
gluons must be clock.
In terms of QG and G3 operators you input diagram in "color" space as a product
of these operators. For example.
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Diagram: REDUCE expression:

e1

---->---
/ \
| e2 |

v1*..........*v2 <===> QG(e3,e1,e2)*QG(e1,e3,e2)
| |
\ e3 /
----<---

Here: --->--- quark

....... gluon

For more detail see [KR88].



1053

16.82 XIDEAL: Gröbner Bases for exterior algebra

XIDEAL constructs Gröbner bases for solving the left ideal membership problem:
Gröbner left ideal bases or GLIBs. For graded ideals, where each form is homo-
geneous in degree, the distinction between left and right ideals vanishes. Further-
more, if the generating forms are all homogeneous, then the Gröbner bases for the
non-graded and graded ideals are identical. In this case, XIDEAL is able to save
time by truncating the Gröbner basis at some maximum degree if desired.

Author: David Hartley.

16.82.1 Description

The method of Gröbner bases in commutative polynomial rings introduced by
Buchberger (e.g. [Buc85]) is a well-known and very important tool in polynomial
ideal theory, for example in solving the ideal membership problem. XIDEAL ex-
tends the method to exterior algebras using algorithms from [HT93] and [Ape92].

There are two main departures from the commutative polynomial case. First, ow-
ing to the non-commutative product in exterior algebras, ideals are no longer auto-
matically two-sided, and it is necessary to distinguish between left and right ide-
als. Secondly, because there are zero divisors, confluent reduction relations are no
longer sufficient to solve the ideal membership problem: a unique normal form for
every polynomial does not guarantee that all elements in the ideal reduce to zero.
This leads to two possible definitions of Gröbner bases as pointed out by Stokes
[Sto90].

XIDEAL constructs Gröbner bases for solving the left ideal membership problem:
Gröbner left ideal bases or GLIBs. For graded ideals, where each form is homo-
geneous in degree, the distinction between left and right ideals vanishes. Further-
more, if the generating forms are all homogeneous, then the Gröbner bases for the
non-graded and graded ideals are identical. In this case, XIDEAL is able to save
time by truncating the Gröbner basis at some maximum degree if desired.

XIDEAL uses the exterior calculus package EXCALC of E. Schrüfer [Sch85] to
provide the exterior algebra definitions. EXCALC is loaded automatically with
XIDEAL. The exterior variables may be specified explicitly, or extracted auto-
matically from the input polynomials. All distinct exterior variables in the input
are assumed to be linearly independent – if a dimension has been fixed (using the
EXCALC spacedim or coframe statements), then input containing distinct ex-
terior variables with degrees totaling more than this number will generate an error.
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16.82.2 Declarations

xorder

xorder sets the term ordering for all other calculations. The syntax is

xorder k

where k is one of lex, gradlex or deglex. The lexicographical ordering lex
is based on the prevailing EXCALC kernel ordering for the exterior variables.
The EXCALC kernel ordering can be changed with the REDUCE korder or
EXCALC forder declarations. The graded lexicographical ordering gradlex
puts terms with more factors first (irrespective of their exterior degrees) and sorts
terms of the same grading lexicographically. The degree lexicographical ordering
deglex takes account of the exterior degree of the variables, putting highest de-
gree first and then sorting terms of the same degree lexicographically. The default
ordering is deglex.

xvars

It is possible to consider scalar and 0-form variables in exterior polynomials in
two ways: as variables or as coefficient parameters. This difference is crucial
for Gröbner basis calculations. By default, all scalar variables which have been
declared as 0-forms are treated as exterior variables, along with any EXCALC
kernels of degree 0. This division can be changed with the xvars declaration.
The syntax is

xvars U,V,W,...

where the arguments are either kernels or lists of kernels. All variables specified
in the xvars declaration are treated as exterior variables in subsequent XIDEAL
calculations with exterior polynomials, and any other scalars are treated as param-
eters. This is true whether or not the variables have been declared as 0-forms. The
declaration

xvars {}

causes all degree 0 variables to be treated as parameters, and

xvars nil

restores the default. Of course, p-form kernels with p 6= 0 are always considered
as exterior variables. The order of the variables in an xvars declaration has no
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effect on the REDUCE kernel ordering or XIDEAL term ordering.

16.82.3 Operators

xideal

xideal calculates a Gröbner left ideal basis in an exterior algebra. The syntax is

xideal(S:list of forms[,V:list of kernels][,R:integer])
:list of forms.

xideal calculates a Gröbner basis for the left ideal generated by S using the
current term ordering. The resulting list can be used for subsequent reductions
with xmod as long as the term ordering is not changed. Which 0-form variables
are to be regarded as exterior variables can be specified in an optional argument V
(just like an xvars declaration). The order of variables in V has no effect on the
term ordering. If the set of generators S is graded, an optional parameter R can be
given, and xideal produces a truncated basis suitable for reducing exterior forms
of degree less than or equal to R in the left ideal. This can save time and space with
large problems, but the result cannot be used for exterior forms of degree greater
than R. The forms returned by xideal are sorted in increasing order. See also the
switches trxideal and xfullreduction.

xmodideal

xmodideal reduces exterior forms to their (unique) normal forms modulo a left
ideal. The syntax is

xmodideal(F:form, S:list of forms):form

or

xmodideal(F:list of forms, S:list of forms)
:list of forms.

An alternative infix syntax is also available:

F xmodideal S.

xmodideal(F,S) first calculates a Gröbner basis for the left ideal generated by
S, and then reduces F. F may be either a single exterior form, or a list of forms,
and S is a list of forms. If F is a list of forms, each element is reduced, and any
which vanish are deleted from the result. If the set of generators S is graded, then a
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truncated Gröbner basis is calculated using the degree of F (or the maximal degree
in F). See also trxmod.

xmod

xmod reduces exterior forms to their (not necessarily unique) normal forms mod-
ulo a set of exterior polynomials. The syntax is

xmod(F:form, S:list of forms):form

or

xmod(F:list of forms, S:list of forms):list of forms.

An alternative infix syntax is also available:

F xmod S.

xmod(F,S) reduces F with respect to the set of exterior polynomials S, which is
not necessarily a Gröbner basis. F may be either a single exterior form, or a list
of forms, and S is a list of forms. This operator can be used in conjunction with
xideal to produce the same effect as xmodideal: for a single homogeneous
form F and a set of exterior forms S, F xmodideal S is equivalent to F xmod
xideal(S,exdegree F). See also trxmod.

xauto

xauto autoreduces a set of exterior forms. The syntax is

xauto(S:list of forms):list of forms.

xauto S returns a set of exterior polynomials which generate the same left ideal,
but which are in normal form with respect to each other. For linear expressions,
this is equivalent to finding the reduced row echelon form of the coefficient matrix.

excoeffs

The operator excoeffs, with syntax

excoeffs(F:form):list of expressions

returns the coefficients from an exterior form as a list. The coefficients are always
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scalars, but which degree 0 variables count as coefficient parameters is controlled
by the command xvars.

exvars

The operator exvars, with syntax

exvars(F:form):list of kernels

returns the exterior powers from an exterior form as a list. All non-scalar vari-
ables are returned, but which degree 0 variables count as coefficient parameters is
controlled by the command xvars.

16.82.4 Switches

xfullreduce

on xfullreduce allows xideal and xmodideal to calculate reduced,
monic Gröbner bases, which speeds up subsequent reductions, and guarantees a
unique form for the Gröbner basis. off xfullreduce turns of this feature,
which may speed up calculation of some Gröbner basis. xfullreduce is on by
default.

trxideal

on trxideal produces a trace of the calculations done by xideal and
xmodideal, showing the basis polynomials and the results of the critical ele-
ment calculations. This can generate profuse amounts of output. trxideal is
off by default.

trxmod

on trxmod produces a trace of reductions to normal form during calculations by
XIDEAL operators. trxmod is off by default.

16.82.5 Examples

Suppose XIDEAL has been loaded, the switches are at their default settings, and
the following exterior variables have been declared:

pform x=0,y=0,z=0,t=0,f(i)=1,h=0,hx=0,ht=0;
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In a commutative polynomial ring, a single polynomial is its own Gröbner basis.
This is no longer true for exterior algebras because of the presence of zero divisors,
and can lead to some surprising reductions:

xideal {d x^d y - d z^d t};

{d t^d z + d x^d y,

d x^d y^d z,

d t^d x^d y}

f(3)^f(4)^f(5)^f(6)
xmodideal {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)};

0

The heat equation, hxx = ht can be represented by the following exterior differen-
tial system.

S := {d h - ht*d t - hx*d x,
d ht^d t + d hx^d x,
d hx^d t - ht*d x^d t};

xmodideal can be used to check that the exterior differential system is closed
under exterior differentiation.

d S xmodideal S;

{}

xvars, or a second argument to xideal can be used to change the division
between exterior variables of degree 0 and parameters.

xideal {a*d x+y*d y};

d x*a + d y*y
{---------------}

a

xvars {a};
xideal {a*d x+y*d y};

{d x*a + d y*y,d x^d y}
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xideal({a*d x+y*d y},{a,y});

{d x*a + d y*y,

d x^d y*y}

xvars {}; % all 0-forms are coefficients
excoeffs(d u - (a*p - q)*d y);

{1, - a*p + q}

exvars(d u - (a*p - q)*d y);

{d u,d y}

xvars {p,q}; % p,q are no longer coefficients
excoeffs(d u - (a*p - q)*d y);

{ - a,1,1}

exvars(d u - (a*p - q)*d y);

{d y*p,d y*q,d u}

xvars nil;

Non-graded left and right ideals are no longer the same:

d t^(d z+d x^d y) xmodideal {d z+d x^d y};

0

(d z+d x^d y)^d t xmodideal {d z+d x^d y};

- 2*d t^d z

Any form containing a 0-form term generates the whole ideal:

xideal {1 + f(1) + f(1)^f(2) + f(2)^f(3)^f(4)};

{1}
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16.83 ZEILBERG: Indefinite and definite summation

This package is a careful implementation of the Gosper and Zeilberger algorithms
for indefinite and definite summation of hypergeometric terms, respectively. Ex-
tensions of these algorithms are also included that are valid for ratios of products
of powers, factorials, Γ function terms, binomial coefficients, and shifted factorials
that are rational-linear in their arguments.

Authors: Gregor Stölting and Wolfram Koepf.

16.83.1 Introduction

This package is a careful implementation of the Gosper54 and Zeilberger algo-
rithms for indefinite, and definite summation of hypergeometric terms, respec-
tively. Further, extensions of these algorithms given by the first author are covered.
An expression ak is called a hypergeometric term (or closed form), if ak/ak−1 is
a rational function with respect to k. Typical hypergeometric terms are ratios of
products of powers, factorials, Γ function terms, binomial coefficients, and shifted
factorials (Pochhammer symbols) that are integer-linear in their arguments.

The extensions of Gosper’s and Zeilberger’s algorithm mentioned in particular are
valid for ratios of products of powers, factorials, Γ function terms, binomial coef-
ficients, and shifted factorials that are rational-linear in their arguments.

16.83.2 Gosper Algorithm

The Gosper algorithm [Gos78] is a decision procedure, that decides by algebraic
calculations whether or not a given hypergeometric term ak has a hypergeometric
term antidifference gk, i.e. gk− gk−1 = ak with rational gk/gk−1, and returns gk if
the procedure is successful, in which case we call ak Gosper-summable. Otherwise
no hypergeometric term antidifference exists. Therefore if the Gosper algorithm
does not return a closed form solution, it has proved that no such solution exists,
an information that may be quite useful and important. The Gosper algorithm is
the discrete analogue of the Risch algorithm for integration in terms of elementary
functions.

Any antidifference is uniquely determined up to a constant, and is denoted by

gk =
∑

k
ak .

Finding gk given ak is called indefinite summation. The antidifference operator Σ
is the inverse of the downward difference operator ∇ak = ak − ak−1. There is

54The sum package contains also a partial implementation of the Gosper algorithm.



1061

an analogous summation theory corresponding to the upward difference operator
∆ak = ak+1 − ak.

In case, an antidifference gk of ak is known, any sum

n∑
k=m

ak = gn − gm−1

can be easily calculated by an evaluation of g at the boundary points like in the
integration case. Note, however, that the sum

n∑
k=0

(
n

k

)
(16.98)

e. g. is not of this type since the summand
(
n
k

)
depends on the upper boundary

point n explicitly. This is an example of a definite sum that we consider in the next
section.

Our package supports the input of powers (a^k), factorials (factorial(k)), Γ
function terms (gamma(a)), binomial coefficients (binomial(n,k)), shifted
factorials (pochhammer(a,k)= a(a + 1) · · · (a + k − 1) = Γ(a + k)/Γ(a)),
and partially products (prod(f,k,k1,k2)). It takes care of the necessary sim-
plifications, and therefore provides you with the solution of the decision problem
as long as the memory or time requirements are not too high for the computer used.

16.83.3 Zeilberger Algorithm

The (fast) Zeilberger algorithm [Zei90]–[Zei91] deals with the definite summation
of hypergeometric terms. Zeilberger’s paradigm is to find (and return) a linear
homogeneous recurrence equation with polynomial coefficients (called holonomic
equation) for an infinite sum

s(n) =
∞∑

k=−∞
f(n, k) ,

the summation to be understood over all integers k, if f(n, k) is a hypergeometric
term with respect to both k and n. The existence of a holonomic recurrence equat-
ion for s(n) is then generally guaranteed.

If one is lucky, and the resulting recurrence equation is of first order

p(n) s(n− 1) + q(n) s(n) = 0 (p, q polynomials) ,

s(n) turns out to be a hypergeometric term, and a closed form solution can be
easily established using a suitable initial value, and is represented by a ratio of
Pochhammer or Γ function terms if the polynomials p, and q can be factored.
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Zeilberger’s algorithm does not guarantee to find the holonomic equation of lowest
order, but often it does.

If the resulting recurrence equation has order larger than one, this information can
be used for identification purposes: Any other expression satisfying the same re-
currence equation, and the same initial values, represents the same function.

Note that a definite sum
m2∑

k=m1

f(n, k) is an infinite sum if f(n, k) = 0 for

k < m1 and k > m2. This is often the case, an example of which is the
sum (16.98) considered above, for which the hypergeometric recurrence equation
2s(n− 1)− s(n) = 0 is generated by Zeilberger’s algorithm, leading to the closed
form solution s(n) = 2n.

Definite summation is trivial if the corresponding indefinite sum is Gosper-
summable analogously to the fact that definite integration is trivial as soon as an el-
ementary antiderivative is known. If this is not the case, the situation is much more
difficult, and it is therefore quite remarkable and non-obvious that Zeilberger’s
method is just a clever application of Gosper’s algorithm.

Our implementation is mainly based on [Koo93] and [Koe94b]. More examples
can be found in [PS95], [Str93], [Wil90], and [Wil93] many of which are contained
in the test file zeilberg.tst.

16.83.4 REDUCE operator GOSPER

The ZEILBERG package must be loaded by:

1: load zeilberg;

The gosper operator is an implementation of the Gosper algorithm.

• gosper(a,k) determines a closed form antidifference. If it does not re-
turn a closed form solution, then a closed form solution does not exist.

• gosper(a,k,m,n) determines

n∑
k=m

ak

using Gosper’s algorithm. This is only successful if Gosper’s algorithm ap-
plies.

Example:

2: gosper((-1)^(k+1)*(4*k+1)*factorial(2*k)/
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(factorial(k)*4^k*(2*k-1)*factorial(k+1)),k);

k
- ( - 1) *factorial(2*k)

------------------------------------
2*k

2 *factorial(k + 1)*factorial(k)

This solves a problem given in SIAM Review ([OK94], Problem 94–2) where it
was asked to determine the infinite sum

S = lim
n→∞

Sn , Sn =

n∑
k=1

(−1)k+1(4k + 1)(2k − 1)!!

2k(2k − 1)(k + 1)!
,

((2k − 1)!! = 1 · 3 · · · (2k − 1) = (2k)!
2k k!

). The above calculation shows that the
summand is Gosper-summable, and the limit S = 1 is easily established using
Stirling’s formula.

The implementation solves further deep and difficult problems some examples of
which are:

3: gosper(sub(n=n+1,binomial(n,k)^2/binomial(2*n,n))-
binomial(n,k)^2/binomial(2*n,n),k);

2
((binomial(n + 1,k) *binomial(2*n,n)

2
- binomial(2*(n + 1),n + 1)*binomial(n,k) )*(2*k - 3*n - 1)

2 3 2

*(k - n - 1) )/((2*(2*(n + 1) - k)*(2*n + 1)*k - 3*n - 7*n - 5*n

- 1)*binomial(2*(n + 1),n + 1)*binomial(2*n,n))

4: gosper(binomial(k,n),k);

(k + 1)*binomial(k,n)
-----------------------

n + 1

5: gosper((-25+15*k+18*k^2-2*k^3-k^4)/
(-23+479*k+613*k^2+137*k^3+53*k^4+5*k^5+k^6),k);

2
- (2*k - 15*k + 8)*k

----------------------------
3 2

23*(k + 4*k + 27*k + 23)
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The Gosper algorithm is not capable to give antidifferences depending on the har-
monic numbers

Hk :=
k∑
j=1

1

j
,

e. g.
∑

kHk = (k+ 1)(Hk+1− 1), but, is able to give a proof, instead, for the fact
that Hk does not possess a closed form evaluation:

6: gosper(1/k,k);

***** Gosper algorithm: no closed form solution exists

The following code gives the solution to a summation problem proposed in
Gosper’s original paper [Gos78]. Let

fk =
k∏
j=1

(a+ b j + c j2) and gk =
k∏
j=1

(e+ b j + c j2) .

Then a closed form solution for ∑
k

fk−1

gk

is found by the definitions

7: operator ff,gg$

8: let {ff(~k+~m) => ff(k+m-1)*(c*(k+m)^2+b*(k+m)+a)
when (fixp(m) and m>0),

ff(~k+~m) => ff(k+m+1)/(c*(k+m+1)^2+b*(k+m+1)+a)
when (fixp(m) and m<0)}$

9: let {gg(~k+~m) => gg(k+m-1)*(c*(k+m)^2+b*(k+m)+e)
when (fixp(m) and m>0),

gg(~k+~m) => gg(k+m+1)/(c*(k+m+1)^2+b*(k+m+1)+e)
when (fixp(m) and m<0)}$

and the calculation

10: gosper(ff(k-1)/gg(k),k);

ff(k)
---------------
(a - e)*gg(k)

11: clear ff,gg$
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Similarly closed form solutions of
∑

k
fk−m
gk

for positive integers m can be ob-

tained, as well as of
∑

k
fk−1

gk
for

fk =

k∏
j=1

(a+ b j + c j2 + d j3) and gk =

k∏
j=1

(e+ b j + c j2 + d j3)

and for analogous expressions of higher degree polynomials.

16.83.5 REDUCE operator EXTENDED_GOSPER

The extended_gosper operator is an implementation of an extended version
of Gosper’s algorithm given by Koepf [Koe94b].

• extended_gosper(a,k) determines an antidifference gk of ak when-
ever there is a number m such that hk − hk−m = ak, and hk is an m-fold
hypergeometric term, i.e.

hk/hk−m is a rational function with respect to k.

If it does not return a solution, then such a solution does not exist.

• extended_gosper(a,k,m) determines an m-fold antidifference hk of
ak, i.e. hk − hk−m = ak, if it is an m-fold hypergeometric term.

Examples:

12: extended_gosper(binomial(k/2,n),k);

k k - 1
(k + 2)*binomial(---,n) + (k + 1)*binomial(-------,n)

2 2
-------------------------------------------------------

2*(n + 1)

13: extended_gosper(k*factorial(k/7),k,7);

k
(k + 7)*factorial(---)

7

16.83.6 REDUCE operator SUMRECURSION

The sumrecursion operator is an implementation of the (fast) Zeilberger algo-
rithm.
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• sumrecursion(f,k,n) determines a holonomic recurrence equation
for

sum(n) =
∞∑

k=−∞
f(n, k)

with respect to n, applying extended_sumrecursion if necessary, see
§ 16.83.7. The resulting expression equals zero.

• sumrecursion(f,k,n,j) searches for a holonomic recurrence equat-
ion of order j. This operator does not use extended_sumrecursion
automatically. Note that if j is too large, the recurrence equation may not be
unique, and only one particular solution is returned.

A simple example deals with Equation (16.98)55

14: sumrecursion(binomial(n,k),k,n);

2*sum(n - 1) - sum(n)

The whole hypergeometric database of the Vandermonde, Gauß, Kummer, Saalschütz,
Dixon, Clausen and Dougall identities (see [Wil93]), and many more identities (see
e. g. [Koe94b]), can be obtained using sumrecursion. As examples, we con-
sider the difficult cases of Clausen and Dougall:

15: summand:=factorial(a+k-1)*factorial(b+k-1)/(factorial(k)*
factorial(-1/2+a+b+k))*factorial(a+n-k-1)*factorial(b+n-k-1)/
(factorial(n-k)*factorial(-1/2+a+b+n-k))$

16: sumrecursion(summand,k,n);

(2*a + 2*b + 2*n - 1)*(2*a + 2*b + n - 1)*sum(n)*n

- 2*(2*a + n - 1)*(a + b + n - 1)*(2*b + n - 1)*sum(n - 1)

17: summand:=pochhammer(d,k)*pochhammer(1+d/2,k)*pochhammer(d+b-a,k)*
pochhammer(d+c-a,k)*pochhammer(1+a-b-c,k)*pochhammer(n+a,k)*
pochhammer(-n,k)/(factorial(k)*pochhammer(d/2,k)*
pochhammer(1+a-b,k)*pochhammer(1+a-c,k)*pochhammer(b+c+d-a,k)*
pochhammer(1+d-a-n,k)*pochhammer(1+d+n,k))$

18: sumrecursion(summand,k,n);

(2*a - b - c - d + n)*(b + n - 1)*(c + n - 1)*(d + n)*sum(n - 1) +

55Note that with REDUCE Version 3.5 we use the global operator summ instead of sum to denote
the sum.
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(a - b - c - d - n + 1)*(a - b + n)*(a - c + n)*(a - d + n - 1)

*sum(n)

corresponding to the statements

4F3

(
a , b , 1/2− a− b− n ,−n

1/2 + a+ b , 1− a− n , 1− b− n

∣∣∣∣∣ 1
)

=
(2a)n (a+ b)n (2b)n
(2a+ 2b)n (a)n (b)n

and

7F6

(
d , 1 + d/2 , d+ b− a , d+ c− a , 1 + a− b− c , n+ a ,−n

d/2 , 1 + a− b , 1 + a− c , b+ c+ d− a , 1 + d− a− n , 1 + d+ n

∣∣∣∣∣ 1
)

=
(d+ 1)n (b)n (c)n (1 + 2 a− b− c− d)n

(a− d)n (1 + a− b)n (1 + a− c)n (b+ c+ d− a)n

(compare next section), respectively.

Other applications of the Zeilberger algorithm are connected with the verification
of identities. To prove the identity

n∑
k=0

(
n

k

)3

=
n∑
k=0

(
n

k

)2(2k

n

)
,

e. g., we may prove that both sums satisfy the same recurrence equation

19: sumrecursion(binomial(n,k)^3,k,n);

2 2 2
(7*n - 7*n + 2)*sum(n - 1) + 8*(n - 1) *sum(n - 2) - sum(n)*n

20: sumrecursion(binomial(n,k)^2*binomial(2*k,n),k,n);

2 2 2
(7*n - 7*n + 2)*sum(n - 1) + 8*(n - 1) *sum(n - 2) - sum(n)*n

and finally check the initial conditions:

21: sub(n=0,k=0,binomial(n,k)^3);

1

22: sub(n=0,k=0,binomial(n,k)^2*binomial(2*k,n));

1
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23: sub(n=1,k=0,binomial(n,k)^3)+sub(n=1,k=1,binomial(n,k)^3);

2

24: sub(n=1,k=0,binomial(n,k)^2*binomial(2*k,n))+
sub(n=1,k=1,binomial(n,k)^2*binomial(2*k,n));

2

16.83.7 REDUCE operator EXTENDED_SUMRECURSION

The extended_sumrecursion operator is an implementation of an extension
of the (fast) Zeilberger algorithm given by Koepf [Koe94b].

• extended_sumrecursion(f,k,n,m,l) determines a holonomic re-

currence equation for sum(n) =
∞∑

k=−∞
f(n, k) with respect to n if f(n, k) is

an (m, l)-fold hypergeometric term with respect to (n, k), i.e.

F (n, k)

F (n−m, k)
and

F (n, k)

F (n, k − l)

are rational functions with respect to both n and k. The resulting expression
equals zero.

• sumrecursion(f,k,n) invokes extended_sumrecursion(f,k,n,m,l)
with suitable values m and l, and covers therefore the extended algorithm
completely.

Examples:

25: extended_sumrecursion(binomial(n,k)*binomial(k/2,n),k,n,1,2);

sum(n - 1) + 2*sum(n)

which can be obtained automatically by

26: sumrecursion(binomial(n,k)*binomial(k/2,n),k,n);

sum(n - 1) + 2*sum(n)

Similarly, we get

27: extended_sumrecursion(binomial(n/2,k),k,n,2,1);
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2*sum(n - 2) - sum(n)

28: sumrecursion(binomial(n/2,k),k,n);

2*sum(n - 2) - sum(n)

29: sumrecursion(hyperterm({a,b,a+1/2-b,1+2*a/3,-n},
{2*a+1-2*b,2*b,2/3*a,1+a+n/2},4,k)/(factorial(n)*2^(-n)/
factorial(n/2))/hyperterm({a+1,1},{a-b+1,b+1/2},1,n/2),k,n);

sum(n - 2) - sum(n)

In the last example, the progam chooses m = 2, and l = 1 to derive the resulting
recurrence equation (see [Koe94b], Table 3, (1.3)).

16.83.8 REDUCE operator HYPERRECURSION

Sums to which the Zeilberger algorithm applies, in general are special cases of the
generalized hypergeometric function

pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣x) :=
∞∑
k=0

(a1)k · (a2)k · · · (ap)k
(b1)k · (b2)k · · · (bq)k k!

xk

with upper parameters {a1, a2, . . . , ap}, and lower parameters {b1, b2, . . . , bq}. If
a recursion for a generalized hypergeometric function is to be established, you can
use the following REDUCE operator:

• hyperrecursion(upper,lower,x,n) determines a holonomic re-

currence equation with respect to n for pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣x),

where upper= {a1, a2, . . . , ap} is the list of upper parameters, and
lower= {b1, b2, . . . , bq} is the list of lower parameters depending on n.
If Zeilberger’s algorithm does not apply, extended_sumrecursion of
§ 16.83.7 is used.

• hyperrecursion(upper,lower,x,n,j) (j ∈ N) searches only for
a holonomic recurrence equation of order j. This operator does not use
extended_sumrecursion automatically.

Therefore

30: hyperrecursion({-n,b},{c},1,n);

(b - c - n + 1)*sum(n - 1) + (c + n - 1)*sum(n)
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establishes the Vandermonde identity

2F1

(
−n , b

c

∣∣∣∣∣ 1
)

=
(c− b)n

(c)n
,

whereas

31: hyperrecursion({d,1+d/2,d+b-a,d+c-a,1+a-b-c,n+a,-n},
{d/2,1+a-b,1+a-c,b+c+d-a,1+d-a-n,1+d+n},1,n);

(2*a - b - c - d + n)*(b + n - 1)*(c + n - 1)*(d + n)*sum(n - 1) +

(a - b - c - d - n + 1)*(a - b + n)*(a - c + n)*(a - d + n - 1)

*sum(n)

proves Dougall’s identity, again.

If a hypergeometric expression is given in hypergeometric notation, then the use of
hyperrecursion is more natural than the use of sumrecursion.

Moreover you may use the REDUCE operator

• hyperterm(upper,lower,x,k) that yields the hypergeometric term

(a1)k · (a2)k · · · (ap)k
(b1)k · (b2)k · · · (bq)k k!

xk

with upper parameters upper= {a1, a2, . . . , ap}, and lower parameters
lower= {b1, b2, . . . , bq}

in connection with hypergeometric terms.

The operator sumrecursion can also be used to obtain three-term recurrence
equations for systems of orthogonal polynomials with the aid of known hyper-
geometric representations. By ([NUS91], (2.7.11a)), the discrete Krawtchouk
polynomials k(p)

n (x,N) have the hypergeometric representation

k(p)
n (x,N) = (−1)n pn

(
N

n

)
2F1

(
−n , −x
−N

∣∣∣∣∣ 1

p

)
,

and therefore we declare

32: krawtchoukterm:=
(-1)^n*p^n*binomial(NN,n)*hyperterm({-n,-x},{-NN},1/p,k)$

and get the three three-term recurrence equations
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33: sumrecursion(krawtchoukterm,k,n);

((2*p - 1)*n - nn*p - 2*p + x + 1)*sum(n - 1)

- (n - nn - 2)*(p - 1)*sum(n - 2)*p - sum(n)*n

34: sumrecursion(krawtchoukterm,k,x);

(2*(x - 1)*p + n - nn*p - x + 1)*sum(x - 1)

- ((x - 1) - nn)*sum(x)*p - (p - 1)*(x - 1)*sum(x - 2)

35: sumrecursion(krawtchoukterm,k,NN);

((p - 2)*nn + n + x + 1)*sum(nn - 1) + (n - nn)*(p - 1)*sum(nn)

+ (nn - x - 1)*sum(nn - 2)

with respect to the parameters n, x, and N respectively.

16.83.9 REDUCE operator HYPERSUM

With the operator hypersum, hypergeometric sums are directly evaluated in
closed form whenever the extended Zeilberger algorithm leads to a recurrence
equation containing only two terms:

• hypersum(upper,lower,x,n) determines a closed form representa-

tion for pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣x), where upper= {a1, a2, . . . , ap}

is the list of upper parameters, and lower= {b1, b2, . . . , bq} is the list of
lower parameters depending on n. The result is given as a hypergeometric
term with respect to n.

If the result is a list of length m, we call it m-fold symmetric, which is to be
interpreted as follows: Its jth part is the solution valid for all n of the form
n = mk + j − 1 (k ∈ N0). In particular, if the resulting list contains two
terms, then the first part is the solution for even n, and the second part is the
solution for odd n.

Examples [Koe94b]:

36: hypersum({a,1+a/2,c,d,-n},{a/2,1+a-c,1+a-d,1+a+n},1,n);

pochhammer(a - c - d + 1,n)*pochhammer(a + 1,n)
-------------------------------------------------
pochhammer(a - c + 1,n)*pochhammer(a - d + 1,n)
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37: hypersum({a,1+a/2,d,-n},{a/2,1+a-d,1+a+n},-1,n);

pochhammer(a + 1,n)
-------------------------
pochhammer(a - d + 1,n)

Note that the operator togamma converts expressions given in factorial-Γ-
binomial-Pochhammer notation into a pure Γ function representation:

38: togamma(ws);

gamma(a - d + 1)*gamma(a + n + 1)
-----------------------------------
gamma(a - d + n + 1)*gamma(a + 1)

Here are some m-fold symmetric results:

39: hypersum({-n,-n,-n},{1,1},1,n);

n/2 2 n 1 n
( - 27) *pochhammer(---,---)*pochhammer(---,---)

3 2 3 2
{----------------------------------------------------,

n 2
factorial(---)

2
0}

40: hypersum({-n,n+3*a,a},{3*a/2,(3*a+1)/2},3/4,n);

2 n 1 n
pochhammer(---,---)*pochhammer(---,---)

3 3 3 3
{-----------------------------------------------------,

3*a + 2 n 3*a + 1 n
pochhammer(---------,---)*pochhammer(---------,---)

3 3 3 3
0,

0}

These results correspond to the formulas (compare [Koe94b])

3F2

(
−n ,−n ,−n

1 , 1

∣∣∣∣∣ 1
)

=


0 if n odd

(1/3)n/2 (2/3)n/2

(n/2)!2
(−27)n/2 otherwise
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and

3F2

(
−n , n+ 3a , a

3a/2 , (3a+ 1)/2

∣∣∣∣∣ 3

4

)
=


0 if n 6= 0 (mod 3)

(1/3)n/3 (2/3)n/3

(a+ 1/3)n/3 (a+ 2/3)n/3
otherwise

16.83.10 REDUCE operator SUMTOHYPER

With the operator sumtohyper, sums given in factorial-Γ-binomial-Pochhammer
notation are converted into hypergeometric notation.

sumtohyper(f,k) determines the hypergeometric representation of
∞∑

k=−∞
fk,

i.e. its output is c*hypergeometric(upper,lower,x), corresponding to
the representation

∞∑
k=−∞

fk = c · pFq
(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣x) ,

where upper= {a1, a2, . . . , ap} and lower= {b1, b2, . . . , bq} are the lists of
upper and lower parameters.
Examples:

41: sumtohyper(binomial(n,k)^3,k);

hypergeometric({ - n, - n, - n},{1,1},-1)

42: sumtohyper(binomial(n,k)/2^n-sub(n=n-1,binomial(n,k)/2^n),k);

- n + 2 - n
- hypergeometric({----------, - n,1},{1,------},-1)

2 2
------------------------------------------------------

n
2

16.83.11 Simplification Operators

For the decision that an expression ak is a hypergeometric term, it is necessary to
find out whether or not ak/ak−1 is a rational function with respect to k. For the pur-
pose to decide whether or not an expression involving powers, factorials, Γ function
terms, binomial coefficients, and Pochhammer symbols is a hypergeometric term,
the following simplification operators can be used:
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• simplify_gamma(f) simplifies an expression f involving only rational,
powers and Γ function terms according to a recursive application of the sim-
plification rule Γ (a + 1) = aΓ (a) to the expression tree. Since all Γ
arguments with integer difference are transformed, this gives a decision pro-
cedure for rationality for integer-linear Γ term product ratios.

• simplify_combinatorial(f) simplifies an expression f involving
powers, factorials, Γ function terms, binomial coefficients, and Pochhammer
symbols by converting factorials, binomial coefficients, and Pochhammer
symbols into Γ function terms, and applying simplify_gamma to its re-
sult. If the output is not rational, it is given in terms of Γ functions. If you
prefer factorials you may use

• gammatofactorial (rule) converting Γ function terms into factorials us-
ing Γ (x)→ (x− 1)!.

• simplify_gamma2(f) uses the duplication formula of the Γ function to
simplify f .

• simplify_gamman(f,n) uses the multiplication formula of the Γ func-
tion to simplify f .

The use of simplify_combinatorial(f) is a safe way to decide the ratio-
nality for any ratio of products of powers, factorials, Γ function terms, binomial
coefficients, and Pochhammer symbols.

Example:

43: simplify_combinatorial(sub(k=k+1,krawtchoukterm)/krawtchoukterm);

(k - n)*(k - x)
--------------------
(k - nn)*(k + 1)*p

From this calculation, we see again that the upper parameters of the hypergeometric
representation of the Krawtchouk polynomials are given by {−n,−x}, its lower
parameter is {−N}, and the argument of the hypergeometric function is 1/p.

Other examples are

44: simplify_combinatorial(binomial(n,k)/binomial(2*n,k-1));

gamma( - (k - 2*n - 2))*gamma(n + 1)
----------------------------------------
gamma( - (k - n - 1))*gamma(2*n + 1)*k

45: ws where gammatofactorial;
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factorial( - k + 2*n + 1)*factorial(n)
----------------------------------------

factorial( - k + n)*factorial(2*n)*k

46: simplify_gamma2(gamma(2*n)/gamma(n));

2*n 2*n + 1
2 *gamma(---------)

2
-----------------------

2*sqrt(pi)

47: simplify_gamman(gamma(3*n)/gamma(n),3);

3*n 3*n + 2 3*n + 1
3 *gamma(---------)*gamma(---------)

3 3
----------------------------------------

2*sqrt(3)*pi

16.83.12 Tracing

If you set

48: on zb_trace;

tracing is enabled, and you get intermediate results, see [Koe94b].

Example for the Gosper algorithm:

49: gosper(pochhammer(k-n,n),k);

k - 1
a(k)/a(k-1):= -----------

k - n - 1

Gosper algorithm applicable

p:= 1

q:= k - 1

r:= k - n - 1

degreebound := 0
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1
f:= -------

n + 1

Gosper algorithm successful

pochhammer(k - n,n)*k
-----------------------

n + 1

Example for the Zeilberger algorithm:

50: sumrecursion(binomial(n,k)^2,k,n);

2
n

F(n,k)/F(n-1,k):= ----------
2

(k - n)

2
(k - n - 1)

F(n,k)/F(n,k-1):= --------------
2

k

Zeilberger algorithm applicable

applying Zeilberger algorithm for order:= 1

2 2 2
p:= zb_sigma(1)*k - 2*zb_sigma(1)*k*n + zb_sigma(1)*n + n

2 2
q:= k - 2*k*n - 2*k + n + 2*n + 1

2
r:= k

degreebound := 1

2*k - 3*n + 2
f:= ---------------

n

2 2 2 3 2
- 4*k *n + 2*k + 8*k*n - 4*k*n - 3*n + 2*n

p:= -------------------------------------------------
n
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Zeilberger algorithm successful

4*sum(n - 1)*n - 2*sum(n - 1) - sum(n)*n

51: off zb_trace;

16.83.13 Global Variables and Switches

The following global variables and switches can be used in connection with the
ZEILBERG package:

• zb_trace, switch; default setting off. Turns tracing on and off.

• zb_direction, variable; settings: down, up; default setting down.

In the case of the Gosper algorithm, either a downward or a forward antidif-
ference is calculated, i.e., gosper finds gk with either

ak = gk − gk−1 or ak = gk+1 − gk,

respectively.

In the case of the Zeilberger algorithm, either a downward or an upward
recurrence equation is returned. Example:

52: zb_direction:=up$

53: sumrecursion(binomial(n,k)^2,k,n);

sum(n + 1)*n + sum(n + 1) - 4*sum(n)*n - 2*sum(n)

54: zb_direction:=down$

• zb_order, variable; settings: any nonnegative integer; default setting 5.
Gives the maximal order for the recurrence equation that sumrecursion
searches for.

• zb_factor, switch; default setting on. If off, the factorization of the
output usually producing nicer results is suppressed.

• zb_proof, switch; default setting off. If on, then several intermediate
results are stored in global variables:

• gosper_representation, variable; default setting nil.
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If a gosper command is issued, and if the Gosper algorithm is applicable,
then the variable gosper_representation is set to the list of polynom-
ials (with respect to k) {p,q,r,f} corresponding to the representation

ak
ak−1

=
pk
pk−1

qk
rk

, gk =
qk+1

pk
fk ak ,

see [Gos78]. Examples:

55: on zb_proof;

56: gosper(k*factorial(k),k);

(k + 1)*factorial(k)

57: gosper_representation;

{k,k,1,1}

58: gosper(
1/(k+1)*binomial(2*k,k)/(n-k+1)*binomial(2*n-2*k,n-k),k);

((2*k - n + 1)*(2*k + 1)*binomial( - 2*(k - n), - (k - n))

*binomial(2*k,k))/((k + 1)*(n + 2)*(n + 1))

59: gosper_representation;

{1,

(2*k - 1)*(k - n - 2),

(2*k - 2*n - 1)*(k + 1),

- (2*k - n + 1)
------------------}
(n + 2)*(n + 1)

• zeilberger_representation, variable; default setting nil.

If a sumrecursion command is issued, and if the Zeilberger algorithm is
successful, then the variable zeilberger_representation is set to
the final Gosper representation used, see [Koo93].

16.83.14 Messages

The following messages may occur:
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• ***** Gosper algorithm: no closed form solution exists

Example input:

gosper(factorial(k),k).

• ***** Gosper algorithm not applicable

Example input:

gosper(factorial(k/2),k).

The term ratio ak/ak−1 is not rational.

• ***** illegal number of arguments

Example input:

gosper(k).

• ***** Zeilberger algorithm fails. Enlarge zb_order

Example input:

sumrecursion(binomial(n,k)*binomial(6*k,n),k,n)

For this example a setting zb_order:=6 is needed.

• ***** Zeilberger algorithm not applicable

Example input:

sumrecursion(binomial(n/2,k),k,n)

One of the term ratios f(n, k)/f(n − 1, k) or f(n, k)/f(n, k − 1) is not
rational.

• ***** SOLVE given inconsistent equations

You can ignore this message that occurs with Version 3.5.
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16.84 ZTRANS: Z-transform package

This package is an implementation of the Z-transform of a sequence. This is the
discrete analogue of the Laplace Transform.

Authors: Wolfram Koepf and Lisa Temme.

16.84.1 Z-Transform

The Z-Transform of a sequence {fn} is the discrete analogue of the Laplace Trans-
form, and

Z{fn} = F (z) =
∞∑
n=0

fnz
−n .

This series converges in the region outside the circle |z| = |z0| = lim sup
n→∞

n
√
|fn| .

SYNTAX: ztrans(fn, n, z) where fn is an expression, and n,z
are identifiers.

16.84.2 Inverse Z-Transform

The calculation of the Laurent coefficients of a regular function results in the fol-
lowing inverse formula for the Z-Transform:
If F (z) is a regular function in the region |z| > ρ then ∃ a sequence {fn} with
Z{fn} = F (z) given by

fn =
1

2πi

∮
F (z)zn−1dz

SYNTAX: invztrans(F (z), z, n) where F (z) is an expression,
and z,n are identifiers.

16.84.3 Input for the Z-Transform

This package can compute the Z-Transforms of the following list of fn, and certain
combinations thereof.
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1 eαn 1
(n+k)

1
n!

1
(2n)!

1
(2n+1)!

sin(βn)
n! sin(αn+ φ) eαn sin(βn)

cos(βn)
n! cos(αn+ φ) eαn cos(βn)

sin(β(n+1))
n+1 sinh(αn+ φ) cos(β(n+1))

n+1

cosh(αn+ φ)
(
n+k
m

)
Other Combinations

Linearity Z{afn + bgn} = aZ{fn}+ bZ{gn}

Multiplication by n Z{nk · fn} = −z d
dz

(
Z{nk−1 · fn, n, z}

)
Multiplication by λn Z{λn · fn} = F

(
z
λ

)
Shift Equation Z{fn+k} = zk

(
F (z)−

k−1∑
j=0

fjz
−j

)

Symbolic Sums Z
{

n∑
k=0

fk

}
= z

z−1 · Z{fn}

Z

{
n+q∑
k=p

fk

}
combination of the above

where k, λ ∈ N \ {0}; and a, b are variables or fractions; and p, q ∈ Z or are
functions of n; and α, β and φ are angles in radians.

16.84.4 Input for the Inverse Z-Transform

This package can compute the Inverse Z-Transforms of any rational function,
whose denominator can be factored over Q, in addition to the following list of
F (z).
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sin
(

sin(β)
z

)
e

(
cos(β)
z

)
cos
(

sin(β)
z

)
e

(
cos(β)
z

)
√

z
A sin

(√
z
A

)
cos
(√

z
A

)
√

z
A sinh

(√
z
A

)
cosh

(√
z
A

)
z log

(
z√

z2−Az+B

)
z log

(√
z2+Az+B

z

)
arctan

(
sin(β)

z+cos(β)

)
where k, λ ∈ N \ {0} and A,B are fractions or variables (B > 0) and α, β, and φ
are angles in radians.

16.84.5 Application of the Z-Transform

Solution of difference equations

In the same way that a Laplace Transform can be used to solve differential equat-
ions, so Z-Transforms can be used to solve difference equations.
Given a linear difference equation of k-th order

fn+k + a1fn+k−1 + . . .+ akfn = gn (16.99)

with initial conditions f0 = h0, f1 = h1, . . ., fk−1 = hk−1 (where hj are given),
it is possible to solve it in the following way. If the coefficients a1, . . . , ak are con-
stants, then the Z-Transform of (16.99) can be calculated using the shift equation,
and results in a solvable linear equation for Z{fn}. Application of the Inverse Z-
Transform then results in the solution of (16.99).
If the coefficients a1, . . . , ak are polynomials in n then the Z-Transform of (16.99)
constitutes a differential equation for Z{fn}. If this differential equation can be
solved then the Inverse Z-Transform once again yields the solution of (16.99).
Some examples of these methods of solution can be found in §16.84.6.

16.84.6 EXAMPLES

Here are some examples for the Z-Transform

1: ztrans((-1)^n*n^2,n,z);

z*( - z + 1)
---------------------
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3 2
z + 3*z + 3*z + 1

2: ztrans(cos(n*omega*t),n,z);

z*(cos(omega*t) - z)
---------------------------

2
2*cos(omega*t)*z - z - 1

3: ztrans(cos(b*(n+2))/(n+2),n,z);

z
z*( - cos(b) + log(------------------------------)*z)

2
sqrt( - 2*cos(b)*z + z + 1)

4: ztrans(n*cos(b*n)/factorial(n),n,z);

cos(b)/z sin(b) sin(b)
e *(cos(--------)*cos(b) - sin(--------)*sin(b))

z z
---------------------------------------------------------

z
5: ztrans(sum(1/factorial(k),k,0,n),n,z);

1/z
e *z
--------
z - 1

6: operator f$

7: ztrans((1+n)^2*f(n),n,z);

2
df(ztrans(f(n),n,z),z,2)*z - df(ztrans(f(n),n,z),z)*z
+ ztrans(f(n),n,z)

Here are some examples for the Inverse Z-Transform

8: invztrans((z^2-2*z)/(z^2-4*z+1),z,n);

n n n
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(sqrt(3) - 2) *( - 1) + (sqrt(3) + 2)
-----------------------------------------

2

9: invztrans(z/((z-a)*(z-b)),z,n);

n n
a - b

---------
a - b

10: invztrans(z/((z-a)*(z-b)*(z-c)),z,n);

n n n n n n
a *b - a *c - b *a + b *c + c *a - c *b

-----------------------------------------
2 2 2 2 2 2
a *b - a *c - a*b + a*c + b *c - b*c

11: invztrans(z*log(z/(z-a)),z,n);

n
a *a

-------
n + 1

12: invztrans(e^(1/(a*z)),z,n);

1
-----------------

n
a *factorial(n)

13: invztrans(z*(z-cosh(a))/(z^2-2*z*cosh(a)+1),z,n);

cosh(a*n)

Examples: Solutions of Difference Equations

I (See [BS81], p. 651, Example 1).
Consider the homogeneous linear difference equation

fn+5 − 2fn+3 + 2fn+2 − 3fn+1 + 2fn = 0

with initial conditions f0 = 0, f1 = 0, f2 = 9, f3 = −2, f4 = 23. The
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Z-Transform of the left hand side can be written as F (z) = P (z)/Q(z)
where P (z) = 9z3 − 2z2 + 5z and Q(z) = z5 − 2z3 + 2z2 − 3z + 2 =
(z − 1)2(z + 2)(z2 + 1), which can be inverted to give

fn = 2n+ (−2)n − cos
π

2
n .

The following REDUCE session shows how the present package can be used
to solve the above problem.

14: operator f$ f(0):=0$ f(1):=0$ f(2):=9$ f(3):=-2$ f(4):=23$

20: equation:=ztrans(f(n+5)-2*f(n+3)+2*f(n+2)-3*f(n+1)+2*f(n),n,z);

5 3
equation := ztrans(f(n),n,z)*z - 2*ztrans(f(n),n,z)*z

2
+ 2*ztrans(f(n),n,z)*z - 3*ztrans(f(n),n,z)*z

3 2
+ 2*ztrans(f(n),n,z) - 9*z + 2*z - 5*z

21: ztransresult:=solve(equation,ztrans(f(n),n,z));

2
z*(9*z - 2*z + 5)

ztransresult := {ztrans(f(n),n,z)=----------------------------}
5 3 2

z - 2*z + 2*z - 3*z + 2

22: result:=invztrans(part(first(ztransresult),2),z,n);

n n n n
2*( - 2) - i *( - 1) - i + 4*n

result := -----------------------------------
2

II (See [BS81], p. 651, Example 2).
Consider the inhomogeneous difference equation:

fn+2 − 4fn+1 + 3fn = 1
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with initial conditions f0 = 0, f1 = 1. Giving

F (z) = Z{1}
(

1

z2 − 4z + 3
+

z

z2 − 4z + 3

)
=

z

z − 1

(
1

z2 − 4z + 3
+

z

z2 − 4z + 3

)
.

The Inverse Z-Transform results in the solution

fn =
1

2

(
3n+1 − 1

2
− (n+ 1)

)
.

The following REDUCE session shows how the present package can be used
to solve the above problem.

23: clear(f)$ operator f$ f(0):=0$ f(1):=1$

27: equation:=ztrans(f(n+2)-4*f(n+1)+3*f(n)-1,n,z);

3 2
equation := (ztrans(f(n),n,z)*z - 5*ztrans(f(n),n,z)*z

2
+ 7*ztrans(f(n),n,z)*z - 3*ztrans(f(n),n,z) - z )/(z - 1)

28: ztransresult:=solve(equation,ztrans(f(n),n,z));

2
z

result := {ztrans(f(n),n,z)=---------------------}
3 2

z - 5*z + 7*z - 3

29: result:=invztrans(part(first(ztransresult),2),z,n);

n
3*3 - 2*n - 3

result := ----------------
4

III Consider the following difference equation, which has a differential equation
for Z{fn}.

(n+ 1) · fn+1 − fn = 0

with initial conditions f0 = 1, f1 = 1. It can be solved in REDUCE using
the present package in the following way.
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30: clear(f)$ operator f$ f(0):=1$ f(1):=1$

34: equation:=ztrans((n+1)*f(n+1)-f(n),n,z);

2
equation := - (df(ztrans(f(n),n,z),z)*z + ztrans(f(n),n,z))

35: operator tmp;

36: equation:=sub(ztrans(f(n),n,z)=tmp(z),equation);

2
equation := - (df(tmp(z),z)*z + tmp(z))

37: load(odesolve);

38: ztransresult:=odesolve(equation,tmp(z),z);

1/z
ztransresult := {tmp(z)=e *arbconst(1)}

39: preresult:=invztrans(part(first(ztransresult),2),z,n);

arbconst(1)
preresult := --------------

factorial(n)

40: solve({sub(n=0,preresult)=f(0),sub(n=1,preresult)=f(1)},
arbconst(1));

{arbconst(1)=1}

41: result:=preresult where ws;

1
result := --------------

factorial(n)
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Chapter 17

Symbolic Mode

At the system level, REDUCE is based on a version of the programming language
Lisp known as Standard Lisp which is described in J. Marti, Hearn, A. C., Griss,
M. L. and Griss, C., “Standard LISP Report" SIGPLAN Notices, ACM, New York,
14, No 10 (1979) 48-68. We shall assume in this section that the reader is familiar
with the material in that paper. This also assumes implicitly that the reader has
a reasonable knowledge about Lisp in general, say at the level of the LISP 1.5
Programmer’s Manual (McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T.
P. and Levin, M. I., “LISP 1.5 Programmer’s Manual”, M.I.T. Press, 1965) or any
of the books mentioned at the end of this section. Persons unfamiliar with this
material will have some difficulty understanding this section.

Although REDUCE is designed primarily for algebraic calculations, its source lan-
guage is general enough to allow for a full range of Lisp-like symbolic calculations.
To achieve this generality, however, it is necessary to provide the user with two
modes of evaluation, namely an algebraic mode and a symbolic mode. To enter
symbolic mode, the user types symbolic; (or lisp;) and to return to algebraic
mode one types algebraic;. Evaluations proceed differently in each mode so
the user is advised to check what mode he is in if a puzzling error arises. He can
find his mode by typing

eval_mode;

The current mode will then be printed as ALGEBRAIC or SYMBOLIC.

Expression evaluation may proceed in either mode at any level of a calculation,
provided the results are passed from mode to mode in a compatible manner. One
simply prefixes the relevant expression by the appropriate mode. If the mode name
prefixes an expression at the top level, it will then be handled as if the global system
mode had been changed for the scope of that particular calculation.

For example, if the current mode is ALGEBRAIC, then the commands

1089
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symbolic car ’(a);
x+y;

will cause the first expression to be evaluated and printed in symbolic mode and
the second in algebraic mode. Only the second evaluation will thus affect the
expression workspace. On the other hand, the statement

x + symbolic car ’(12);

will result in the algebraic value X+12.

The use of SYMBOLIC (and equivalently ALGEBRAIC) in this manner is the same
as any operator. That means that parentheses could be omitted in the above ex-
amples since the meaning is obvious. In other cases, parentheses must be used, as
in

symbolic(x := ’a);

Omitting the parentheses, as in

symbolic x := a;

would be wrong, since it would parse as

symbolic(x) := a;

For convenience, it is assumed that any operator whose first argument is quoted is
being evaluated in symbolic mode, regardless of the mode in effect at that time.
Thus, the first example above could be equally well written:

car ’(a);

Except where explicit limitations have been made, most REDUCE algebraic con-
structions carry over into symbolic mode. However, there are some differences.
First, expression evaluation now becomes Lisp evaluation. Secondly, assignment
statements are handled differently, as we shall discuss shortly. Thirdly, local vari-
ables and array elements are initialized to NIL rather than 0. (In fact, any variables
not explicitly declared INTEGER are also initialized to NIL in algebraic mode, but
the algebraic evaluator recognizes NIL as 0.) Finally, function definitions follow
the conventions of Standard Lisp.

To begin with, we mention a few extensions to our basic syntax which are designed
primarily if not exclusively for symbolic mode.
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17.1 Symbolic Infix Operators

There are three binary infix operators in REDUCE intended for use in symbolic
mode, namely . (CONS), EQ and MEMQ. The precedence of these operators was
given in another section.

17.2 Symbolic Expressions

These consist of scalar variables and operators and follow the normal rules of the
Lisp meta language.

Examples:

x
car u . reverse v
simp (u+v^2)

17.3 Quoted Expressions

Because symbolic evaluation requires that each variable or expression has a value,
it is necessary to add to REDUCE the concept of a quoted expression by analogy
with the Lisp QUOTE function. This is provided by the single quote mark ’. For
example,

’a represents the Lisp S-expression (quote a)
’(a b c) represents the Lisp S-expression (quote (a b c))

Note, however, that strings are constants and therefore evaluate to themselves in
symbolic mode. Thus, to print the string "A String", one would write

prin2 "A String";

Within a quoted expression, identifier syntax rules are those of REDUCE. Thus
(A !. B) is the list consisting of the three elements A, ., and B, whereas (A
. B) is the dotted pair of A and B.

17.4 Lambda Expressions

LAMBDA expressions provide the means for constructing Lisp LAMBDA expres-
sions in symbolic mode. They may not be used in algebraic mode.
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Syntax:

〈LAMBDA expression〉 −→ LAMBDA 〈varlist〉〈terminator〉 〈statement〉

where

〈varlist〉 −→ (〈variable〉, . . ., 〈variable〉)

e.g.,

lambda (x,y); car x . cdr y;

is equivalent to the Lisp LAMBDA expression

(lambda (x y) (cons (car x) (cdr y)))

The parentheses may be omitted in specifying the variable list if desired.

LAMBDA expressions may be used in symbolic mode in place of prefix operators,
or as an argument of the reserved word FUNCTION.

In those cases where a LAMBDA expression is used to introduce local variables
to avoid recomputation, a WHERE statement can also be used. For example, the
expression

(lambda (x,y); list(car x,cdr x,car y,cdr y))
(reverse u,reverse v)

can also be written

{car x,cdr x,car y,cdr y} where x=reverse u,y=reverse v

Where possible, WHERE syntax is preferred to LAMBDA syntax, since it is more
natural.

17.5 Symbolic Assignment Statements

In symbolic mode, if the left side of an assignment statement is a variable, a SETQ
of the right-hand side to that variable occurs. If the left-hand side is an expression,
it must be of the form of an array element, otherwise an error will result. For exam-
ple, x:=y translates into (SETQ X Y) whereas a(3) := 3 will be valid if A
has been previously declared a single dimensioned array of at least four elements.
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17.6 FOR EACH Statement

The FOR EACH form of the FOR statement, designed for iteration down a list, is
more general in symbolic mode. Its syntax is:

FOR EACH ID:identifier {IN|ON} LST:list
{DO|COLLECT|JOIN|PRODUCT|SUM} EXPRN:S-expr

As in algebraic mode, if the keyword IN is used, iteration is on each element of the
list. With ON, iteration is on the whole list remaining at each point in the iteration.
As a result, we have the following equivalence between each form of FOR EACH
and the various mapping functions in Lisp:

DO COLLECT JOIN
IN MAPC MAPCAR MAPCAN
ON MAP MAPLIST MAPCON

Example: To list each element of the list (a b c):

for each x in ’(a b c) collect list x;

17.7 Symbolic Procedures

All the functions described in the Standard Lisp Report are available to users in
symbolic mode. Additional functions may also be defined as symbolic procedures.
For example, to define the Lisp function ASSOC, the following could be used:

symbolic procedure assoc(u,v);
if null v then nil
else if u = caar v then car v
else assoc(u, cdr v);

If the default mode were symbolic, then SYMBOLIC could be omitted in the above
definition. MACROs may be defined by prefixing the keyword PROCEDURE by the
word MACRO. (In fact, ordinary functions may be defined with the keyword EXPR
prefixing PROCEDURE as was used in the Standard Lisp Report.) For example,

we could define a MACRO CONSCONS by

symbolic macro procedure conscons l;
expand(cdr l,’cons);

Another form of macro, the SMACRO is also available. These are described in the



1094 CHAPTER 17. SYMBOLIC MODE

Standard Lisp Report. The Report also defines a function type FEXPR. However,
its use is discouraged since it is hard to implement efficiently, and most uses can be
replaced by macros. At the present time, there are no FEXPRs in the core REDUCE
system.

17.8 Standard Lisp Equivalent of Reduce Input

A user can obtain the Standard Lisp equivalent of his REDUCE input by turning
on the switch DEFN (for definition). The system then prints the Lisp translation
of his input but does not evaluate it. Normal operation is resumed when DEFN is
turned off.

17.9 Communicating with Algebraic Mode

One of the principal motivations for a user of the algebraic facilities of REDUCE to
learn about symbolic mode is that it gives one access to a wider range of techniques
than is possible in algebraic mode alone. For example, if a user wishes to use parts
of the system defined in the basic system source code, or refine their algebraic
code definitions to make them more efficient, then it is necessary to understand the
source language in fairly complete detail. Moreover, it is also necessary to know a
little more about the way REDUCE operates internally. Basically, REDUCE con-
siders expressions in two forms: prefix form, which follow the normal Lisp rules
of function composition, and so-called canonical form, which uses a completely
different syntax.

Once these details are understood, the most critical problem faced by a user is how
to make expressions and procedures communicate between symbolic and algebraic
mode. The purpose of this section is to teach a user the basic principles for this.

If one wants to evaluate an expression in algebraic mode, and then use that ex-
pression in symbolic mode calculations, or vice versa, the easiest way to do this
is to assign a variable to that expression whose value is easily obtainable in both
modes. To facilitate this, a declaration SHARE is available. SHARE takes a list of
identifiers as argument, and marks these variables as having recognizable values in
both modes. The declaration may be used in either mode.

E.g.,

share x,y;

says that X and Y will receive values to be used in both modes.

If a SHARE declaration is made for a variable with a previously assigned algebraic
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value, that value is also made available in symbolic mode.

17.9.1 Passing Algebraic Mode Values to Symbolic Mode

If one wishes to work with parts of an algebraic mode expression in symbolic
mode, one simply makes an assignment of a shared variable to the relevant expres-
sion in algebraic mode. For example, if one wishes to work with (a+b)^2, one
would say, in algebraic mode:

x := (a+b)^2;

assuming that Xwas declared shared as above. If we now change to symbolic mode
and say

x;

its value will be printed as a prefix form with the syntax:

(*SQ <standard quotient> T)

This particular format reflects the fact that the algebraic mode processor currently
likes to transfer prefix forms from command to command, but doesn’t like to re-
convert standard forms (which represent polynomials) and standard quotients back
to a true Lisp prefix form for the expression (which would result in excessive com-
putation). So *SQ is used to tell the algebraic processor that it is dealing with a
prefix form which is really a standard quotient and the second argument (T or NIL)
tells it whether it needs further processing (essentially, an already simplified flag).

So to get the true standard quotient form in symbolic mode, one needs CADR of the
variable. E.g.,

z := cadr x;

would store in Z the standard quotient form for (a+b)^2.

Once you have this expression, you can now manipulate it as you wish. To facilitate
this, a standard set of selectors and constructors are available for getting at parts of
the form. Those presently defined are as follows:

REDUCE Selectors
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DENR denominator of standard quotient

LC leading coefficient of polynomial

LDEG leading degree of polynomial

LPOW leading power of polynomial

LT leading term of polynomial

MVAR main variable of polynomial

NUMR numerator (of standard quotient)

PDEG degree of a power

RED reductum of polynomial

TC coefficient of a term

TDEG degree of a term

TPOW power of a term
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REDUCE Constructors
.+ add a term to a polynomial

./ divide (two polynomials to get quotient)

.* multiply power by coefficient to produce term

.^ raise a variable to a power

For example, to find the numerator of the standard quotient above, one could say:

numr z;

or to find the leading term of the numerator:

lt numr z;

Conversion between various data structures is facilitated by the use of a set of
functions defined for this purpose. Those currently implemented include:

!*A2F convert an algebraic expression to a standard form. If result is
rational, an error results;

!*A2K converts an algebraic expression to a kernel. If this is not possible,
an error results;

!*F2A converts a standard form to an algebraic expression;

!*F2Q convert a standard form to a standard quotient;

!*K2F convert a kernel to a standard form;

!*K2Q convert a kernel to a standard quotient;

!*P2F convert a standard power to a standard form;

!*P2Q convert a standard power to a standard quotient;

!*Q2F convert a standard quotient to a standard form. If the quotient de-
nominator is not 1, an error results;

!*Q2K convert a standard quotient to a kernel. If this is not possible, an
error results;

!*T2F convert a standard term to a standard form

!*T2Q convert a standard term to a standard quotient.
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17.9.2 Passing Symbolic Mode Values to Algebraic Mode

In order to pass the value of a shared variable from symbolic mode to algebraic
mode, the only thing to do is make sure that the value in symbolic mode is a
prefix expression. E.g., one uses (expt (plus a b) 2) for (a+b)^2, or
the format (*sq 〈standard quotient〉 t) as described above. However, if
you have been working with parts of a standard form they will probably not be in
this form. In that case, you can do the following:

1. If it is a standard quotient, call PREPSQ on it. This takes a standard quo-
tient as argument, and returns a prefix expression. Alternatively, you can
call MK!*SQ on it, which returns a prefix form like (*SQ 〈standard
quotient〉 T) and avoids translation of the expression into a true prefix
form.

2. If it is a standard form, call PREPF on it. This takes a standard form as
argument, and returns the equivalent prefix expression. Alternatively, you
can convert it to a standard quotient and then call MK!*SQ.

3. If it is a part of a standard form, you must usually first build up a standard
form out of it, and then go to step 2. The conversion functions described
earlier may be used for this purpose. For example,

(a) If Z is an expression which is a term, !*T2F Z is a standard form.

(b) If Z is a standard power, !*P2F Z is a standard form.

(c) If Z is a variable, you can pass it direct to algebraic mode.

For example, to pass the leading term of (a+b)^2 back to algebraic mode, one
could say:

y:= mk!*sq !*t2q lt numr z;

where Y has been declared shared as above. If you now go back to algebraic mode,
you can work with Y in the usual way.

17.9.3 Complete Example

The following is the complete code for doing the above steps. The end result will
be that the square of the leading term of (a+ b)2 is calculated.

share x,y; % declare X and Y as shared
x := (a+b)^2; % store (a+b)^2 in X
symbolic; % transfer to symbolic mode
z := cadr x; % store a true standard quotient
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% in Z
lt numr z; % print the leading term of the

% numerataor of Z
y := mk!*sq !*t2q lt numr z; % store the prefix form of this

% leading term in Y
algebraic; % return to algebraic mode
y^2; % evaluate square of the

% leading term of (a+b)^2

17.9.4 Defining Procedures for Intermode Communication

If one wishes to define a procedure in symbolic mode for use as an operator in alge-
braic mode, it is necessary to declare this fact to the system by using the declaration
OPERATOR in symbolic mode. Thus

symbolic operator leadterm;

would declare the procedure LEADTERM as an algebraic operator. This declaration
must be made in symbolic mode as the effect in algebraic mode is different. The
value of such a procedure must be a prefix form.

The algebraic processor will pass arguments to such procedures in prefix form.
Therefore if you want to work with the arguments as standard quotients you must
first convert them to that form by using the function SIMP!*. This function takes
a prefix form as argument and returns the evaluated standard quotient.

For example, if you want to define a procedure LEADTERMwhich gives the leading
term of an algebraic expression, one could do this as follows:

symbolic operator leadterm; % Declare LEADTERM as a symbolic
% mode procedure to be used in
% algebraic mode.

symbolic procedure leadterm u; % Define LEADTERM.
mk!*sq !*t2q lt numr simp!* u;

Note that this operator has a different effect than the operator LTERM . In the latter
case, the calculation is done with respect to the second argument of the operator. In
the example here, we simply extract the leading term with respect to the system’s
choice of main variable.

Finally, if you wish to use the algebraic evaluator on an argument in a symbolic
mode definition, the function REVAL can be used. The one argument of REVAL
must be the prefix form of an expression. REVAL returns the evaluated expression
as a true Lisp prefix form.
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17.10 Rlisp ’88

Rlisp ’88 is a superset of the Rlisp that has been traditionally used for the support
of REDUCE. It is fully documented in the book Marti, J.B., “RLISP ’88: An Evo-
lutionary Approach to Program Design and Reuse”, World Scientific, Singapore
(1993). Rlisp ’88 adds to the traditional Rlisp the following facilities:

1. more general versions of the looping constructs for, repeat and while;

2. support for a backquote construct;

3. support for active comments;

4. support for vectors of the form name[index];

5. support for simple structures;

6. support for records.

In addition, “-” is a letter in Rlisp ’88. In other words, A-B is an identifier, not
the difference of the identifiers A and B. If the latter construct is required, it is
necessary to put spaces around the - character. For compatibility between the two
versions of Rlisp, we recommend this convention be used in all symbolic mode
programs.

To use Rlisp ’88, type on rlisp88;. This switches to symbolic mode with the
Rlisp ’88 syntax and extensions. While in this environment, it is impossible to
switch to algebraic mode, or prefix expressions by “algebraic”. However, symb-
olic mode programs written in Rlisp ’88 may be run in algebraic mode provided the
rlisp88 package has been loaded. We also expect that many of the extensions de-
fined in Rlisp ’88 will migrate to the basic Rlisp over time. To return to traditional
Rlisp or to switch to algebraic mode, say “off rlisp88;”.

17.11 References

There are a number of useful books which can give you further information about
LISP. Here is a selection:

Allen, J.R., “The Anatomy of LISP”, McGraw Hill, New York, 1978.

McCarthy J., P.W. Abrahams, J. Edwards, T.P. Hart and M.I. Levin, “LISP 1.5
Programmer’s Manual”, M.I.T. Press, 1965.

Touretzky, D.S, “LISP: A Gentle Introduction to Symbolic Computation”, Harper
& Row, New York, 1984.

Winston, P.H. and Horn, B.K.P., “LISP”, Addison-Wesley, 1981.



Chapter 18

Calculations in High Energy
Physics

A set of REDUCE commands is provided for users interested in symbolic calcula-
tions in high energy physics. Several extensions to our basic syntax are necessary,
however, to allow for the different data structures encountered.

18.1 High Energy Physics Operators

We begin by introducing three new operators required in these calculations.

18.1.1 . (Cons) Operator

Syntax:

(EXPRN1:vector_expression)
. (EXPRN2:vector_expression):algebraic.

The binary . operator, which is normally used to denote the addition of an element
to the front of a list, can also be used in algebraic mode to denote the scalar product
of two Lorentz four-vectors. For this to happen, the second argument must be
recognizable as a vector expression at the time of evaluation. With this meaning,
this operator is often referred to as the dot operator. In the present system, the index
handling routines all assume that Lorentz four-vectors are used, but these routines
could be rewritten to handle other cases.

Components of vectors can be represented by including representations of unit vec-
tors in the system. Thus if EO represents the unit vector (1,0,0,0), (p.eo)
represents the zeroth component of the four-vector P. Our metric and notation fol-
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lows Bjorken and Drell “Relativistic Quantum Mechanics” (McGraw-Hill, New
York, 1965). Similarly, an arbitrary component P may be represented by (p.u).
If contraction over components of vectors is required, then the declaration INDEX
must be used. Thus

index u;

declares U as an index, and the simplification of

p.u * q.u

would result in

P.Q

The metric tensor gµν may be represented by (u.v). If contraction over U and V
is required, then they should be declared as indices.

Errors occur if indices are not properly matched in expressions.

If a user later wishes to remove the index property from specific vectors, he can do
it with the declaration REMIND. Thus remind v1,...,vn; removes the index
flags from the variables V1 through Vn. However, these variables remain vectors
in the system.

18.1.2 G Operator for Gamma Matrices

Syntax:

G(ID:identifier[,EXPRN:vector_expression])
:gamma_matrix_expression.

G is an n-ary operator used to denote a product of γ matrices contracted with
Lorentz four-vectors. Gamma matrices are associated with fermion lines in a Feyn-
man diagram. If more than one such line occurs, then a different set of γ matrices
(operating in independent spin spaces) is required to represent each line. To facil-
itate this, the first argument of G is a line identification identifier (not a number)
used to distinguish different lines.

Thus

g(l1,p) * g(l2,q)

denotes the product of γ.p associated with a fermion line identified as L1, and
γ.q associated with another line identified as L2 and where p and q are Lorentz
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four-vectors. A product of γ matrices associated with the same line may be written
in a contracted form.

Thus

g(l1,p1,p2,...,p3) = g(l1,p1)*g(l1,p2)*...*g(l1,p3) .

The vector A is reserved in arguments of G to denote the special γ matrix γ5. Thus

g(l,a) = γ5 associated with the line L

g(l,p,a) = γ · p× γ5 associated with the line L.

γµ (associated with the line L) may be written as g(l,u), with U flagged as an
index if contraction over U is required.

The notation of Bjorken and Drell is assumed in all operations involving γ matri-
ces.

18.1.3 EPS Operator

Syntax:

EPS(EXPRN1:vector_expression,...,EXPRN4:vector_exp)
:vector_exp.

The operator EPS has four arguments, and is used only to denote the completely
antisymmetric tensor of order 4 and its contraction with Lorentz four-vectors. Thus

εijkl =


+1 if i, j, k, l is an even permutation of 0,1,2,3
−1 if i, j, k, l is an odd permutation of 0,1,2,3
0 otherwise

A contraction of the form εijµνpµqν may be written as eps(i,j,p,q), with I
and J flagged as indices, and so on.

18.2 Vector Variables

Apart from the line identification identifier in the G operator, all other arguments
of the operators in this section are vectors. Variables used as such must be declared
so by the type declaration VECTOR, for example:

vector p1,p2;
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declares P1 and P2 to be vectors. Variables declared as indices or given a mass are
automatically declared vector by these declarations.

18.3 Additional Expression Types

Two additional expression types are necessary for high energy calculations, namely

18.3.1 Vector Expressions

These follow the normal rules of vector combination. Thus the product of a scalar
or numerical expression and a vector expression is a vector, as are the sum and
difference of vector expressions. If these rules are not followed, error messages are
printed. Furthermore, if the system finds an undeclared variable where it expects
a vector variable, it will ask the user in interactive mode whether to make that
variable a vector or not. In batch mode, the declaration will be made automatically
and the user informed of this by a message.

Examples:

Assuming P and Q have been declared vectors, the following are vector expressions

p
2*q/3
2*x*y*p - p.q*q/(3*q.q)

whereas p*q and p/q are not.

18.3.2 Dirac Expressions

These denote those expressions which involve γ matrices. A γ matrix is implicitly
a 4 × 4 matrix, and so the product, sum and difference of such expressions, or the
product of a scalar and Dirac expression is again a Dirac expression. There are
no Dirac variables in the system, so whenever a scalar variable appears in a Dirac
expression without an associated γ matrix expression, an implicit unit 4 by 4 matrix
is assumed. For example, g(l,p) + m denotes g(l,p) + m*〈unit 4 by
4 matrix〉. Multiplication of Dirac expressions, as for matrix expressions, is of
course non-commutative.
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18.4 Trace Calculations

When a Dirac expression is evaluated, the system computes one quarter of the trace
of each γ matrix product in the expansion of the expression. One quarter of each
trace is taken in order to avoid confusion between the trace of the scalar M, say,
and M representing M * 〈unit 4 by 4 matrix〉. Contraction over indices
occurring in such expressions is also performed. If an unmatched index is found in
such an expression, an error occurs.

The algorithms used for trace calculations are the best available at the time this
system was produced. For example, in addition to the algorithm developed by
Chisholm for contracting indices in products of traces, REDUCE uses the elegant
algorithm of Kahane for contracting indices in γ matrix products. These algorithms
are described in Chisholm, J. S. R., Il Nuovo Cimento X, 30, 426 (1963) and
Kahane, J., Journal Math. Phys. 9, 1732 (1968).

It is possible to prevent the trace calculation over any line identifier by the declara-
tion NOSPUR. For example,

nospur l1,l2;

will mean that no traces are taken of γ matrix terms involving the line numbers L1
and L2. However, in some calculations involving more than one line, a catastrophic
error

This NOSPUR option not implemented

can occur (for the reason stated!) If you encounter this error, please let us know!

A trace of a γ matrix expression involving a line identifier which has been declared
NOSPUR may be later taken by making the declaration SPUR.

See also the CVIT package for an alternative mechanism (chapter 16.18).

18.5 Mass Declarations

It is often necessary to put a particle “on the mass shell” in a calculation. This can,
of course, be accomplished with a LET command such as

let p.p= m^2;

but an alternative method is provided by two commands MASS and MSHELL. MASS
takes a list of equations of the form:

〈vector variable〉 = 〈scalar variable〉
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for example,

mass p1=m, q1=mu;

The only effect of this command is to associate the relevant scalar variable as a
mass with the corresponding vector. If we now say

mshell 〈vector variable〉, . . ., 〈vector variable〉〈terminator〉

and a mass has been associated with these arguments, a substitution of the form

〈vector variable〉. 〈vector variable〉 = 〈mass〉^2

is set up. An error results if the variable has no preassigned mass.

18.6 Example

We give here as an example of a simple calculation in high energy physics the
computation of the Compton scattering cross-section as given in Bjorken and Drell
Eqs. (7.72) through (7.74). We wish to compute the trace of

α2

2

(
k′

k

)2(γ · pf +m

2m

)(
γ · e′γ · eγ · ki

2k.pi
+
γ · eγ · e′γ · kf

2k′ · pi

)
(
γ · pi +m

2m

)(
γ · kiγ · eγ · e′

2k.pi
+
γ · kfγ · e′γ · e

2k′ · pi

)
where ki and kf are the four-momenta of incoming and outgoing photons (with
polarization vectors e and e′ and laboratory energies k and k′ respectively) and pi,
pf are incident and final electron four-momenta.

Omitting therefore an overall factor
α2

2m2

(
k′

k

)2

we need to find one quarter of

the trace of

(γ · pf +m)

(
γ · e′γ · eγ · ki

2k.pi
+
γ · eγ · e′γ · kf

2k′.pi

)
×

(γ · pi +m)

(
γ · kiγ · eγ · e′

2k.pi
+
γ · kfγ · e′γ · e

2k′.pi

)
A straightforward REDUCE program for this, with appropriate substitutions (using
P1 for pi, PF for pf , KI for ki and KF for kf ) is
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on div; % this gives output in same form as Bjorken and Drell.
mass ki= 0, kf= 0, p1= m, pf= m; vector e,ep;
% if e is used as a vector, it loses its scalar identity
% as the base of natural logarithms.
mshell ki,kf,p1,pf;
let p1.e= 0, p1.ep= 0, p1.pf= m^2+ki.kf, p1.ki= m*k,p1.kf=

m*kp, pf.e= -kf.e, pf.ep= ki.ep, pf.ki= m*kp, pf.kf=
m*k, ki.e= 0, ki.kf= m*(k-kp), kf.ep= 0, e.e= -1,
ep.ep=-1;

operator gp;
for all p let gp(p)= g(l,p)+m;
comment this is just to save us a lot of writing;
gp(pf)*(g(l,ep,e,ki)/(2*ki.p1) + g(l,e,ep,kf)/(2*kf.p1))

* gp(p1)*(g(l,ki,e,ep)/(2*ki.p1) + g(l,kf,ep,e)/
(2*kf.p1))$

write "The Compton cxn is ",ws;

(We use P1 instead of PI in the above to avoid confusion with the reserved variable
PI).

This program will print the following result

2 1 -1 1 -1
The Compton cxn is 2*E.EP + ---*K*KP + ---*K *KP - 1

2 2

18.7 Extensions to More Than Four Dimensions

In our discussion so far, we have assumed that we are working in the normal four
dimensions of QED calculations. However, in most cases, the programs will also
work in an arbitrary number of dimensions. The command

vecdim 〈expression〉〈terminator〉

sets the appropriate dimension. The dimension can be symbolic as well as numer-
ical. Users should note however, that the EPS operator and the γ5 symbol (A) are
not properly defined in other than four dimensions and will lead to an error if used.
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Chapter 19

REDUCE and Rlisp Utilities

REDUCE and its associated support language system Rlisp include a number of
utilities which have proved useful for program development over the years. The
following are supported in most of the implementations of REDUCE currently
available.

19.1 The Standard Lisp Compiler

Many versions of REDUCE include a Standard Lisp compiler that is automatically
loaded on demand. You should check your system specific user guide to make sure
you have such a compiler. To make the compiler active, the switch COMP should be
turned on. Any further definitions input after this will be compiled automatically. If
the compiler used is a derivative version of the original Griss-Hearn compiler, (M.
L. Griss and A. C. Hearn, “A Portable LISP Compiler", SOFTWARE — Practice
and Experience 11 (1981) 541-605), there are other switches that might also be
used in this regard. However, these additional switches are not supported in all
compilers. They are as follows:

PLAP If ON, causes the printing of the portable macros produced by the compiler;

PGWD If ON, causes the printing of the actual assembly language instructions gen-
erated from the macros;

PWRDS If ON, causes a statistic message of the form
〈function〉 COMPILED, 〈words〉 WORDS, 〈words〉 LEFT
to be printed. The first number is the number of words of binary program
space the compiled function took, and the second number the number of
words left unused in binary program space.
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19.2 Fast Loading Code Generation Program

In most versions of REDUCE, it is possible to take any set of Lisp, Rlisp or RE-
DUCE commands and build a fast loading version of them. In Rlisp or REDUCE,
one does the following:

faslout <filename>;
<commands or IN statements>
faslend;

To load such a file, one uses the command LOAD, e.g. load foo; or load
foo,bah;

This process produces a fast-loading version of the original file. In some imple-
mentations, this means another file is created with the same name but a different
extension. For example, in PSL-based systems, the extension is b (for binary). In
CSL-based systems, however, this process adds the fast-loading code to a single
file in which all such code is stored. Particular functions are provided by CSL for
managing this file, and described in the CSL user documentation.

In doing this build, as with the production of a Standard Lisp form of such state-
ments, it is important to remember that some of the commands must be instantiated
during the building process. For example, macros must be expanded, and some
property list operations must happen. The REDUCE sources should be consulted
for further details on this.

To avoid excessive printout, input statements should be followed by a $ instead of
the semicolon. With LOAD however, the input doesn’t print out regardless of which
terminator is used with the command.

If you subsequently change the source files used in producing a fast loading file,
don’t forget to repeat the above process in order to update the fast loading file
correspondingly. Remember also that the text which is read in during the creation
of the fast load file, in the compiling process described above, is not stored in your
REDUCE environment, but only translated and output. If you want to use the file
just created, you must then use LOAD to load the output of the fast-loading file
generation program.

When the file to be loaded contains a complete package for a given application,
LOAD_PACKAGE rather than LOAD should be used. The syntax is the same. How-
ever, LOAD_PACKAGE does some additional bookkeeping such as recording that
this package has now been loaded, that is required for the correct operation of the
system.
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19.3 The Standard Lisp Cross Reference Program

CREF is a Standard Lisp program for processing a set of Standard LISP function
definitions to produce:

1. A “summary” showing:

(a) A list of files processed;

(b) A list of “entry points” (functions which are not called or are only
called by themselves);

(c) A list of undefined functions (functions called but not defined in this
set of functions);

(d) A list of variables that were used non-locally but not declared GLOBAL
or FLUID before their use;

(e) A list of variables that were declared GLOBAL but not used as FLUIDs,
i.e., bound in a function;

(f) A list of FLUID variables that were not bound in a function so that one
might consider declaring them GLOBALs;

(g) A list of all GLOBAL variables present;

(h) A list of all FLUID variables present;

(i) A list of all functions present.

2. A “global variable usage” table, showing for each non-local variable:

(a) Functions in which it is used as a declared FLUID or GLOBAL;

(b) Functions in which it is used but not declared;

(c) Functions in which it is bound;

(d) Functions in which it is changed by SETQ.

3. A “function usage” table showing for each function:

(a) Where it is defined;

(b) Functions which call this function;

(c) Functions called by it;

(d) Non-local variables used.

The program will also check that functions are called with the correct number of
arguments, and print a diagnostic message otherwise.

The output is alphabetized on the first seven characters of each function name.
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19.3.1 Restrictions

Algebraic procedures in REDUCE are treated as if they were symbolic, so that
algebraic constructs will actually appear as calls to symbolic functions, such as
AEVAL.

19.3.2 Usage

To invoke the cross reference program, the switch CREF is used. on cref causes
the cref program to load and the cross-referencing process to begin. After all the
required definitions are loaded, off cref will cause the cross-reference listing
to be produced. For example, if you wish to cross-reference all functions in the
file tst.red, and produce the cross-reference listing in the file tst.crf, the
following sequence can be used:

out "tst.crf";
on cref;
in "tst.red"$
off cref;
shut "tst.crf";

To process more than one file, more IN statements may be added before the call of
off cref, or the IN statement changed to include a list of files.

19.3.3 Options

Functions with the flag NOLIST will not be examined or output. Initially, all
Standard Lisp functions are so flagged. (In fact, they are kept on a list NOLIST!*,
so if you wish to see references to all functions, then CREF should be first loaded
with the command load cref, and this variable then set to NIL).

It should also be remembered that any macros with the property list flag EXPAND,
or, if the switch FORCE is on, without the property list flag NOEXPAND, will be
expanded before the definition is seen by the cross-reference program, so this flag
can also be used to select those macros you require expanded and those you do not.

19.4 Prettyprinting REDUCE Expressions

REDUCE includes a module for printing REDUCE syntax in a standard format.
This module is activated by the switch PRET, which is normally off.

Since the system converts algebraic input into an equivalent symbolic form, the
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printing program tries to interpret this as an algebraic expression before printing
it. In most cases, this can be done successfully. However, there will be occasional
instances where results are printed in symbolic mode form that bears little resem-
blance to the original input, even though it is formally equivalent.

If you want to prettyprint a whole file, say off output,msg; and (hopefully)
only clean output will result. Unlike DEFN, input is also evaluated with PRET on.

19.5 Prettyprinting Standard Lisp S-Expressions

REDUCE includes a module for printing S-expressions in a standard format. The
Standard Lisp function for this purpose is PRETTYPRINT which takes a Lisp ex-
pression and prints the formatted equivalent.

Users can also have their REDUCE input printed in this form by use of the switch
DEFN. This is in fact a convenient way to convert REDUCE (or Rlisp) syntax into
Lisp. off msg; will prevent warning messages from being printed.

NOTE: When DEFN is on, input is not evaluated.
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Chapter 20

Maintaining REDUCE

Since January 1, 2009 REDUCE is Open Source Software. It is hosted at

https://sourceforge.net/projects/reduce-algebra/

We mention here three ways in which REDUCE is maintained. The first is the
collection of queries, observations and bug-reports. All users are encouraged to
subscribe to the mailing list that SourceForge provides so that they will receive in-
formation about updates and concerns. Also on SourceForge there is a bug tracker
and a discussion forum. The expectation is that the maintainers and keen users
of REDUCE will monitor those and try to respond to issues. However these re-
sources are not there to seek answers to Maths homework problems – they are
intended specifically for issues to do with the use and support of REDUCE.

The second level of support is provided by the fact that all the sources of REDUCE
are available, so any user who is having difficulty either with a bug or understand-
ing system behaviour can consult the code to see if (for instance) comments in it
clarify something that was unclear from the regular documentation.

The source files for REDUCE are available on SourceForge in the Subversion
repository, which provides the command for using a Subversion client to fetch
the most up to date copy of everything. From time to time there may be one-file
archives of a snapshot of the sources placed in the download area (Files tab) on
SourceForge, and eventually some of these may be marked as “stable” releases,
but at present it is recommended that developers use a copy from the Subversion
repository.

The files fetched there come with a directory called “trunk” that holds the main
current REDUCE, and one called “branches” that is reserved for future experimen-
tal versions. All the files that we have for creating help files and manuals should
also be present in the files you fetch.
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The packages that make up the source for the algebraic capabilities of REDUCE
are in the “packages” sub-directory, and often there are test files for a package
present there and especially for contributed packages there will be documentation
in the form of a LATEX file. Although REDUCE is coded in its own language many
people in the past have found that it does not take too long to start to get used to it.

In various cases even fairly “ordinary end users” may wish to fetch the source ver-
sion of REDUCE and compile it all for themselves. This may either be because
they need the benefit of a bug-fix only recently checked into the Subversion repos-
itory or because no pre-compiled binary is available for the particular computer
and operating system they use. This latter is to some extent unavoidable since RE-
DUCE can run on both 32 and 64-bit Windows, the various MacOSX options (e.g.
Intel and Powerpc), many different distributions of Linux, some BSD variants and
Solaris (at least). It is not practically feasible for us to provide a constant stream of
up to date ready-built binaries for all these.

There are instructions for compiling REDUCE present at the top of the trunk source
tree. Usually the hardest issue seems to be ensuring that your computer has an
adequate set of development tools and libraries installled before you start, but once
that is sorted out the hope is that the compilation of REDUCE should proceed
uneventfully if sometimes tediously.

In a typical Open Source way the hope is that some of those who build REDUCE
from source or explore the source (out of general interest or to pursue an under-
standing of some bug or detail) will transform themselves into contributors or de-
velopers, which moves on to the third level of support.

At this third level any user can contribute proposals for bug fixes or extensions to
REDUCE or its documentation. It might be valuable to collect a library of addi-
tional user-contributed examples illustrating the use of the system too. To do this
first ensure that you have a fully up to date copy of the sources from Subversion,
and then depending on just what sort of change is being proposed provide the up-
dates to the developers via the SourceForge bug tracker or other route. In time we
may give more concrete guidance about the format of changes that will be easiest to
handle. It is obviously important that proposed changes have been properly tested
and that they are accompanied with a clear explanation of why they are of benefit.
A specific concern here is that in the past fixes to a bug in one part of REDUCE
have had bad effects on some other applications and packages, so some degree of
caution is called for. Anybody who develops a significant whole new package for
REDUCE is encouraged to make the developers aware so that it can be considered
for inclusion.

So the short form explanation about Support and Maintenance is that it is mainly
focussed around the SourceForge system. If discussions about bugs, requirements
or issues are conducted there then all users and potential users of REDUCE will
be able to benefit from reviewing them, and the Sourceforge mailing lists, tracker,
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forums and wiki will grow to be both a static repository of answers to common
questions, an active set of locations to get new issues looked at and a focus for
guiding future development.
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Appendix A

Reserved Identifiers

We list here all identifiers that are normally reserved in REDUCE including names
of commands, operators and switches initially in the system. Excluded are words
that are reserved in specific implementations of the system.

Commands ALGEBRAIC ANTISYMMETRIC ARRAY BYE CLEAR
CLEARRULES COMMENT COMPLEX_CONJUGATES
CONT DECOMPOSE DEFINE DEPEND DISPLAY ED
EDITDEF END EVEN FACTOR FOR FORALL
FOREACH GO GOTO IF IN INDEX INFIX INPUT
INTEGER KORDER LET LINEAR LISP LISTARGP
LOAD LOAD_PACKAGE MASS MATCH MATRIX
MATRIXPROC MSHELL NODEPEND NONCOM
NONZERO NOSPUR NOTREALVALUED ODD OFF ON
OPERATOR ORDER OUT PAUSE PRECEDENCE
PRINT_INDEXED PRINT_NOINDEXED
PRINT_PRECISION PROCEDURE QUIT REAL
REALVALUED REMEMBER REMFAC REMIND RETRY
RETURN SAVEAS SCALAR SELFCONJUGATE
SETMOD SHARE SHOWTIME SHUT SPUR SYMBOLIC
SYMMETRIC UNSET VECDIM VECTOR WEIGHT
WRITE WTLEVEL

Boolean Operators EVENP FIXP FREEOF NUMBERP ORDP PRIMEP
REALVALUEDP

Infix Operators := = >= > <= < => + - * / // ^ ** . ..
WHERE SETQ OR AND CONS DIFFERENCE DIVIDE
EQ EQUAL EXPT GEQ GREATERP LEQ LESSP
MEMBER MEMQ MINUS MOD NEQ PLUS
POLY_QUOTIENT QUOTIENT RECIP TIMES
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Numerical Operators ABS ACOS ACOSH ACOT ACOTH ACSC ACSCH
AIRY_AI AIRY_AIPRIME AIRY_BI
AIRY_BIPRIME ASEC ASECH ASIN ASINH ATAN
ATANH ATAN2 BERNOULLI BESSELI BESSELJ
BESSELK BESSELY BETA COS COSH COT COTH
CSC CSCH ELLIPTICE ELLIPTICF ELLIPTICK
ELLIPTICTHETA1 ELLIPTICTHETA2
ELLIPTICTHETA3 ELLIPTICTHETA4 CSCH EXP
FACTORIAL FIX FLOOR GAMMA HANKEL1
HANKEL2 HYPOT IBETA IGAMMA KUMMERM
KUMMERU JACOBIAM JACOBIE JACOBICN
JACOBIDN JACOBISN JACOBIZETA LERCH_PHI
LOG LOGB LOG10 LOMMEL1 LOMMEL2 NEXTPRIME
POCHHAMMER POLYGAMMA PSI ROUND SEC SECH
SIGMA SIGMA1 SIGMA2 SIGMA3 SIN SINH SQRT
STRUVEH STRUVEL TAN TANH TANH
WEIERSTRASS WEIERSTRASS1
WEIERSTRASSZETA WEIERSTRASSZETA1
WHITTAKERU ZETA

Prefix Operators APPEND ARBCOMPLEX ARBINT ARGLENGTH
CEILING CI COEFF COEFFN COFACTOR CONJ
CONTINUED_FRACTION DEG DEN DET DF DILOG
EI EPS ERF EXPAND_CASES FACTORIZE
FIBONACCI FIBONACCIP FIRST GCD G
HYPERGEOMETRIC IMPART INT INTERPOL LCM
LCOF LENGTH LHS LINELENGTH LIST LPOWER
LTERM MAINVAR MAP MAT MATEIGEN MAX
MEIJERG MIN MKID MOTZKIN NULLSPACE NUM
ONE_OF PART PF PRECISION PROD
PSEUDO_DIVIDE PSEUDO_QUOTIENT
PSEUDO_REMAINDER RANDOM RANDOM_NEW_SEED
RANK REDERR REDUCT REMAINDER REIMPART
REPART REST RESULTANT REVERSE RHS
ROOT_OF ROOT_VAL SECOND SELECT SET
SHOWRULES SI SIGN SOLVE SOLIDHARMONICY
SPHERICALHARMONICY STRUCTR SUB SUM
THIRD TOTALDEG TP TRACE VARNAME

Reserved Variables !__FILE__ !__LINE__ ASSUMPTIONS CARD_NO
CATALAN E EULER_GAMMA EVAL_MODE
FORT_WIDTH GOLDEN_RATIO HIGH_POW I
INFINITY K!* KHINCHIN LOW_POW NEGATIVE
NIL PI POSITIVE REQUIREMENTS
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ROOT_MULTIPLICITIES T

Switches ADJPREC ALGINT ALLBRANCH ALLFAC
ALLOWDFINT ANTICOM ARBVARS ASSERT
ASSERTBREAK ASSERTSTATISTICS
BALANCE_MOD BEZOUT BFSPACE CF_TAYLOR
CHECKORD COMBINEEXPT COMBINELOGS
COMMUTEDF COMP COMPLEX CONTRACT CRAMER
CREF DEFN DEMO DFINT DFPRINT
DISPJACOBIAN DISTRIBUTE DIV ECHO
ERRCONT EVALLHSEQP EXP EXPANDDF
EXPANDLOGS EZGCD FACTOR FAILHARD FORT
FORTUPPER FULLROOTS GCD HORNER IFACTOR
IMAGINARY INT INTSTR LCM LIST LISTARGS
LHYP LMON LOOKING_GOOD LOWER_MATRIX
LTRIG MCD MODULAR MSG MULTIPLICITIES NAT
NERO NOCOMMUTEDF NOCONVERT NOLNR
NOSPLIT NOT_NEGATIVE ONLY_INTEGER
OUTPUT PERIOD PLOTKEEP PRECISE
PRECISE_COMPLEX PRET PRI RAT RATARG
RATIONAL RATIONALIZE RATPRI REVPRI
RLISP88 ROUNDALL ROUNDBF ROUNDED
SAVESTRUCTR SIMPNONCOMDF SOLVESINGULAR
SYMMETRIC TIME TRA TRDEFINT TRFAC
TRIGFORM TRINT TRPLOT UPPER_MATRIX
VAROPT

Other Reserved Ids BEGIN DO THEN EXPR FEXPR INPUT LAMBDA
LISP MACRO PRODUCT REPEAT SMACRO SUM
THEN UNTIL WHEN WHILE WS
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Appendix C

Changes since Version 3.8

New packages assert bibasis breduce cde cdiff clprl gcref guardian lalr lessons
libreduce listvecops lpdo redfront reduce4 sstools utf8

Core package rlisp Support for namespaces (::)

Default value in switch statement

Support for utf8 characters

Core package poly Improvements for differentiation: new switches expanddf,
allowdfint etc (from odesolve)

New operator reimpart

Core package alg New switch precise_complex

Improvements for switch combineexpt (exptchk.red)

New command unset

New operators continued_fraction, totaldeg

Operators now defined in the REDUCE core:
changevar, divide, pseudo_divide, pseudo_div, pseudo_quotient,
pseudo_remainder, Li, Si, Ci, Shi, Chi, Fresnel_S, Fresnel_C,
gamma, igamma, psi, polygamma, beta, ibeta, euler, bernoulli,
pochhammer, lerch_phi, polylog, zeta, besselj, bessely, besseli,
besselk, hankel1, hankel2, kummerM, kummerU, struveh, struvel,
lommel1, lommel2, whittakerm, whittakerw, Airy_Ai, Airy_Bi,
Airy_AiPrime, Airy_biprime, binomial, solidharmonic, sphericalharmonic,
fibonacci,fibonaccip, motzkin, hypergeometric, MeijerG.
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1144 APPENDIX C. CHANGES SINCE VERSION 3.8

Constants now part of the core:
now known as part of the core, as well as constants catalan, euler_gamma,
golden_ratio, khinchin.

Consistent branch cuts for complex numerical functions.

Improvements to the conj operator, added selfconjugate declaration.

Added complex_conjugates declaration to associate pairs of identifiers as
mutual complex-conjugates.

Core Package mathpr New switch unicode_in_off_nat to have unicode
characters displayed as such when nat is off.

Core Package solve New boolean operator polyp(p,var), to determine whether
p is a pure polynomial in var, ie. the coefficients of p do not contain var.

Core Package matrix New keyword matrixproc for declaration of matrix-
valued procedures.

Package specfn psi (digamma) function can now be calculated numerically for
complex arguments.

Package specfn New functions: theta1d, theta2d, theta3d and theta4d
— numerical evaluation derivatives of theta functions.

Package specfn Weierstrass, WeierstrassZeta, sigma, sigma1,
sigma2, sigma3 and sigma4 — rules and numerical code added.

Package defint Added tracing output printing of which is controlled by the
switch trdefint.

TeXmacs interface Print prompt numbers by setting the switch promptnumbers
to on by default.

Package excalc New command killing_vector.
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!!FLIM global variable, 890
!!NFPD global variable, 890
!*CSYSTEMS global (AVECTOR), 265
!__FILE__ (special identifier), 176
!__LINE__ (special identifier), 176
Γ function, 951
ψ function, 952
ψ(n) functions, 952
ζ function, 956
* operator, 45

3-D vectors, 794
algebraic numbers, 224
lists, 726
power series, 1010
vectors, 263

** operator, 45
lists, 726
power series, 1010

*. (ldot) operator, 726
+ operator, 45

3-D vectors, 794
algebraic numbers, 224
lists, 726
power series, 1010
vectors, 263

- operator, 45
3-D vectors, 794
lists, 726
power series, 1010
vectors, 263

. (CONS) operator, 52

.. operator, 763
/ operator, 45
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3-D vectors, 794
algebraic numbers, 224
lists, 726
power series, 1010
vectors, 263

// operator, 170
:= (assignment) operator, 123, 351
; (statement terminator), 55
< operator, 43
<< (begin group), 57
<= operator, 43
== operator (CANTENS) PACKAGE), 351
> operator, 43
>< (cross product) operator

3-D vectors, 794
>= operator, 43
>> (end group), 57
@ operator, 561

partial differentiation, 578
tangent vector, 578

# (Hodge-*) operator, 565, 578
$ (statement terminator), 55
% (Percent sign), 40
\ operator (SETDIFF), 905
ˆ operator, 45

3-D vectors, 794
exterior multiplication, 560, 578
lists, 726

_ (lnth) operator for lists, 727
_| (inner product) operator, 564, 578
|_ (Lie derivative) operator, 565, 578
3j and 6j symbols, 946

ABS, 71, 157
ACOS, 77
ACOSH, 77
ACOT, 77
ACOTH, 77
ACSC, 77
ACSCH, 77
ADD_TO_COLUMNS operator, 702
ADD_TO_ROWS operator, 702
ADD_COLUMNS operator, 701
ADD_ROWS operator, 702
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ADJ, 810
ADJOINT_CDIFFOP operator (CDE), 409
ADJPREC switch, 152
affine, 344
Affine space

CANTENS package, 382
affine_points (CALI), 285
affine_points1

* (CALI), 317
affine_monomial_curve, 318
affine_monomial_curve!*, 314
affine_points, 318
affine_points!*, 317
Airy functions, 82, 946, 954
Airy_Ai, 82, 954
Airy_Aiprime, 82, 954
Airy_Bi, 82, 954
Airy_Biprime, 82, 954
ALGEBRAIC, 1089
Algebraic mode, 1089, 1094, 1095
Algebraic number fields, 224
Algebraic numbers, 224
algebraic numbers (CALI), 292
ALGINT package, 96, 202
ALGINT switch, 202
ALL_PARAMETRIC_DER shared global variable (CDE), 401
ALL_PARAMETRIC_ODD shared global variable (CDE), 401
ALL_PARAMTERIC_DER shared global variable (CDE), 415
ALL_PRINCIPAL_DER shared global variable (CDE), 401
ALL_PRINCIPAL_ODD shared global variable (CDE), 401
ALLBRANCH switch, 106
ALLFAC switch, 120, 121
ALLOWDFINT switch, 93
ALLSYMMETRYBASES, 988
analytic_spread, 318
analytic_spread!*, 314
AND logical operator, 48
annihilator, 318
annihilator!*, 309
ansatz of symmetry generator, 941
ANTICOM switch, 809
ANTICOMM operator, 808
Anticommutative

CANTENS package, 378
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ANTICOMMUTE, 810
Antisymmetric

CANTENS package, 367
ANTISYMMETRIC declaration, 112, 389
Antisymmetric operator, 111
APPEND operator, 52
APPLYSYM, 212
APPLYSYM package

example, 213
APPLYSYM package, 203
approximation, 90
ARBCOMPLEX, 106
ARBINT, 106
ARBVARS switch, 106
ARGLENGTH operator, 132
ARNUM package, 224
ARNUM package

example, 225–227
ARRAY, 67
Array declaration, 67
ASEC, 77
ASECH, 77
ASIN, 77
ASINH, 77
ASSERT package, 229
assgrad, 318
assgrad!*, 315
Assignment, 56, 59, 63, 1092, 1095
Assignment statement, 56

multiple, 56
ASSIST, 342, 392
ASSIST package, 235
ASSUMPTIONS variable, 108
Asymptotic command, 161, 173
ATAN, 77, 96
ATAN2, 77
ATANH, 77
AUGMENT_COLUMNS operator, 702
AVAILABLEGROUPS, 990
AVEC function, 262
AVECTOR package, 262

example, 266–268
AVECTOR package, 262



INDEX 1149

BALANCED_MOD switch, 153, 761
BAND_MATRIX operator, 703
Barnes, Alan, 1001, 1013
bas_detectunits (CALI), 303
bas_factorunits (CALI), 303
bas_getrelations, 299
bas_removerelations, 299
bas_setrelations, 299
base coefficients (CALI), 291
base elements (CALI), 299
base ring (CALI), 287, 296
basis (CALI), 291
bcsimp (CALI), 293
BEGIN ... END, 62–65
Bernoulli, 86, 976
Bernoulli numbers, 86, 976
Bernoulli polynomials, 85, 948, 976
BernoulliP, 85, 976
BERNSTEIN_BASE, 772
Bessel functions, 82, 946, 952
BesselI, 82, 952
BesselJ, 82, 952
BesselK, 82, 952
BesselY, 82, 952
Beta, 82, 951
Beta function, 82, 946, 951
bettiNumbers, 318
BettiNumbers!*, 311
BEZOUT switch, 145
BFSPACE switch, 152
BIBASIS, 271
BIBASIS package, 269
bibasis_print_statistics, 271
Binomial, 85
Binomial coefficients, 85
binomial switch, 284
bloc-diagonal, 360, 361, 363
Block, 62, 65
BLOCK_MATRIX operator, 704
blockorder procedure (CALI), 288
blockorder!*, 297
blowup, 318
blowup (CALI), 284
blowup!*, 315
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BNDEQ!* shared variable, 566
Boolean expression, 47
BOOLEAN operator, 275
BOOLEAN package, 275
border basis (CALI), 285
bounded identifier, 291
bounded identifier (CALI), 318
BOUNDS, 763, 769
Branch Cuts, 81
Buchberger’s Algorithm, 634, 637
BYE command, 69

C(I), 935
CALI package, 279
cali!=basering global variable (CALI), 287, 295, 298
cali!=degrees global variable (CALI), 290, 295, 298
cali!=monset global variable (CALI), 295, 305
Call by value, 194, 197
CAMAL package, 328
CANONICAL, 504
Canonical form, 115
CANONICAL operator, 342, 360, 369, 374, 376, 377, 379, 387
CANONICALDECOMPOSITION, 988
CANTENS package, 341
CANTENS package

== operator, 351
affine space, 382
anticommutative indexed objects, 378
antisymmetric tensor, 367
DEPEND, 347
dummy indices, 380
epsilon tensor, 367
FOR ALL, 353
indices, 378, 389
indices, dummy, 380
indices, numeric, 373
indices, symbolic, 371
LET, 350
loading, 342
metric tensor, 385
mixed symmetry, 389
numeric indices, 373
partial symmetry, 389
rewriting rules, 350
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Riemann tensor, 389
signature, 366–368, 385
spaces, 371, 377, 385
spinor, 378
SUB, 350, 377
subspaces, 366
symbolic indices, 359, 371
symmetries, 389
tensor contractions, 382
tensor derivatives, 393
tensor polynomial, 376
trace, 376
variables, 346, 348, 355

CARD_NO shared global variable, 125
Cartesian coordinates, 793
Catalan, 971
CATALAN reserved variable, 38
Caveats

TAYLOR package, 997
CDE operator, 398
CDE package, 395
CDE_GRADING operator (CDE), 411
CDIFF package, 437
CEILING, 72
CF operator, 90, 850
CF_EVEN_ODD operator, 853
CF_REMOVE_CONSTANT operator, 852
CF_REMOVE_FRACTIONS operator, 852
CF_UNIT_DENOMINATORS operator, 852
CF_UNIT_NUMERATORS operator, 852
CF_CONTINUENTS operator, 850
CF_CONVERGENT operator, 850
CF_CONVERGENTS operator, 850
CF_EULER operator, 850, 852
cf_euler operator, 90
CF_EXPRESSION operator, 850
CF_TAYLOR switch, 848
CF_TRANSFORM operator, 852
CFRAC operator, 848
cfrac operator, 90
CGB operator, 462
CGB package, 461
CGBFULLRED switch, 465
CGBGEN switch, 463
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CGBGS switch, 465
CGBREAL switch, 464
CGBSTAT switch, 465
Chain rule, 563
change of term orders (CALI), 285
change_termorder, 319
change_termorder!*, 317
change_termorder1, 319
change_termorder1!*, 317
CHANGEVAR operator, 87
CHAR_MATRIX operator, 704
CHAR_POLY operator, 704
CHARACTER, 988
Character set, 35
CHARACTERN, 990
Chebysev polynomials, 973
Chebyshev fit, 763
Chebyshev polynomials, 84, 947
CHEBYSHEV_BASE_T, 772
CHEBYSHEV_BASE_U, 772
CHEBYSHEV_DF, 770
CHEBYSHEV_EVAL, 770
CHEBYSHEV_FIT, 770
CHEBYSHEV_INT, 770
ChebyshevT, 84, 973
ChebyshevU, 84, 973
CHECKORD switch, 399
Chi, 81, 949
CHOLESKY operator, 705
Ci, 81, 949
CLEAR, 163, 167
CLEAR_DUMMY_BASE, 502
clearcaliprintterms, 295
CLEARPHYSOP, 806
CLEARRULES, 168
Clebsch Gordan coefficients, 946
Clebsch_Gordan, 959
codim, 319
codim!*, 310
COEFF operator, 130
COEFF2 operator, 466
COEFF2 package, 466
COEFF_MATRIX operator, 705
Coefficient, 151–153
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COEFFN operator, 131
COFACTOR, 189
COFRAME

WITH METRIC, 571
WITH SIGNATURE, 571

Coframe, 566, 570
COFRAME command, 578
COLLECT keyword, 59
column degree (CALI), 290
COLUMN_DIM operator, 706
Combinatorial numbers, 85
COMBINEEXPT switch, 79
COMBINELOGS switch, 79
COMM, 935
COMM operator, 808
Command, 67

BYE, 69
CONT, 183
DEFINE, 69
PAUSE, 183
SHOWTIME, 69

Command terminator
IN command, 175

COMMENT keyword, 40
COMMUTE, 810
COMMUTEDF switch, 93
COMP switch, 1109
COMPACT operator, 468
COMPACT package, 468
COMPANION operator, 706
Compiler, 1109
COMPLEX, 888
Complex coefficient, 153
COMPLEX switch, 80, 154
COMPLEX_CONJUGATES declaration, 157
Compound statement, 62, 63
Computations with supersymmetric algebraic and differential expressions, 985
Conditional statement, 57, 58
CONJ, 72
Constructor, 1095
CONT COMMAND, 183
CONTFRAC operator, 847
contfrac operator, 90
Continued fractions, 847
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CONTINUED_FRACTION operator, 90
CONTRACT, 808
CONV_CDIFF2SUPERFUN operator (CDE), 406
CONV_SUPERFUN2CDIFF operator (CDE), 406
Coordinates

cartesian, 793
cylindrical, 793

coordinates
spherical, 793

COORDINATES operator, 264
COORDS vector, 264
COPY_INTO operator, 707
COS, 77
COSH, 77
COT, 77
COTH, 77
CRACK package, 468
crack, running in CDE package, 416
CRAMER switch, 102, 187
CREF, 1111
CREF switch, 1112
CRESYS, 934, 936
CROSS

vector, 263
Cross product, 263, 795
Cross reference, 1111
CSC, 77
CSCH, 77
CSETREPRESENTATION, 990
Curl

vector field, 264
CURL

operator, 264
CURL operator, 796
CVIT package, 469
Cylindrical coordinates, 793

d
exterior differentiation, 578

dd_groebner, 656
Declaration, 67

array, 67
KORDER, 130
mode handling, 68
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DECOMPOSE, 146
decomposition

partial fraction, 99
Default

term order, 637
Defaults

TAYLOR package, 997
DEFINE command, 69
DEFINE_SPACES, 343, 357
Definite integration (simple), 266
DEFINT function, 266
DEFINT package, 96, 478
DEFINT package, 96
DEFLINEINT function, 267
DEFN switch, 1094, 1113
DEFPOLY statement, 225
DEG, 147
Degree, 147
degree, 319
degree arguments, 1013
degree vectors (CALI), 287
degree!*, 311
degreeorder procedure (CALI), 288
degreeorder!*, 297
degsfromresolution, 319
del, 360, 373, 385
deleteunits

* (CALI), 303
deleteunits, 319
DELSQ

operator, 264
DELSQ operator, 796
delta, 360, 361, 363, 375, 377, 382
delta function, 362, 377
DEMO, 68
DEN, 135, 148
DEP_VAR global variable (CDE), 397
DEPEND, 109
DEPEND

CANTENS package, 347
DEPEND command, 114
DEPEND declaration, 393
DEPEND statement, 797
DEQ(I), 935
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DER_DEG_ORDERING operator (CDE), 412
Derivative

variational, 566
derivatives, 495
DESIR package, 488
DET, 187
DET operator, 115
detectunits (CALI), 293, 303
Determinant

in DETM!*, 571
DETM!* variable, 571
DETRAFO, 222
DF, 348
DF operator, 92, 94
DF_ODD operator (CDE), 400
DFINT switch, 93
DFP, 496
DFPART package, 495
DFPRINT switch, 94
DIAGONAL operator, 707
DIAGONALIZE, 988
Differential geometry, 558
Differentiation, 92, 94, 113

partial, 561
vector, 264

Digamma function, 946, 952
dilog, 82, 96, 956
Dilog function, 82, 946, 956
dim, 319
dim (CALI), 285
dim!*, 310
Dimension, 561
dimzerop, 319
dimzerop!*, 312
Dirac γ matrix, 1102
directsum, 319
DISPJACOBIAN switch, 87
DISPLAY, 181
Display, 115
DISPLAYFRAME command, 574, 578
Displaying structure, 128
DIV

operator, 264
DIV operator, 796
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DIV switch, 120, 151
Divergence

vector field, 264
DIVIDE operator, 141
DLINEINT, 798
dmode (CALI), 291
DO, 59, 60
DO keyword, 59
Dollar sign, 55
DOT, 807
DOT

vector, 263
Dot product, 263, 795, 1101
DOTGRAD operator, 796
Double slash operator

in rules, 170
Double tilde variables

in rules, 171
DOWN_QRATIO operator, 832
DOWNWARD_ANTIDIFFERENCE, 832
dp_pseudodivmod (CALI), 292
dp_pseudodivmod, 299, 308
dpgcd, 299, 319
dpmat (CALI), 285, 290, 291, 300
dpmat_coldegs (CALI), 300
dpmat_cols (CALI), 300
dpmat_gbtag (CALI), 300
dpmat_list (CALI), 300
dpmat_rows (CALI), 300
dual bases (CALI), 285
dualbases (CALI), 283, 316
dualhbases (CALI), 316, 317
DUMMY, 342, 377, 380, 389
dummy, 346, 349
Dummy indices

CANTENS package, 380
dummy indices, 377
DUMMY package, 500
DUMMY_BASE, 501
DUMMY_INDICES, 349
DUMMY_NAME, 501
DVINT, 798
DVOLINT, 798
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E reserved variable, 38
easydim, 319
easydim (CALI), 306
easydim!*, 310
easyindepset, 319
easyindepset!*, 310
easyprimarydecomposition, 320
easyprimarydecomposition!*, 313
ecart (CALI), 279, 298
ecart vector (CALI), 285, 289, 322
ECHO switch, 175
ED, 179, 182
EDITDEF, 182
EDS package, 507
efgb (CALI), 295
Ei, 81, 949
Elementary functions, 77
eliminate, 320
eliminate (CALI), 284
eliminate!*, 308
eliminationorder procedure (CALI), 288
eliminationorder!*, 297
ELL_FUNCTION operator (CDE), 408
Elliptic functions, 83, 960
Elliptic Integrals, 83, 946, 962
EllipticE, 83, 963
EllipticF, 83, 962
EllipticK, 83, 963
EllipticTheta1, 83, 964
EllipticTheta2, 83, 964
EllipticTheta3, 83, 964
EllipticTheta4, 83, 964
END, 69
EPS, 574, 1103
EPS

Levi-Civita tensor, 578
epsilon, 360, 377, 385
Epsilon tensor

CANTENS package, 367
eqhull, 320
eqhull!*, 313
Equation, 48, 49
Erf, 81, 96, 949
ERRCONT switch, 179
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Error functions, 949
Errors

TAYLOR package, 998
eta, 360, 365, 383
ETA(ALFA), 935
eta_1, 970
eta_2, 970
eta_3, 970
Euclidean metric, 571
euclidian, 344
Euler, 86, 975
Euler numbers, 86, 975
Euler polynomials, 85, 948, 975
EULER_DF operator (CDE), 402
Euler_Gamma, 971
EULER_GAMMA reserved variable, 38
EulerP, 85, 975
EVAL2 operator, 466
EVAL_MODE shared global variable, 1089
EVALB, 906
EVALLHSEQP switch, 49
EVEN declaration, 109
Even operator, 109
EVENP boolean operator, 47
evlf (CALI), 296
EXCALC, 347
EXCALC package

example, 560–562, 564–568, 571–574, 576, 579
tracing, 574

EXCALC package, 558
EXCALC package

example, 575
Exclamation mark, 35
EXCLUDE, 885
EXCOEFFS, 1056
EXDEGREE, 578
EXDEGREE command, 560
EXDELT, 374, 388
EXP, 77, 96, 139
EXP switch, 136
EXPAND_CASES operator, 103
EXPAND_TD command, 399
EXPANDDF switch, 93
EXPANDLOGS switch, 79
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EXPR, 1093
Expression, 45

boolean, 47
EXT operator (CDE), 400
EXTEND operator, 708
extended Gröbner factorizer (CALI), 284, 294, 307
EXTENDED_GOSPER, 1065
EXTENDED_SUMRECURSION, 1068
extendedgroebfactor, 320
extendedgroebfactor!*, 307
extendedgroebfactor1, 320
extendedgroebfactor1!*, 307
extendible power series, 1001
Exterior calculus, 558
Exterior differentiation, 562
Exterior form

declaration, 559
ordering, 576
vector, 559
with indices, 559, 567

Exterior product, 560, 577
EXVARS, 1057
EZGCD switch, 139

FACTOR declaration, 119
FACTOR switch, 136, 137
FACTORIAL, 73, 198
Factorization, 136
FACTORIZE, 136, 137
factorprimes (CALI), 286, 293
factorunits (CALI), 293, 303
FAILHARD switch, 96
FANCY_LOWER_DIGITS, 38
FANCY_PRINT_DF, 95
Fast loading of code, 1110
FAST_LA switch, 725, 933
FASTSIMPLEX switch, 719
FDOMAIN command, 561, 578
FEXPR reserved identifier, 1094
Fibonacci, 86
Fibonacci numbers, 86
Fibonacci polynomials, 85, 948, 975
FibonacciP, 85, 975
FIDE package, 589
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File handling, 175
File, startup, 177
FIND_COMPANION operator, 708
FIRST operator, 52
FIRSTROOT, 886
FIX, 73
FIXP boolean operator, 47
flatten (CALI), 285
FLOOR, 74
FOR, 65
FOR ALL, 162, 163
FOR ALL

CANTENS package, 353
FOR EACH, 59, 60
FOR EACH statement, 1093
FOR statement, 59
FORDER command, 576, 578
FORT, 125
FORT switch, 125
FORTRAN, 125, 127
FORTUPPER switch, 127
FPS, 617
FPS package, 617
FRAME command, 573, 578
free identifier, 291
Free operators

in rules, 170
FREEOF boolean operator, 47
Fresnel_C, 81, 949
Fresnel_S, 81, 949
FROBENIUS operator, 756
FULLROOTS switch, 104, 760
Function, 199

G, 1102
Gamma, 82
Gamma function, 82, 946, 951
GAMMATOFACTORIAL, 1073
gb-tag (CALI), 285, 300
gbasis, 320
gbasis!*, 304
gbtestversion (CALI), 284, 285, 295, 304
GCD, 139
GCD switch, 138



1162 INDEX

GCREF package, 620
gdimension, 641
Gegenbauer polynomials, 84, 947, 974
GegenbauerP, 84, 974
GEN(I), 935
Generalised Laguerre polynomials, 975
Generalized Hypergeometric functions, 982
GENERATORS, 990
generic function, 495
generic tensor, 346
GENERIC_FUNCTION, 495
GENTRAN package, 622
GET_COLUMNS operator, 709
GET_ROWS operator, 709
GETCSYSTEM command, 265
getdegrees, 290
getecart, 289
getkbase, 320
getkbase!*, 312
getleadterms, 320
getring procedure (CALI), 289
GETROOT, 887
getrules, 292
GFNEWT, 887
GFROOT, 887
gindependent_sets, 641
GL(I), 935
glexconvert, 641
global procedures (CALI), 282
GLOBAL_SIGN, 343, 366, 368
GLTBASIS switch, 640, 644
GNUPLOT command, 629
GNUPLOT package, 623
GNUPLOT package, 623
GO TO, 63, 64
GO TO statement, 63
Golden_Ratio, 971
GOLDEN_RATIO reserved variable, 38
GOSPER, 1062
Gosper’s Algorithm, 986
GOSPER_REPRESENTATION variable, 1077
Gröbner Bases, 634
GRAD

operator, 264
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GRAD operator, 796
Graded ordering, 655
GradedBettinumbers, 320
GradedBettiNumbers!*, 311
Gradient

vector field, 264
gradlex

term order, 635
GRAM_SCHMIDT operator, 709
greduce, 647
greduce_orders, 648
groeb

=rf (CALI), 295
groeb (CALI), 284
groeb_homstbasis (CALI), 305
groeb_lazystbasis (CALI), 305
groeb_mingb, 305
groeb_minimize, 306
groeb_stbasis, 304
groebf_zeroprimes1 (CALI), 307
groebfactor, 320
groebfactor!*, 306
GROEBFULLREDUCTION switch, 640, 644
groebmonfac, 645
groebner, 638
Groebner Bases, 747
GROEBNER package, 634
Groebner package, 634

example, 636, 638, 649, 651, 657
ordering

graded, 655
grouped, 654
matrix, 655
weighted, 655

term order
default, 637
gradlex, 635
lex, 635
revgradlex, 635

GROEBNER package, 102
groebner_walk, 643
groebnerf, 643, 645, 656
groebnert, 651
GROEBOPT switch, 639, 641, 644
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GROEBPROT switch, 649
groebprotfile, 649
groebresmax, 645
groebrestriction, 646
GROEBSTAT switch, 640, 644
groepostproc, 658
groesolve, 656
Group statement, 57, 58, 62
Grouped ordering, 654
gsort, 661
gsplit, 662
gspoly, 662
GSYS operator, 462
GSYS2CGB operator, 464
GUARDIAN package, 664
gvars, 638
gvarslast, 638, 639
gzerodim?, 640

Hankel functions, 82, 946, 952
Hankel1, 82, 952
Hankel2, 82, 952
hardzerotest (CALI), 293
Hermite polynomials, 84, 947, 975
HERMITE_BASE, 772
HermiteP, 84, 975
HERMITIAN_TP operator, 710
HESSIAN operator, 710
HEUGCD switch, 139
hf

=hf (CALI), 295
hf_whs_from_resolution, 311
hf_whilb, 311
hf_whilb3, 311
HFACTORS scale factors, 264
hftestversion (CALI), 285, 295, 311
High energy trace, 1105
High energy vector expression, 1101, 1104
HIGH_POW, 131
HILBERT operator, 711
Hilbert polynomial, 660
Hilbert series (CALI), 289
Hilbertpolynomial, 660
HilbertSeries, 320
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HilbertSeries (CALI), 285
HilbertSeries!*, 311
History, 180
Hodge-* duality operator, 565, 574
homstbasis, 321
homstbasis!*, 305
HORNER, 120
HORNER switch, 120
hypergeometric, 983
Hypergeometric functions, 955, 982
HYPERRECURSION, 1069
HYPERSUM, 1071
HYPERTERM, 1069
HYPOT, 77

i, 224
I reserved variable, 39
I_SOLVE, 891
ibeta, 82, 951
ideal dimension, 641
Ideal quotient, 659
ideal quotient (CALI), 308
ideal2mat, 321
ideal2mat (CALI), 291
ideal_of_minors, 300, 321
ideal_of_pfaffians, 301, 321
idealpower, 321
idealprod, 321
idealquotient, 321, 659
idealquotient!*, 309
ideals (CALI), 290
IDEALS package, 680
idealsum, 321
Identifier, 37
IF, 57, 58
IFACTOR switch, 137
igamma, 82, 951
IMAGINARY switch, 717
imaginary unit, 224
IMPART, 72, 74–76, 155
IMPLICIT_TAYLOR operator, 993
IN command, 175
IN keyword, 59
Incomplete Beta functions, 951
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Incomplete Gamma functions, 951
Indefinite integration, 95
INDEP_VAR global variable (CDE), 397
independent sets, 641
indepvarsets, 321
indepvarsets!*, 309
INDEX, 1102
INDEX_SYMMETRIES command, 570, 578
INDEXED, 95
indexrange, 344, 357, 359
INDEXRANGE command, 578
Indices

CANTENS package, 378, 389
INEQ package, 683
INEQ_SOLVE operator, 683
INFINITY, 885
INFINITY reserved variable, 39
INFIX declaration, 113
Infix operator, 40–43
INITIALIZE_EQUATIONS operator (CDE), 413
initmat, 321
Inner product, 795

exterior form, 564
INPUT, 180
Input, 175
Instant evaluation, 68, 133, 162, 186, 187
INT, 95, 183
INTEGER, 62
Integer, 46
Integral functions, 81, 949
INTEGRATE_EQUATION operator (CDE), 414
Integration, 95, 111

definite (simple), 266
line, 267
volume, 266

Interactive use, 179, 183
internal procedures (CALI), 282
INTERPOL, 147
interreduce, 321
interreduce!*, 303
INTERSECTION, 903
Introduction, 31
INTSTR switch, 116
INVBASE package, 685
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INVZTRANS, 1080
IRREDUCIBLEREPNR, 990
IRREDUCIBLEREPTABLE, 990
isolatedprimes, 322
isolatedprimes!*, 313
ISOLATER, 885
isprime, 322
isprime!*, 313
iszeroradical, 322

Jacobi Elliptic functions, 83, 946, 960
Jacobi polynomials, 84, 947, 974
Jacobi Theta functions, 83, 946, 964
Jacobiam, 83, 961
JACOBIAN operator, 711
Jacobicd, 83, 960
Jacobicn, 83, 960
Jacobics, 83, 960
Jacobidc, 83, 960
Jacobidn, 83, 960
Jacobids, 83, 960
JacobiE, 83, 963
Jacobinc, 83, 960
Jacobind, 83, 960
Jacobins, 83, 960
JacobiP, 84, 974
Jacobisc, 83, 960
Jacobisd, 83, 960
Jacobisn, 83, 960
JacobiZeta, 83, 964
JET_FIBER_DIM operator, 398
JET_DIM operator, 398
JOIN keyword, 59
JORDAN operator, 759
JORDAN_BLOCK operator, 712
JORDANSYMBOLIC operator, 758

KEEP command, 576, 578
Kernel, 115, 119, 130

CANTENS package, 392
kernel form, 116
Khinchin, 971
KHINCHIN reserved variable, 39
Killing Vectors, 575
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KILLING_VECTOR command, 575, 578
KORDER, 806
KORDER declaration, 130
KRONECKER_PRODUCT operator, 724
Kummer functions, 82, 946, 955
KummerM, 82, 955
KummerU, 82, 955

l’Hôpital’s rule, 698, 797
Label, 63, 64
Laguerre polynomials, 84, 947, 974
LAGUERRE_BASE, 772
LaguerreP, 84, 974
LALR package, 689
LAMBDA reserved word, 1091
Lambert’s W function, 82, 102, 946, 957
Lambert_W, 82, 957
LAPLACE package, 692
Laplacian

vector field, 264
Lattice invariants, 969
Lattice roots, 969
lattice_delta, 969
lattice_e1, 969
lattice_e2, 969
lattice_e3, 969
lattice_g2, 969
lattice_g3, 969
lattice_generators, 970
lattice_invariants, 970
lattice_roots, 970
Laurent series, 993
lazy switch, 284
lazystbasis, 322
lazystbasis!*, 305
LCM, 140
LCOF, 148
LDOT operator, 726
Leading coefficient, 148
Legendre polynomials, 84, 195, 947, 972
LEGENDRE_BASE, 772
LEGENDRE_SYMBOL, 739
LegendreP, 84, 972
LENGTH, 68, 97, 135, 137, 187
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LENGTH operator, 51
use on lists, 51

Lerch_Phi, 82, 957
LET, 78, 94, 107, 111–113, 160, 168, 197, 198
Levi-Cevita tensor, 574
LEX, 462
lex

term order, 635
lexefgb (CALI), 294, 307
lexicographic (CALI), 287
LHS operator, 49
LHYP switch, 692
Li, 81, 949
Lie Derivative, 565
LIE package, 694
LIEPDE, 206
LIMIT, 698, 797
LIMIT+, 698
LIMIT-, 698
LIMITS package, 698
LIMITS package, 698
LINALG package, 699
Line integrals, 267
LINEAR, 110
Linear Algebra package, 699, 910
LINEAR declaration, 110
Linear operator, 110, 113
LINEINT, 798
LINEINT function, 267
LINELENGTH operator, 118
LISP, 1089
Lisp, 1089
LIST, 120
List, 51

vector operations, 726
list, 100
List operation, 51, 53
LIST switch, 120
LISTARGP declaration, 53
LISTARGS switch, 53
listgroebfactor, 322
listgroebfactor!*, 306
listminimize (CALI), 283
LISTPROC keyword, 728



1170 INDEX

listtest (CALI), 283
LISTVECOPS package, 726
LMON switch, 692
LNTH operator, 727
LOAD, 1110
LOAD_PACKAGE, 201, 1110
LOADGROUPS, 990
local procedures (CALI), 282
localorder procedure (CALI), 288
localorder!*, 297
LOG, 77, 96
LOG10, 77
LOGB, 77
Lommel functions, 82, 946, 955
Lommel1, 82, 955
Lommel2, 82, 955
LOOKING_GOOD switch, 758
Loop, 59
LOW_POW, 131
LOWER_MATRIX switch, 717
LPDO package, 729
LPOWER, 149
LTERM, 149, 1099
LTRIG switch, 692
LU_DECOM operator, 712

m_gamma, 951
M_ROOTS operator, 739
M_SOLVE operator, 739
MACRO, 1093
MAINVAR, 149
MAKE_BLOC_DIAGONAL, 363, 364
MAKE_PARTIC_TENS, 360, 365, 367, 375
MAKE_TENSOR_BELONG_SPACE, 357, 363
MAKE_TENSOR_BELONG_SPACE declaration, 360
MAKE_TENSOR_BELONG_SPACE operator, 359
MAKE_IDENTITY operator, 713
MAKE_VARIABLES, 348
MAP, 97
map, 100
map (CALI), 314
MASS, 1104, 1105
MAT, 185, 186
mat2list, 322
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mat2list (CALI), 285, 291
matappend, 322
MATCH, 167
MATEIGEN, 188
Mathematical functions, 77
mathomogenize, 322
mathprint (CALI), 296
matintersect, 322
matintersect (CALI), 284
matintersect!*, 308
matjac, 300, 322
matqquot, 322
matqquot!*, 308
matquot

* (CALI), 308
matquot, 323
matquot!*, 308
MATRIX, 185
Matrix assignment, 191
Matrix calculations, 185
Matrix ordering, 655
MATRIX_AUGMENT operator, 714
MATRIX_STACK operator, 715
MATRIXP, 714, 926
MATRIXPROC, 196
matstabquot, 323
matstabquot!*, 309
matsum, 323
MAX, 74
MCD, 140
MCD switch, 138, 140
Meijer’s G function, 982
MeijerG, 983
MEMBER, 907
metric, 360, 375
METRIC command, 578
Metric structure, 570
Metric tensor

CANTENS package, 385
MIN, 74
minimal_generators, 323
minimal_generators!*, 315
Minimum, 763
Minkowski, 343, 360, 365
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MINOR operator, 715
minors, 300, 323
Mixed symmetry

CANTENS package, 389
MK_IDS_BELONG_ANYSPACE, 346
MK_IDS_BELONG_SPACE, 346
MK_IDS_BELONG_ANYSPACE operator, 360
MK_IDS_BELONG_SPACE, 389
MK_IDS_BELONG_SPACE operator, 359
MK_CDIFFOP operator (CDE), 403
MK_SUPERFUN operator (CDE), 405
MKALLLINODD operator (CDE), 418
MKID, 98
MKPOLY, 887
MKSET, 903
MM, 935
mod, 323
MOD operator, 141
mod!*, 303
Mode, 68

algebraic, 1094
symbolic, 1094

Mode communication, 1094
Mode handling declarations, 68
modequalp, 323
modequalp (CALI), 285
modequalp!*, 308
MODSR package, 739
Modular coefficient, 153
MODULAR switch, 137, 153, 761
module bcsf (CALI), 296
module cali (CALI), 282
module calimat (CALI), 286, 300
module dpmat (CALI), 300
module groeb (CALI), 304
module groebf (CALI), 284, 306
module lf (CALI), 285, 296
module moid (CALI), 309
module mora (CALI), 284
module odim (CALI), 285, 312
module prime (CALI), 312
module quotient (CALI), 308
module ring (CALI), 296
module scripts (CALI), 284, 314
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module term order (CALI), 290
module triang (CALI), 306, 307
modulequotient, 323
modulequotient!*, 309
modules (CALI), 290
moid_primes, 309
MONOMIAL_BASE, 772
Motzkin, 86
Motzkin numbers, 86
MRV_LIMIT operator, 742
MRVLIMIT package, 740
MSG switch, 1113
MSHELL, 1105
MULT_COLUMNS operator, 715
MULT_ROWS operator, 716
Multiple assignment statement, 56
MULTIPLICITIES switch, 103
MULTIROOT switch, 889

NAT switch, 128, 567
NCPOLY package, 747
NEARESTROOT, 886, 888
NEARESTROOTS, 887
NEGATIVE, 885
NEGATIVE reserved variable, 39
negativity, 157
NERO switch, 125
Newton’s method, 763
NEXTPRIME, 75
NIL reserved variable, 39
NM operator, 466
NN, 935
NOCOMMUTEDF switch, 93
NOCONVERT switch, 152
NODEPEND command, 114
NODEPEND statement, 797
NOETHER function, 567, 578
Noetherian (CALI), 294
Noetherian switch, 279, 287
NOEXPAND_TD command, 399
NOINTSUBST switch, 96
NOLNR switch, 96
nome, 964
Nome and Related functions, 946, 964
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Non-commuting operator, 111
NONCOM, 802
NONCOM declaration, 111
NONZERO declaration, 109
normalform, 323
normalform!*, 303
NORMFORM package, 753
NORMFORM package, 753
NOSPLIT, 121
NOSPLIT switch, 121
NOSPUR, 1105
NOSUM command, 570, 578
NOSUM switch, 570
NOT_NEGATIVE switch, 717
NOTREALVALUED declaration, 156
NOXPND

@, 563
D, 562

NOXPND @ command, 578
NOXPND command, 578
NS dummy variable, 569
NULLSPACE, 189
NUM, 150
NUM_FIT, 771
NUM_INT, 763, 766
NUM_MIN, 763, 764
NUM_ODESOLVE, 763, 767
NUM_SOLVE, 763, 765
Number, 36, 37
NUMBERP boolean operator, 47
Numeric indices

CANTENS package, 373
NUMERIC package, 763
NUMERIC package, 763
Numerical operator, 71
Numerical precision, 38
nzdp, 323
nzdp!*, 316

ODD declaration, 109
Odd operator, 109
ODD_VAR global variable (CDE), 399
ODESOLVE package, 774
odim_borderbasis, 312
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odim_parameter, 312
odim_up, 312
OFF, 68
oldbasis (CALI), 296
oldborderbasis (CALI), 296
oldring (CALI), 296
ON, 68
ON keyword, 59
ONE_OF operator, 103
ONESPACE switch, 342, 356, 361

Off, 350, 357, 362, 365, 366, 369, 382, 387
On, 350, 356, 361, 365, 367, 385, 393

ONLY_INTEGER switch, 717
OPAPPLY, 810
OPERATOR, 1099
Operator, 40, 41, 43

antisymmetric, 111
CANTENS package, 377
double slash, 170
even, 109
infix, 41
linear, 110
non-commuting, 111
numerical, 71
odd, 109
precedence, 41, 43
symmetric, 111
unary prefix, 41

OPERATOR declaration, 112
CANTENS package, 383

Operators
free, in rules, 170

OPORDER, 806
OR logical operator, 48
ORDER declaration, 118, 130
Ordering

exterior form, 576
ORDP boolean operator, 47, 111
Orthogonal polynomials, 84, 947, 972
ORTHOVEC package, 792
ORTHOVEC package

example, 799, 801
Other polynomials, 85, 948, 975
OUT command, 176
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Output, 122, 127
Output declaration, 118
OUTPUT switch, 117

Packages
ALGINT, 96, 202
APPLYSYM, 203
ARNUM, 224
ASSERT, 229
ASSIST, 235
AVECTOR, 262
BIBASIS, 269
BOOLEAN, 275
CALI, 279
CAMAL, 328
CANTENS, 341
CDE, 395
CDIFF, 437
CGB, 461
COEFF2, 466
COMPACT, 468
CRACK, 468
CVIT, 469
DEFINT, 96, 478
DEFINT, 96
DESIR, 488
DFPART, 495
DUMMY, 500
EDS, 507
EXCALC, 558
FIDE, 589
FPS, 617
GCREF, 620
GENTRAN, 622
GNUPLOT, 623
GROEBNER, 634
GROEBNER, 102
GUARDIAN, 664
IDEALS, 680
INEQ, 683
INVBASE, 685
LALR, 689
LAPLACE, 692
LIE, 694
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LIMITS, 698
LINALG, 699
LISTVECOPS, 726
LPDO, 729
MODSR, 739
MRVLIMIT, 740
NCPOLY, 747
NORMFORM, 753
NUMERIC, 763
ODESOLVE, 774
ORTHOVEC, 792
PHYSOP, 802
PLOT, 623
PM, 814
QHULL, 821
QSUM, 822
RANDPOLY, 835
RATAPRX, 845
RATINT, 860
REACTEQN, 870
REDLOG, 874
RESET, 874
RESIDUE, 875
RLFI, 879
ROOTS, 884
RSOLVE, 891
RTRACE, 893
SCOPE, 901
SETS, 902
SPARSE, 910
SPDE, 934
SPECFN, 946
SPECFN2, 982
SSTOOLS, 985
SUM, 986
SYMMETRY, 988
TAYLOR, 993
TPS, 1001
TRI, 1012
TRIGD, 1013
TRIGINT, 1021
TRIGSIMP, 78, 1026
TURTLE, 1036
WU, 1049
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XCOLOR, 1051
XIDEAL, 1053
ZEILBERG, 1060
ZTRANS, 1080

Padé Approximation, 856
PADE operator, 856
Padget, Julian, 1001
PART operator, 129, 131

use on lists, 51
use on Taylor kernel, 994, 998

PARTIAL, 95
partial derivatives, 495
Partial differentiation, 561
partial fraction, 99
partial fraction decomposition, 99
Partial symmetry

CANTENS package, 389
PAUSE command, 183
PCLASS, 935, 936, 938
Percent sign, 40
Period Lattice and Related functions, 946
PERIOD switch, 127
Periodic decimal representation, 845
PERIODIC operator, 845
PERIODIC2RATIONAL operator, 845
PF operator, 99
pfaffian, 301, 324
PFORM command, 578
PFORM statement, 559
PHYSINDEX, 804
PHYSOP package, 802
PI reserved variable, 39
PIVOT operator, 716
PLOT, 623
PLOT package, 623
PLOTKEEP switch, 628
PLOTRESET, 628
PM package, 814
Pochammer symbol, 971
Pochhammer, 99
Pochhammer notation, 99
Pochhammer symbol, 99, 972, 974, 982
POLY_QUOTIENT operator, 141
Polygamma, 82, 952
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Polygamma functions, 82, 946, 952
Polylog, 82, 956
PolyLogarithm and related functions, 82
Polylogarithm and related functions, 956
polylogarithm and related functions, 946
Polynomial, 135
Polynomial equations, 634
Polynomial functions, 84, 947
Polynomial Pseudo-Division, 143
POSITIVE, 885
POSITIVE reserved variable, 39
positivity, 157
Power series, 1001

arithmetic, 1010
composition, 1006
differentiation, 1010
of integral, 1002
of user defined function, 1002

Power series expansions, 1001
PRECEDENCE declaration, 113
PRECISE switch, 79, 80
PRECISE_COMPLEX switch, 80
PRECISION operator, 152

in ROOTS package, 890
preduce, 648
preducet, 651
Prefix, 71, 113
Prefix operator, 40

declaring new one, 112
Prefix operator, unary, 41
preimage, 324
preimage (CALI), 284
preimage!*, 314
PRET switch, 1112, 1113
PRETTYPRINT, 1113
Prettyprinting, 1112, 1113
PRGEN, 935
PRI switch, 118
primary decomposition (CALI), 284
primarydecomposition, 324
primarydecomposition!*, 313
prime

=decompose2 (CALI), 312
PRIMEP boolean operator, 47
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PRINCIPAL_DER global variable (CDE), 401
PRINT_INDEXED declaration, 113
PRINT_NOINDEXED declaration, 113
PRINT_PRECISION command, 152
PRINTGROUP, 990
printterms (CALI), 295
Procedure

body, 195, 196
heading, 194
list-valued, 728
matrix-valued, 196
using LET inside body, 197

PROCEDURE command, 193
PROD operator, 986
PRODUCT, 59
PRODUCT keyword, 59
Program, 40
Program structure, 35
proj_points (CALI), 285
proj_points1

* (CALI), 317
proj_monomial_curve, 324
proj_monomial_curve!*, 315
proj_points, 324
proj_points!*, 317
Proper statement, 49, 55
PRSYS, 935, 937
PS, 1001
PS operator, 1001
PSCHANGEVAR operator, 1005
PSCOMPOSE operator, 1006
PSCOPY operator, 1009
PSDEPVAR operator, 1005
Pseudo-Division, 143
PSEUDO_DIVIDE operator, 143
PSEUDO_INVERSE operator, 716
PSEUDO_QUOTIENT operator, 143
PSEUDO_REMAINDER operator, 143
PSEXPANSIONPT operator, 1005
PSEXPLIM Operator, 1003
PSEXPLIM operator, 1002
PSFUNCTION operator, 1005
psi, 82, 952
Psi function, 946, 952



INDEX 1181

PSORDER operator, 1004
PSORDLIM operator, 1003
PSPRINTORDER switch, 1003
PSREVERSE operator, 1005
PSSETORDER operator, 1004
PSSUM operator, 1007
PSTAYLOR operator, 1008
PSTERM operator, 1004
PSTRUNCATE operator, 1009
Puiseux expansion, 1006
Puiseux series, 993
PUT_EQUATIONS_USED operator (CDE), 414
PUTCSYSTEM command, 265
PVAR_DF operator (CDE), 402

QBINOMIAL operator, 822
QBRACKETS operator, 822
QFACTORIAL operator, 822
QGOSPER operator, 826
QGOSPER_DOWN switch, 826, 832
QGOSPER_SPECIALSOL switch, 832
QHULL package, 821
QPHIHYPERTERM operator, 823
QPOCHHAMMER operator, 822
QPSIHYPERTERM operator, 823
QRATIO operator, 832
QSIMPCOMB operator, 829, 832
QSUM package, 822
QSUM_NULLSPACE switch, 831, 832
QSUM_TRACE switch, 832
QSUMRECURSION operator, 827
QSUMRECURSION_CERTIFICATE switch, 828, 832
QSUMRECURSION_DOWN switch, 832
QSUMRECURSION_EXP switch, 832
Quadrature, 763
Quasi-period factors, 969
quasi_period_factors, 970
QUASILINPDE, 218
QUIT, 69
QUOTE, 1091

R_SOLVE, 891
radical, 324
radical (CALI), 286
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radical!*, 313
RANDOM, 75
random_linear_form, 301, 324
RANDOM_NEW_SEED, 75
RANDOM_MATRIX operator, 717
RANDPOLY package, 835
RANK, 190
RAT, 121
RAT switch, 121
RATAPRX package, 845
RATARG switch, 130, 147
RATINT package, 860
Rational coefficient, 151
Rational function, 135
rational number, 90
RATIONAL switch, 151
RATIONAL2PERIODIC operator, 845
RATIONALIZE switch, 154
RATJORDAN operator, 757
ratpreimage, 324
ratpreimage!*, 314
RATPRI, 122
RATPRI switch, 122
RATROOT switch, 889
REACTEQN package, 870
REAL, 62
Real coefficient, 151, 152
Real number, 36, 37
REALROOTS, 885, 887
REALVALUED declaration, 155
REALVALUEDP, 156
red (CALI), 284
red_better (CALI), 301
red_extract (CALI), 303
red_prepare (CALI), 303
red_TailRedDriver (CALI), 302
red_TopRedBE (CALI), 301
red_total (CALI), 294
red_Interreduce, 303
red_redpol, 303
red_Straight, 302
red_TailRed, 302
red_TopInterreduce, 302
red_TopRed, 302
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red_TopRedBE, 302
red_TotalRed, 302
REDERR, 196
REDLOG package, 874
REDUCE, 350
reducerc file, 31, 177
REDUCT, 150
REIMPART, 75
REM_SPACES, 345
REM_DUMMY_IDS, 349
REM_DUMMY_INDICES, 349, 379
REM_VALUE_TENS, 351, 353
REM_SPACES, 357
REM_TENSOR, 349
REMAINDER operator, 141
REMANTICOM, 504
REMEMBER, 199
REMFAC, 119
REMFORDER command, 576, 578
REMIND, 1102
REMOVE_COLUMNS operator, 718, 929
REMOVE_ROWS operator, 718
REMOVE_VARIABLES, 348
REMSYM, 392, 504
RENOSUM command, 570, 578
REPART, 72, 74, 76
REPEAT, 61–63, 65
REPEAT statement, 61
REPPRINCPARAM_DER shared global variable (CDE), 401
REPPRINCPARAM_ODD shared global variable (CDE), 401
REQUIREMENTS shared variable, 107
Reserved variable, 38, 39
Reserved variable

HIGH_POW, 131
LOW_POW, 131
CATALAN, 38
EULER_GAMMA, 38
GOLDEN_RATIO, 38
I, 39
INFINITY, 39
KHINCHIN, 39
NEGATIVE, 39
NIL, 39
PI, 39
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POSITIVE, 39
T, 39

RESET operator, 466
RESET package, 874
RESIDUE package, 875
resolve, 324
resolve (CALI), 284
Resolve!*, 311
REST operator, 52
RESULT, 934
RESULTANT, 145
RETRY, 179
RETURN, 63–65
RETURN statement, 64
reverse lexicographic (CALI), 287
REVERSE operator, 53
REVGRADLEX, 462
revgradlex

term order, 635
revlex term order (CALI), 285
REVPRI, 122
REVPRI switch, 122
Rewriting rules

CANTENS package, 350
RHS operator, 49
Riemann tensor

CANTENS package, 389
Riemann Zeta function, 82, 946, 956
RIEMANNCONX command, 574, 578
Riemannian Connections, 574
ring (CALI), 291
ring_2a (CALI), 297
ring_degrees (CALI), 296
ring_ecart (CALI), 296
ring_from_a (CALI), 297
ring_isnoetherian (CALI), 296
ring_names (CALI), 296
ring_tag (CALI), 296
ring_define, 297
ring_lp, 297
ring_rlp, 297
ring_sum, 297
RLFI package, 879
Rlisp, 1109
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RLISP88, 1100
RLROOTNO, 886
root finding, 884
ROOT_MULTIPLICITIES global variable, 103
ROOT_OF operator, 102, 103
ROOT_VAL, 154, 886
ROOTACC operator (ROOTS package), 889
ROOTACC!# global variable (ROOTS package), 889
ROOTMSG switch, 889
ROOTPREC operator (ROOTS package), 890
ROOTS, 886, 887
ROOTS package, 884
ROOTS package, 884
ROOTS_AT_PREC, 886
ROOTSCOMPLEX, 886
ROOTSREAL, 886
ROUND, 76
ROUNDALL switch, 153
ROUNDBF switch, 152
ROUNDED, 125, 888
ROUNDED switch, 38, 39, 46, 80, 152
ROW_DIM operator, 718
ROWS_PIVOT operator, 718
RSETREPRESENTATION, 990
RSOLVE package, 891
RTR command, 894
RTRACE package, 893
RTRACE switch, 893, 900
RTROUT command, 899
RTRST command, 896
Rule lists, 167
Rules

Double slash operators, 170
Double tilde variables, 171
Free operators, 170

rules (CALI), 295

saturation, 660
SAVE_CDE_STATE operator, 398
SAVEAS statement, 117
savemat, 324
savesfs switch, 949
SAVESTRUCTR switch, 129
Saving an expression, 127



1186 INDEX

SCALAR, 62, 63
Scalar, 45
Scalar variable, 38
SCALEFACTORS operator, 264
SCALOP, 804
SCHOUTEN_BRACKET operator (CDE), 407
SCIENTIFIC_NOTATION declaration, 36
SCOPE package, 901
SDER(I), 935
SEC, 77
SECH, 77
SECOND operator, 52
SELECT, 100
Selector, 1095
SELECTVARS operator, 398
SELFCONJUGATE declaration, 73, 156
Semicolon, 55
SET statement, 56, 99
Set Statement, 56
SET_EQ, 908
SETAVAILABLE, 990
setcaliprintterms, 294
setcalitrace, 294
setcalitrace (CALI), 285
setdegrees, 290
setdegrees (CALI), 295
SETDIFF, 905
SETELEMENTS, 990
setgbasis, 325
setgbasis (CALI), 285
SETGENERATORS, 990
SETGROUPTABLE, 990
setideal, 291
setideal (CALI), 292
setkorder (CALI), 297
SETMOD, 153
setmodule, 291
setmodule (CALI), 292
setmonset (CALI), 295
setmonset!*, 305
setring (CALI), 284, 289, 293, 295
setring command (CALI), 287
setring!*, 297
setrules, 292
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setrules (CALI), 292, 295, 299
setrules!*, 296
SETS package, 902
SGN

indeterminate sign, 566
SHARE declaration, 1094
Shi, 81, 949
SHOW_DUMMY_NAMES, 502
SHOW_EPSILONS, 369, 372, 387
SHOW_SPACES, 344, 357, 372
SHOWRULES, 172
SHOWTIME command, 69
SHUT command, 176
Si, 81, 949
Side effect, 49
sieve, 325
sigma, 83, 967
Sigma functions, 83, 946, 967, 969
sigma1, 83, 969
sigma2, 83, 969
sigma3, 83, 969
SIGN, 76, 157
SIGNATURE, 365
Signature

CANTENS package, 366–368, 385
signature, 343, 344, 385
SIGNATURE command, 578
SIMPLEDE, 619
SIMPLEX operator, 719
Simplification, 46, 115
simplify_combinatorial, 1073
SIMPLIFY_GAMMA, 1073
simplify_gamma2, 1073
simplify_gamman, 1073
SIMPNONCOMDF switch, 93
SIMPSYS, 934, 936, 938
SIN, 77
singular_locus, 325
singular_locus!*, 301
SINH, 77
SixjSymbol, 959
SMACRO reserved identifier, 1093
SMITHEX operator, 754
SMITHEX_INT operator, 755
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SolidHarmonicY, 82, 958
SOLVE operator, 102, 103

ASSUMPTIONS variable, 108
REQUIREMENTS shared variable, 107
ROOT_MULTIPLICITIES global variable, 103
use of GROEBNER package, 634

SOLVE package
with ROOTS package, 884

SOLVESINGULAR switch, 106
Sonin polynomials, 975
space, 342
SPACEDIM command, 561, 578
Spaces

CANTENS package, 371, 377, 385
spaces, 346, 356, 363, 366
SPADD_TO_COLUMNS operator, 915
SPADD_TO_ROWS operator, 915
SPADD_COLUMNS operator, 914
SPADD_ROWS operator, 914
SPARSE declaration, 910
SPARSE package, 910
SPARSEMATP predicate, 930
SPAUGMENT_COLUMNS operator, 915
SPBAND_MATRIX operator, 916
SPBLOCK_MATRIX operator, 916
SPCHAR_MATRIX operator, 917
SPCHAR_POLY operator, 917
SPCHOLESKY operator, 917
SPCOEFF_MATRIX operator, 918
SPCOL_DIM operator, 918
SPCOMPANION operator, 919
SPCOPY_INTO operator, 919
SPDE package, 934
SPDIAGONAL operator, 920
SPECFN package, 946
SPECFN2 package, 982
Special functions, 81, 946
SPEXTEND operator, 920
SPFIND_COMPANION operator, 921
SPGET_COLUMNS operator, 921
SPGET_ROWS operator, 922
SPGRAM_SCHMIDT operator, 922
Spherical and Solid Harmonics, 82, 946, 958
Spherical coordinates, 572, 793
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SphericalHarmonicY, 82, 958
SPHERMITIAN_TP operator, 922
SPHESSIAN operator, 923
Spinor

CANTENS package, 378
SPJACOBIAN operator, 923
SPJORDAN_BLOCK operator, 924
SPLIT_FIELD function, 227
SPLITEXT_LIST operator (CDE), 420
SPLITEXT_OPEQU operator (CDE), 419
SPLITVARS_OPEQU operator (CDE), 414
SPLU_DECOM operator, 924
SPMAKE_IDENTITY operator, 925
SPMATRIX_AUGMENT operator, 925
SPMATRIX_STACK operator, 926
SPMINOR operator, 926
SPMULT_COLUMNS operator, 927
SPMULT_ROWS operator, 927
SPPIVOT operator, 927
SPPSEUDO_INVERSE operator, 928
SPREMOVE_ROWS operator, 929
SPROW_DIM operator, 929
SPROWS_PIVOT operator, 929
SPSUB_MATRIX operator, 931
SPSVD operator, 931
SPSWAP_COLUMNS operator, 932
SPSWAP_ENTRIES operator, 932
SPSWAP_ROWS operator, 932
SPUR, 1105
SQFRF, 889
SQRT, 77
SQUAREP predicate, 720, 930
SSTOOLS package, 985
stable quotient (CALI), 308
STACK_ROWS operator, 720, 930
Standard form, 1095
Standard quotient, 1095
Startup file, 177
STATE, 804
Statement, 55

assignment, 56
compound, 62
conditional, 57
FOR, 59
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FOR EACH, 1093
GO TO, 63
Group, 57
REPEAT, 61
RETURN, 64
SAVEAS, 117
Set, 56
Unset, 56
WHILE, 60

Statement terminator, 55
Stirling numbers, 85, 946, 971
Stirling1, 85, 971
Stirling2, 85, 971
STOREGROUP, 990
String, 40
STRUCTR, 128, 129
Structuring, 115
Struve functions, 82, 946, 955
StruveH, 82, 955
StruveL, 82, 955
Sturm Sequences, 885
SUB, 159
SUB operator, 48
SUB_MATRIX operator, 720
sublist (CALI), 296
submodulep, 325
submodulep!*, 307
SUBSET_EQ, 907
Subspaces

CANTENS package, 366
subspaces, 346
Substitution, 159
SUCH THAT, 163
SUM, 59
SUM keyword, 59
SUM operator, 986
SUM package, 986
SUM!-SQ operator, 986
SUMRECURSION, 1065
SUMTOHYPER, 1073
SUPER_PRODUCT operator (CDE), 400
SVD operator, 721
SVEC, 793
SWAP_COLUMNS operator, 721
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SWAP_ENTRIES operator, 722
SWAP_ROWS operator, 722
Switch, 68, 69

ADJPREC, 152
ALGINT, 202
ALLBRANCH, 106
ALLFAC, 120, 121
ALLOWDFINT, 93
ANTICOM, 809
ARBVARS, 106
BALANCED_MOD, 153, 761
BEZOUT, 145
BFSPACE, 152
binomial, 284
CHECKORD, 399
COMBINEEXPT, 79
COMBINELOGS, 79
COMMUTEDF, 93
COMP, 1109
COMPLEX, 80, 154
CRAMER, 102, 187
CREF, 1112
DEFN, 1094, 1113
DFINT, 93
DFPRINT, 94
DISPJACOBIAN, 87
DIV, 120, 151
ECHO, 175
ERRCONT, 179
EVALLHSEQP, 49
EXP, 136
EXPANDDF, 93
EXPANDLOGS, 79
EZGCD, 139
FACTOR, 136, 137
FAILHARD, 96
FAST_LA, 725, 933
FASTSIMPLEX, 719
FORT, 125
FORTUPPER, 127
FULLROOTS, 104
GCD, 138
GLTBASIS, 640, 644
GROEBFULLREDUCTION, 640, 644
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GROEBOPT, 639, 641, 644
GROEBPROT, 649
GROEBSTAT, 640, 644
HEUGCD, 139
HORNER, 120
IFACTOR, 137
IMAGINARY, 717
INTSTR, 116
lazy, 284
LHYP, 692
LIST, 120
LISTARGS, 53
LMON, 692
LOOKING_GOOD, 758
LOWER_MATRIX, 717
LTRIG, 692
MCD, 138, 140
MODULAR, 137, 153, 761
MSG, 1113
MULTIPLICITIES, 103
MULTIROOT, 889
NAT, 128, 567
NERO, 125
NOCOMMUTEDF, 93
NOCONVERT, 152
Noetherian, 279, 287
NOINTSUBST, 96
NOLNR, 96
NOSPLIT, 121
NOSUM, 570
NOT_NEGATIVE, 717
ONESPACE, 342, 356, 361
ONLY_INTEGER, 717
OUTPUT, 117
PERIOD, 127
PLOTKEEP, 628
PRECISE, 79, 80
PRECISE_COMPLEX, 80
PRET, 1112, 1113
PRI, 118
PSPRINTORDER, 1003
QGOSPER_DOWN, 826, 832
QGOSPER_SPECIALSOL, 832
QSUM_NULLSPACE, 831, 832
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QSUM_TRACE, 832
QSUMRECURSION_CERTIFICATE, 828, 832
QSUMRECURSION_DOWN, 832
QSUMRECURSION_EXP, 832
RAT, 121
RATARG, 130, 147
RATIONAL, 151
RATIONALIZE, 154
RATPRI, 122
RATROOT, 889
REVPRI, 122
ROOTMSG, 889
ROUNDALL, 153
ROUNDBF, 152
ROUNDED, 38, 39, 46, 80, 152
RTRACE, 893, 900
savesfs, 949
SAVESTRUCTR, 129
SIMPNONCOMDF, 93
SOLVESINGULAR, 106
SYMMETRIC, 717
TAYLORAUTOCOMBINE, 996
TAYLORAUTOEXPAND, 995, 996
TAYLORKEEPORIGINAL, 995, 997, 999
TAYLORPRINTORDER, 997
TR_LIE, 695
TRA, 202
TRCOMPACT, 468
TRFAC, 138
TRGROEB, 640, 644
TRGROEB1, 640, 644
TRGROEBR, 645
TRGROEBS, 640, 644
TRIGFORM, 104
TRINT, 96, 202
TRINTSUBST, 96
TRNUMERIC, 764
TRPLOT, 628
TRROOT, 889
TRSOLVE, 892
TRSUM, 987
TRWU, 1050
UPPER_MATRIX, 717
VAROPT, 108
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VERBOSELOAD, 997
ZB_FACTOR, 1077
ZB_PROOF, 1077
ZB_TRACE, 1075, 1077

switch ASSERT, 232
switch ASSERTBREAK, 232
switch ASSERTSTATISTICS, 232
switch bcsimp (CALI), 296
switch hardzerotest (CALI), 292
switch lexefgb (CALI), 295, 307
switch Noetherian (CALI), 297
Switches by package

REDUCE Core
ADJPREC, 152
ALLBRANCH, 106
ALLFAC, 120, 121
ALLOWDFINT, 93
ARBVARS, 106
BALANCED_MOD, 153, 761
BEZOUT, 145
BFSPACE, 152
COMBINEEXPT, 79
COMBINELOGS, 79
COMMUTEDF, 93
COMP, 1109
COMPLEX, 80, 154
CRAMER, 102, 187
CREF, 1112
DEFN, 1094, 1113
DFINT, 93
DFPRINT, 94
DISPJACOBIAN, 87
DIV, 120, 151
ECHO, 175
ERRCONT, 179
EVALLHSEQP, 49
EXP, 136
EXPANDDF, 93
EXPANDLOGS, 79
EZGCD, 139
FACTOR, 136, 137
FAILHARD, 96
FORT, 125
FORTUPPER, 127
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FULLROOTS, 104
GCD, 138
HEUGCD, 139
HORNER, 120
IFACTOR, 137
INTSTR, 116
LIST, 120
LISTARGS, 53
MCD, 138, 140
MODULAR, 137, 153, 761
MSG, 1113
MULTIPLICITIES, 103
NAT, 128, 567
NERO, 125
NOCOMMUTEDF, 93
NOCONVERT, 152
NOINTSUBST, 96
NOLNR, 96
NOSPLIT, 121
OUTPUT, 117
PERIOD, 127
PLOTKEEP, 628
PRECISE, 79, 80
PRECISE_COMPLEX, 80
PRET, 1112, 1113
PRI, 118
RAT, 121
RATARG, 130, 147
RATIONAL, 151
RATIONALIZE, 154
RATPRI, 122
REVPRI, 122
ROUNDALL, 153
ROUNDBF, 152
ROUNDED, 38, 39, 46, 80, 152
savesfs, 949
SAVESTRUCTR, 129
SIMPNONCOMDF, 93
SOLVESINGULAR, 106
TRFAC, 138
TRIGFORM, 104
TRINT, 96
TRINTSUBST, 96
VAROPT, 108
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ALGINT package
ALGINT, 202
TRA, 202
TRINT, 202

CALI package
binomial, 284
lazy, 284
Noetherian, 279, 287

CANTENS package
ONESPACE, 342, 356, 361

CDE package
CHECKORD, 399

COMPACT package
TRCOMPACT, 468

EXCALC package
NOSUM, 570

GNUPLOT package
TRPLOT, 628

GROEBNER package
GLTBASIS, 640, 644
GROEBFULLREDUCTION, 640, 644
GROEBOPT, 639, 641, 644
GROEBPROT, 649
GROEBSTAT, 640, 644
TRGROEB, 640, 644
TRGROEB1, 640, 644
TRGROEBR, 645
TRGROEBS, 640, 644

LAPLACE package
LHYP, 692
LMON, 692
LTRIG, 692

LIE package
TR_LIE, 695

LINALG package
FAST_LA, 725
FASTSIMPLEX, 719
IMAGINARY, 717
LOWER_MATRIX, 717
NOT_NEGATIVE, 717
ONLY_INTEGER, 717
SYMMETRIC, 717
UPPER_MATRIX, 717

NORMFORM package
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LOOKING_GOOD, 758
NUMERIC package
TRNUMERIC, 764

PHYSOP package
ANTICOM, 809

QSUM package
QGOSPER_DOWN, 826, 832
QGOSPER_SPECIALSOL, 832
QSUM_NULLSPACE, 831, 832
QSUM_TRACE, 832
QSUMRECURSION_CERTIFICATE, 828, 832
QSUMRECURSION_DOWN, 832
QSUMRECURSION_EXP, 832

ROOTS package
MULTIROOT, 889
RATROOT, 889
ROOTMSG, 889
TRROOT, 889

RSOLVE package
TRSOLVE, 892

RTRACE package
RTRACE, 893, 900

SPARSE package
FAST_LA, 933

SUM package
TRSUM, 987

TAYLOR package
TAYLORAUTOCOMBINE, 996
TAYLORAUTOEXPAND, 995, 996
TAYLORKEEPORIGINAL, 995, 997, 999
TAYLORPRINTORDER, 997
VERBOSELOAD, 997

TPS package
PSPRINTORDER, 1003

WU package
TRWU, 1050

ZEILBERG package
ZB_FACTOR, 1077
ZB_PROOF, 1077
ZB_TRACE, 1075, 1077

sym, 325
sym (CALI), 284
sym!*, 315
SYMBOLIC, 1089
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Symbolic indices
CANTENS package, 371

Symbolic mode, 1089, 1090, 1094, 1095
Symbolic procedure, 1093
symbolic_power, 325
symbolic_power!*, 316
symmetric

tensor, 366
SYMMETRIC declaration, 111, 389
Symmetric operator, 111
SYMMETRIC switch, 717
SYMMETRICP predicate, 722, 932
Symmetries

CANTENS package, 389
SYMMETRIZE, 392
SYMMETRY package, 988
SYMMETRY package, 988
SYMMETRYBASIS, 988
SYMMETRYBASISPART, 988
SYMTREE, 503
SYMTREE declaration, 389
system precision, 889
syzygies, 325
syzygies!*, 304
syzygies1!*, 304

T, 287
T reserved variable, 39
TAN, 77, 96
Tangent vector, 562
tangentcone, 325
TANH, 77
TAYLOR operator, 993
TAYLOR package, 993
Taylor series, 993

arithmetic, 995
differentiation, 996
integration, 996
reversion, 996
substitution, 996

TAYLORAUTOCOMBINE switch, 996
TAYLORAUTOEXPAND switch, 995, 996
TAYLORCOMBINE operator, 995
TAYLORKEEPORIGINAL switch, 995, 997, 999
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TAYLORORIGINAL operator, 999
TAYLORPRINTORDER switch, 997
TAYLORPRINTTERMS variable, 994, 1000
TAYLORREVERT operator, 996, 999
TAYLORSERIESP operator, 995
TAYLORTEMPLATE operator, 995, 999
TAYLORTOSTANDARD operator, 995
TENSOP, 804
TENSOR, 347
Tensor contractions

CANTENS package, 382
Tensor derivatives

CANTENS package, 393
Tensor polynomial

CANTENS package, 376
term (CALI), 298
Terminator, statement, 55
Theta function derivatives, 946, 966
theta1d, 966
theta2d, 966
theta3d, 966
theta4d, 966
THIRD operator, 52
ThreejSymbol, 959
TIME, 68
TOEPLITZ operator, 723
torder, 637, 654, 655
TORDER operator, 462
TOTAL, 95
TOTAL_ORDER global variable (CDE), 397
TOTALDEG, 151
TP, 189
TPS package, 1001
TR_LIE switch, 695
TRA switch, 202
TRACE, 189
Trace

CANTENS package, 376
trace (CALI), 295
Tracing

EXCALC package, 574
GNUPLOT package, 628
ROOTS package, 889
SPDE package, 936
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SUM package, 987
tracing (CALI), 285
TRCOMPACT switch, 468
TRFAC switch, 138
TRGROEB switch, 640, 644
TRGROEB1 switch, 640, 644
TRGROEBR switch, 645
TRGROEBS switch, 640, 644
TRI package, 1012
triang (CALI), 284
TRIANG_ADJOINT operator, 723
triangular systems (CALI), 284, 307
trig functions, 1013
TRIGD package, 1013
TRIGFORM switch, 104
TRIGINT package, 1021
TRIGONOMETRIC_BASE, 772
TRIGSIMP, 1026
TRIGSIMP package, 78, 1026
TRINT switch, 96, 202
TRINTSUBST switch, 96
TRNUMERIC switch, 764
TRPLOT switch, 628
TRRL command, 897
TRRLID command, 899
TRROOT switch, 889
TRSOLVE switch, 892
TRSUM switch, 987
TRWU switch, 1050
TRXIDEAL switch, 1057
TRXMOD switch, 1057
TURTLE package, 1036
TURTLE package, 1036
TVECTOR command, 559, 578

U(ALFA), 935
U(ALFA,I), 935
Unary prefix operator, 41
UNION, 903
UNIT, 805
unmixedradical, 325
unmixedradical!*, 313
UNRTR command, 894
UNRTRST command, 896
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UNSET statement, 57, 99
Unset Statement, 56
UNTIL, 59
UNTRRL command, 897
UNTRRLID command, 899
UP_QRATIO operator, 832
UPPER_MATRIX switch, 717
UPWARD_ANTIDIFFERENCE, 832
User packages, 201

VANDERMONDE operator, 724
VARDF, 578
VARDF (variational derivative) operator), 566
Variable, 38

double tilde, 171
Variable elimination, 634
Variational derivative, 566
varlessp (CALI), 296
VARNAME, 127, 128
varnames (CALI), 296
varopt, 326
VAROPT switch, 108
varopt!*, 316
VDF, 796
VEC command, 262
VECDIM, 1107
VECOP, 804
VECTOR, 1103
Vector

addition, 795
cross product, 795
differentiation, 264
division, 795
dot product, 795
exponentiation, 795
inner product, 795
integration, 264
modulus, 795
multiplication, 795
subtraction, 795

Vector algebra, 262
VECTORADD, 795
VECTORCROSS, 795
VECTORDIFFERENCE, 795



1202 INDEX

VECTOREXPT, 795
VECTORMINUS, 795
VECTORPLUS, 795
VECTORQUOTIENT, 795
VECTORRECIP, 795
VECTORTIMES, 795
VERBOSELOAD switch, 997
VINT, 798
VMOD, 795
VMOD operator, 263
VOLINT, 798
VOLINTEGRAL function, 266
VOLINTORDER vector, 267
VORDER, 797
VOUT, 793
VSTART, 793
VTAYLOR, 797

Warnings
TAYLOR package, 997

Wedge, 578
Weierstrass, 83, 967
Weierstrass Elliptic functions, 83, 946, 967
Weierstrass1, 968
WeierstrassZeta, 83, 967
WeierstrassZeta1, 968
WEIGHT, 174
weighted Hilbert series (CALI), 285, 310
Weighted ordering, 655
WeightedHilbertSeries, 326
WeightedHilbertSeries (CALI), 310
WeightedHilbertSeries!*, 311
WHEN, 168
WHERE, 168
WHILE, 60, 62, 63, 65
WHILE statement, 60
Whittaker functions, 82, 946, 955
WhittakerM, 82, 955
WhittakerW, 82, 955
wholespace, 343, 346, 366, 372, 375
WHOLESPACE_DIM, 342, 343
Workspace, 116
WRITE, 122
WS, 33, 180
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WTLEVEL, 174
WU package, 1049

X(I), 935
XAUTO, 1056
XCOLOR package, 1051
XFULLREDUCE switch, 1057
XI(I), 935
XIDEAL, 1055
XIDEAL package, 1053
XMOD, 1056
XMODIDEAL, 1055
XORDER, 1054
XPND

XPND
@, 578

XPND
@, 563
D, 563

XPND command, 578
XVARS, 1054

ZB_DIRECTION variable, 1077
ZB_FACTOR switch, 1077
ZB_ORDER variable, 1077
ZB_PROOF switch, 1077
ZB_TRACE switch, 1075, 1077
ZEILBERG package, 1060
ZEILBERGER_REPRESENTATION variable, 1077
zeroprimarydecomposition, 326
zeroprimarydecomposition!*, 313
zeroprimes, 326
zeroprimes!*, 313
zeroradical, 326
zeroradical!*, 313
zerosolve

* (CALI), 307
zerosolve, 326
zerosolve (CALI), 294
zerosolve1

* (CALI), 307
zerosolve1, 326
zerosolve1 (CALI), 294
zerosolve2
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* (CALI), 307
zerosolve2, 326
zeta, 82, 956
Zeta function, 956
Zeta function of Jacobi, 83, 964
ZETA(ALFA,I), 935
ZTRANS, 1080
ZTRANS package, 1080
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