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Abstract

This document provides the user with a description of the algebraic programming
system REDUCE. The capabilities of this system include:

1. expansion and ordering of polynomials and rational functions,
2. substitutions and pattern matching in a wide variety of forms,
3. automatic and user controlled simplification of expressions,
4. calculations with symbolic matrices,
5. arbitrary precision integer and real arithmetic,
6. facilities for defining new functions and extending program syntax,
7. analytic differentiation and integration,
8. factorization of polynomials,
9. facilities for the solution of a variety of algebraic equations,
10. facilities for the output of expressions in a variety of formats,
11. facilities for generating numerical programs from symbolic input,

12. Dirac matrix calculations of interest to high energy physicists.
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Chapter 1

Introductory Information

REDUCE is a system for carrying out algebraic operations accurately, no matter
how complicated the expressions become. It can manipulate polynomials in a va-
riety of forms, both expanding and factoring them, and extract various parts of
them as required. REDUCE can also do differentiation and integration, but we
shall only show trivial examples of this in this introduction. Other topics not con-
sidered include the use of arrays, the definition of procedures and operators, the
specific routines for high energy physics calculations, the use of files to eliminate
repetitious typing and for saving results, and the editing of the input text.

Also not considered in any detail in this introduction are the many options that
are available for varying computational procedures, output forms, number systems
used, and so on.

REDUCE is designed to be an interactive system, so that the user can input an al-
gebraic expression and see its value before moving on to the next calculation. For
those systems that do not support interactive use, or for those calculations, espe-
cially long ones, for which a standard script can be defined, REDUCE can also be
used in batch mode. In this case, a sequence of commands can be given to RE-
DUCE and results obtained without any user interaction during the computation.

In this introduction, we shall limit ourselves to the interactive use of REDUCE,
since this illustrates most completely the capabilities of the system. When RE-
DUCE is called, it begins by printing a banner message like:

Reduce (Free CSL version), 25-0Oct-14
where the version number and the system release date will change from time to

time. It proceeds to execute the commands in user’s startup (reducerc) file, if
such a file is present, then prompts the user for input by:
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You can now type a REDUCE statement, terminated by a semicolon to indicate the
end of the expression, for example:

(xt+y+z)"2;

This expression would normally be followed by another character (a on
an ASCII keyboard) to “wake up” the system, which would then input the expres-
sion, evaluate it, and return the result:

2 2 2
X 4+ 2#X*Y + 2+X+Z + Y + 2xY*xZ + Z

Let us review this simple example to learn a little more about the way that RE-
DUCE works. First, we note that REDUCE deals with variables, and constants
like other computer languages, but that in evaluating the former, a variable can
stand for itself. Expression evaluation normally follows the rules of high school
algebra, so the only surprise in the above example might be that the expression was
expanded. REDUCE normally expands expressions where possible, collecting like
terms and ordering the variables in a specific manner. However, expansion, order-
ing of variables, format of output and so on is under control of the user, and various
declarations are available to manipulate these.

Another characteristic of the above example is the use of lower case on input and
upper case on output. In fact, input may be in either mode, but output is usually in
lower case. To make the difference between input and output more distinct in this
manual, all expressions intended for input will be shown in lower case and output
in upper case. However, for stylistic reasons, we represent all single identifiers in
the text in upper case.

Finally, the numerical prompt can be used to reference the result in a later compu-
tation.

As a further illustration of the system features, the user should try:
for i:= 1:40 product i;
The result in this case is the value of 40!,
815915283247897734345611269596115894272000000000
You can also get the same result by saying
factorial 40;

Since we want exact results in algebraic calculations, it is essential that integer
arithmetic be performed to arbitrary precision, as in the above example. Further-
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more, the FOR statement in the above is illustrative of a whole range of combining
forms that REDUCE supports for the convenience of the user.

Among the many options in REDUCE is the use of other number systems, such as
multiple precision floating point with any specified number of digits — of use if
roundoff in, say, the 100t digit is all that can be tolerated.

In many cases, it is necessary to use the results of one calculation in succeeding
calculations. One way to do this is via an assignment for a variable, such as

u = (xtyt+z)"2;
If we now use U in later calculations, the value of the right-hand side of the above
will be used.

The results of a given calculation are also saved in the variable WS (for WorkSpace),
so this can be used in the next calculation for further processing.

For example, the expression
df (ws, x);

following the previous evaluation will calculate the derivative of (x+y+z) ~2 with
respect to X. Alternatively,

int (ws,y);

would calculate the integral of the same expression with respect to y.

REDUCE is also capable of handling symbolic matrices. For example,
matrix m(2,2);

declares m to be a two by two matrix, and
m := mat ((a,b), (c,d));

gives its elements values. Expressions that include M and make algebraic sense
may now be evaluated, such as 1/m to give the inverse, 2xm - u*m”2 to give us
another matrix and det (m) to give us the determinant of M.

REDUCE has a wide range of substitution capabilities. The system knows about
elementary functions, but does not automatically invoke many of their well-known
properties. For example, products of trigonometrical functions are not converted
automatically into multiple angle expressions, but if the user wants this, he can say,
for example:

(sin (a+b)+cos (a+b) )+ (sin(a-b)-cos (a-b))
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where cos (~x)*cos (~y) = (cos (x+y)+cos(x-y))/2,
cos (~x) *sin(~y) = (sin(x+y)-sin(x-y))/2,
sin(~x)*sin(~y) = (cos(x-y)-cos (x+y))/2;

where the tilde in front of the variables X and Y indicates that the rules apply for
all values of those variables. The result of this calculation is

—(COS (2%A) + SIN(2%B))

See also the user-contributed packages ASSIST (chapter 16.5), CAMAL (chap-
ter 16.10) and TRIGSIMP (chapter 16.78).

Another very commonly used capability of the system, and an illustration of one of
the many output modes of REDUCE, is the ability to output results in a FORTRAN
compatible form. Such results can then be used in a FORTRAN based numerical
calculation. This is particularly useful as a way of generating algebraic formulas
to be used as the basis of extensive numerical calculations.

For example, the statements

on fort;
df (log (x) * (sin(x) +cos (x) ) /sqrt (x),x,2);

will result in the output

ANS= (-4 .*LOG (X) *COS (X) *X*xx2-4 . *LOG (X) *COS (X) »X+3. %

. LOG (X) *#COS (X) =4 .+LOG(X) *SIN (X) *Xx*2+4 . *LOG (X) *

. SIN(X)*X+3.xLOG (X) *SIN(X)+8.+COS (X) *xX-8.%xCOS (X)—-8.
*SIN(X) *X—=8.*SIN(X))/ (4.xSQRT (X) xXx*2)

These algebraic manipulations illustrate the algebraic mode of REDUCE. RE-
DUCE is based on Standard Lisp. A symbolic mode is also available for executing
Lisp statements. These statements follow the syntax of Lisp, e.g.

symbolic car ' (a);

Communication between the two modes is possible.

With this simple introduction, you are now in a position to study the material in the
full REDUCE manual in order to learn just how extensive the range of facilities
really is. If further tutorial material is desired, the seven REDUCE Interactive
Lessons by David R. Stoutemyer are recommended. These are normally distributed
with the system.
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Structure of Programs

A REDUCE program consists of a set of functional commands which are evaluated
sequentially by the computer. These commands are built up from declarations,
statements and expressions. Such entities are composed of sequences of numbers,
variables, operators, strings, reserved words and delimiters (such as commas and
parentheses), which in turn are sequences of basic characters.

2.1 The REDUCE Standard Character Set

The basic characters which are used to build REDUCE symbols are the following:

1. The 26 letters a through z
2. The 10 decimal digits 0 through 9

3. The special characters _ ! " $ & ' () =+, — . / :; <
> = { } (blank)

With the exception of strings and characters preceded by an exclamation mark, the
case of characters is ignored: depending of the underlying LISP they will all be
converted internally into lower case or upper case: ALPHA, Alpha and alpha
represent the same symbol. Most implementations allow you to switch this con-
version off. The operating instructions for a particular implementation should be
consulted on this point. For portability, we shall limit ourselves to the standard
character set in this exposition.
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2.2 Numbers

There are several different types of numbers available in REDUCE. Integers consist
of a signed or unsigned sequence of decimal digits written without a decimal point,
for example:

-2, 5396, +32

In principle, there is no practical limit on the number of digits permitted as exact
arithmetic is used in most implementations. (You should however check the spe-
cific instructions for your particular system implementation to make sure that this
is true.) For example, if you ask for the value of 220%° you get it displayed as a
number of 603 decimal digits, taking up several lines of output on an interactive
display. It should be borne in mind of course that computations with such long
numbers can be quite slow.

Numbers that aren’t integers are usually represented as the quotient of two integers,
in lowest terms: that is, as rational numbers.

In essentially all versions of REDUCE it is also possible (but not always desirable!)
to ask REDUCE to work with floating point approximations to numbers again, to
any precision. Such numbers are called real. They can be input in two ways:

1. as a signed or unsigned sequence of any number of decimal digits with an
embedded or trailing decimal point.

2. as in 1. followed by a decimal exponent which is written as the letter E
followed by a signed or unsigned integer.

e.g. 32. +32.0 0.32E2 and 320.E-1 are all representations of 32.

The declaration SCIENTIFIC_NOTATION controls the output format of float-
ing point numbers. At the default settings, any number with five or less dig-
its before the decimal point is printed in a fixed-point notation, e.g., 12345. 6.
Numbers with more than five digits are printed in scientific notation, e.g.,
1.234567E+5. Similarly, by default, any number with eleven or more zeros
after the decimal point is printed in scientific notation. To change these defaults,
SCIENTIFIC_NOTATION can be used in one of two ways.

SCIENTIFIC_NOTATION m,

where m is a positive integer, sets the printing format so that a number with more
than m digits before the decimal point, or m or more zeros after the decimal point,
is printed in scientific notation.

SCIENTIFIC_NOTATION{m,n},

with m and n both positive integers, sets the format so that a number with more
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than m digits before the decimal point, or n or more zeros after the decimal point
is printed in scientific notation.

CAUTION: The unsigned part of any number may not begin with a decimal point,
as this causes confusion with the CONS (.) operator, i.e., NOT ALLOWED ARE:
.5 —.23 +.12;use 0.5 -0.23 +0.12 instead.

2.3 Identifiers

Identifiers in REDUCE consist of one or more alphanumeric characters (i.e. alpha-
betic letters or decimal digits) the first of which must be alphabetic. The maximum
number of characters allowed is implementation dependent, although twenty-four
is permitted in most implementations. In addition, the underscore character (_) is
considered a letter if it is within an identifier. For example,

a az pl g23p a_very_long_variable

are all identifiers, whereas

is not.

A sequence of alphanumeric characters in which the first is a digit is interpreted as
a product. For example, 2ab3c is interpreted as 2 xab3c. There is one exception
to this: If the first letter after a digit is E, the system will try to interpret that part of
the sequence as a real number, which may fail in some cases. For example, 2E12
is the real number 2.0 * 102, 2e3c is 2000.0*C, and 2ebc gives an error.

Special characters, such as —, », and blank, may be used in identifiers too, even as
the first character, but each must be preceded by an exclamation mark in input. For
example:

light!-years d!*!xn good! morning
!S$Ssign !5goldrings

CAUTION: Many system identifiers have such special characters in their names
(especially * and =). If the user accidentally picks the name of one of them for his
own purposes it may have catastrophic consequences for his REDUCE run. Users
are therefore advised to avoid such names.

Identifiers are used as variables, labels and to name arrays, operators and proce-
dures.

In graphical environments with typeset mathematics enabled, the (shared) vari-
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able FANCY_LOWER_DIGITS can be set to one of the values T, NIL or ALL to
control the display of digits within identifiers. The default value is T. Digits in
an identifier are typeset as subscripts if fancy_lower_digits = all orif
fancy_lower_digits = t and the digits are all at the end of the identifier.
For example, with the following values assigned to fancy_lower_digits, the
identifiers ab12cd34 and abcd34 are displayed as follows:

fancy_lower_digits abl2cd34 abcd34

t abl2cd34 abedsy
all abyacdsy abedsy
nil abl2cd34 abed34

Restrictions

The reserved words listed in section (A may not be used as identifiers. No spaces
may appear within an identifier, and an identifier may not extend over a line of text.

2.4 Variables

Every variable is named by an identifier, and is given a specific type. The type is
of no concern to the ordinary user. Most variables are allowed to have the default
type, called scalar. These can receive, as values, the representation of any ordinary
algebraic expression. In the absence of such a value, they stand for themselves.

Reserved Variables

Several variables in REDUCE have particular properties which should not be
changed by the user. These variables include:

CATALAN Catalan’s constant, defined as

()"
Z (2n+1)2

n=0

E Intended to represent the base of the natural logarithms. 1og (e),
if it occurs in an expression, is automatically replaced by 1. If
ROUNDED is on, E is replaced by the value of E to the current degree
of floating point precision.

EULER_GAMMA Euler’s constant, also available as —1/(1).

GOLDEN_RATTIO The number Lf
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I Intended to represent the square

root of —1. 1”2 is replaced by —1, and appropriately for higher
powers of I. This applies only to the symbol I used on the top level,
not as a formal parameter in a procedure, a local variable, nor in the
context for i:=

INFINITY Intended to represent co

in limit and power series calculations for example, as well as in def-
inite integration. Note however that the current system does not do
proper arithmetic on co. For example, infinity + infinity
is2«infinity.

KHINCHIN Khinchin’s constant, defined as

00 a)

n=1

NEGATIVE Used in the Roots package.

NIL In REDUCE (algebraic mode only) taken as a synonym for zero.
Therefore NIL cannot be used as a variable.

PI Intended to represent the circular constant. With ROUNDED on, it
is replaced by the value of 7 to the current degree of floating point
precision.

POSITIVE Used in the Roots package.

T Must not be used as a formal parameter or local variable in proce-
dures, since conflict arises with the symbolic mode meaning of T as
true.

Other reserved variables, such as LOW_POW, described in other sections, are listed
in Appendix A.

Using these reserved variables inappropriately will lead to errors.

There are also internal variables used by REDUCE that have similar restrictions.
These usually have an asterisk in their names, so it is unlikely a casual user would
use one. An example of such a variable is K! « used in the asymptotic command
package.

Certain words are reserved in REDUCE. They may only be used in the manner
intended. A list of these is given in the section “Reserved Identifiers”. There are,
of course, an impossibly large number of such names to keep in mind. The reader
may therefore want to make himself a copy of the list, deleting the names he doesn’t
think he is likely to use by mistake.
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2.5 Strings

Strings are used in WRITE statements, in other output statements (such as error
messages), and to name files. A string consists of any number of characters en-
closed in double quotes. For example:

"A String".

Lower case characters within a string are not converted to upper case.

The string " " represents the empty string. A double quote may be included in a
string by preceding it by another double quote. Thus "a""b" is the string a"b,
and """ " is the string consisting of the single character ".

2.6 Comments

Text can be included in program listings for the convenience of human readers, in
such a way that REDUCE pays no attention to it. There are two ways to do this:

1. Everything from the word COMMENT to the next statement terminator, nor-
mally ; or $, is ignored. Such comments can be placed anywhere a blank
could properly appear. (Note that END and >> are not treated as COMMENT
delimiters!)

2. Everything from the symbol % to the end of the line on which it appears is
ignored. Such comments can be placed as the last part of any line. Statement
terminators have no special meaning in such comments. Remember to put
a semicolon before the % if the earlier part of the line is intended to be so
terminated. Remember also to begin each line of a multi-line $ comment
with a % sign.

2.7 Operators

Operators in REDUCE are specified by name and type. There are two types, in-
fix and prefix. Operators can be purely abstract, just symbols with no properties;
they can have values assigned (using := or simple LET declarations) for specific
arguments; they can have properties declared for some collection of arguments
(using more general LET declarations); or they can be fully defined (usually by a
procedure declaration).

Infix operators have a definite precedence with respect to one another, and normally
occur between their arguments. For example:
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a+b-c (spaces optional)
x<y and y=z (spaces required where shown)

Spaces can be freely inserted between operators and variables or operators and
operators. They are required only where operator names are spelled out with let-
ters (such as the AND in the example) and must be unambiguously separated from
another such or from a variable (like Y). Wherever one space can be used, so can
any larger number.

Prefix operators occur to the left of their arguments, which are written as a list
enclosed in parentheses and separated by commas, as with normal mathematical
functions, e.g.,

cos (u)
df (x"2, x)
q (v+w)

Unmatched parentheses, incorrect groupings of infix operators and the like, natu-
rally lead to syntax errors. The parentheses can be omitted (replaced by a space
following the operator name) if the operator is unary and the argument is a single
symbol or begins with a prefix operator name:

cos y means cos(y)
cos (-y) — parentheses necessary
log cos y means log(cos(y))
log cos (atb) means log(cos(a+b))
but
cos axb means (cos a)*b
cos -y is erroneous (treated as a variable

“cos” minus the variable y)

A unary prefix operator has a precedence higher than any infix operator, including
unary infix operators. In other words, REDUCE will always interpret cos y +
3as (cos y) + 3ratherthanascos(y + 3).

Infix operators may also be used in a prefix format on input, e.g., + (a, b, c). On
output, however, such expressions will always be printed in infix form (i.e., a +
b + c for this example).

A number of prefix operators are built into the system with predefined properties.
Users may also add new operators and define their rules for simplification. The
built in operators are described in another section.
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Built-In Infix Operators

The following infix operators are built into the system. They are all defined inter-
nally as procedures.

(infix operator) — where | :=]|or | and|member | memq |
=|neqleq|>=]>]<=]|<]
S A R R

These operators may be further divided into the following subclasses:

(assignment operator) ~— — =

(logical operator) — or | and | member | memg
(relational operator) — =|neqgleqg|>=]>|<=]<
(substitution operator) ~— where

(arithmetic operator) — | x| xx

( —

construction operator)

MEMOQ and EQ are not used in the algebraic mode of REDUCE. They are explained
in the section on symbolic mode. WHERE is described in the section on substitu-
tions.

In previous versions of REDUCE, not was also defined as an infix operator. In the
present version it is a regular prefix operator, and interchangeable with null.

For compatibility with the intermediate language used by REDUCE, each special
character infix operator has an alternative alphanumeric identifier associated with
it. These identifiers may be used interchangeably with the corresponding special
character names on input. This correspondence is as follows:

1= setq (the assignment operator)
equal

= geq
greaterp

<= leqg

< lessp

+ plus

- difference (if unary, minus)

* times

/ quotient (if unary, recip)

or *% expt (raising to a power)
cons

Note: NEQ is used to mean not equal. There is no special symbol provided for it.
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The above operators are binary, except NOT which is unary and + and *= which
are nary (i.e., taking an arbitrary number of arguments). In addition, — and / may
be used as unary operators, e.g., /2 means the same as 1/2. Any other operator is
parsed as a binary operator using a left association rule. Thus a /b /¢ is interpreted
as (a/b) /c. There are two exceptions to this rule: := and . are right associa-
tive. Example: a:=b:=c is interpreted as a:=(b:=c). Unlike ALGOL and
PASCAL, * is left associative. In other words, a”b” c is interpreted as (a”b) ~c.

The operators <, <=, >, >= can only be used for making comparisons between
numbers. No meaning is currently assigned to this kind of comparison between
general expressions.

Parentheses may be used to specify the order of combination. If parentheses are
omitted then this order is by the ordering of the precedence list defined by the
right-hand side of the (infix operator) table at the beginning of this section, from
lowest to highest. In other words, WHERE has the lowest precedence, and . (the
dot operator) the highest.



44

CHAPTER 2. STRUCTURE OF PROGRAMS



Chapter 3

Expressions

REDUCE expressions may be of several types and consist of sequences of num-
bers, variables, operators, left and right parentheses and commas. The most com-
mon types are as follows:

3.1 Scalar Expressions

Using the arithmetic operations + — * / ~ (power) and parentheses, scalar ex-
pressions are composed from numbers, ordinary “scalar” variables (identifiers), ar-
ray names with subscripts, operator or procedure names with arguments and state-
ment expressions.

Examples:
x
x"3 = 2*y/(2%z72 — df(x,z))

(p*2 + m*2)"~(1/2)*log (y/m)
a(5) + b(i,q)

The symbol *x may be used as an alternative to the caret symbol (") for forming
powers, particularly in those systems that do not support a caret symbol.
Statement expressions, usually in parentheses, can also form part of a scalar ex-
pression, as in the example

w + (c:i=xty) + z
When the algebraic value of an expression is needed, REDUCE determines it, start-
ing with the algebraic values of the parts, roughly as follows:

Variables and operator symbols with an argument list have the algebraic values
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they were last assigned, or if never assigned stand for themselves. However, array
elements have the algebraic values they were last assigned, or, if never assigned,
are taken to be 0.

Procedures are evaluated with the values of their actual parameters.

In evaluating expressions, the standard rules of algebra are applied. Unfortunately,
this algebraic evaluation of an expression is not as unambiguous as is numerical
evaluation. This process is generally referred to as “simplification” in the sense that
the evaluation usually but not always produces a simplified form for the expression.

There are many options available to the user for carrying out such simplification.
If the user doesn’t specify any method, the default method is used. The default
evaluation of an expression involves expansion of the expression and collection
of like terms, ordering of the terms, evaluation of derivatives and other functions
and substitution for any expressions which have values assigned or declared (see
assignments and LET statements). In many cases, this is all that the user needs.

The declarations by which the user can exercise some control over the way in which
the evaluation is performed are explained in other sections. For example, if a real
(floating point) number is encountered during evaluation, the system will normally
convert it into a ratio of two integers. If the user wants to use real arithmetic,
he can effect this by the command on rounded;. Other modes for coefficient
arithmetic are described elsewhere.

If an illegal action occurs during evaluation (such as division by zero) or functions
are called with the wrong number of arguments, and so on, an appropriate error
message is generated.

3.2 Integer Expressions

These are expressions which, because of the values of the constants and variables
in them, evaluate to whole numbers.

Examples:

2, 37 % 999, (x + 3)72 = x"2 — 6%x
are obviously integer expressions.

I+ k- 2 % 32

is an integer expression when J and K have values that are integers, or if not integers
are such that “the variables and fractions cancel out”, as in

k — 7/3 — 5 + 2/3 + 2%3°2.
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3.3 Boolean Expressions

A boolean expression returns a truth value. In the algebraic mode of REDUCE,
boolean expressions have the syntactical form:

(expression) (relational operator) (expression)
or
(boolean operator) ({arguments))
or
(boolean expression) (logical operator) (boolean expression).

Parentheses can also be used to control the precedence of expressions.

In addition to the logical and relational operators defined earlier as infix operators,
the following boolean operators are also defined:

EVENP (U) determines if the number U is even or not;
FIXP (U) determines if the expression U is integer or not;

FREEOF (U, V) determines if the expression U does not contain the kernel
V anywhere in its structure;

NUMBERP (U) determines if U is a number or not;
ORDP (U, V) determines if U is ordered ahead of V by some canonical

ordering (based on the expression structure and an internal
ordering of identifiers);

PRIMEP (U) true if U is a prime object, i.e., any object other than 0 and
plus or minus 1 which is only exactly divisible by itself or
a unit.
Examples:
Jj<1

x>0 or x=-2

numberp x

fixp x and evenp x
numberp x and x neq 0
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Boolean expressions can only appear directly within IF, FOR, WHILE, and UNTIL
statements, as described in other sections. Such expressions cannot be used in place
of ordinary algebraic expressions, or assigned to a variable.

NB: For those familiar with symbolic mode, the meaning of some of these oper-
ators is different in that mode. For example, NUMBERP is true only for integers and
reals in symbolic mode.

When two or more boolean expressions are combined with AND, they are evaluated

one by one until a false expression is found. The rest are not evaluated. Thus
numberp x and numberp y and x>y

does not attempt to make the x>y comparison unless X and Y are both verified to

be numbers.

Similarly, evaluation of a sequence of boolean expressions connected by OR stops
as soon as a true expression is found.

NB: In a boolean expression, and in a place where a boolean expression is expected,
the algebraic value O is interpreted as false, while all other algebraic values are
converted to true. So in algebraic mode a procedure can be written for direct usage
in boolean expressions, returning say 1 or 0 as its value as in

procedure polynomialp (u, x);
if den(u)=1 and deg(u,x)>=1 then 1 else 0;

One can then use this in a boolean construct, such as
if polynomialp(q,z) and not polynomialp(q,y) then
In addition, any procedure that does not have a defined return value (for example,

a block without a RETURN statement in it) has the boolean value false.

3.4 Equations

Equations are a particular type of expression with the syntax
(expression) = (expression).

In addition to their role as boolean expressions, they can also be used as arguments
to several operators (e.g., SOLVE), and can be returned as values.

Under normal circumstances, the right-hand-side of the equation is evaluated but
not the left-hand-side. This also applies to any substitutions made by the SUB
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operator. If both sides are to be evaluated, the switch EVALLHSEQP should be
turned on.

To facilitate the handling of equations, two selectors, LHS and RHS, which re-
turn the left- and right-hand sides of an equation respectively, are provided. For
example,

lhs (atb=c) -> a+b

and
rhs (atb=c) -> c.

3.5 Proper Statements as Expressions

Several kinds of proper statements deliver an algebraic or numerical result of some
kind, which can in turn be used as an expression or part of an expression. For
example, an assignment statement itself has a value, namely the value assigned. So

2 * (X := atb)

is equal to 2« (a+b), as well as having the “side-effect” of assigning the value
a+b to X. In context,

y = 2 x (x := atb);

sets X to a+b and Y to 2x (a+b).

The sections on the various proper statement types indicate which of these state-
ments are also useful as expressions.
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Chapter 4

Lists

A list is an object consisting of a sequence of other objects (including lists them-
selves), separated by commas and surrounded by braces. Examples of lists are:

{a,b,c}
{1,a-b,c=d}

{{a}l, {{b,c},d},e}.
The empty list is represented as

(1.

4.1 Operations on Lists

Several operators in the system return their results as lists, and a user can create
new lists using braces and commas. Alternatively, one can use the operator LIST
to construct a list. An important class of operations on lists are MAP and SELECT
operations. For details, please refer to the chapters on MAP, SELECT and the FOR
command. See also the documentation on the ASSIST (chapter 16.5) package.

To facilitate the use of lists, a number of operators are also available for manip-
ulating them. PART ((1ist),n) for example will return the nth element of a
list. LENGTH will return the length of a list. Several operators are also defined
uniquely for lists. For those familiar with them, these operators in fact mirror the
operations defined for Lisp lists. These operators are as follows:
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4.1.1 LIST
The operator LIST is an alternative to the usage of curly brackets. LIST accepts an
arbitrary number of arguments and returns a list of its arguments. This operator is

useful in cases where operators have to be passed as arguments. E.g.,

list (a,list (list (b,c),d),e); ->  {{a}, {{b,c},d},e}

4.1.2 FIRST

This operator returns the first member of a list. An error occurs if the argument is
not a list, or the list is empty.

4.1.3 SECOND

SECOND returns the second member of a list. An error occurs if the argument is
not a list or has no second element.

4.14 THIRD

This operator returns the third member of a list. An error occurs if the argument is
not a list or has no third element.

4.1.5 REST

REST returns its argument with the first element removed. An error occurs if the
argument is not a list, or is empty.

4.1.6 . (Cons) Operator

This operator adds (“conses”) an expression to the front of a list. For example:

a . {b,c} -> {a,b,c}.

4.1.7 APPEND
This operator appends its first argument to its second to form a new list. Examples:

append({a,b}, {c,d}) -> {a,b,c,d}
append({{a,b}}, {c,d}) —> {{a,b},c,d}.
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4.1.8 REVERSE

The operator REVERSE returns its argument with the elements in the reverse or-
der. It only applies to the top level list, not any lower level lists that may occur.
Examples are:

reverse ({a,b,c}) -> {c,b,a}
reverse ({{a,b,c},d}) -> {d, {a,b,c}}.

4.1.9 List Arguments of Other Operators

If an operator other than those specifically defined for lists is given a single argu-
ment that is a list, then the result of this operation will be a list in which that
operator is applied to each element of the list. For example, the result of evaluating
log{a, b, c} is the expression {LOG (A) , LOG (B) , LOG(C) }.

There are two ways to inhibit this operator distribution. Firstly, the switch
LISTARGS, if on, will globally inhibit such distribution. Secondly, one can in-
hibit this distribution for a specific operator by the declaration LISTARGP. For
example, with the declaration 1istargp log, log{a, b, c} would evaluate to
LOG ({A,B,C}).

If an operator has more than one argument, no such distribution occurs.

4.1.10 Caveats and Examples

Some of the natural list operations such as member or delete are available only
after loading the package ASSIST (chapter 16.5).

Please note that a non-list as second argument to CONS (a "dotted pair" in LISP
terms) is not allowed and causes an "invalid as list" error.

a =17 . 4;
**xxx*% 17 4 invalid as list

Also, the initialization of a scalar variable is not the empty list — one has to set list
type variables explicitly, as in the following example:

load_package assist;
procedure lotto (n,m);

begin scalar list_1_n, luckies, hit;
list_1.n := {};
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luckies := {};

for k:=1:n do list_1 n := k . list_1 n;

for k:=1:m do

<< hit := part(list_1_n,random(n-k+1) + 1);

list_1 n := delete(hit,list_1_n);
luckies := hit . luckies >>;

return luckies;

end;
% In Germany, try lotto (49,6);

Another example: Find all coefficients of a multivariate polynomial with respect to
a list of variables:

procedure allcoeffs(g,lis);

% g : polynomial, lis: list of vars
allcoeffsl (list g, lis);

procedure allcoeffsl (g, lis);
if lis={} then g else
allcoeffsl (foreach gg in g join coeff(gq, first 1lis),
rest 1lis);
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Statements

A statement is any combination of reserved words and expressions, and has the
syntax

(statement) — (expression) | (proper statement)

A REDUCE program consists of a series of commands which are statements fol-
lowed by a terminator:

(terminator) — ; | $

The division of the program into lines is arbitrary. Several statements can be on
one line, or one statement can be freely broken onto several lines. If the program
is run interactively, statements ending with ; or $ are not processed until an end-of-
line character is encountered. This character can vary from system to system, but
is normally the key on an ASCII terminal. Specific systems may also use
additional keys as statement terminators.

If a statement is a proper statement, the appropriate action takes place.

Depending on the nature of the proper statement some result or response may or
may not be printed out, and the response may or may not depend on the terminator
used.

If a statement is an expression, it is evaluated. If the terminator is a semicolon, the
result is printed. If the terminator is a dollar sign, the result is not printed. Because
it is not usually possible to know in advance how large an expression will be, no
explicit format statements are offered to the user. However, a variety of output
declarations are available so that the output can be produced in different forms.
These output declarations are explained in Section 8.3.3.

The following sub-sections describe the types of proper statements in REDUCE.
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5.1 Assignment Statements

These statements have the syntax
(assignment statement) — (expression) := (expression)
The (expression) on the left side is normally the name of a variable, an operator

symbol with its list of arguments filled in, or an array name with the proper number
of integer subscript values within the array bounds. For example:

al := b + c

h(l,m) := x-2%y (where h is an operator)

k(3,5) := x—2xy (where k is a 2-dim. array)
More general assignments such as a+b := c are also allowed. The effect of these

is explained in Section 11.2.5.

An assignment statement causes the expression on the right-hand-side to be evalu-
ated. If the left-hand-side is a variable, the value of the right-hand-side is assigned
to that unevaluated variable. If the left-hand-side is an operator or array expression,
the arguments of that operator or array are evaluated, but no other simplification
done. The evaluated right-hand-side is then assigned to the resulting expression.
For example, if a is a single-dimensional array, a (1+1) := b assigns the value
b to the array element a (2) .

If a semicolon is used as the terminator when an assignment is issued as a command
(i.e. not as a part of a group statement or procedure or other similar construct), the
left-hand side symbol of the assignment statement is printed out, followed by a
“:=", followed by the value of the expression on the right.

It is also possible to write a multiple assignment statement:
(expression) := ... := (expression) := (expression)
In this form, each (expression) but the last is set to the value of the last (expression).

If a semicolon is used as a terminator, each expression except the last is printed
followed by a “: =" ending with the value of the last expression.

5.1.1 Set and Unset Statements
In some cases, it is desirable to perform an assignment in which both the left- and
right-hand sides of an assignment are evaluated. In this case, the SET statement

can be used with the syntax:

SET ((expression), {(expression)) ;
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For example, the statements

J o= 23;
set (mkid(a, j), x);
assigns the value X to A23.
To remove a value from such a variable, the UNSET statement can be used with the
syntax:
UNSET ({expression)) ;

For example, the statement

J o= 23;
unset (mkid(a, j));

clears the value of A2 3.

5.2 Group Statements

The group statement is a construct used where REDUCE expects a single state-
ment, but a series of actions needs to be performed. It is formed by enclosing one
or more statements (of any kind) between the symbols << and >>, separated by
semicolons or dollar signs — it doesn’t matter which. The statements are executed
one after another.

Examples will be given in the sections on IF and other types of statements in which
the << ...>> construct is useful.

If the last statement in the enclosed group has a value, then that is also the value
of the group statement. Care must be taken not to have a semicolon or dollar sign
after the last grouped statement, if the value of the group is relevant: such an extra
terminator causes the group to have the value NIL or zero.

5.3 Conditional Statements

The conditional statement has the following syntax:

(conditional statement) — IF (boolean expression) THEN (statement)
[ELSE (statement)]

The boolean expression is evaluated. If this is true, the first (statement) is executed.
If it is false, the second is.
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Examples:
if x=5 then a:=b+c else d:=e+f
if x=5 and numberp vy
then <<ff:=qgl; a:=b+c>>

else <<ff:=qg2; d:=e+f>>

Note the use of the group statement.

Conditional statements associate to the right; i.e.,

IF <a> THEN <b> ELSE IF <c> THEN <d> ELSE <e>
is equivalent to:

IF <a> THEN <b> ELSE (IF <c> THEN <d> ELSE <e>)
In addition, the construction

IF <a> THEN IF <b> THEN <c> ELSE <d>
parses as

IF <a> THEN (IF <b> THEN <c> ELSE <d>).

If the value of the conditional statement is of primary interest, it is often called a
conditional expression instead. Its value is the value of whichever statement was
executed. (If the executed statement has no value, the conditional expression has
no value or the value 0, depending on how it is used.)

Examples:

a:=1f x<5 then 123 else 45¢6;
b:=u + v*(if numberp z then 10xz else 1) + w;

If the value is of no concern, the ELSE clause may be omitted if no action is
required in the false case.

if x=5 then a:=b+c;
Note: As explained in Section 3.3, if a scalar or numerical expression is used in

place of the boolean expression — for example, a variable is written there — the true
alternative is followed unless the expression has the value 0.
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5.4 FOR Statements

The FOR statement is used to define a variety of program loops. Its general syntax
is as follows:

(var) := (number) (number)

{ STEP (number) UNT IL}
. (action) (exprn)

IN)| .
EACH (var) {ON} (list)
where
{action) — do | product | sum | collect | join.

The assignment form of the FOR statement defines an iteration over the indicated
numerical range. If expressions that do not evaluate to numbers are used in the
designated places, an error will result.

The FOR EACH form of the FOR statement is designed to iterate down a list.
Again, an error will occur if a list is not used.

The action DO means that (exprn) is simply evaluated and no value kept; the state-
ment returning 0 in this case (or no value at the top level). COLLECT means that
the results of evaluating (exprn) each time are linked together to make a list, and
JOIN means that the values of (exprn) are themselves lists that are joined to make
one list (similar to CONC in Lisp). Finally, PRODUCT and SUM form the respective
combined value out of the values of (exprn).

In all cases, (exprn) is evaluated algebraically within the scope of the current value
of (var). If (action) is DO, then nothing else happens. In other cases, (action) is
a binary operator that causes a result to be built up and returned by FOR. In those
cases, the loop is initialized to a default value (0 for SUM, 1 for PRODUCT, and an
empty list for the other actions). The test for the end condition is made before any
action is taken. As in Pascal, if the variable is out of range in the assignment case,
or the (list) is empty in the FOR EACH case, (exprn) is not evaluated at all.

Examples:

1. If A, B have been declared to be arrays, the following stores 57 through 102
in A (5) through A (10), and at the same time stores the cubes in the B
array:

for i := 5 step 1 until 10 do
<<a (i) :=1i72; b (i) :=1i"3>>

2. As a convenience, the common construction

step 1 until
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may be abbreviated to a colon. Thus, instead of the above we could write:
for i := 5:10 do <<a(i):=1i"2; b (i) :=1"3>>

3. The following sets C to the sum of the squares of 1,3,5,7,9; and D to the
expression xx (x+1) x (x+2) x (x+3) x (x+4) :

c := for j:=1 step 2 until 9 sum J"*2;
d := for k:=0 step 1 until 4 product (x+k);

4. The following forms a list of the squares of the elements of the list
{a,b,c}:

for each x in {a,b,c} collect x"2;

5. The following forms a list of the listed squares of the elements of the list
{a,b,c} (e, {{A"2},{B"2},{C"2}}):

for each x in {a,b,c} collect {x"2};

6. The following also forms a list of the squares of the elements of the list
{a,b, c}, since the JOIN operation joins the individual lists into one list:

for each x in {a,b,c} join {x"2};

The control variable used in the FOR statement is actually a new variable, not
related to the variable of the same name outside the FOR statement. In other words,
executing a statement for 1i:=...doesn’t change the system’s assumption that
i> = —1. Furthermore, in algebraic mode, the value of the control variable is
substituted in (exprn) only if it occurs explicitly in that expression. It will not

replace a variable of the same name in the value of that expression. For example:
b := a; for a := 1:2 do write b;

prints A twice, not 1 followed by 2.

5.5 WHILE...DO

The FOR ... DO feature allows easy coding of a repeated operation in which the
number of repetitions is known in advance. If the criterion for repetition is more
complicated, WHILE ... DO can often be used. Its syntax is:

WHILE (boolean expression) DO (statement)
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The WHILE ... DO controls the single statement following DO. If several state-
ments are to be repeated, as is almost always the case, they must be grouped using
the << ... >>or BEGIN... END as in the example below.

The WHILE condition is tested each time before the action following the DO is
attempted. If the condition is false to begin with, the action is not performed at all.
Make sure that what is to be tested has an appropriate value initially.

Example:

Suppose we want to add up a series of terms, generated one by one, until we reach
a term which is less than 1/1000 in value. For our simple example, let us suppose
the first term equals 1 and each term is obtained from the one before by taking one
third of it and adding one third its square. We would write:

ex:=0; term:=1;
while num(term - 1/1000) >= 0 do

<<ex := ex+term; term:=(term + term"2)/3>>;
ex;

As long as TERM is greater than or equal to (>=) 1/1000 it will be added to EX and
the next TERM calculated. As soon as TERM becomes less than 1/1000 the WHILE
test fails and the TERM will not be added.

5.6 REPEAT...UNTIL

REPEAT ... UNTIL is very similar in purpose to WHILE ... DO. Its syntax is:
REPEAT (statement) UNTIL (boolean expression)

(PASCAL users note: Only a single statement — usually a group statement — is
allowed between the REPEAT and the UNTIL.)

There are two essential differences:

1. The test is performed after the controlled statement (or group of statements)
is executed, so the controlled statement is always executed at least once.

2. The test is a test for when to stop rather than when to continue, so its “polar-
ity” is the opposite of that in WHILE ... DO.
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As an example, we rewrite the example from the WHILE . ..DO section:

ex:=0; term:=1;

repeat <<ex := ex+term; term := (term + term”2)/3>>
until num(term - 1/1000) < O;

ex;

In this case, the answer will be the same as before, because in neither case is a term
added to EX which is less than 1/1000.

5.7 Compound Statements

Often the desired process can best (or only) be described as a series of steps to be
carried out one after the other. In many cases, this can be achieved by use of the
group statement. However, each step often provides some intermediate result, until
at the end we have the final result wanted. Alternatively, iterations on the steps are
needed that are not possible with constructs such as WHILE or REPEAT statements.
In such cases the steps of the process must be enclosed between the words BEGIN
and END forming what is technically called a block or compound statement. Such a
compound statement can in fact be used wherever a group statement appears. The
converse is not true: BEGIN .. .END can be used in ways that << ... >> cannot.

If intermediate results must be formed, local variables must be provided in which
to store them. Local means that their values are deleted as soon as the block’s
operations are complete, and there is no conflict with variables outside the block
that happen to have the same name. Local variables are created by a SCALAR
declaration immediately after the BEGIN:

scalar a,b,c,z;
If more convenient, several SCALAR declarations can be given one after another:

scalar a,b,c;
scalar z;

In place of SCALAR one can also use the declarations INTEGER or REAL. In the
present version of REDUCE variables declared INTEGER are expected to have
only integer values, and are initialized to 0. REAL variables on the other hand are
currently treated as algebraic mode SCALARS.

CAUTION: INTEGER, REAL and SCALAR declarations can only be given imme-
diately after a BEGIN. An error will result if they are used after other statements
in a block (including ARRAY and OPERATOR declarations, which are global in
scope), or outside the top-most block (e.g., at the top level). All variables declared



5.7. COMPOUND STATEMENTS 63

SCALAR are automatically initialized to zero in algebraic mode (NIL in symbolic
mode).

Any symbols not declared as local variables in a block refer to the variables of
the same name in the current calling environment. In particular, if they are not so
declared at a higher level (e.g., in a surrounding block or as parameters in a calling
procedure), their values can be permanently changed.

Following the SCALAR declaration(s), if any, write the statements to be executed,
one after the other, separated by delimiters (e.g., ; or $) (it doesn’t matter which).
However, from a stylistic point of view, ; is preferred.

The last statement in the body, just before END, need not have a terminator (since
the BEGIN ... END are in a sense brackets confining the block statements). The
last statement must also be the command RETURN followed by the variable or
expression whose value is to be the value returned by the procedure. If the RETURN
is omitted (or nothing is written after the word RETURN) the procedure will have
no value or the value zero, depending on how it is used (and NIL in symbolic
mode). Remember to put a terminator after the END.

Example:

Given a previously assigned integer value for N, the following block will compute
the Legendre polynomial of degree N in the variable X:

begin scalar seed,deriv, top, fact;
seed:=1/(y"2 — 2+xxy +1)"(1/2);
deriv:=df (seed, y,n);
top:=sub (y=0,deriv);
fact:=for i:=1:n product 1i;
return top/fact

end;

5.7.1 Compound Statements with GO TO

It is possible to have more complicated structures inside the BEGIN ... END brack-
ets than indicated in the previous example. That the individual lines of the program
need not be assignment statements, but could be almost any other kind of state-
ment or command, needs no explanation. For example, conditional statements,
and WHILE and REPEAT constructions, have an obvious role in defining more
intricate blocks.

If these structured constructs don’t suffice, it is possible to use labels and GO TOs
within a compound statement, and also to use RETURN in places within the block
other than just before the END. The following subsections discuss these matters in
detail. For many readers the following example, presenting one possible definition
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of a process to calculate the factorial of N for preassigned N will suffice:
Example:
begin scalar m;

m:=1;
1: if n=0 then return m;

m:=m*n;
n:=n-1;
go to 1

end;

5.7.2 Labels and GO TO Statements

Within a BEGIN .. .END compound statement it is possible to label statements,
and transfer to them out of sequence using GO TO statements. Only statements on
the top level inside compound statements can be labeled, not ones inside subsidiary
constructions like << ...>>, IF ...THEN...,WHILE...DO..., etc.

Labels and GO TO statements have the syntax:

(go to statement) — GO TO (label) | GOTO (label)
(label) —  (identifier)
(labeled statement) —  (label) : (statement)

Note that statement names cannot be used as labels.
While GO TO is an unconditional transfer, it is frequently used in conditional state-
ments such as

if x>5 then go to abcd;

giving the effect of a conditional transfer.

Transfers using GO TOs can only occur within the block in which the GO TO is
used. In other words, you cannot transfer from an inner block to an outer block us-
ing a GO TO. However, if a group statement occurs within a compound statement,
it is possible to jump out of that group statement to a point within the compound
statement using a GO TO.

5.7.3 RETURN Statements

The value corresponding to a BEGIN ... END compound statement, such as a
procedure body, is normally O (NIL in symbolic mode). By executing a RETURN
statement in the compound statement a different value can be returned. After a
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RETURN statement is executed, no further statements within the compound state-
ment are executed.

Examples:

return x+y;
return m;
return;

Note that parentheses are not required around the x+y, although they are permitted.
The last example is equivalent to return 0 or return nil, depending on
whether the block is used as part of an expression or not.

Since RETURN actually moves up only one block level, in a sense the casual user
is not expected to understand, we tabulate some cautions concerning its use.

1. RETURN can be used on the top level inside the compound statement, i.e. as
one of the statements bracketed together by the BEGIN ... END

2. RETURN can be used within a top level << ... >> construction within the
compound statement. In this case, the RETURN transfers control out of both
the group statement and the compound statement.

3. RETURN can be used within an IF ... THEN ... ELSE ... on the top level
within the compound statement.

NOTE: At present, there is no construct provided to permit early termination of
a FOR, WHILE, or REPEAT statement. In particular, the use of RETURN in such
cases results in a syntax error. For example,

begin scalar y;
y := for 1:=0:99 do if a(i)=x then return b(i);

will lead to an error.
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Chapter 6

Commands and Declarations

A command is an order to the system to do something. Some commands cause
visible results (such as calling for input or output); others, usually called declara-
tions, set options, define properties of variables, or define procedures. Commands
are formally defined as a statement followed by a terminator

(command)  —  (statement)(terminator)
(terminator) — ;|$

Some REDUCE commands and declarations are described in the following sub-
sections.

6.1 Array Declarations

Array declarations in REDUCE are similar to FORTRAN dimension statements.
For example:

array a(l10),b(2,3,4);
Array indices each range from 0 to the value declared. An element of an array is

referred to in standard FORTRAN notation, e.g. A (2).

We can also use an expression for defining an array bound, provided the value of
the expression is a positive integer. For example, if X has the value 10 and Y the
value 7 then array c (5xx+y) isthe same as array c (57).

If an array is referenced by an index outside its range, an error occurs. If the array
is to be one-dimensional, and the bound a number or a variable (not a more general
expression) the parentheses may be omitted:

array a 10, c 57;
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The operator LENGTH applied to an array name returns a list of its dimensions.

All array elements are initialized to O at declaration time. In other words, an array
element has an instant evaluation property and cannot stand for itself. If this is
required, then an operator should be used instead.

Array declarations can appear anywhere in a program. Once a symbol is declared
to name an array, it can not also be used as a variable, or to name an operator or
a procedure. It can however be re-declared to be an array, and its size may be
changed at that time. An array name can also continue to be used as a parameter in
a procedure, or a local variable in a compound statement, although this use is not
recommended, since it can lead to user confusion over the type of the variable.

Arrays once declared are global in scope, and so can then be referenced anywhere
in the program. In other words, unlike arrays in most other languages, a declara-
tion within a block (or a procedure) does not limit the scope of the array to that
block, nor does the array go away on exiting the block (use CLEAR instead for this
purpose).

6.2 Mode Handling Declarations

The ON and OFF declarations are available to the user for controlling various sys-
tem options. Each option is represented by a switch name. ON and OFF take a list
of switch names as argument and turn them on and off respectively, e.g.,

on time;

causes the system to print a message after each command giving the elapsed CPU
time since the last command, or since TIME was last turned off, or the session be-
gan. Another useful switch with interactive use is DEMO, which causes the system
to pause after each command in a file (with the exception of comments) until a
is typed on the terminal. This enables a user to set up a demonstration
file and step through it command by command.

As with most declarations, arguments to ON and OFF may be strung together sep-
arated by commas. For example,

off time, demo;

will turn off both the time messages and the demonstration switch.

We note here that while most ON and OFF commands are obeyed almost instanta-
neously, some trigger time-consuming actions such as reading in necessary mod-
ules from secondary storage.

A diagnostic message is printed if ON or OFF are used with a switch that is not
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known to the system. For example, if you misspell DEMO and type
on demg;
you will get the message

*x*%* DEMQ not defined as switch.

6.3 END

The identifier END has two separate uses.

1) Its use in a BEGIN ... END bracket has been discussed in connection with
compound statements.

2) Files to be read using IN should end with an extra END; command. The reason
for this is explained in the section on the IN command. This use of END does not
allow an immediately preceding END (such as the END of a procedure definition),
so we advise using ; END; there.

6.4 BYE Command

The command BYE; (or alternatively QUIT;) stops the execution of REDUCE,
closes all open output files, and returns you to the calling program (usually the
operating system). Your REDUCE session is normally destroyed.

6.5 SHOWTIME Command

SHOWT IME; prints the elapsed time since the last call of this command or, on its
first call, since the current REDUCE session began. The time is normally given
in milliseconds and gives the time as measured by a system clock. The operations
covered by this measure are system dependent.

6.6 DEFINE Command

The command DEFINE allows a user to supply a new name for any identifier or
replace it by any well-formed expression. Its argument is a list of expressions of
the form
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(identifier) = (number) | (identifier) | (operator) |
(reserved word) | (expression)

Example:
define be==, x=y+z;

means that BE will be interpreted as an equal sign, and X as the expression y+z
from then on. This renaming is done at parse time, and therefore takes precedence
over any other replacement declared for the same identifier. It stays in effect until
the end of the REDUCE run.

The identifiers ALGEBRAIC and SYMBOLIC have properties which prevent
DEFINE from being used on them. To define ALG to be a synonym for
ALGEBRAIC, use the more complicated construction

put ("alg, 'newnam, "algebraic);
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Built-in Prefix Operators

In the following subsections are descriptions of the most useful prefix operators
built into REDUCE that are not defined in other sections (such as substitution
operators). Some are fully defined internally as procedures; others are more nearly
abstract operators, with only some of their properties known to the system.

In many cases, an operator is described by a prototypical header line as follows.
Each formal parameter is given a name and followed by its allowed type. The
names of classes referred to in the definition are printed in lower case, and param-
eter names in upper case. If a parameter type is not commonly used, it may be
a specific set enclosed in brackets { ... }. Operators that accept formal param-
eter lists of arbitrary length have the parameter and type class enclosed in square
brackets indicating that zero or more occurrences of that argument are permitted.
Optional parameters and their type classes are enclosed in angle brackets.

7.1 Numerical Operators

REDUCE includes a number of functions that are analogs of those found in most
numerical systems. With numerical arguments, such functions return the expected
result. However, they may also be called with non-numerical arguments. In such
cases, except where noted, the system attempts to simplify the expression as far as
it can. In such cases, a residual expression involving the original operator usually
remains. These operators are as follows:

7.1.1 ABS

ABS returns the absolute value of its single argument, if that argument has a nu-
merical value. A non-numerical argument is returned as an absolute value, with an
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overall numerical coefficient taken outside the absolute value operator. For exam-
ple:

abs (-3/4) -> 3/4

abs (2a) -> 2xABS (A)
abs (1) -> 1

abs (—-x) -> ABS (X)

7.1.2 CEILING

This operator returns the ceiling (i.e., the least integer greater than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

ceiling(=5/4) -> -1
ceiling (-a) —> CEILING(-A)

7.1.3 CONJ

This returns the complex conjugate of an expression, if that argument has a nu-
merical value. By default the complex conjugate of a non-numerical argument is
returned as an expression in the operators REPART and IMPART. For example:

conj (1+1) -> 1-T
conj (a+ixb) —-> REPART (A) - REPART (B) I
— IMPART (A) xI - IMPART (B)

If rules have been previously defined for the complex conjugate(s) of one or more
non-numerical terms appearing in the argument, these rules are applied and the
expansion in terms of the operators REPART and IMPART is suppressed.

For example:

realvalued a,b;

conj (atixb) > a-bxi

let conj z => z!%x, conj c => clx;
conj(atbxzxz!xtzxc!x) -> atb*zxzx + Cc*xz=*
conj atan z -> atan (zx*)

Note that in defining therule conj z => z!x*,theruleconj z!* => zis(in
effect) automatically defined and should not be entered by the user. A more conve-
nient method of associating two identifiers as mutual complex-conjugates is to use
the COMPLEX_CONJUGATES declaration as described in the section Declaring
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Complex Conjugates.

The main use of rules for CONJ is to associate two identifiers as complex conju-
gates as in the examples above. In addition rules of the form let conj(z)=>z,
conj (w)=>-w may be used. They imply that z is real-valued and w is purely
imaginary, although the effect of the first rule can also be obtained by declaring z
to be realvalued.

Rules of the form 1let conj z => «some-expression» may be used, but
are not recommended. More useful results will usually be obtained by defining
the equivalent rule let z => conj(«some-expression»). Rules of the
form let conj z => «some-—expression» are particularly problematic if
«some—-expression» involves z itself as they may be inconsistent, for exam-
ple let conj z => z+1. Even where they are consistent, better results may
usually achieved by defining alternative rules. For example, given:

realvalued a,b;
let conj z => 2%xa-z, conj w => w—2xbx*i;

so that the real part of z is a and the imaginary part of w is b, more useful results
will be obtained by defining the mathematically equivalent rules:

realvalued a,b,x,y;
let z => a +ixy, w => x + bxi;

Note also that the standard elementary functions and their inverses (where appro-
priate) are automatically defined to be SELFCONJUGATE so that conj (£ (z))
is simplified to £ (conj (z) ). User-defined operators may be declared to be self-
conjugate with the declaration SELFCONJUGATE.

7.1.4 FACTORIAL

If the single argument of FACTORIAL evaluates to a non-negative integer, its fac-
torial is returned. Otherwise an expression involving FACTORIAL is returned. For
example:

factorial (5) -> 120

factorial(a) -> FACTORIAL (A)

7.1.5 FIX

This operator returns the fixed value (i.e., the integer part of the given argument) if
its single argument has a numerical value. A non-numerical argument is returned
as an expression in the original operator. For example:
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fix(-5/4) -> -1
fix(a) -> FIX(A)

7.1.6 FLOOR

This operator returns the floor (i.e., the greatest integer less than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

floor (-5/4) -> =2
floor (a) —> FLOOR (A)

7.1.7 IMPART

This operator returns the imaginary part of an expression, if that argument has an
numerical value. A non-numerical argument is returned as an expression in the
operators REPART and IMPART. For example:

impart (1+1i) > 1

impart (sin (3+4%1)) —-> cos(3)+*sinh(4)

impart (log(2+1i)) -> atan(1l/2)

impart (asin(1+i)) -> acosh(sqgrt (5)+2)/2
impart (a+ixb) -> impart (a) + repart (b)

For the inverse trigometric and hyperbolic functions with non-numeric arguments
the output is usually more compact when the FACTOR is on.

7.1.8 MAX/MIN

MAX and MIN can take an arbitrary number of expressions as their arguments.
If all arguments evaluate to numerical values, the maximum or minimum of the
argument list is returned. If any argument is non-numeric, an appropriately reduced
expression is returned. For example:

max(2,-3,4,5) -> 5

(
min(2,-2) ->  =2.
max (a, 2, 3) -> MAX (A, 3)
min (x) -> X

MAX or MIN of an empty list returns 0.
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7.1.9 NEXTPRIME

NEXTPRIME returns the next prime greater than its integer argument, using a prob-
abilistic algorithm. A type error occurs if the value of the argument is not an inte-
ger. For example:

nextprime (5) -> 7
nextprime (-2) -> 2
nextprime (=7) -> -5

nextprime 1000000 —-> 1000003

whereas nextprime (a) gives a type error.

7.1.10 RANDOM

random (n) returns a random number 7 in the range 0 < r < n. A type error
occurs if the value of the argument is not a positive integer in algebraic mode, or
positive number in symbolic mode. For example:

random (5) > 3
random (1000) -> 191

whereas random (a) gives a type error.

7.1.11 RANDOM_NEW_SEED

random_new_seed (n) reseeds the random number generator to a sequence
determined by the integer argument n. It can be used to ensure that a repeat-
able pseudo-random sequence will be delivered regardless of any previous use of
RANDOM, or can be called early in a run with an argument derived from something
variable (such as the time of day) to arrange that different runs of a REDUCE pro-
gram will use different random sequences. When a fresh copy of REDUCE is first
created it is as if random_new_seed (1) has been obeyed.

A type error occurs if the value of the argument is not a positive integer.

7.1.12 REIMPART

This returns a two-element list of the real and imaginary parts of an expression, if
that argument has an numerical value. A non-numerical argument is returned as an
expression in the operators REPART and TMPART. This is more efficient than call-
ing REPART and IMPART separately particularly if its argument is complicated.
For example:
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reimpart (1+1) -> {1,1}
reimpart (sin(3+4xi)) —-> {cosh(4)+*sin(3),cos (3)*sinh(4)}
reimpart (log(2+1)) -> {log(5)/2,atan(1/2)}
reimpart (asin(1+i)) —-> {acos(sqgrt(5)2)/2,acosh(sqrt (5)+2)/2}
reimpart (atixb) ->

{ - impart(b) + repart(a),impart(a) + repart (b)}

For the inverse trigometric and hyperbolic functions with non-numeric arguments
the output is usually more compact when the FACTOR is on.

7.1.13 REPART

This returns the real part of an expression, if that argument has an numerical value.
A non-numerical argument is returned as an expression in the operators REPART
and TMPART. For example:

repart (1+i) > 1

repart (sin (3+4%1)) —-> cosh(4)*sin(3)

repart (log(2+1i)) -> log(5)/2

repart (asin(1+1i)) -> acos (sqgrt (5)-2)/2

repart (a+ixb) -> - impart (b) + repart (a)

For the inverse trigometric and hyperbolic functions with non-numeric arguments
the output is usually more compact when the FACTOR is on.

7.1.14 ROUND

This operator returns the rounded value (i.e, the nearest integer) of its single argu-
ment if that argument has a numerical value. A non-numeric argument is returned
as an expression in the original operator. For example:

round (-5/4) -> -1

round (a) —> ROUND (A)

7.1.15 SIGN

SIGN tries to evaluate the sign of its argument. If this is possible SIGN returns
one of 1, 0 or -1. Otherwise, the result is the original form or a simplified variant.
For example:

sign (=5) -> -1
sign (—a”2xb) -> —SIGN(B)
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Note that even powers of formal expressions are assumed to be positive only as
long as the switch COMPLEX is off.

7.2 Mathematical Functions

REDUCE knows that the following represent mathematical functions that can take
arbitrary scalar expressions as their argument(s).

7.2.1 Elementary Functions
Trigonometric, hyperbolic and exponential functions:

sin cos tan cot c¢csc sec sinh
cosh tanh coth csch sech exp

Their inverse functions:

asin acos atan acot acsc asec asinh acosh
atanh acoth acsch asech log logl0O logb

where 1o0g is the natural logarithm, 10g10 is the logarithm to base 10, and 1ogb
has two arguments of which the second is the logarithmic base. Note on the CSL
GUI and other graphical interfaces the inverse trig and hyperbolic functions are
output as arcsin etc.

Miscellaneous functions:
sgrt hypot atan2

The function hypot takes two arguments x and y and returns the value /22 + 32
but, when the switch ROUNDED is ON, problems with rounding and possible over-
flow for large numerical arguments are reduced.

The function atan?2 also takes two arguments y and x respectively and returns a
value of arctan(y/x) in the range (—m, 7] taking account of the signs of its two
arguments and avoiding an error if z = 0.

REDUCE knows various elementary identities and properties of these functions.
For example:

cos (—x) = cos(x) sin(-x) = -sin(x)
cos (nxpi) = (=-1)"n sin (nxpi) = 0
log( = e (1ixpi/2) = 1

(

e) 1
1) =0 e (ixpi) = -1
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log(e™x) = x e’ (3*xi*xpi/2) = -1
sin(asin(x) = x atan(0) = 0
atan2 (0, -1) = pi atan2 (1, 0) = pi/2

The derivatives of all the elementary functions except hypot are also known
to the system. Beside these identities, there are a lot of simplifications for ele-
mentary functions defined in REDUCE as rulelists. In order to view these, the
SHOWRULES operator can be used, e.g.

SHOWRULES tan;

{tan (~n+arbint (~i) *xpi + ~~x) => tan(x) when fixp (n),
tan(~x) => trigquot (sin(x),cos(x)) when knowledge_about (sin, x,tan),
~x + ~~k*pi % K
tan(-=——===—————— ) => — cot(—-—— + ixpiximpart (-—-))
NNd d d
k 1
when abs (repart (-—-))=-——-,
d 2
~~W + ~~k*pi W k k
tan (=======mmmm e ) => tan(--- + (--——- - fix(repart (---)))*pi)
~~d d d d
k
when ((ratnump (rp) and abs (rp)>=1) where rp => repart(-———)),
d
tan(atan(~x)) => x,
2

df (tan(~x),~x) => 1 + tan(x) }
For further simplification, especially of expressions involving trigonometric funct-
ions, see the TRIGSIMP package (chapter 16.78) documentation.

Functions not listed above may be defined in the special functions package
SPECFN.

The user can add further rules for the reduction of expressions involving these
operators by using the LET command.

In many cases it is desirable to expand product arguments of logarithms, or collect
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a sum of logarithms into a single logarithm. Since these are inverse operations, it
is not possible to provide rules for doing both at the same time and preserve the
REDUCE concept of idempotent evaluation. As an alternative, REDUCE provides
two switches EXPANDLOGS and COMBINELOGS to carry out these operations.
Both are off by default, and are subject to the value of the switch PRECISE. This
switch is on by default and prevents modifications that may be false in a complex
domain. Thus to expand LOG (3+Y) into a sum of logs, one can say

ON EXPANDLOGS; LOG(3%*Y);
whereas to expand LOG (X*Y) into a sum of logs, one needs to say
OFF PRECISE; ON EXPANDLOGS; LOG (Xx*Y);
To combine this sum into a single log:
OFF PRECISE; ON COMBINELOGS; LOG(X) + LOG(Y);

These switches affect the logarithmic functions LOG10 (base 10) and LOGB (ar-
bitrary base) as well.

At the present time, it is possible to have both switches on at once, which could
lead to infinite recursion. However, an expression is switched from one form to the
other in this case. Users should not rely on this behavior, since it may change in
the future.

The current version of REDUCE does a poor job of simplifying surds. In particular,
expressions involving the product of variables raised to non-integer powers do not
usually have their powers combined internally, even though they are printed as if
those powers were combined. For example, the expression

XM (1/3)*x"~(1/6);
will print as

SQRT (X)
but will have an internal form containing the two exponentiated terms. If you
now subtract sqrt (x) from this expression, you will not get zero. Instead, the
confusing form

SQRT (X) - SORT (X)

will result. To combine such exponentiated terms, the switch COMBINEEXPT
should be turned on.
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The square root function can be input using the name SQRT, or the power opera-
tion ~ (1/2). On output, unsimplified square roots are normally represented by
the operator SQRT rather than a fractional power. With the default system switch
settings, the argument of a square root is first simplified, and any divisors of the
expression that are perfect squares taken outside the square root argument. The
remaining expression is left under the square root. Thus the expression

sgrt (-8a”2xb)
becomes
2xa*xsqgrt (-2+Db) .

Note that such simplifications can cause trouble if A is eventually given a value
that is a negative number. If it is important that the positive property of the square
root and higher even roots always be preserved, the switch PRECISE should be
set on (the default value). This causes any non-numerical factors taken out of surds
to be represented by their absolute value form. With PRECISE on then, the above
example would become

2xabs (a) xsqgrt (-2xb) .

However, this is incorrect in the complex domain, where V22 is not identical to
|z|. To avoid the above simplification, the switch PRECISE_COMPLEX should be
set on (default is off). For example:

on precise_complex; sqgrt (—-8a”2xb);
yields the output

2
2%sqrt ( - 2%a «b)

If the switch ROUNDED is on, any of the elementary functions

acos acosh acot acoth acsc acsch asec asech
asin asinh atan atanh atan2 cos cosh cot coth
csc csch exp hypot log logb loglO sec sech
sin sinh sqgrt tan tanh

when given a numerical argument has its value calculated to the current degree of
floating point precision. In addition, real (non-integer valued) powers of numbers
will also be evaluated.

If the COMPLEX switch is turned on in addition to ROUNDED, these funct-
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ions will also calculate a real or complex result, again to the current degree of
floating point precision, if given complex arguments. For example, with on
rounded, complex;

2.37(5.61) -> -0.0480793490914 - 0.998843519372~*1I
cos (2+31) -> -4.18962569097 - 9.10922789376%1I

For 1og and the inverse trigonometric and hyperbolic functions which are multi-
valued, the principal value is returned. The branch cuts chosen (except for acot)
are now those recommended by W. Kahan (Branch Cuts for Complex Elementary
Functions, or Much Ado About Nothing’s Sign Bit, in The State of the Art in Nu-
merical Analysis, A. Iserles, M.J.D. Powell Eds., Clarendon Press, Oxford, 1987).

The exception for acot is necessary as elsewhere in REDUCE acot(—z) is taken
to be m — acot(z) rather than — acot(z). The branch cuts are:

log, sqrt:  {r|reRATr <0}

asin, acos: {r|reRA(r>1vr<-—-1)}

acsc,asec:  {r|reRAr#0Ar>—-1Ar<1}

atan, acot: {rxi|reRA(r>1Vr<-1)}

asinh: {rxi|reRA(r>1vr<-1)}
acsch: {rxi|reRAT#0Ar>—-1Ar<1}
acosh: {rlreRAr<1}

asech: {rireRA(r>1Vvr<0)}

atanh: {rireRA(r>1Vvr<-1)}

acoth: {rireRAr>-1Ar<1}

7.2.2 Special Functions

The functions in this section are either built-in or are autoloading functions from
the package SPECFN. On the CSL GUI and other graphical interfaces many of the
functions will be output in standard form; for example BesselJ (nu, x) will be
output as J,(z) and Jacobisn (u, k) as sn(u, k). For most of the non-unary
special functions in this section (Lerch_Phi is an exception), the last parameter
is the ‘main’ variable and the earlier parameters are the order (or orders) usually
rendered in the literature as subscipts and/or superscripts.

The information provided below is fairly rudimentary; more complete information
may be found in the SPECFN package. Quick Reference Tables are also available.

Integral Functions:
Fi Li Si Ci Shi Chi Erf Fresnel_S Fresnel_C

All these functions are unary; the first six are the exponential, logarithmic, sine
and cosine integrals and their hyperbolic counterparts. Erf, Fresnel_S and
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Fresnel_C are the error function and the Fresnel sine and cosine integrals re-
spectively.

Beta, Gamma and Related Functions:

Beta ibeta Gamma igamma psi Polygamma
The Gamma function is unary whilst Bet a is binary. The binary function i gamma
and ternary function ibeta are the (normalised) incomplete Gamma and Beta
functions respectively. The unary function psi is sometimes known as the

Digamma function and the binary function Polygamma with integer first param-
eter n is the nth derivative of the function psi.

Bessel and Related Functions:
BesselJ BesselY Bessell BesselK Hankell Hankel2

All of these functions are binary, their first argument being the order of the function.
For the special functions below, a second Quick Reference Table is available.

Airy Functions:
Airy_Ai Airy_Aiprime Airy_Bi Airy_Biprime

These are all unary functions.

Kummer, Lommel, Struve and Whittaker Functions:

KummerM KummerU Lommell Lommel?2
StruveH Struvel WhittakerM WhittakerW

The Struve functions are both binary whilst the remaining ones are all ternary.

Riemann Zeta and Lambert’s W Function:
zeta Lambert W

These are both unary functions.

PolyLogarithms and Related Functions
dilog Polylog Lerch_Phi

These take one, two and three arguments respectively.

Associated Legendre functions:

SphericalHarmonicY SolidHarmonicY
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These functions take four and six arguments respectively.

Jacobi Elliptic Functions:

Jacobisn Jacobicn Jacobidn
and their three reciprocals

Jacobins Jacobinc Jacobind
and six quotients

Jacobisc Jacobisd Jacobicd
Jacobics Jacobids Jacobidc

All are binary functions with the second argument being the modulus. The binary
function Jacobiam is the amplitude.

Complete and Incomplete Elliptic Integrals of the First & Second Kinds:

EllipticK EllipticE EllipticF EllipticE
JacobiE JacobiZeta

The function E11ipticE may take one or two arguments to denote the com-
plete and Legendre’s form of the incomplete elliptic integrals of the second kind
respectively. The complete integral of the first kind E11ipticK is unary whilst
EllipticF, JacobiE and JacobiZeta are binary and represent the incom-
plete integral of the first kind, Jacobi’s form of the incomplete elliptic integral of
the second kind and Jacobi’s Zeta function respectively.

Jacobi’s Theta Functions:

EllipticThetal EllipticTheta?2
EllipticTheta3 EllipticTheta4

are all binary functions with the second argument being the ‘parameter’ 7, the
nome ¢ being given by ¢ = exp(in7)

Weierstrassian Elliptic Functions:

Weierstrass WeierstrassZeta
sigma sigmal sigma2 sigma3
Weierstrassl WeilerstrasszZetal

are all ternary functions with the second and third arguments of the first six funct-
ions being the the lattice period parameters w; and ws. The remaining two funct-
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ions are alternative versions of the Weierstrass functions with the second and third
arguments being the lattice invariants g2 and gs. For the elliptic functions above a
Quick Reference Table is available.

7.2.3 Polynomial Functions

The polynomial functions below are from the non-core package SPECFN and for
the most part are not autoloading. This package needs to be loaded before they
may be used with the command:

load_package specin;

The names of the REDUCE operators for the polynomial functions below are
mostly built by adding a P to the name of the polynomial, e.g. EulerP imple-
ments the Euler polynomials.

The information in this subsection is fairly rudimentary; more complete informa-
tion may be found in the SPECFN package.
A Quick Reference Table is available for all the polynomial functions below.

Orthogonal Polynomials

Some well-known orthogonal polynomials are available:

e Hermite polynomials: (HermiteP);

e Chebyshev polynomials: (ChebyshevT, ChebyshevU);

e [egendre polynomials: (LegendreP);

e Laguerre polynomials: (LaguerreP);

o Associated Legendre functions: (LegendreP);

e Generalised Laguerre (or Sonin) polynomials: (LaguerreP);
e Gegenbauer polynomials: (GegenbauerP);

e Jacobi polynomials: (JacobiP).

The first three of these functions are binary and the first argument should be an in-
teger specifying the order of the required polynomial. The functions LegendreP
and LaguerreP may be used either as binary operators or ternary ones and rep-
resent the corresponding ‘basic’ and associated functions respectively. Finally the
Gegenbauer polynomials are ternary whilst the Jacobi polynomials are quaternary.
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Most definitions are equivalent to those in [ ], except for the ternary associated
Legendre functions:

d™P, ()
(m) () = (— o p2ym/2Z )
P () = (1) (1 - a2y S
These are sometimes mistakenly referred to as associated Legendre polynomials,
but they are only polynomial when m is even.

Other Polynomial Functions

Fibonacci Polynomials are computed by the binary operator FibonacciP,
where FibonacciP (n, x) returns the nth Fibonacci polynomial in the variable
x. If n is an integer, it will be evaluated using the recursive definition:

Fy(x) =0; Fi(x) =1, Fo(x) =2F,—1(x) + Fh—2(x) .

Euler Polynomials are computed by the binary operator EulerP, where
EulerP (n, x) returns the nth Euler polynomial in the variable x.

Bernoulli Polynomials are computed by the binary operator BernoulliP, where
BernoulliP (n, x) returns the nth Bernoulli polynomial in the variable x.

7.3 Combinatorial Numbers

Binomial coefficients are provided by the binary operator Binomial. The value
of binomial (n, m), where n and m are non-negative integers with n > m, is
the number of ways of choosing m items from a set of n distinct items as well, of
course, as being the coefficient of 2™ in the expansion of (1 + x)".

The function call binomial (n, m), where n and m are non-negative integers,
will return the expected integer value (from Pascal’s triangle). For other real
numerical values the result will usually involve the I' function, but if the switch
ROUNDED is ON the I' functions will be evaluated numerically. This will also be
the case for complex numerical arguments if the switch COMPLEX is ON. For non-
numeric arguments the result returned will involve the original oerator binomial,
or its pretty-printed equivalent on graphical interfaces.

Stirling numbers of the first and second kind are computed by the binary
operators Stirlingl and Stirling2 respectively using explicit formulae.
stirlingl (n, k) is (=1)"% x (the number of permutations of the set
{1,2,...,n} into exactly k cycles).

stirling2 (n, k) is the number of partitions of the set {1,2,...,n} into ex-
actly k non-empty subsets.

Here n and k& should be non-negative integers with n > k.
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For integer arguments an integer result will be returned, otherwise a result in-
volving the original operator will be returned. Note on graphical user interfaces
Stirlingl (n,m) and Stirling2 (n,m) are rendered as s]' and S respec-
tively.

Stirling numbers are implemented in the non-core package SPECFN and are not
currently autoloading. Before use this package should be loaded with the com-
mand:

load_package specitn;

For more information see here.

A Motzkin number )/, (named after Theodore Motzkin) is the number of differ-
ent ways of drawing non-intersecting chords on a circle between n points. For a
non-negative integer n, the operator Mot zkin (n) returns the nth Motzkin num-
ber, according to the recursion formula

2n+ 3 3n
My =1; M, =1; My = M, M,_1.
0 ; 1 ; +1 it 3 +n+3 1

The recursion is, of course, optimised as a simple loop to avoid repeated computa-
tion of lower-order numbers.

For the functions in this and the section below a Quick Reference Table is available.
It also includes a list of reserved constants known to REDUCE.

7.4 Bernoulli, Euler and Fibonacci Numbers

Bernoulli numbers are provided by the unary operator Bernoulli. If nis anon-
negative integer, the call Bernoulli (n) evaluates to the nth Bernoulli number;
all of the odd Bernoulli numbers, except Bernoulli (1), are zero. Otherwise
the result involves the original operator bernoulli; on graphical interfaces this
is rendered as B,,.

Euler numbers are computed by the unary operator Euler. If n is a non-negative
integer, the call Euler (n) returns the nth Euler number; all of the odd Euler num-
bers are zero. Otherwise the result returned involves the original operator euler;
on graphical interfaces this is rendered as E,,.

Fibonacci numbers are provided by the unary operator Fibonacci, where
Fibonacci (n) evaluates to the nth Fibonacci number; if n is an integer, this
will be evaluated following the recursive definition:

Fy = 0; Fr=1; F,=F, 1+F, .

The recursion is, of course, optimised as a simple loop to avoid repeated compu-
tation of lower-order numbers. Otherwise the result returned involves the original
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operator f ibonacci; on graphical interfaces this is rendered as F,,.

7.5 CHANGEVAR operator

Author: G. Ugoluk.

The operator CHANGEVAR does a variable transformation in a set of differential
equations. Syntax:

changevar ({depvars), (newvars), (eqlist), (diffeq))

(diffeq) is either a single differential equation or a list of differential equat-
ions, (depvars) are the dependent variables to be substituted, (newvars) are the
new depend variables, and (eglist) is a list of equations of the form (depvar) =
(expression) where (expression) is some function in the new dependent variables.

The three lists (depvars), (newvars), and (eglist) must be of the same length. If
there is only one variable to be substituted, then it can be given instead of the
list. The same applies to the list of differential equations, i.e., the following two
commands are equivalent

changevar (u, vy, x=e’y,df (u(x),x) - log(x));
changevar ({u}, {y}, {x=e”y}, {df (u(x),x) — log(x)});

except for one difference: the first command returns the transformed differential
equation, the second one a list with a single element.

The switch DISPJACOBIAN governs the display the entries of the inverse Jaco-
bian, it is OFF per default.

The mathematics behind the change of independent variable(s) in differential
equations is quite straightforward. It is basically the application of the chain rule.
If the dependent variable of the differential equation is F', the independent vari-
ables are x; and the new independent variables are u; (where i=1...n) then the first

derivatives are:
oF B oF auj

8:@ - auj 8.1’Z
We assumed FEinstein’s summation convention. Here the problem is to calculate
the Ju; /Ox; terms if the change of variables is given by

Z; :fi(ula~--7un)

The first thought might be solving the above given equations for u; and then dif-
ferentiating them with respect to x;, then again making use of the equations above,
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substituting new variables for the old ones in the calculated derivatives. This is
not always a preferable way to proceed. Mainly because the functions f; may not
always be easily invertible. Another approach that makes use of the Jacobian is
better. Consider the above given equations which relate the old variables to the
new ones. Let us differentiate them:

Ox; _ 0f;
6:@ N 8361
. 8f] 6uk

A Giuk (91‘1
The first derivative is nothing but the (7, k) th entry of the Jacobian matrix.

So if we speak in matrix language

where we defined the Jacobian

3, 2 9%
Ou;
and the matrix of the derivatives we wanted to obtain as
A Ou;
ij = 87563

If the Jacobian has a non-vanishing determinant then it is invertible and we are able
to write from the matrix equation above:

D=J"1
so finally we have what we want
= |J7 .
6$J [ ]zj

The higher derivatives are obtained by the successive application of the chain rule
and using the definitions of the old variables in terms of the new ones. It can be
easily verified that the only derivatives that are needed to be calculated are the first
order ones which are obtained above.

7.5.1 CHANGEVAR example: The 2-dim. Laplace Equation

The 2-dimensional Laplace equation in cartesian coordinates is:

Ou  u
ox? = 0y



7.5. CHANGEVAR OPERATOR 89
Now assume we want to obtain the polar coordinate form of Laplace equation. The
change of variables is:

T =rcosb, y =rsind

The solution using CHANGEVAR is as follows

changevar ({u}, {r,theta}, {x=rxcos theta,y=rxsin theta},
{df (u(x,y),x,2)+df (u(x,y),¥,2)} );

Here we could omit the curly braces in the first and last arguments (because those
lists have only one member) and the curly braces in the third argument (because
they are optional), but you cannot leave off the curly braces in the second argument.
So one could equivalently write

changevar (u, {r,theta}, x=r*cos theta,y=rxsin theta,
df (u(x,y),x,2)+df (u(x,y),¥,2) );

If you have tried out the above example, you will notice that the denominator con-
tains a cos? § + sin? § which is actually equal to 1. This has of course nothing to
do with CHANGEVAR. One has to be overcome these pattern matching problems
by the conventional methods REDUCE provides (a rule, for example, will fix it).

Secondly you will notice that your u (x, y) operator has changedtou (r, theta)
in the result. Nothing magical about this. That is just what we do with pencil and
paper. u (r, theta) represents the the transformed dependent variable.

7.5.2 Another CHANGEVAR example: An Euler Equation

Consider a differential equation which is of Euler type, for instance:
l,3y/// _ 31'22/” + 61’y, —6y=0

where prime denotes differentiation with respect to . As is well known, Euler
type of equations are solved by a change of variable:

r=e
So our call to CHANGEVAR reads as follows:

changevar (y, u, x=exxu, x**x3*xdf(y(x),x,3)-
3xxx*x2+xdf (v (X) ,x,2) +6xxxdf (y(X),x)-6%y (X)) ;

and returns the result

df (y(u),u,3) - 6xdf(y(u),u,2) + 1llxdf(y(u),u) - 6xy(u)
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7.6 CONTINUED_FRACTION Operator

The operator CONTINUED_FRACTION generates the continued fraction expan-
sion of a rational number argument. For irrational or rounded arguments, it ap-
proximates the real number as a rational number to the current system precision
and generates the continued fraction expansion. Currently the operator CF is a
complete synonym for CONTINUED_FRACTION although this may change in fu-
ture updates of the package RATAPRX.

The operator CONTINUED_FRACTION accepts one, two or three arguments: the
number to be expanded; an optional maximum size permitted for the denominator
of the convergent and an optional number of continuents to be generated:

continued_fraction ({(num))
continued_fraction ((num), (size))
continued_fraction ((num), (size), (numterms))

The result is the special operator cont frac with three arguments: the original
number to be expanded (num), secondly the rational number approximation (the
final convergent) and thirdly a list of continuents of the continued fraction (i.e. a
list of pairs of partial numerators and denominators)

{to0, {1, t1}, {1, t2}, .... }
which represents the same value according to the definition
t0 +1/(tl + 1/(t2 + ...)).

Note that, although with the current algorithm all the partial numerators have the
value 1, they are stored in the list of continuents. This is for compatibility with
the output of other continued fractions functions cfrac and cf_euler. This
facilitates pretty-printing and the implementation of various equivalence transfor-
mations all of which are documented in the continued fraction subsection of the
RATAPRX manual (Section 16.51).

Precision: the second optional parameter (size) is an upper bound for the absolute
value of the denominator of the convergent.

Number of terms: the third optional parameter (numterms) is the maximum num-
ber of terms (continuents) to be generated.

If both optional parameters omitted, the expansion performed is exact for rational
number arguments and for irrational or rounded arguments it is up to the current
system precision. If both optional parameters are given the expansion is halted
when the desired precision is reached or when the specified maximum number of
terms have been generated whichever is the sooner. If the size parameter is zero, its
value is ignored. Thus to obtain a continued fraction expansion to, for example, 10
terms one would specify the (size) parameter to be 0 and the (numterms) parameter
to be 10.
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Note that the operator cont frac is not normally seen as the output is pretty-
printed, unless the number of continuents generated is larger than 12.

Examples:

continued_fraction(6/11);

continued_fraction (pi, 0, 6);

104348 1
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R —
15

continued_fraction (pi, 1000, 06);

continued_fraction e;
{e,

13580623

4996032

{z, {1,1}, {1,2}, (1,1}, (1,1}, {1,4}, {1,1}, {1,1}, {1,6},
{1,1y, {1,13}, {1,8}, (1,1}, {1,1}, {1,110}, {1,1}, {1,1}, {1,12}}}

7.7 DF Operator

The operator DF is used to represent partial differentiation with respect to one or
more variables. It is used with the syntax:

DF ((EXPRN:algebraic)[, (VAR:kernel)<, (NUM:integer)>)) : algebraic.
The first argument is the expression to be differentiated. The remaining arguments
specify the differentiation variables and the number of times they are applied.
The number NUM may be omitted if it is 1. For example,
df (y, x) = Qy/0x

df (y,x,2) = 0%y /0x?
df (y,x1,2,x2,x3,2) = 85y/8x%8$26x§.

The evaluation of df (y, x) proceeds as follows: first, the values of Y and X are
found. Let us assume that X has no assigned value, so its value is X. Each term
or other part of the value of Y that contains the variable X is differentiated by the
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standard rules. If Z is another variable, not X itself, then its derivative with respect
to X is taken to be 0, unless Z has previously been declared to DEPEND on X, in
which case the derivative is reported as the symbol df (z, x) .

7.7.1 Switches influencing differentiation

Consider df (u, x,y, z), assuming u depends on each of x, vy, z in some way.
If none of x, v, z is equal to u then the order of differentiation is commuted into a
canonical form, unless the switch NOCOMMUTEDF is turned on (default is off). If at
least one of x, vy, z is equal to u then the order of differentiation is not fully com-
muted and the derivative is not simplified to zero, unless the switch COMMUTEDF
is turned on. It is off by default.

If COMMUTEDF is off and the switch STMPNONCOMDF is on then simplify as fol-
lows:

DF (U, X, U) -> DF(U,X,2) / DF(U,X)
DF (U, X, N, U) -> DF(U,X,N+1) / DF(U,X)

provided U depends only on the one variable X. This simplification removes the
non-commutative aspect of the derivative.

If the switch EXPANDDF is turned on then REDUCE uses the chain rule to expand
symbolic derivatives of indirectly dependent variables provided the result is unam-
biguous, i.e. provided there is no direct dependence. It is off by default. Thus, for
example, given

DEPEND F,U,V; DEPEND {U,V},X;

ON EXPANDDEF;

DF (F, X) -> DF (F,U) «DF (U, X) + DF (F,V) «DF (V, X)
whereas after

DEPEND F,X;

DF (F, X) does not expand at all (since the result would be ambiguous and the
algorithm would loop).

Turning on the switch ALLOWDFINT allows “differentiation under the integral
sign”, i.e.

DF (INT (Y, X), V) -> INT(DF (Y, V), X)

if this results in a simplification. If the switch DEINT is also turned on then this
happens regardless of whether the result simplifies. Both switches are off by de-
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fault.

7.7.2 Adding Differentiation Rules

The LET statement can be used to introduce rules for differentiation of user-defined
operators. Its general form is

FOR ALL (varl), ..., (varn)
LET DF ({(operator)(varlist), (vari)) = (expression)

where
(varlisty — ((varl), ..., (varn)),
and (varl), ..., (varn) are the dummy variable arguments of (operator).

An analogous form applies to infix operators.

Examples:
for all x let df(tan x,x) = 1 + tan(x)"2;
(This is how the tan differentiation rule appears in the REDUCE source.)

for all x,y let df(f(x,y),x)=2*f(X,vy),
df (£ (x,y),y)=xxf(x,Vy);

Notice that all dummy arguments of the relevant operator must be declared arbi-
trary by the FOR ALL command, and that rules may be supplied for operators with
any number of arguments. If no differentiation rule appears for an argument in an
operator, the differentiation routines will return as result an expression in terms
of DF. For example, if the rule for the differentiation with respect to the second
argument of F is not supplied, the evaluation of df (£ (x, z) , z) would leave this
expression unchanged. (No DEPEND declaration is needed here, since f (x, z)
obviously “depends on” Z.)

Once such a rule has been defined for a given operator, any future differentiation
rules for that operator must be defined with the same number of arguments for that
operator, otherwise we get the error message

Incompatible DF rule argument length for <operator>

7.7.3 Options controlling display of derivatives

If the switch DEPRINT is turned on (it is off by default) then derivatives are dis-
played using subscripts, as illustrated below. In graphical environments with type-



7.8. INT OPERATOR 95

set mathematics enabled, the (shared) variable FANCY_PRINT_DF can be set to
one of the values PARTIAL, TOTAL or INDEXED to control the display of deriva-
tives. The default value is PARTIAL. However, if the switch DFPRINT is on then
FANCY_PRINT_DF isignored. For example, with the following settings, deriva-
tives are displayed as follows (assuming DEPEND F, X, Y and OPERATOR G):

Setting df (f,x,2,y) df(g(x,y),x%x,2,V)
fancy_print_df:=partial % %@;ﬁ
fancy_print_df:=total diiéy dfiigﬂ;zz//)
fancy_print_df:=indexed fx’%y g(m’y)xmy
on dfprint fozy ey

7.8 INT Operator

INT is an operator in REDUCE for indefinite integration using a combination of
the Risch-Norman algorithm and pattern matching. It is used with the syntax:

INT ((EXPRN:algebraic), (VAR:kernel)) : algebraic.

This will return correctly the indefinite integral for expressions comprising poly-
nomials, log functions, exponential functions and tan and atan. The arbitrary con-
stant is not represented. If the integral cannot be done in closed terms, it returns a
formal integral for the answer in one of two ways:

1. It returns the input, INT (..., .. .) unchanged.

2. It returns an expression involving INTs of some other functions (sometimes
more complicated than the original one, unfortunately).

Rational functions can be integrated when the denominator is factorizable by the
program. In addition it will attempt to integrate expressions involving error funct-
ions, dilogarithms and other trigonometric expressions. In these cases it might not
always succeed in finding the solution, even if one exists.

Examples:

int (log(x),x) —> X% (LOG(X) - 1),
int (e"x, x) -> Ex*X.

The program checks that the second argument is a variable and gives an error if it
is not.

Note: If the int operator is called with 4 arguments, REDUCE will implicitly call
the definite integration package (DEFINT) and this package will interpret the third
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and fourth arguments as the lower and upper limit of integration, respectively. For
details, consult the documentation on the DEFINT package.

7.8.1 Options

The switch TRINT when on will trace the operation of the algorithm. It produces
a great deal of output in a somewhat illegible form, and is not of much interest to
the general user. It is normally off.

The switch TRINTSUBST when on will trace the heuristic attempts to solve the
integral by substitution. It is normally off.

If the switch FATLHARD is on the algorithm will terminate with an error if the
integral cannot be done in closed terms, rather than return a formal integration
form. FATILHARD is normally off.

The switch NOLNR suppresses the use of the linear properties of integration in
cases when the integral cannot be found in closed terms. It is normally off.

The switch NOINTSUBST disables the heuristic attempts to solve the integral by
substitution. It is normally off.

7.8.2 Advanced Use

If a function appears in the integrand that is not one of the functions EXP, Erf,
TAN, ATAN, LOG, dilog then the algorithm will make an attempt to inte-
grate the argument if it can, differentiate it and reach a known function. However
the answer cannot be guaranteed in this case. If a function is known to be alge-
braically independent of this set it can be flagged transcendental by

flag(’ (trilog),’transcendental);

in which case this function will be added to the permitted field descriptors for a
genuine decision procedure. If this is done the user is responsible for the mathe-
matical correctness of his actions.

The standard version does not deal with algebraic extensions. Thus integration
of expressions involving square roots and other like things can lead to trouble. A
contributed package that supports integration of functions involving square roots is
available, however (ALGINT, chapter 16.1). In addition there is a definite integra-
tion package, DEFINT( chapter 16.19).
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7.9 LENGTH Operator

LENGTH is a generic operator for finding the length of various objects in the sys-
tem. The meaning depends on the type of the object. In particular, the length
of an algebraic expression is the number of additive top-level terms its expanded
representation.

Examples:

length (atb) -> 2
length (2) -> 1.

Other objects that support a length operator include arrays, lists and matrices. The
explicit meaning in these cases is included in the description of these objects.

7.10 MAP Operator

The MAP operator applies a uniform evaluation pattern to all members of a com-
posite structure: a matrix, a list, or the arguments of an operator expression. The
evaluation pattern can be a unary procedure, an operator, or an algebraic expression
with one free variable.

It is used with the syntax:
MAP (FNC: function,OBJ:object)

Here OBJ is a list, a matrix or an operator expression. FNC can be one of the
following:

1. the name of an operator with a single argument: the operator is evaluated
once with each element of OBJ as its single argument;
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2. an algebraic expression with exactly one free variable, i.e. a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
OBJ, with the element substituted for the free variable;

3. a replacement rule of the form var => rep where var is a variable (a
kernel without a subscript) and rep is an expression that contains var. The
replacement expression rep is evaluated for each element of OBJ with the
element substituted for var. The variable var may be optionally preceded
by a tilde.

The rule form for FNC is needed when more than one free variable occurs.

Examples:

map (abs, {1,-2,a,-a}) —> {1,2,ABS (A),ABS (A)}
map (int (~w,x), mat ((x~2,x"5), (x*4,x"5))) —>

[ 3 6 1]
[ x x ]
[——= —-]
[ 3 6 1
[ ]
[ 5 6 1]
[ x x ]
[——= —-]
[ 5 6 1]

map (~wx6, x"2/3 = y*3/2 =1) —=> 2%xX"2=3%(Y"3-2)

You can use MAP in nested expressions. However, you cannot apply MAP to a
non-composite object, e.g. an identifier or a number.

7.11 MKID Operator

In many applications, it is useful to create a set of identifiers for naming objects in
a consistent manner. In most cases, it is sufficient to create such names from two
components. The operator MKID is provided for this purpose. Its syntax is:

MKID (U:1id,V:id|non—-negative integer) :id
for example

mkid (a, 3) -> A3
mkid (apple, s) -> APPLES
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while mkid (a+b, 2) gives an error.

The SET statement can be used to give a value to the identifiers created by MKID,
for example

set (mkid(a,3),3);

will give A3 the value 2. Similarly, the UNSET statement can be used to remove
the value from these identifiers, for example

unset (mkid(a, 3));

7.12 The Pochhammer Notation

The Pochhammer notation (a), (also called Pochhammer’s symbol) is supported
by the binary operator Pochhammer (a, k). For a non-negative integer k, it is
defined as (http://dlmf.nist.gov/5.2.111)

(a)o =1,
() =ala+1)(a+2)---(a+k—1).

Fora # 0,—1,—2,—3, ..., this is equivalent to

I'(a+ k)
e O
When n is integral, the defining product is expanded (assuming the switch EXP is
ON). With ROUNDED off, this expression is evaluated numerically if @ is numerical
and k is integral, and otherwise may be simplified where appropriate. The simpli-
fication rules are based upon algorithms supplied by Wolfram Koepf [ 1.

The Pochammer symbol is used quite extensively in the simplification and numer-
ical evaluation of special functions.

7.13 PF Operator

PF ({exp), (var)) transforms the expression (exp) into a list of partial fractions
with respect to the main variable, (var). PF does a complete partial fraction decom-
position, and as the algorithms used are fairly unsophisticated (factorization and the
extended Euclidean algorithm), the code may be unacceptably slow in complicated
cases.
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Example: Given 2/ ( (x+1) *2 (x+2)) in the workspace, pf (ws, x) ; gives
the result

If you want the denominators in factored form, use off exp;. Thus, with
2/ ((x+1) "2« (x+2) ) inthe workspace, the commands off exp; pf (ws,x);
give the result

(X + 1)

To recombine the terms, FOR EACH ... SUM can be used. So with the above list
in the workspace, for each J in ws sum 7J; returns the result

(X + 2)*«(X + 1)

Alternatively, one can use the operations on lists to extract any desired term.

7.14 SELECT Operator

The SELECT operator extracts from a list, or from the arguments of an n-ary
operator, elements corresponding to a boolean predicate. It is used with the syntax:

SELECT ((FNC:function), (LST:list))
FNC can be one of the following forms:

1. the name of an operator with a single argument: the operator is evaluated
once on each element of LST;

2. an algebraic expression with exactly one free variable, i.e. a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
(LST), with the element substituted for the free variable;
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3. a replacement rule of the form (var) => (rep) where (var) is a variable (a
kernel without subscript) and (rep) is an expression that contains (var). (rep)
is evaluated for each element of LST with the element substituted for (var).
(var) may be optionally preceded by a tilde.

The rule form for FNC is needed when more than one free variable occurs.

The result of evaluating FNC is interpreted as a boolean value corresponding to the
conventions of REDUCE. These values are composed with the leading operator of
the input expression.

Examples:

select ( ~w>0 , {1,-1,2,-3,3}) —> {1,2,3}
select (evenp deg(~w,vy),part ((x+y)"5,0) :=1ist)
—> {X"5 ,10*+X"3xY"2 ,5%xX*Y"4}
select (evenp deg(~w,x),2x"2+3x"3+4x"4) —> 4X*4 + 2X*2
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7.15 SOLVE Operator

SOLVE is an operator for solving one or more simultaneous algebraic equations.
It is used with the syntax:

SOLVE((EXPRN:algebraic)[, (VAR:kernel) | , (VARLIST:list of kernels)]) : list.

EXPRN is of the form (expression) or { (expressionl),{expression2), ...}. Each
expression is an algebraic equation, or is the difference of the two sides of the
equation. The second argument is either a kernel or a list of kernels representing
the unknowns in the system. This argument may be omitted if the number of
distinct, non-constant, top-level kernels equals the number of unknowns, in which
case these kernels are presumed to be the unknowns.

For one equation, SOLVE recursively uses factorization and decomposition, to-
gether with the known inverses of LOG, SIN, COS, ", ACOS, ASIN, and linear,
quadratic, cubic, quartic, or binomial factors. Solutions of equations built with
exponentials or logarithms are often expressed in terms of Lambert’s W function.
This function is (partially) implemented in the special functions package.

Linear equations are solved by the multi-step elimination method due to Bareiss,
unless the switch CRAMER is on, in which case Cramer’s method is used. The
Bareiss method is usually more efficient unless the system is large and dense.

Non-linear equations are solved using the Groebner basis package (chapter 16.30).
Users should note that this can be quite a time consuming process.

Examples:

solve (log(sin(x+3))"5 = 8,x);
solve (a*xlog(sin(x+3))"5 - b, sin(x+3));
solve ({a*x+y=3,y=-2},{%x,v});

SOLVE returns a list of solutions. If there is one unknown, each solution is an
equation for the unknown. If a complete solution was found, the unknown will
appear by itself on the left-hand side of the equation. On the other hand, if the
solve package could not find a solution, the “solution” will be an equation for the
unknown in terms of the operator ROOT_OF. If there are several unknowns, each
solution will be a list of equations for the unknowns. For example,

solve (x72=1,x); > {X=-1,X=1}
solve (X" 7-x"6+x"2=1, x)

6
-> {X=ROOT_OF (X_ + X_ + 1,X_,TAG_1),%X=1}
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solve ({x+3y=7,y-x=1},{x,vy}) —> {{X=1,Y=2}}.

The TAG argument is used to uniquely identify those particular solutions. Solution
multiplicities are stored in the global variable ROOT_MULTIPLICITIES rather
than the solution list. The value of this variable is a list of the multiplicities of the
solutions for the last call of SOLVE. For example,

solve (x"2=2x-1,x); root_multiplicities;
gives the results
{X=1}
{2}

If you want the multiplicities explicitly displayed, the switch MULTIPLICITIES
can be turned on. For example

on multiplicities; solve (x"2=2x-1,X);
yields the result

{X=1,X=1}

7.15.1 Handling of Undetermined Solutions

When SOLVE cannot find a solution to an equation, it normally returns an equation
for the relevant indeterminates in terms of the operator ROOT_OF'. For example, the
expression

solve (cos (x) + log(x),x);
returns the result
{X=ROOT_OF (COS(X_) + LOG(X_),X_,TAG_1)}

An expression with a top-level ROOT_OF operator is implicitly a list with an un-
known number of elements (since we don’t always know how many solutions an
equation has). If a substitution is made into such an expression, closed form solu-
tions can emerge. If this occurs, the ROOT_OF construct is replaced by an operator
ONE_OF. At this point it is of course possible to transform the result of the original
SOLVE operator expression into a standard SOLVE solution. To effect this, the
operator EXPAND_CASES can be used.
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The following example shows the use of these facilities:
solve (ma*xX"3+a*x"2+x"4-x"3-4xx"2+4,x) ;
2 3
{X=ROOT_OF (A*X_ - X_ + 4xX_ + 4,X_,TAG_2),X=1}
sub (a=-1,ws) ;
{X=ONE_OF ({2,-1,-2},TAG_2) ,X=1}

expand_cases Wws;

{X=2,X=-1,X=-2,X=1}

7.15.2 Solutions of Equations Involving Cubics and Quartics

Since roots of cubics and quartics can often be very messy, a switch FULLROOTS
is available, that, when off (the default), will prevent the production of a result in
closed form. The ROOT_OF construct will be used in this case instead.

In constructing the solutions of cubics and quartics, trigonometrical forms are used
where appropriate. This option is under the control of a switch TRIGFORM, which
is normally on.

The following example illustrates the use of these facilities:
let xx = solve (x"3+x+1,x);
XX;
3
{X=ROOT_OF (X_ + X_ + 1,X )}

on fullroots;

XX;

{X= (I (SQRT (3) *SIN (-=————————————————————— )
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— SQRT (31) *I
ATAN (——————————————— )
3%SQRT (3)
= COS (= ))) /SQRT (3),
3
— SQRT (31) *I
ATAN (——————————————— )
3+%SQRT (3)
X=( — I*(SQRT(3)*SIN(——————————— oo ——— )
3
— SQRT (31) *T
ATAN (—————— )
3%«SQRT (3)
+ COS (mmmmmmmmm ))) /SORT (
3
3),
— SQRT (31) *I
ATAN (——————————————— )
3%SQRT (3)
2%COS (m——————m ) % T
3
N )
SQRT (3)
off trigform;
XX;
2/3
{X=( — (SQRT(31) - 3%SQRT(3)) #SORT (3) +I
2/3 2/3
— (SQRT(31) - 3%SQRT(3)) ~ 2 *SQRT(3) I
2/3 1/3 1/3
+ 2 )/ (2% (SQRT(31) - 3%SQRT(3)) %6
1/6
*3 ),

2/3

105



106 CHAPTER 7. BUILT-IN PREFIX OPERATORS

X=((SQRT (31) - 3%SQRT(3)) *SQRT (3) »I

2/3 2/3
- (SQRT (31) — 3*SQRT (3)) + 2 *SQRT (3) I

2/3 1/3 1/3
+ 2 )/ (2% (SQRT (31) — 3%SQRT(3)) *6

1/6
*3 ) s

2/3 2/3
(SQRT (31) - 3%SQRT (3)) - 2

(SQRT (31) - 3*SQRT (3)) *0 *3

7.15.3 Other Options

If SOLVESINGULAR is on (the default setting), degenerate systems such as
x+y=0, 2x+2y=0 will be solved by introducing appropriate arbitrary constants.
The consistent singular equation 0=0 or equations involving functions with multi-
ple inverses may introduce unique new indeterminant kernels ARBCOMPLEX (7),
or ARBINT (j), (j=1,2,...), representing arbitrary complex or integer numbers re-
spectively. To automatically select the principal branches, do OFF ALLBRANCH.
To avoid the introduction of new indeterminant kernels do OFF ARBVARS — then
no equations are generated for the free variables and their original names are used
to express the solution forms. To suppress solutions of consistent singular equat-
ions do OFF SOLVESINGULAR

To incorporate additional inverse functions do, for example:

put (' sinh, " inverse,’asinh);
put ("asinh,’inverse, ’sinh);

together with any desired simplification rules such as
for all x let sinh(asinh (x))=x, asinh(sinh (x))=x;

For completeness, functions with non-unique inverses should be treated as ~, SIN,
and COS are in the SOLVE module source.

Arguments of ASIN and ACOS are not checked to ensure that the absolute value
of the real part does not exceed 1; and arguments of LOG are not checked to ensure



7.15. SOLVE OPERATOR 107

that the absolute value of the imaginary part does not exceed 7; but checks (perhaps
involving user response for non-numerical arguments) could be introduced using
LET statements for these operators.

7.15.4 Parameters and Variable Dependency

The proper design of a variable sequence supplied as a second argument to SOLVE
is important for the structure of the solution of an equation system. Any unknown
in the system not in this list is considered totally free. E.g. the call

solve ({x=2%z,z=2*xy}, {z});

produces an empty list as a result because there is no function z = z(z,y) which
fulfills both equations for arbitrary = and y values. In such a case the share variable
REQUIREMENTS displays a set of restrictions for the parameters of the system:

requirements;
{x - 4xy}

The non-existence of a formal solution is caused by a contradiction which disap-
pears only if the parameters of the initial system are set such that all members of
the requirements list take the value zero. For a linear system the set is complete:
a solution of the requirements list makes the initial system solvable. E.g. in the
above case a substitution x = 4y makes the equation set consistent. For a non-
linear system only one inconsistency is detected. If such a system has more than
one inconsistency, you must reduce them one after the other. ! The set shows you
also the dependency among the parameters: here one of z and y is free and a formal
solution of the system can be computed by adding it to the variable list of solve.
The requirement set is not unique — there may be other such sets.

A system with parameters may have a formal solution, e.g.

solve ({x=ax*z+1,0=bxz-vy}, {z,x});

Y axy + b
{z=-—y =777~ H}
b b
which is not valid for all possible values of the parameters. The variable

! The difference between linear and non—linear inconsistent systems is based on the algorithms
which produce this information as a side effect when attempting to find a formal solution; example:
solve({x = a,z = b,y = ¢,y = d}, {z,y} gives aset {a — b, c — d} while solve({z? = a,2> =

b7 y2 =c, y2 = d}7 {51,‘7y} leads to {a — b}
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ASSUMPTIONS contains then a list of restrictions: the solutions are valid only
as long as none of these expressions vanishes. Any zero of one of them represents
a special case that is not covered by the formal solution. In the above case the value
is

assumptions;
{b}

which excludes formally the case b = 0; obviously this special parameter value
makes the system singular. The set of assumptions is complete for both, linear and
non-linear systems.

SOLVE rearranges the variable sequence to reduce the (expected) computing time.
This behavior is controlled by the switch VAROP T, which is on by default. If it is
turned off, the supplied variable sequence is used or the system kernel ordering is
taken if the variable list is omitted. The effect is demonstrated by an example:

s:= {y"3+3x=0,x"2+y"2=1};
solve (s, {y,x});

6 2
{{y=root_of(y_ + 9*y_ - 9,v_),

off varopt; solve(s,{y,x});

{{x=root_of (x_ - 3*x_ + 12*xx_ - 1,x),

In the first case, solve forms the solution as a set of pairs (y;, x(y;)) because the
degree of x is higher — such a rearrangement makes the internal computation of the
Grobner basis generally faster. For the second case the explicitly given variable
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sequence is used such that the solution has now the form (x;, y(z;)). Controlling
the variable sequence is especially important if the system has one or more free
variables. As an alternative to turning off varopt, a partial dependency among
the variables can be declared using the depend statement: solve then rearranges
the variable sequence but keeps any variable ahead of those on which it depends.

on varopt;
s:={a"3+b,b"2+c}$
solve (s, {a,b,c});

3 6
{{a=arbcomplex(l),b= - a ,c= - a }}

depend a,c; depend b,c; solve(s,{a,b,c});
{{c=arbcomplex (2),

[
a=root_of(a_ + c,a_),

3
b= - a }}

Here solve is forced to put c after a and after b, but there is no obstacle to inter-
changing a and b.

7.16 Even and Odd Operators

An operator can be declared to be even or odd in its first argument by the declara-
tions EVEN and ODD respectively. Expressions involving an operator declared in
this manner are transformed if the first argument contains a minus sign. Any other
arguments are not affected. In addition, if say F is declared odd, then £ (0) is
replaced by zero unless F is also declared non zero by the declaration NONZERO.
For example, the declarations

even fl; odd f2;

mean that
fl(-a) -> F1(A)
£f2 (-a) -> -F2 (A7)
fl(-a,-b) -> F1 (A, -B)

£2(0) -> 0.
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To inhibit the last transformation, say nonzero £2;.

7.17 Linear Operators

An operator can be declared to be linear in its first argument over powers of its
second argument. If an operator F is so declared, F of any sum is broken up into
sums of F's, and any factors that are not powers of the variable are taken outside.
This means that F must have (at least) two arguments. In addition, the second
argument must be an identifier (or more generally a kernel), not an expression.

Example:
If F were declared linear, then

5
f(a*xx"5+b*x+c,x) -> F(X ,X)*A + F(X,X)*B + F(1,X)=*C

More precisely, not only will the variable and its powers remain within the scope
of the F operator, but so will any variable and its powers that had been declared
to DEPEND on the prescribed variable; and so would any expression that contains
that variable or a dependent variable on any level, e.g. cos (sin (x) ).

To declare operators F and G to be linear operators, use:
linear f,qg;

The analysis is done of the first argument with respect to the second; any other
arguments are ignored. It uses the following rules of evaluation:

£ (0) — 0

f(-y,x) — -F (Y, X)

f(yt+z, x) — F(Y,X)+F (Z2,X)

f(y*xz,x) — Z*F(Y,X) if Z does not depend on X
f(y/z,x) — F(Y,X)/Z if Z does not depend on X

To summarize, Y “depends” on the indeterminate X in the above if either of the
following hold:

1. Y is an expression that contains X at any level as a variable, e.g.: cos (sin (x))

2. Any variable in the expression Y has been declared dependent on X by use
of the declaration DEPEND.

The use of such linear operators can be seen in the paper Fox, J.A. and A. C. Hearn,
“Analytic Computation of Some Integrals in Fourth Order Quantum Electrodynam-
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ics” Journ. Comp. Phys. 14 (1974) 301-317, which contains a complete listing of
a program for definite integration of some expressions that arise in fourth order
quantum electrodynamics.

7.18 Non-Commuting Operators

An operator can be declared to be non-commutative under multiplication by the
declaration NONCOM.

Example:

After the declaration
noncom u,V;
the expressions u (x) *u (y) —u (y) *u (x) and u (x) »v (y) —v (y) »u (x) will

remain unchanged on simplification, and in particular will not simplify to zero.

Note that it is the operator (U and V in the above example) and not the variable that
has the non-commutative property.

The LET statement may be used to introduce rules of evaluation for such operators.
In particular, the boolean operator ORDP is useful for introducing an ordering on
such expressions.

Example:
The rule

for all x,y such that x neq y and ordp(x,y)
let u(x)*u(y)= u(y)*u(x)+comm(x,vy);

would introduce the commutator of u (x) and u (y) for all X and Y. Note that

since ordp (x, x) is true, the equality check is necessary in the degenerate case
to avoid a circular loop in the rule.

7.19 Symmetric and Antisymmetric Operators

An operator can be declared to be symmetric with respect to its arguments by the
declaration SYMMETRIC. For example

symmetric u,v;

means that any expression involving the top level operators U or V will have its
arguments reordered to conform to the internal order used by REDUCE. The user
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can change this order for kernels by the command KORDER.

For example, u (x, v (1, 2)) would become u (v (2, 1), x), since numbers are
ordered in decreasing order, and expressions are ordered in decreasing order of
complexity.

Similarly the declaration ANTISYMMETRIC declares an operator antisymmetric.
For example,

antisymmetric 1,m;

means that any expression involving the top level operators L or M will have its
arguments reordered to conform to the internal order of the system, and the sign
of the expression changed if there are an odd number of argument interchanges
necessary to bring about the new order.

For example, 1 (x, m(1,2)) would become -1 (-m (2, 1), x) since one inter-
change occurs with each operator. An expression like 1 (x, x) would also be
replaced by 0.

7.20 Declaring New Prefix Operators

The user may add new prefix operators to the system by using the declaration
OPERATOR. For example:

operator h,gl,arctan;

adds the prefix operators H, G1 and ARCTAN to the system.

This allows symbols like h (w) , h(x,vy,z), gl(p+qg), arctan(u/v) to
be used in expressions, but no meaning or properties of the operator are implied.
The same operator symbol can be used equally well as a 0-, 1-, 2-, 3-, etc.-place
operator.

To give a meaning to an operator symbol, or express some of its properties, LET
statements can be used, or the operator can be given a definition as a procedure.

If the user forgets to declare an identifier as an operator, the system will prompt the
user to do so in interactive mode, or do it automatically in non-interactive mode.
A diagnostic message will also be printed if an identifier is declared OPERATOR
more than once.

Operators once declared are global in scope, and so can then be referenced any-
where in the program. In other words, a declaration within a block (or a procedure)
does not limit the scope of the operator to that block, nor does the operator go away
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on exiting the block (use CLEAR instead for this purpose).

An operator declared PRINT__INDEXED has its arguments displayed as indices,
e.g. after print_indexed a; the operator value a (i, 2) is displayed as a; 2.
You can declare several operators together to be indexed, e.g.

print_indexed b, c;

and remove indexed declarations using PRINT_NOINDEXED.

7.21 Declaring New Infix Operators

Users can add new infix operators by using the declarations INF IX and PRECEDENCE.
For example,

infix mm;
precedence mm, —;

The declaration infix mm; would allow one to use the symbol MM as an infix
operator:

a mm b instead of mm (a,b).

The declaration precedence mm, —; says that MM should be inserted into the
infix operator precedence list just after the — operator. This gives it higher prece-
dence than — and lower precedence than * . Thus

a-bmmoc-4d means a - (bmm c) - d,

while
a *~ bmm c x d means (a » b) mm (c = d).

Both infix and prefix operators have no transformation properties unless LET state-
ments or procedure declarations are used to assign a meaning.

We should note here that infix operators so defined are always binary:
amm b mm c means (a mm b) mm c.

7.22 Creating/Removing Variable Dependency

There are several facilities in REDUCE, such as the differentiation operator and
the linear operator facility, that can utilize knowledge of the dependency between
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various variables, or kernels. Such dependency may be expressed by the command
DEPEND. This takes an arbitrary number of arguments and sets up a dependency
of the first argument on the remaining arguments. For example,

depend x,v,z;
says that X is dependent on both Y and Z.
depend z,cos (x),Vy;

says that Z is dependent on COS (X) and Y.

Dependencies introduced by DEPEND can be removed by NODEPEND. The argu-
ments of this are the same as for DEPEND. For example, given the above depen-
dencies,

nodepend z,cos (x);
says that Z is no longer dependent on COS (X), although it remains dependent on

Y.

As a convenience, one or more dependent variables can be specified together in a
list for both the DEPEND and NODEPEND commands, i.e.

(no)depend {y1, Y2, ...}, T1, T2,
is equivalent to
(no)depend yi1, 1, T2, ...; (no)depend Y2, Ti, T2, -..;

Both commands also accept a sequence of “dependence sequences”, where the
beginning of each new dependence sequence is indicated by a list of one or more
dependent variables. For example,

depend {x,v,z},u,v, {theta},time;
is equivalent to

depend x,u,v;

depend vy,u,v;

depend z,u,v;
depend theta,time;



Chapter 8

Display and Structuring of
Expressions

In this section, we consider a variety of commands and operators that permit the
user to obtain various parts of algebraic expressions and also display their structure
in a variety of forms. Also presented are some additional concepts in the REDUCE
design that help the user gain a better understanding of the structure of the system.

8.1 Kernels

REDUCE is designed so that each operator in the system has an evaluation (or
simplification) function associated with it that transforms the expression into an
internal canonical form. This form, which bears little resemblance to the original
expression, is described in detail in Hearn, A. C., “REDUCE 2: A System and Lan-
guage for Algebraic Manipulation,” Proc. of the Second Symposium on Symbolic
and Algebraic Manipulation, ACM, New York (1971) 128-133.

The evaluation function may transform its arguments in one of two alternative
ways. First, it may convert the expression into other operators in the system, leav-
ing no functions of the original operator for further manipulation. This is in a sense
true of the evaluation functions associated with the operators +, = and / , for ex-
ample, because the canonical form does not include these operators explicitly. It
is also true of an operator such as the determinant operator DET because the rel-
evant evaluation function calculates the appropriate determinant, and the operator
DET no longer appears. On the other hand, the evaluation process may leave some
residual functions of the relevant operator. For example, with the operator COS,
a residual expression like COS (X) may remain after evaluation unless a rule for
the reduction of cosines into exponentials, for example, were introduced. These
residual functions of an operator are termed kernels and are stored uniquely like

115
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variables. Subsequently, the kernel is carried through the calculation as a variable
unless transformations are introduced for the operator at a later stage.

In those cases where the evaluation process leaves an operator expression with
non-trivial arguments, the form of the argument can vary depending on the state
of the system at the point of evaluation. Such arguments are normally produced in
expanded form with no terms factored or grouped in any way. For example, the
expression cos (2+x+2xy) will normally be returned in the same form. If the
argument 2 «x+2 =y were evaluated at the top level, however, it would be printed
as 2+ (X+Y) . If it is desirable to have the arguments themselves in a similar form,
the switch INTSTR (for “internal structure”), if on, will cause this to happen.

In cases where the arguments of the kernel operators may be reordered, the sys-
tem puts them in a canonical order, based on an internal intrinsic ordering of the
variables. However, some commands allow arguments in the form of kernels, and
the user has no way of telling what internal order the system will assign to these
arguments. To resolve this difficulty, we introduce the notion of a kernel form as
an expression that transforms to a kernel on evaluation.

Examples of kernel forms are:

a
COS (xX*Vy)
log(sin(x))

whereas

a*b
(a+b) ~4

are not.

We see that kernel forms can usually be used as generalized variables, and most
algebraic properties associated with variables may also be associated with kernels.

8.2 The Expression Workspace

Several mechanisms are available for saving and retrieving previously evaluated
expressions. The simplest of these refers to the last algebraic expression simpli-
fied. When an assignment of an algebraic expression is made, or an expression is
evaluated at the top level, (i.e., not inside a compound statement or procedure) the
results of the evaluation are automatically saved in a variable WS that we shall refer
to as the workspace. (More precisely, the expression is assigned to the variable WS
that is then available for further manipulation.)
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Example:
If we evaluate the expression (x+y) ~2 at the top level and next wish to differen-
tiate it with respect to Y, we can simply say

df (ws,y);

to get the desired answer.

If the user wishes to assign the workspace to a variable or expression for later use,
the SAVEAS statement can be used. It has the syntax

SAVEAS (expression)

For example, after the differentiation in the last example, the workspace holds the
expression 2 xx+2+y. If we wish to assign this to the variable Z we can now say

saveas z;

If the user wishes to save the expression in a form that allows him to use some of
its variables as arbitrary parameters, the FOR ALL command can be used.

Example:
for all x saveas h(x);

with the above expression would mean that h (z) evaluates to 2+«Y+2xZ.

A further method for referencing more than the last expression is described in
chapter 13 on interactive use of REDUCE.

8.3 Output of Expressions

A considerable degree of flexibility is available in REDUCE in the printing of
expressions generated during calculations. No explicit format statements are sup-
plied, as these are in most cases of little use in algebraic calculations, where the size
of output or its composition is not generally known in advance. Instead, REDUCE
provides a series of mode options to the user that should enable him to produce his
output in a comprehensible and possibly pleasing form.

The most extreme option offered is to suppress the output entirely from any top
level evaluation. This is accomplished by turning off the switch OUTPUT which is
normally on. It is useful for limiting output when loading large files or producing
“clean” output from the prettyprint programs.

In most circumstances, however, we wish to view the output, so we need to know
how to format it appropriately. As we mentioned earlier, an algebraic expression
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is normally printed in an expanded form, filling the whole output line with terms.
Certain output declarations, however, can be used to affect this format. To begin
with, we look at an operator for changing the length of the output line.

8.3.1 LINELENGTH Operator

This operator is used with the syntax
LINELENGTH (NUM:integer) : integer

and sets the output line length to the integer NUM. It returns the previous output line
length (so that it can be stored for later resetting of the output line if needed).

8.3.2 Output Declarations

We now describe a number of switches and declarations that are available for con-
trolling output formats. It should be noted, however, that the transformation of
large expressions to produce these varied output formats can take a lot of comput-
ing time and space. If a user wishes to speed up the printing of the output in such
cases, he can turn off the switch PRI. If this is done, then output is produced in
one fixed format, which basically reflects the internal form of the expression, and
none of the options below apply. PRI is normally on.

With PRI on, the output declarations and switches available are as follows:

ORDER Declaration
The declaration ORDER may be used to order variables on output. The syntax is:
order vl1,...vn;
where the vi are kernels. Thus,
order X,VY,Zz;
orders X ahead of Y, Y ahead of Z and all three ahead of other variables not given
an order. order nil; resets the output order to the system default. The order
of variables may be changed by further calls of ORDER, but then the reordered

variables would have an order lower than those in earlier ORDER calls. Thus,

order X,VY,Z;
order vy, X;
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would order Z ahead of Y and X. The default ordering is usually alphabetic.

FACTOR Declaration

This declaration takes a list of identifiers or kernels as argument. FACTOR is not
a factoring command (use FACTORIZE or the FACTOR switch for this purpose);
rather it is a separation command. All terms involving fixed powers of the declared
expressions are printed as a product of the fixed powers and a sum of the rest of the
terms.

For example, after the declaration
factor x;
the polynomial (z + 3 + 1)? will be printed as

2 2
X 4+ 2+#Xx(Y + 1) + Y + 2+xY + 1

All expressions involving a given prefix operator may also be factored by putting
the operator name in the list of factored identifiers. For example:

factor x,cos,sin (x);

causes all powers of X and SIN (X) and all functions of COS to be factored.

Note that FACTOR does not affect the order of its arguments. You should also use
ORDER if this is important.

The declaration remfac vl, ..., vn; removes the factoring flag from the ex-
pressions v1 through vn.

8.3.3 Output Control Switches

In addition to these declarations, the form of the output can be modified by switch-
ing various output control switches using the declarations ON and OFF. We shall
illustrate the use of these switches by an example, namely the printing of the ex-
pression

XN2% (YN 242xy) +x* (y*2+2z) / (2*a)

The relevant switches are as follows:
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ALLFAC Switch
This switch will cause the system to search the whole expression, or any sub-
expression enclosed in parentheses, for simple multiplicative factors and print them

outside the parentheses. Thus our expression with ALLFAC off will print as

2 2 2 2
(2%X *Y %A + 4%xX *Y*A + XxY + XxZ)/ (2%A)

and with ALLFAC on as

2 2
X*x (2*xX*Y *A + 4xXxY*A + Y + Z)/ (2%A)

ALLFAC is normally on, and is on in the following examples, except where other-
wise stated.

DIV Switch
This switch makes the system search the denominator of an expression for simple
factors that it divides into the numerator, so that rational fractions and negative

powers appear in the output. With DIV on, our expression would print as

2 2 (-1) (-1)
Xx (X*xY + 2xX*Y + 1/2%Y %A + 1/2%A *7)

DIV is normally off.

HORNER Switch

This switch causes the system to print polynomials according to Horner’s rule.
With HORNER on, our expression prints as

2
Xx (Y + Z 4+ 2% (Y + 2)*AxXxY)/ (2*A)

HORNER is normally off.

LIST Switch

This switch causes the system to print each term in any sum on a separate line.
With LIST on, our expression prints as
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2
X*x (2xX*Y *A

+ 4+« XxY*A

2
+ Y

+ Z)/ (2%R)

LIST is normally off.

NOSPLIT Switch

Under normal circumstances, the printing routines try to break an expression across
lines at a natural point. This is a fairly expensive process. If you are not overly
concerned about where the end-of-line breaks come, you can speed up the printing
of expressions by turning off the switch NOSPLIT. This switch is normally on.

RAT Switch

This switch is only useful with expressions in which variables are factored with
FACTOR. With this mode, the overall denominator of the expression is printed
with each factored sub-expression. We assume a prior declaration factor x; in
the following output. We first print the expression with RAT set to off:

2 2
(24X *Y*A% (Y + 2) + Xx(Y + Z))/(2%A)

With RAT on the output becomes:

2 2
X *Yx (Y + 2) + X*x(Y + Z)/(2%R)

RAT is normally off.

Next, if we leave X factored, and turn on both DIV and RAT, the result becomes

2 (-1) 2
X *xYx (Y + 2) + 1/2%X*A *(Y + 2)

Finally, with X factored, RAT on and ALLFAC off we retrieve the original structure
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2 2 2
X *(Y + 2%xY) 4+ Xx(Y + Z)/(2*A)

RATPRI Switch

If the numerator and denominator of an expression can each be printed in one line,
the output routines will print them in a two dimensional notation, with numerator
and denominator on separate lines and a line of dashes in between. For example,
(a+b) /2 will print as

Turning this switch off causes such expressions to be output in a linear form.

REVPRI Switch

The normal ordering of terms in output is from highest to lowest power. In some
situations (e.g., when a power series is output), the opposite ordering is more con-
venient. The switch REVPRI if on causes such a reverse ordering of terms. For
example, the expression y* (x+1) ~2+ (y+3) ~2 will normally print as

2 2
X *Y + 2xXxY + Y 4+ 7xY + 9

whereas with REVPRT on, it will print as

2 2
9 + TxY + Y + 2xX*xY + X %Y.

8.3.4 WRITE Command

In simple cases no explicit output command is necessary in REDUCE, since the
value of any expression is automatically printed if a semicolon is used as a delim-
iter. There are, however, several situations in which such a command is useful.

In a FOR, WHILE, or REPEAT statement it may be desired to output something
each time the statement within the loop construct is repeated.

It may be desired for a procedure to output intermediate results or other information
while it is running. It may be desired to have results labeled in special ways,
especially if the output is directed to a file or device other than the terminal.
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The WRITE command consists of the word WRITE followed by one or more items
separated by commas, and followed by a terminator. There are three kinds of items
that can be used:

1. Expressions (including variables and constants). The expression is evalu-
ated, and the result is printed out.

2. Assignments. The expression on the right side of the : = operator is evalu-
ated, and is assigned to the variable on the left; then the symbol on the left is
printed, followed by a “:=", followed by the value of the expression on the
right — almost exactly the way an assignment followed by a semicolon prints
out normally. (The difference is that if the WRITE is in a FOR statement and
the left-hand side of the assignment is an array position or something similar
containing the variable of the FOR iteration, then the value of that variable is
inserted in the printout.)

3. Arbitrary strings of characters, preceded and followed by double-quote
marks (e.g., "string").

The items specified by a single WRITE statement print side by side on one line.
(The line is broken automatically if it is too long.) Strings print exactly as quoted.
The WRITE command itself however does not return a value.

The print line is closed at the end of a WRITE command evaluation. Therefore the
command WRITE ""; (specifying nothing to be printed except the empty string)
causes a line to be skipped.

Examples:
1. If Ais X+5, Bis itself, C is 123, M is an array, and Q=3, then
write m(q):=a," ",b/c," THANK YOU";
will set M (3) to x+5 and print
M(Q) := X + 5 B/123 THANK YOU

The blanks between the 5 and B, and the 3 and T, come from the blanks in
the quoted strings.

2. To print a table of the squares of the integers from 1 to 20:
for 1:=1:20 do write 1i," ",i"2;

3. To print a table of the squares of the integers from 1 to 20, and at the same
time store them in positions 1 to 20 of an array A:
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for i:=1:20 do <<a (i) :=1i"2; write i," ",a(i)>>;
This will give us two columns of numbers. If we had used
for i:=1:20 do write i,"™ ",a (i) :=1"2;

we would also get A (i) := repeated on each line.

. The following more complete example calculates the famous f and g se-

ries, first reported in Sconzo, P., LeSchack, A. R., and Tobey, R., “Symbolic
Computation of f and g Series by Computer”, Astronomical Journal 70 (May
1965).

x1l:= —sig* (mu+2+eps)$
x2:= eps — 2%sig”2$
x3:= —3*mu*sig$
f:=1$
g:= 0$
for i:= 1 step 1 until 10 do begin
fl:= —-muxg+xlxdf (f,eps)+x2+df (f,sig)+x3xdf (£, mu);

write "f£(",i,") := ",f1l;

gl:= f+x1«df (g,eps)tx2xdf (g, sig)+x3*df (g, mu) ;
write "g(",i,") := ",qgl;

f:=f1s

g:=gl$
end;

A portion of the output, to illustrate the printout from the WRITE command,
is as follows:

<prior output>

2
F(4) := MU« (3xEPS — 15%xSIG + MU)
G(4) := 6+xSIG+xMU
2
F(5) = 15xSIGxMUx ( — 3*EPS + 7+xSIG - MU)
2
G(5) := MUx (9«EPS - 45xSIG + MU)

<more output>
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8.3.5 Suppression of Zeros

It is sometimes annoying to have zero assignments (i.e. assignments of the form
<expression> := 0) printed, especially in printing large arrays with many
zero elements. The output from such assignments can be suppressed by turning on
the switch NERO.

8.3.6 FORTRAN Style Output Of Expressions

It is naturally possible to evaluate expressions numerically in REDUCE by giving
all variables and sub-expressions numerical values. However, as we pointed out
elsewhere the user must declare real arithmetical operation by turning on the switch
ROUNDED. However, it should be remembered that arithmetic in REDUCE is not
particularly fast, since results are interpreted rather than evaluated in a compiled
form. The user with a large amount of numerical computation after all necessary
algebraic manipulations have been performed is therefore well advised to perform
these calculations in a FORTRAN or similar system. For this purpose, REDUCE
offers facilities for users to produce FORTRAN compatible files for numerical pro-
cessing.

First, when the switch FORT is on, the system will print expressions in a FOR-
TRAN notation. Expressions begin in column seven. If an expression extends over
one line, a continuation mark (.) followed by a blank appears on subsequent cards.
After a certain number of lines have been produced (according to the value of the
variable CARD_NO), a new expression is started. If the expression printed arises
from an assignment to a variable, the variable is printed as the name of the expres-
sion. Otherwise the expression is given the default name ANS. An error occurs if
identifiers or numbers are outside the bounds permitted by FORTRAN.

A second option is to use the WRITE command to produce other programs.
Example:
The following REDUCE statements

on fort;

out "forfil";

write "C this is a fortran program";

write " 1 format (e13.5)";

write " u=1.23";

write " v=2.17";

write " w=5.2";

x:=(utv+w) *11;

write "C it was foolish to expand this expression";

write " print 1,x";
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write " end";
shut "forfil";
off fort;

will generate a file for£fil that contains:

c this is a fortran program
1 format (el3.5)

u=1.23

v=2.17

w=5.2

ansl=1320.xU*x*3*xVxWk*x7+165. xUsx*3xwWx*x8+55. xU*x*x2+xvx*x9+495. xu
%k 24 VhkxBHWHLO80 . xU* 2% Vr* TrxWH*2+4620 . xUx*x 2% Vx*6xWH*3+
6930 . Uux*x2xVak*5xWrxx4+6930 . xUx*24V*k*x4xWk*5+4620. U *2xVx*3%
Wrx*06+1980 . U *2xVH*2+xWx*7+495 . xUx* 2+ VrWx*8+55 . #u*x*x2xwr*x9+
11.%xuxvaxx10+110.xUu*vx*9xW+495 . xUuxvx*8xwxx2+1320 . xurxv**xT7T*w
*%3+2310 . xUsVx*O6xWhk*4+2772 . xUxVxk*xO5xWxx5+2310. xurvs*x4*xwx*6
+1320.%u*xVa*x3xWr*7+495 . +UrxVHA*x24Wx*8+110 . Uurv+wx*«9+11.xu*w
*%10+Vvr*x11+11 .« Vrx*x10*xW+55 . xVhk*Ixwx*x2+165. xvxx8xwx*3+330. %
Vhkx 7AWk 4+462 . *Vx*6xWhk*5+462 . xVak*5+xwxx6+330 . xvrxd*wx*T7+
165, %vx*x3xWhk*8+55 . % Va*x2xWhk*x9+11 . % vawrx10+wx*11

x=Ux*11+11 .4 Uux*10xv+11l.xU*x*x10*W+55.%Uux*9xv**x2+110.xu*x*9xv*
WH55 . x Uk * Ok wrx*x2+165. xUx*8x vk *x3+495 . xux*8xvxx2xwt+495. xux*8
*VAWH*2+1 65 xUx*xBxwh*3+330. U+ Txvx*4+1320. Uk *7Txvxx 3w+
1980 . xUusx*7*xvx*x2xWx*2+1320 . Uk * T+ VrxWH*x3+330 . xUus*x7T+wx*x4+462.
*Ux*0*xV**5+2310. xUx*6*xVx*4*W+4620. U *x6xvx*3xwx*2+4620.*u
*x0x VA2 Wx*3+2310 . %Uux*6*xVHAWk*x4+462 . xUux*x6xWx*x5+462 . u*x*x5*
Vrkx0+27 T2 . %Ux*5xVak*x5xW+6930 . xUx*Oxvhk*x4*xwx*x2+9240 . xux*5xv
%% 3*xWhk*x3+6930 . #Ur*S5*xVHk*24Wx*x4+2772 . #Ux*S5*xV* wWx*5+462 . xux*5
*WA*6+330. #Ux*x4xVak*xT+2310. Uk *4xVr*x0+W+6930. xux*x4xvx*5xw
*%2+11550 . xux*x4*Vax*4xwxx3+11550. xux*4xv**x3+wx*x4+6930 . xux*
Axvx*2 W *x5+2310. xUx*x4dxvrxwx*6+330 . xUx*x4dxwx*7+165. xux*x3xv
*%8+1320 . xUk*3*xVrx*xT*xWH+4A620 . xUx*x3*Vxk6xWHk*x2+9240 . xUr*x3xV**
SxwH*3+11550. #Uur*3xV*k*x4*xwx*x4+9240 . +ux*3xv**x3+«wx*x5+4620.*u
**3*Vr*x2+xW**6+ansl

c it was foolish to expand this expression
print 1,x
end

If the arguments of a WRITE statement include an expression that requires con-
tinuation records, the output will need editing, since the output routine prints the
arguments of WRITE sequentially, and the continuation mechanism therefore gen-
erates its auxiliary variables after the preceding expression has been printed.

Finally, since there is no direct analog of /ist in FORTRAN, a comment line of the
form

Cc *x**xx%x invalid fortran construct (list) not printed
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will be printed if you try to print a list with FORT on.

FORTRAN Output Options

There are a number of methods available to change the default format of the FOR-
TRAN output.

The breakup of the expression into subparts is such that the number of continuation
lines produced is less than a given number. This number can be modified by the
assignment

card_no := (number);

where (number) is the total number of cards allowed in a statement. The default
value of CARD_NO is 20.

The width of the output expression is also adjustable by the assignment
fort_width := (integer);

FORT_WIDTH which sets the total width of a given line to (integer). The initial
FORTRAN output width is 70.

REDUCE automatically inserts a decimal point after each isolated integer coeffi-
cient in a FORTRAN expression (so that, for example, 4 becomes 4 . ). To prevent
this, set the PERIOD mode switch to OFF.

FORTRAN output is normally produced in lower case. If upper case is desired, the
switch FORTUPPER should be turned on.

Finally, the default name ANS assigned to an unnamed expression and its subparts
can be changed by the operator VARNAME. This takes a single identifier as argu-
ment, which then replaces ANS as the expression name. The value of VARNAME is
its argument.

Further facilities for the production of FORTRAN and other language output are
provided by the SCOPE and GENTRAN packagesdescribed in chapters 16.28 and
16.64.

8.3.7 Saving Expressions for Later Use as Input

It is often useful to save an expression on an external file for use later as input
in further calculations. The commands for opening and closing output files are
explained elsewhere. However, we see in the examples on output of expressions
that the standard “natural” method of printing expressions is not compatible with
the input syntax. So to print the expression in an input compatible form we must
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inhibit this natural style by turning off the switch NAT. If this is done, a dollar sign
will also be printed at the end of the expression.

Example:
The following sequence of commands

off nat; out "out"; x := (ytz)"2; write "end";
shut "out"; on nat;

will generate a file out that contains

X 1= Yx*2 + 2xY*Z + Zx*2$
ENDS

8.3.8 Displaying Expression Structure

In those cases where the final result has a complicated form, it is often convenient
to display the skeletal structure of the answer. The operator STRUCTR, that takes
a single expression as argument, will do this for you. Its syntax is:

STRUCTR (EXPRN:algebraic[,IDl:identifier[,ID2:identifier]]);

The structure is printed effectively as a tree, in which the subparts are laid out with
auxiliary names. If the optional ID1 is absent, the auxiliary names are prefixed by
the root ANS. This root may be changed by the operator VARNAME. If the optional
ID1 is present, and is an array name, the subparts are named as elements of that
array, otherwise ID1 is used as the root prefix. (The second optional argument
ID2 is explained later.)

The EXPRN can be either a scalar or a matrix expression. Use of any other will
result in an error.

Example:

Let us suppose that the workspace contains ( (A+B) ~2+C) ~3+D. Then the input
STRUCTR WS; will (with EXP off) result in the output:

ANS3
where

3
ANS3 := ANS2 + D
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ANS2 := ANS1 + C

ANS1

A+ B

The workspace remains unchanged after this operation, since STRUCTR in the de-
fault situation returns no value (if STRUCTR is used as a sub-expression, its value
is taken to be 0). In addition, the sub-expressions are normally only displayed and
not retained. If you wish to access the sub-expressions with their displayed names,
the switch SAVESTRUCTR should be turned on. In this case, STRUCTR returns a
list whose first element is a representation for the expression, and subsequent ele-
ments are the sub-expression relations. Thus, with SAVESTRUCTR on, STRUCTR
WS in the above example would return

3 2
{ANS3,ANS3=ANS2 + D,ANS2=ANS1 + C,ANS1=A + B}

The PART operator can be used to retrieve the required parts of the expression. For
example, to get the value of ANS2 in the above, one could say:

part (ws,3,2);

If FORT is on, then the results are printed in the reverse order; the algorithm in fact
guaranteeing that no sub-expression will be referenced before it is defined. The
second optional argument ID2 may also be used in this case to name the actual
expression (or expressions in the case of a matrix argument).

Example:

Let us suppose that M, a 2 by 1 matrix, contains the elements ( (a+b) 2 + c¢) "3
+ dand (a + b)*(c + d) respectively, and that V has been declared to be an
array. With EXP off and FORT on, the statement structr (2+m, v, k) ; will
result in the output

V(1l)=A+B
V(2)=V (1) *x2+C
V(3)=V(2) *x3+D
V(4)=C+D
K(1,1)=2.%V(3)
K(2,1)=2.%V (1) *V(4)

8.4 Changing the Internal Order of Variables

The internal ordering of variables (more specifically kernels) can have a significant
effect on the space and time associated with a calculation. In its default state, RE-
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DUCE uses a specific order for this which may vary between sessions. However,
it is possible for the user to change this internal order by means of the declaration
KORDER. The syntax for this is:

korder vl1,...,vn;

where the Vi are kernels. With this declaration, the Vi are ordered internally ahead
of any other kernels in the system. V1 has the highest order, V2 the next highest,
and so on. A further call of KORDER replaces a previous one. KORDER NIL;
resets the internal order to the system default.

Unlike the ORDER declaration, that has a purely cosmetic effect on the way results
are printed, the use of KORDER can have a significant effect on computation time.
In critical cases then, the user can experiment with the ordering of the variables
used to determine the optimum set for a given problem.

8.5 Obtaining Parts of Algebraic Expressions

There are many occasions where it is desirable to obtain a specific part of an ex-
pression, or even change such a part to another expression. A number of operators
are available in REDUCE for this purpose, and will be described in this section. In
addition, operators for obtaining specific parts of polynomials and rational funct-
ions (such as a denominator) are described in another section.

8.5.1 COEFF Operator
Syntax:
COEFF (EXPRN:polynomial, VAR:kernel)

COEFF is an operator that partitions EXPRN into its various coefficients with re-
spect to VAR and returns them as a list, with the coefficient independent of VAR
first.

Under normal circumstances, an error results if EXPRN is not a polynomial in VAR,
although the coefficients themselves can be rational as long as they do not depend
on VAR. However, if the switch RATARG is on, denominators are not checked for
dependence on VAR, and are taken to be part of the coefficients.

Example:
coeff ((y"2+z)"3/z,v);

returns the result
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2
{z ,0,3%72,0,3,0,1/2}.

whereas
coeff ((y*2+z)"3/y,V);
gives an error if RATARG is off, and the result

3 2
{z /Y,0,3%z /Y,0,3%2/Y,0,1/Y}

if RATARG is on.

The length of the result of COEFF is the highest power of VAR encountered plus
1. In the above examples it is 7. In addition, the variable HIGH_POW is set to
the highest non-zero power found in EXPRN during the evaluation, and LOW_POW
to the lowest non-zero power, or zero if there is a constant term. If EXPRN is a
constant, then HIGH_POW and LOW_POW are both set to zero.

8.5.2 COEFFN Operator

The COEFFN operator is designed to give the user a particular coefficient of a vari-
able in a polynomial, as opposed to COEFF that returns all coefficients. COEFFN
is used with the syntax

COEFFN (EXPRN:polynomial, VAR:kernel,N:integer)

It returns the n'" coefficient of VAR in the polynomial EXPRN.

8.5.3 PART Operator
Syntax:
PART (EXPRN:algebraic[, INTEXP:integer])

This operator works on the form of the expression as printed or as it would have
been printed at that point in the calculation bearing in mind all the relevant switch
settings at that point. The reader therefore needs some familiarity with the way
that expressions are represented in prefix form in REDUCE to use these operators
effectively. Furthermore, it is assumed that PRT is ON at that point in the calcula-
tion. The reason for this is that with PRI off, an expression is printed by walking
the tree representing the expression internally. To save space, it is never actually
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transformed into the equivalent prefix expression as occurs when PRI is on. How-
ever, the operations on polynomials described elsewhere can be equally well used
in this case to obtain the relevant parts.

The evaluation proceeds recursively down the integer expression list. In other
words,

PART ({expression), (integerl), (integer2))
— PART (PART ({expression), (integerl)) , (integer2))

and so on, and
PART ({expression)) —> (expression).

INTEXP can be any expression that evaluates to an integer. If the integer is pos-
itive, then that term of the expression is found. If the integer is O, the operator
is returned. Finally, if the integer is negative, the counting is from the tail of the
expression rather than the head.

For example, if the expression a+b is printed as A+B (i.e., the ordering of the
variables is alphabetical), then

part (atb, 2) —-> B

part (atb,-1) —-> B
and

part (atb, 0) -> PLUS

An operator ARGLENGTH is available to determine the number of arguments of the
top level operator in an expression. If the expression does not contain a top level
operator, then —1 is returned. For example,

arglength (atb+c) -> 3
arglength (£ ()) -> 0
arglength (a) -> -1

8.5.4 Substituting for Parts of Expressions

PART may also be used to substitute for a given part of an expression. In this case,
the PART construct appears on the left-hand side of an assignment statement, and
the expression to replace the given part on the right-hand side.

For example, with the normal settings of the REDUCE switches:
XX 1= atb;

part (xx,2) := c; -> A+C
part (c+d,0) := —; -> C-D
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Note that xx in the above is not changed by this substitution. In addition, un-
like expressions such as array and matrix elements that have an instant evaluation
property, the values of part (xx, 2) and part (c+d, 0) are also not changed.
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Chapter 9

Polynomials and Rationals

Many operations in computer algebra are concerned with polynomials and rational
functions. In this section, we review some of the switches and operators available
for this purpose. These are in addition to those that work on general expressions
(such as DF and INT) described elsewhere. In the case of operators, the arguments
are first simplified before the operations are applied. In addition, they operate
only on arguments of prescribed types, and produce a type mismatch error if given
arguments which cannot be interpreted in the required mode with the current switch
settings. For example, if an argument is required to be a kernel and a/2 is used
(with no other rules for 2), an error

A/2 invalid as kernel

will result.

With the exception of those that select various parts of a polynomial or rational
function, these operations have potentially significant effects on the space and time
associated with a given calculation. The user should therefore experiment with
their use in a given calculation in order to determine the optimum set for a given
problem.

One such operation provided by the system is an operator LENGTH which returns
the number of top level terms in the numerator of its argument. For example,

length ((at+b+c) "3/ (c+d));

has the value 10. To get the number of terms in the denominator, one would first
select the denominator by the operator DEN and then call LENGTH, as in

length den ((atb+c) "3/ (c+d));
Other operations currently supported, the relevant switches and operators, and the

135



136 CHAPTER 9. POLYNOMIALS AND RATIONALS

required argument and value modes of the latter, follow.

9.1 Controlling the Expansion of Expressions

The switch EXP controls the expansion of expressions. If it is off, no expansion of
powers or products of expressions occurs. Users should note however that in this
case results come out in a normal but not necessarily canonical form. This means
that zero expressions simplify to zero, but that two equivalent expressions need not
necessarily simplify to the same form.

Example: With EXP on, the two expressions
(at+b) * (a+2xb)
and
ar2+3xaxb+2+b"2
will both simplify to the latter form. With EXP off, they would remain unchanged,

unless the complete factoring (ALLFAC) option were in force. EXP is normally on.

Several operators that expect a polynomial as an argument behave differently when
EXP is off, since there is often only one term at the top level. For example, with
EXP off

length ((atb+c) "3/ (c+d)) ;

returns the value 1.

9.2 Factorization of Polynomials

REDUCE is capable of factorizing univariate and multivariate polynomials that
have integer coefficients, finding all factors that also have integer coefficients. The
package for doing this was written by Dr. Arthur C. Norman and Ms. P. Mary Ann
Moore at The University of Cambridge. It is described in P. M. A. Moore and A.
C. Norman, “Implementing a Polynomial Factorization and GCD Package”, Proc.
SYMSAC *81, ACM (New York) (1981), 109-116.

The easiest way to use this facility is to turn on the switch FACTOR, which causes
all expressions to be output in a factored form. For example, with FACTOR on, the
expression A*2-B"2 is returned as (A+B) x (A-B).

It is also possible to factorize a given expression explicitly. The operator
FACTORIZE that invokes this facility is used with the syntax
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FACTORIZE (EXPRN:polynomial [, INTEXP:prime integer])

the optional argument of which will be described later. Thus to find and display all
factors of the cyclotomic polynomial 25 — 1, one could write:

factorize (x7105-1);

The result is a list of factor,exponent pairs. In the above example, there is no overall
numerical factor in the result, so the results will consist only of polynomials in X.
The number of such polynomials can be found by using the operator LENGTH. If
there is a numerical factor, as in factorizing 1222 — 12, that factor will appear as
the first member of the result. It will however not be factored further. Prime factors
of such numbers can be found, using a probabilistic algorithm, by turning on the
switch TFACTOR. For example,

on ifactor; factorize (1l2x"2-12);
would result in the output
{{2/2}/{311}1{X + lrl}r{x - 111}}

If the first argument of FACTORIZE is an integer, it will be decomposed into its
prime components, whether or not IFACTOR is on.

Note that the IFACTOR switch only affects the result of FACTORIZE. It has no
effect if the FACTOR switch is also on.

The order in which the factors occur in the result (with the exception of a possi-
ble overall numerical coefficient which comes first) can be system dependent and
should not be relied on. Similarly it should be noted that any pair of individ-
ual factors can be negated without altering their product, and that REDUCE may
sometimes do that.

The factorizer works by first reducing multivariate problems to univariate ones and
then solving the univariate ones modulo small primes. It normally selects both
evaluation points and primes using a random number generator that should lead
to different detailed behavior each time any particular problem is tackled. If, for
some reason, it is known that a certain (probably univariate) factorization can be
performed effectively with a known prime, P say, this value of P can be handed to
FACTORIZE as a second argument. An error will occur if a non-prime is provided
to FACTORIZE in this manner. It is also an error to specify a prime that divides
the discriminant of the polynomial being factored, but users should note that this
condition is not checked by the program, so this capability should be used with
care.

Factorization can be performed over a number of polynomial coefficient domains

:list,
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in addition to integers. The particular description of the relevant domain should
be consulted to see if factorization is supported. For example, the following state-
ments will factorize z* + 1 modulo 7:

setmod 7;
on modular;
factorize (x™4+1);

The factorization module is provided with a trace facility that may be useful as a
way of monitoring progress on large problems, and of satisfying curiosity about the
internal workings of the package. The most simple use of this is enabled by issuing
the REDUCE command on trfac; . Following this, all calls to the factorizer
will generate informative messages reporting on such things as the reduction of
multivariate to univariate cases, the choice of a prime and the reconstruction of
full factors from their images. Further levels of detail in the trace are intended
mainly for system tuners and for the investigation of suspected bugs. For example,
TRALLFAC gives tracing information at all levels of detail. The switch that can
be set by on timings; makes it possible for one who is familiar with the algo-
rithms used to determine what part of the factorization code is consuming the most
resources. on overview; reduces the amount of detail presented in other forms
of trace. Other forms of trace output are enabled by directives of the form

symbolic set!-trace!-factor (<number>,<filename>);

where useful numbers are 1, 2, 3 and 100, 101, ... . This facility is intended to make
it possible to discover in fairly great detail what just some small part of the code has
been doing — the numbers refer mainly to depths of recursion when the factorizer
calls itself, and to the split between its work forming and factorizing images and
reconstructing full factors from these. If NIL is used in place of a filename the
trace output requested is directed to the standard output stream. After use of this
trace facility the generated trace files should be closed by calling

symbolic close!-trace!-files();

NOTE: Using the factorizer with MCD off will result in an error.

9.3 Cancellation of Common Factors

Facilities are available in REDUCE for cancelling common factors in the numer-
ators and denominators of expressions, at the option of the user. The system will
perform this greatest common divisor computation if the switch GCD is on. (GCD
is normally off.)
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A check is automatically made, however, for common variable and numerical prod-
ucts in the numerators and denominators of expressions, and the appropriate can-
cellations made.

When GCD is on, and EXP is off, a check is made for square free factors in an
expression. This includes separating out and independently checking the content
of a given polynomial where appropriate. (For an explanation of these terms, see
Anthony C. Hearn, “Non-Modular Computation of Polynomial GCDs Using Trial
Division”, Proc. EUROSAM 79, published as Lecture Notes on Comp. Science,
Springer-Verlag, Berlin, No 72 (1979) 227-239.)

Example: With EXP off and GCD on, the polynomial axc+axd+b*c+b*d would
be returned as (A+B) x (C+D).

Under normal circumstances, GCDs are computed using an algorithm described in
the above paper. It is also possible in REDUCE to compute GCDs using an al-
ternative algorithm, called the EZGCD Algorithm, which uses modular arithmetic.
The switch EZGCD, if on in addition to GCD, makes this happen.

In non-trivial cases, the EZGCD algorithm is almost always better than the basic
algorithm, often by orders of magnitude. We therefore strongly advise users to
use the EZGCD switch where they have the resources available for supporting the
package.

For a description of the EZGCD algorithm, see J. Moses and D.Y.Y. Yun, “The EZ
GCD Algorithm”, Proc. ACM 1973, ACM, New York (1973) 159-166.

NOTE: This package shares code with the factorizer, so a certain amount of trace
information can be produced using the factorizer trace switches.

An implementation of the heuristic GCD algorithm, first introduced by B.W. Char,
K.O. Geddes and G.H. Gonnet, as described in J.H. Davenport and J. Padget,
“HEUGCD: How Elementary Upperbounds Generate Cheaper Data”, Proc. of EU-
ROCAL ’85, Vol 2, 18-28, published as Lecture Notes on Comp. Science, No. 204,
Springer-Verlag, Berlin, 1985, is also available on an experimental basis. To use
this algorithm, the switch HEUGCD should be on in addition to GCD. Note that if
both EZGCD and HEUGCD are on, the former takes precedence.

9.3.1 Determining the GCD of Two Polynomials
This operator, used with the syntax
GCD (EXPRN1:polynomial, EXPRN2:polynomial) :polynomial,

returns the greatest common divisor of the two polynomials EXPRN1 and EXPRN2.

Examples:
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gcd (x"242+x+1,x"24+3xx+2) —-> X+1
gcd (2*xx72=-2xy"2,4+x+4%y) —> 2xX+2xY
gcd (x"24+4y"2, x-y) -> 1.

9.4 Working with Least Common Multiples

Greatest common divisor calculations can often become expensive if extensive
work with large rational expressions is required. However, in many cases, the only
significant cancellations arise from the fact that there are often common factors
in the various denominators which are combined when two rationals are added.
Since these denominators tend to be smaller and more regular in structure than the
numerators, considerable savings in both time and space can occur if a full GCD
check is made when the denominators are combined and only a partial check when
numerators are constructed. In other words, the true least common multiple of
the denominators is computed at each step. The switch LCM is available for this
purpose, and is normally on.

In addition, the operator L.CM, used with the syntax
LCM (EXPRN1:polynomial, EXPRN2:polynomial) :polynomial,

returns the least common multiple of the two polynomials EXPRN1 and EXPRN2.

Examples:

lem(x7M242%x+1, x"243xx+2) —> X*x*x3 4+ 4xX*x*x2 + 5xX + 2
1em(2xx"2=-2+y"2,4xx+4xy) —> 4x (Xx*2 — Yx%*2)

9.5 Controlling Use of Common Denominators

When two rational functions are added, REDUCE normally produces an expression
over a common denominator. However, if the user does not want denominators
combined, he or she can turn off the switch MCD which controls this process. The
latter switch is particularly useful if no greatest common divisor calculations are
desired, or excessive differentiation of rational functions is required.

CAUTION: With MCD off, results are not guaranteed to come out in either normal
or canonical form. In other words, an expression equivalent to zero may in fact not
be simplified to zero. This option is therefore most useful for avoiding expression
swell during intermediate parts of a calculation.

MCD is normally on.
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9.6 Euclidean Division

The operators DIVIDE, POLY_QUOTIENT and MOD / REMAINDER implement
Euclidean division of polynomials (over the current number domain). The
remainder operator is used with the syntax

remainder (EXPRN1:polynomial, EXPRN2:polynomial) :
polynomial.

It returns the remainder when EXPRN1 is divided by EXPRN2. This is the true
remainder based on the internal ordering of the variables, and not the pseudo-
remainder.

Examples:
remainder((x + y)*(x + 2xy), x + 3xy) —> 2xy"2
remainder (2+«x + vy, 2) -> vy

CAUTION: In the default case, remainders are calculated over the integers. If you
need the remainder with respect to another domain, it must be declared explicitly.

Example:
remainder (x"2 - 2, x + sqrt(2)); -> x""2 - 2
load_package arnum;
defpoly sqgrt272 - 2;

remainder (x"2 - 2, x + sqgrt2); -> 0

(Note the use of sqrt2 in place of sgrt (2) in the second call of remainder.)

The infix operator mod is an alias for remainder when at least one operand is
explicitly polynomial, e.g.

(x*2 + y72) mod (x — y);

2
2%y

However, when both operands are integers, mod implements the integer modulus
operation, regardless of the current number domain, e.g.

7 mod 4 -> 3
The Euclidean division operator divide is used with the syntax

divide (EXPRN1l:polynomial, EXPRN2:polynomial) :
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list (polynomial,polynomial)

and returns both the quotient and the remainder together as the first and second
elements of a list, e.g.

divide (x"2 + y*2, X — V);

2
{x + y,2*y }

It can also be used as an infix operator:
(x"2 + y*2) divide (x - vy);

2
{x + y,2*xy }

The infix operator poly_quotient returns only the quotient, i.e. the first ele-
ment of the list returned by divide.

All Euclidean division operators (when used in prefix form) accept an optional
third argument, which specifies the main variable to be used during the division.
The default is the leading kernel in the current global ordering. Specifying the main
variable does not change the ordering of any other variables involved, nor does it
change the global environment. For example

divide (x*2 + v*2, x - vy, V);

2
{ - (x + y),2xx }

Specifying x as main variable gives the same behaviour as the default shown ear-
lier, i.e.

divide (x"2 + y"2, x — Yy, X);

2
{x + y,2*y }

All Euclidean division operators accept a (possibly nested) list as first argu-
ment/operand and map over that list, e.g.

{x, x+ 1, x*2 - 1} mod x - 1;

{1,2,0}
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9.7 Polynomial Pseudo-Division

The polynomial division discussed above is normally most useful for a univariate
polynomial over a field, otherwise the division is likely to fail giving trivially a zero
quotient and a remainder equal to the dividend. (A ring of univariate polynomials
is a Euclidean domain only if the coefficient ring is a field.) For example, over the
integers:

divide (x*2 + y*2, 2(x - y));

2 2
{0,x + vy}

The division of a polynomial u(z) of degree m by a polynomial v(z) of degree n <
m can be performed over any commutative ring with identity (such as the integers,
or any polynomial ring) if the polynomial () is first multiplied by lc(v, )™~ "1
(where Ic denotes the leading coefficient). This is called pseudo-division. The
polynomial pseudo-division operators PSEUDO_DIVIDE, PSEUDO_QUOTIENT
and PSEUDO_REMAINDER are implemented as prefix operators (only). When
multivariate polynomials are pseudo-divided it is important which variable is taken
as the main variable, because the leading coefficient of the divisor is computed
with respect to this variable. Therefore, if this is allowed to default and there is any
ambiguity, i.e. the polynomials are multivariate or contain more than one kernel,
the pseudo-division operators output a warning message to indicate which kernel
has been selected as the main variable — it is the first kernel found in the internal
forms of the dividend and divisor. (As usual, the warning can be turned off by
setting the switch msg to off.) For example

pseudo_divide (x"2 + y*2, X - Vy);
*x* Main division variable selected is x

2
{x + y,2*xy }

pseudo_divide (x"2 + y"2, X — Yy, X);

2
{x + y,2*y }

pseudo_divide (x*2 + y"2, X — YV, Y);
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{ — (x +y),2xx }
If the leading coefficient of the divisor is a unit (invertible element) of the coeffi-
cient ring then division and pseudo-division should be identical, otherwise they are
not, e.g.

divide (x"2 + y*2, 2(x — y));

2 2
{0,x + vy}

pseudo_divide (x"2 + y*2, 2(x — vy));
**x* Main division variable selected is x

2
{2x(x + y),8xy }

The pseudo-division gives essentially the same result as would division over the
field of fractions of the coefficient ring (apart from the overall factors [contents] of
the quotient and remainder), e.g.
on rational;
divide (x"2 + y"2, 2(x - Vy));
1 2
{===x(x + y),2*xy }
2
pseudo_divide (x"2 + y*2, 2(x — vy));

**x* Main division variable selected is x

2
{2x(x + y),8xy }

Polynomial division and pseudo-division can only be applied to what REDUCE
regards as polynomials, i.e. rational expressions with denominator 1, e.g.

off rational;

pseudo_divide ((x"2 + y*2)/2, x — Vy);
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Kk kxk ————————— invalid as polynomial

All pseudo-division operators accept a (possibly nested) list as first argument/operand
and map over that list.

Pseudo-division is implemented using an algorithm (D. E. Knuth 1981, Seminu-
merical Algorithms, Algorithm R, page 407) that does not perform any actual di-
vision at all (which proves that it applies over a ring). It is more efficient than
the naive algorithm, and it also has the advantage that it works over coefficient
domains in which REDUCE may not be able to perform in practice divisions that
are possible mathematically. An example of this is coefficient domains involving
algebraic numbers, such as the integers extended by /2, as illustrated in the file
polydiv.tst.

The implementation attempts to be reasonably efficient, except that it always com-
putes the quotient internally even when only the remainder is required (as does the
standard remainder operator).

9.8 RESULTANT Operator

This is used with the syntax

RESULTANT (EXPRN1:polynomial, EXPRN2:polynomial, VAR:kernel) :
polynomial.

It computes the resultant of the two given polynomials with respect to the given
variable, the coefficients of the polynomials can be taken from any domain. The
result can be identified as the determinant of a Sylvester matrix, but can often
also be thought of informally as the result obtained when the given variable is
eliminated between the two input polynomials. If the two input polynomials have
a non-trivial GCD their resultant vanishes.

The switch BEZOUT controls the computation of the resultants. It is off by default.
In this case a subresultant algorithm is used. If the switch Bezout is turned on,
the resultant is computed via the Bezout Matrix. However, in the latter case, only
polynomial coefficients are permitted.

The sign conventions used by the resultant function follow those in R. Loos, “Com-
puting in Algebraic Extensions” in “Computer Algebra — Symbolic and Algebraic
Computation”, Second Ed., Edited by B. Buchberger, G.E. Collins and R. Loos,
Springer-Verlag, 1983. Namely, with A and B not dependent on X:
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deg (p) *deg (q)

resultant (p(x),g(x),x)= (-1) *resultant (g, p, x)
deg (p)
resultant (a, p (%), x) = a
resultant (a, b, x) =1
Examples:
2
resultant (x/r*u+y, uxy, u) -> -y

calculation in an algebraic extension:

load arnum;
defpoly sqrt2**x2 - 2;

resultant (x + sqgrt2,sqgrt2 = x +1,x) -> -1
or in a modular domain.:

setmod 17;
on modular;

resultant (2x+1, 3x+4, x) -> 5

9.9 DECOMPOSE Operator

The DECOMPOSE operator takes a multivariate polynomial as argument, and re-
turns an expression and a list of equations from which the original polynomial can
be found by composition. Its syntax is:

DECOMPOSE (EXPRN:polynomial) :1ist.
For example:

decompose (x"8-88xx"7+2924%x"6-43912+x"5+263431+xx"4-
218900%x"3+65690%x"2-7700%x+234)
2 2 2
-> {U + 35U + 234, U=V + 10+V, V=X - 22%X}
2
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decompose (U"2+v"2+2uxv+l) -> {W + 1, W=U + V}

Users should note however that, unlike factorization, this decomposition is not
unique.

9.10 INTERPOL operator

Syntax:
INTERPOL ((values), (variable), (points)) ;

where (values) and (points) are lists of equal length and <variable> is an alge-
braic expression (preferably a kernel).

INTERPOL generates an interpolation polynomial f in the given variable of degree
length((values))-1. The unique polynomial f is defined by the property that for
corresponding elements v of (values) and p of (points) the relation f(p) = v holds.

The Aitken-Neville interpolation algorithm is used which guarantees a stable result
even with rounded numbers and an ill-conditioned problem.

9.11 Obtaining Parts of Polynomials and Rationals

These operators select various parts of a polynomial or rational function structure.
Except for the cost of rearrangement of the structure, these operations take very
little time to perform.

For those operators in this section that take a kernel VAR as their second argument,
an error results if the first expression is not a polynomial in VAR, although the coef-
ficients themselves can be rational as long as they do not depend on VAR. However,
if the switch RATARG is on, denominators are not checked for dependence on VAR,
and are taken to be part of the coefficients.

9.11.1 DEG Operator
This operator is used with the syntax
DEG (EXPRN:polynomial, VAR:kernel) :integer.

It returns the leading degree of the polynomial EXPRN in the variable VAR. If VAR
does not occur as a variable in EXPRN, 0 is returned.

Examples:
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deg ( (a+tb) x (c+2+d) "2,a) -> 1

deg ( (a+b) * (c+2xd)*2,d) —-> 2

deg ( (a+tb) x (c+2+d) "2,e) -> 0.
Note also that if RATARG is on,

deg ((a+b) ~3/a, a) -> 3

since in this case, the denominator A is considered part of the coefficients of the
numerator in A. With RATARG off, however, an error would result in this case.

9.11.2 DEN Operator

This is used with the syntax:
DEN (EXPRN:rational) :polynomial.

It returns the denominator of the rational expression EXPRN. If EXPRN is a poly-
nomial, 1 is returned.

Examples:
den (x/y"2) >  Yxx2
den (100/6) -> 3
[since 100/6 is first simplified to 50/3]

den(a/4+b/6) —-> 12
den (a+b) -> 1

9.11.3 LCOF Operator
LCOF is used with the syntax
LCOF (EXPRN:polynomial, VAR:kernel) :polynomial.

It returns the leading coefficient of the polynomial EXPRN in the variable VAR. If
VAR does not occur as a variable in EXPRN, EXPRN is returned. Examples:

lcof ((at+b) * (c+2+xd) "2,a) —> C*x2+4+«C*D+4*xD**2
lcof ((a+b) x (c+2+d)"2,d) —-> 4% (A+B)
lcof ((atb) * (c+2xd), e) —>  AxCH+2xA*xD+B*xC+2+xB*D
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9.11.4 LPOWER Operator
Syntax:
LPOWER (EXPRN:polynomial, VAR:kernel) :polynomial.

LPOWER returns the leading power of EXPRN with respect to VAR. If EXPRN
does not depend on VAR, 1 is returned.

Examples:
lpower ( (atb) x (c+2xd) *2,a) —> A

lpower ( (atb) x (c+2xd) *2,d) —-> Dxx2
lpower ( (at+b) x (c+2xd) , e) -> 1

9.11.5 LTERM Operator
Syntax:
LTERM (EXPRN:polynomial, VAR:kernel) :polynomial.

LTERM returns the leading term of EXPRN with respect to VAR. If EXPRN does
not depend on VAR, EXPRN is returned.

Examples:

lterm( (a+b) * (c+2*d) *2,a) —> A* (Cx*2+4xCxD+4xD**2)
lterm( (a+b) * (c+2+d) *2,d) —-> 4xDx*2* (A+B)
lterm( (at+b) * (c+2+d) , e) —>  AxCH+2+xA*D+B*C+2+xB*D

Compatibility Note: In some earlier versions of REDUCE, LTERM returned 0 if

the EXPRN did not depend on VAR. In the present version, EXPRN is always equal
to LTERM (EXPRN, VAR) + REDUCT (EXPRN, VAR).

9.11.6 MAINVAR Operator
Syntax:
MAINVAR (EXPRN:polynomial) :expression.

Returns the main variable (based on the internal polynomial representation) of
EXPRN. If EXPRN is a domain element, O is returned.

Examples:
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Assuming A has higher kernel order than B, C, or D:

mainvar ( (a+b) * (c+2%d) *2) -> A
mainvar (2) -> 0

9.11.7 NUM Operator
Syntax:
NUM (EXPRN:rational) :polynomial.

Returns the numerator of the rational expression EXPRN. If EXPRN is a polyno-
mial, that polynomial is returned.

Examples:
num(x/y"~2) -> X
num (100/6) -> 50
num(a/4+b/6) —-> 3xA+2xB
num (a+b) -> A+B

9.11.8 REDUCT Operator
Syntax:
REDUCT (EXPRN:polynomial, VAR:kernel) :polynomial.

Returns the reductum of EXPRN with respect to VAR (i.e., the part of EXPRN left
after the leading term is removed). If EXPRN does not depend on the variable VAR,
0 is returned.

Examples:

reduct ( (a+b) x (c+2xd),a) —> B=*(C + 2%D)
reduct ( (a+b) * (c+2+d),d) -> C*x (A + B)
reduct ( (a+b) x (c+2xd),e) —> O

Compatibility Note: In some earlier versions of REDUCE, REDUCT returned
EXPRN if it did not depend on VAR. In the present version, EXPRN is always equal
to LTERM (EXPRN, VAR) + REDUCT (EXPRN, VAR).
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9.11.9 TOTALDEG Operator

Syntax:
totaldeg (a*x"2+bxxt+c, x) => 2
totaldeg (axx"2+b*x+c, {a,b,c}) =>1
totaldeg (a*x"2+bxx+c, {x, a}) => 3
totaldeg (axx"2+b*xt+c, {x,b}) => 2
totaldeg (a*x"2+bxx+c, {p,q,r}) => 0

totaldeg(u, kernlist) finds the total degree of the polynomial u in the
variables in kernlist. If kernlist is not a list it is treated as a simple single
variable. The denominator of u is ignored, and "degree" here does not pay attention
to fractional powers. Mentions of a kernel within the argument to any operator or
function (eg sin, cos, log, sqrt) are ignored. Really u is expected to be just a
polynomial.

9.12 Polynomial Coefficient Arithmetic

REDUCE allows for a variety of numerical domains for the numerical coefficients
of polynomials used in calculations. The default mode is integer arithmetic, al-
though the possibility of using real coefficients has been discussed elsewhere. Ra-
tional coefficients have also been available by using integer coefficients in both the
numerator and denominator of an expression, using the ON DIV option to print the
coefficients as rationals. However, REDUCE includes several other coefficient opt-
ions in its basic version which we shall describe in this section. All such coefficient
modes are supported in a table-driven manner so that it is straightforward to extend
the range of possibilities. A description of how to do this is given in R.J. Brad-
ford, A.C. Hearn, J.A. Padget and E. Schriifer, “Enlarging the REDUCE Domain
of Computation,” Proc. of SYMSAC *86, ACM, New York (1986), 100-106.

9.12.1 Rational Coefficients in Polynomials

Instead of treating rational numbers as the numerator and denominator of a rational
expression, it is also possible to use them as polynomial coefficients directly. This
is accomplished by turning on the switch RATIONAL.

Example: With RATIONAL off, the input expression a/2 would be converted
into a rational expression, whose numerator was A and denominator 2. With
RATIONAL on, the same input would become a rational expression with numerator
1/2«A and denominator 1. Thus the latter can be used in operations that require
polynomial input whereas the former could not.
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9.12.2 Real Coefficients in Polynomials

The switch ROUNDED permits the use of arbitrary sized real coefficients in poly-
nomial expressions. The actual precision of these coefficients can be set by the
operator PRECISION. For example, precision 50; sets the precision to fifty
decimal digits. The default precision is system dependent and can be found by
precision O0;. In this mode, denominators are automatically made monic, and
an appropriate adjustment is made to the numerator.

Example: With ROUNDED on, the input expression a /2 would be converted into a
rational expression whose numerator is 0 . 5+A and denominator 1.

Internally, REDUCE uses floating point numbers up to the precision supported by
the underlying machine hardware, and so-called bigfloats for higher precision or
whenever necessary to represent numbers whose value cannot be represented in
floating point. The internal precision is two decimal digits greater than the external
precision to guard against roundoff inaccuracies. Bigfloats represent the fraction
and exponent parts of a floating-point number by means of (arbitrary precision)
integers, which is a more precise representation in many cases than the machine
floating point arithmetic, but not as efficient. If a case arises where use of the
machine arithmetic leads to problems, a user can force REDUCE to use the bigfloat
representation at all precisions by turning on the switch ROUNDBF. In rare cases,
this switch is turned on by the system, and the user informed by the message

ROUNDBF turned on to increase accuracy

Rounded numbers are normally printed to the specified precision. However, if the
user wishes to print such numbers with less precision, the printing precision can be
set by the command PRINT_PRECISION. For example, print_precision
5; will cause such numbers to be printed with five digits maximum.

Under normal circumstances when ROUNDED is on, REDUCE converts the number
1.0 to the integer 1. If this is not desired, the switch NOCONVERT can be turned
on.

Numbers that are stored internally as bigfloats are normally printed with a space
between every five digits to improve readability. If this feature is not required, it
can be suppressed by turning off the switch BFSPACE.

Further information on the bigfloat arithmetic may be found in T. Sasaki, “Man-
ual for Arbitrary Precision Real Arithmetic System in REDUCE”, Department of
Computer Science, University of Utah, Technical Note No. TR-8 (1979).

When a real number is input, it is normally truncated to the precision in effect
at the time the number is read. If it is desired to keep the full precision of all
numbers input, the switch ADJPREC (for adjust precision) can be turned on. While
on, ADJPREC will automatically increase the precision, when necessary, to match
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that of any integer or real input, and a message printed to inform the user of the
precision increase.

When ROUNDED is on, rational numbers are normally converted to rounded rep-
resentation. However, if a user wishes to keep such numbers in a rational form
until used in an operation that returns a real number, the switch ROUNDALL can be
turned off. This switch is normally on.

Results from rounded calculations are returned in rounded form with two excep-
tions: if the result is recognized as 0 or 1 to the current precision, the integer result
is returned.

9.12.3 Modular Number Coefficients in Polynomials

REDUCE includes facilities for manipulating polynomials whose coefficients are
computed modulo a given base. To use this option, two commands must be used;
SETMOD (integer), to set the prime modulus, and ON MODULAR to cause the
actual modular calculations to occur. For example, with setmod 3; and on
modular;, the polynomial (a+2xDb) ~3 would become A" 3+2+B" 3.

The argument of SETMOD is evaluated algebraically, except that non-modular (in-
teger) arithmetic is used. Thus the sequence

setmod 3; on modular; setmod 7;

will correctly set the modulus to 7.

Modular numbers are by default represented by integers in the interval [0,p-1]
where p is the current modulus. Sometimes it is more convenient to use an equiv-
alent symmetric representation in the interval [-p/2+1,p/2], or more precisely [-
floor((p-1)/2), ceiling((p-1)/2)], especially if the modular numbers map objects that
include negative quantities. The switch BALANCED_MOD allows you to select the
symmetric representation for output.

Users should note that the modular calculations are on the polynomial coefficients
only. It is not currently possible to reduce the exponents since no check for a prime
modulus is made (which would allow 2P~! to be reduced to 1 mod p). Note also
that any division by a number not co-prime with the modulus will result in the error
“Invalid modular division”.

9.12.4 Complex Number Coefficients in Polynomials

Although REDUCE routinely treats the square of the variable i as equivalent to —1,
this is not sufficient to reduce expressions involving i to lowest terms, or to factor
such expressions over the complex numbers. For example, in the default case,
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factorize (a®2+1);
gives the result

{{Ax%x2+1,1}}
and

(a”2+b"2) / (a+i*b)
is not reduced further. However, if the switch COMPLEX is turned on, full complex
arithmetic is then carried out. In other words, the above factorization will give the
result

{{a + I,1},{A - I,1}}

and the quotient will be reduced to A—TI «B.

The switch COMP LEX may be combined with ROUNDED to give complex real num-
bers; the appropriate arithmetic is performed in this case.

Complex conjugation is used to remove complex numbers from denominators
of expressions. To do this if COMPLEX is off, you must turn the switch
RATIONALIZE on.

9.13 ROOT_VAL Operator

The ROOT_VAL operator takes a single univariate polynomial as argument, and
returns a list of root values at system precision (or greater if required to separate
roots). It is used with the syntax

ROOT_VAL (EXPRN:univariate polynomial) :1list.
For example, the sequence

on rounded; root_val(x"3-x-1);
gives the result

{0.562279512062+I - 0.662358978622, - 0.562279512062+1I

- 0.662358978622,1.32471795724}



Chapter 10

Assigning and Testing Algebraic
Properties

Sometimes algebraic expressions can be further simplified if there is additional
information about the value ranges of its components. The following section de-
scribes how to inform REDUCE of such assumptions.

10.1 REALVALUED Declaration and Check

The declaration REALVALUED may be used to restrict variables to the real num-
bers. The syntax is:

realvalued vl,...vn;
For such variables the operator IMPART gives the result zero. Thus, with
realvalued x,Vy;
the expression impart (x+sin (y)) is evaluated as zero. You may also declare
an operator as real valued with the meaning, that this operator maps real arguments

always to real values. Example:

operator h; realvalued h, x;
impart h(x);

0

impart h(w);

155
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impart (h(w))

Such declarations are not needed for the standard elementary functions.

To remove the propery from a variable or an operator use the declaration
NOTREALVALUED with the syntax:

notrealvalued vl,...vn;

The boolean operator REALVALUEDP allows you to check if a variable, an opera-
tor, or an operator expression is known as real valued. Thus,

realvalued x;
write if realvaluedp(sin x) then "yes" else "no";

write if realvaluedp(sin z) then "yes" else "no";

would print first yes and then no. For general expressions test the impart for
checking the value range:

realvalued x,y; w:=(x+tixy); wl:=conj w;
impart (wxwl) ;

impart (wxw) ;

2% XXy

10.2 SELFCONJUGATE Declaration

The declaration SELFCONJUGATE may be used to declare an operator to be self-
conjuate in the sense that conj (£ (z)) = £ (conj(z)). The syntax is:

selfconjugate f1,...fn;

Such declarations are not needed for the standard elementary functions nor for
the inverses atan, acot, asinh, acsch. The remaining inverse functions
log, asin, acos, atanh, acoshetc. and sgrt fail to be self-conjugate
on their branch cuts (which are all subsets of the real axis).
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10.3 Declaring Complex Conjugates

The argument u of a declaration COMPLEX_CONJUGATES should consist of one
or more (comma-separated) lists of two identifiers. This declaration associates the
two identifiers as mutual complex-conjugates. If the first is an operator, the second
is also declared as an operator, if it is not one already. A fancy print symbol is
automatically constructed and installed for the second identifier from that of the
first by adding over-lining. For example:

operator f;

complex_conjugates {f, fbar}, {z, zb};

conj zb -> z

conj(f(z)) -> fbar (zb)
This will associate £ & fbar and z & zb as mutual complex conjugates and de-
clare fbar as an operator. On graphical interfaces zb and fbar will be rendered
as 7 and f respectively. If the first identifier already has a fancy special symbol
defined, this will be over-lined to produce the fancy print symbol for the second
identifier. Should the user not wish to have a fancy print symbol automatically

generated, they may instead use explicit LET statements as described in the sub-
section on the operator CONJ.

10.4 Declaring Expressions Positive or Negative

Detailed knowlege about the sign of expressions allows REDUCE to simplify ex-
pressions involving exponentials or ABS. You can express assumptions about the
positivity or negativity of expressions by rules for the operator STGN. Examples:
abs (axbx*c) ;
abs (axbx*c) ;
let sign(a)=>1,sign(b)=>1; abs(axbx*c);
abs (c) xaxb
on precise; sqgrt (x"2-2x+1);

abs(x - 1)

ws where sign(x-1)=>1;
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Here factors with known sign are factored out of an ABS expression.
on precise; on factor;
(g*x—-2qg) "w;

w
((x = 2)+*q)

ws where sign(x-2)=>1;

w w
q *(x — 2)

In this case the factor (z — 2)* may be extracted from the base of the exponential
because it is known to be positive.

Note that REDUCE knows a lot about sign propagation. For example, with z and y
also x +vy, x+y+m and (z +e)/y? are known as positive. Nevertheless, it is often
necessary to declare additionally the sign of a combined expression. E.g. at present
a positivity declaration of z — 2 does not automatically lead to sign evaluation for
x — 1 or for .



Chapter 11

Substitution Commands

An important class of commands in REDUCE define substitutions for variables and
expressions to be made during the evaluation of expressions. Such substitutions use
the prefix operator SUB, various forms of the command LET, and rule sets.

11.1 SUB Operator

Syntax:
SUB ((substitution_list), (EXPRNI:algebraic)) : algebraic

where (substitution_list) is a list of one or more equations of the form
(VAR:kernel) = (EXPRN:algebraic)

or a kernel that evaluates to such a list.

The SUB operator gives the algebraic result of replacing every occurrence of the
variable VAR in the expression EXPRN1 by the expression EXPRN. Specifically,
EXPRNL is first evaluated using all available rules. Next the substitutions are made,
and finally the substituted expression is reevaluated. When more than one variable
occurs in the substitution list, the substitution is performed by recursively walking
down the tree representing EXPRN1, and replacing every VAR found by the ap-
propriate EXPRN. The EXPRN are not themselves searched for any occurrences of
the various VARs. The trivial case SUB (EXPRN1) returns the algebraic value of
EXPRNI.

Examples:

2 2

sub ({x=a+ty,y=y+1},x"2+y"2) > A + 2#A*Y + 2+«Y + 2xY + 1

159
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and with s := {x=a+y,y=y+1},

2 2
sub (s, x"2+y"2) => A+ 2%A%Y + 2xY + 2xY + 1
Note that the global assignments x : =a+y, etc., do not take place.

EXPRN1 can be any valid algebraic expression whose type is such that a substi-
tution process is defined for it (e.g., scalar expressions, lists and matrices). An
error will occur if an expression of an invalid type for substitution occurs either in
EXPRN or EXPRN1.

The braces around the substitution list may also be omitted, as in:

2 2
sub (x=aty,y=y+l,x"2+y"2) —> A + 2%xAxY + 2%Y + 2%xY + 1

11.2 LET Rules

Unlike substitutions introduced via SUB, LET rules are global in scope and stay in
effect until replaced or CLEARed.

The simplest use of the LET statement is in the form
LET (substitution list)

where (substitution list) is a list of rules separated by commas, each of the form:

(variable) = (expression)
or

(prefix operator) ({argument), ..., (argument)) = (expression)
or

(argument) (infix operator), . . ., (argument) = (expression)

For example,

let {x => y"2,
h(u,v) => u - v,
cos (pi/3) => 1/2,
axb => ¢,
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1l4+m => n,
w3 => 2%z — 3,
z~10 => 0}

The list brackets can be left out if preferred. The above rules could also have been
entered as seven separate LET statements.

After such LET rules have been input, X will always be evaluated as the square of
Y, and so on. This is so even if at the time the LET rule was input, the variable Y
had a value other than Y. (In contrast, the assignment x : =y "2 will set X equal to
the square of the current value of Y, which could be quite different.)

The rule let axb=c means that whenever A and B are both factors in an ex-
pression their product will be replaced by C. For example, a”5+b"7+w would be
replaced by c*5+xb" 2 xw.

The rule for 1+m will not only replace all occurrences of 1+m by N, but will also
normally replace L by n—m, but not M by n—1. A more complete description of this
case is given in Section 11.2.5.

The rule pertaining to w” 3 will apply to any power of W greater than or equal to
the third.

Note especially the last example, 1et z~10=0. This declaration means, in effect:
ignore the tenth or any higher power of Z. Such declarations, when appropriate,
often speed up a computation to a considerable degree. (See Section 11.4 for more
details.)

Any new operators occurring in such LET rules will be automatically declared
OPERATOR by the system, if the rules are being read from a file. If they are being
entered interactively, the system will ask DECLARE ... OPERATOR? . Answer Y
or N and hit .

In each of these examples, substitutions are only made for the explicit expressions
given; i.e., none of the variables may be considered arbitrary in any sense. For
example, the command

let h(u,v) = u - v;
will cause h (u, v) to evaluate to U — V, but will not affect h (u, z) or H with

any arguments other than precisely the symbols U, V.

These simple LET rules are on the same logical level as assignments made with
the := operator. An assignment x := p+qcancels arule let x = y”~2 made
earlier, and vice versa.

CAUTION: A recursive rule such as

let x = x + 1;
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is erroneous, since any subsequent evaluation of X would lead to a non-terminating
chain of substitutions:

X —>x +1 > (x+1) +1 > ((x+ 1) + 1) + 1 —>
Similarly, coupled substitutions such as
let 1 =m+n, n =1 + r;

would lead to the same error. As a result, if you try to evaluate an X, L or N defined
as above, you will get an error such as

X improperly defined in terms of itself

Array and matrix elements can appear on the left-hand side of a LET statement.
However, because of their instant evaluation property, it is the value of the element
that is substituted for, rather than the element itself. E.g.,

array a(5);
a(z2) := b;
let a(2) = c;

results in B being substituted by C; the assignment for a (2) does not change.

Finally, if an error occurs in any equation in a LET statement (including generalized
statements involving FOR ALL and SUCH THAT), the remaining rules are not
evaluated.

11.2.1 FORALL... LET

If a substitution for all possible values of a given argument of an operator is re-
quired, the declaration FOR ALL may be used. The syntax of such a command
is

FOR ALL (variable),..., (variable) (LET statement) (terminator)
e.g.

for all x,y let h(x,y) = x-y;

A

for all x let k(x,y) = x"y;

The first of these declarations would cause h (a,b) to be evaluated as A-B,
h (u+v, utw) to be V-W, etc. If the operator symbol H is used with more or
fewer argument places, not two, the LET would have no effect, and no error would
result.
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The second declaration would cause k (a, y) to be evaluated as a”y, but would
have no effect on k (a, z) since the rule didn’t say FOR ALL Y....

Where we used X and Y in the examples, any variables could have been used. This
use of a variable doesn’t affect the value it may have outside the LET statement.
However, you should remember what variables you actually used. If you want
to delete the rule subsequently, you must use the same variables in the CLEAR
command.

It is possible to use more complicated expressions as a template for a LET state-
ment, as explained in the section on substitutions for general expressions. In nearly
all cases, the rule will be accepted, and a consistent application made by the sys-
tem. However, if there is a sole constant or a sole free variable on the left-hand side
of arule (e.g., let 2=3or for all x let x=2), then the system is unable
to handle the rule, and the error message

Substitution for ... not allowed
will be issued. Any variable listed in the FOR ALL part will have its symbol
preceded by an equal sign: X in the above example will appear as =X. An error will

also occur if a variable in the FOR ALL part is not properly matched on both sides
of the LET equation.

11.2.2 FORALL... SUCH THAT ... LET

If a substitution is desired for more than a single value of a variable in an operator
or other expression, but not all values, a conditional form of the FOR ALL
LET declaration can be used.

Example:
for all x such that numberp x and x<0 let h(x)=0;
will cause h (—5) to be evaluated as 0, but H of a positive integer, or of an argument

that is not an integer at all, would not be affected. Any boolean expression can
follow the SUCH THAT keywords.

11.2.3 Removing Assignments and Substitution Rules

The user may remove all assignments and substitution rules from any expression
by the command CLEAR, in the form

CLEAR (expression), ..., (expression) (terminator)

e.g.
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clear x, h(x,y);

Because of their instant evaluation property, array and matrix elements cannot be
cleared with CLEAR. For example, if A is an array, you must say

a(3) := 0;
rather than
clear a(3);

to “clear” element a (3) .

On the other hand, a whole array (or matrix) A can be cleared by the command
clear a; This means much more than resetting to O all the elements of A. The
fact that A is an array, and what its dimensions are, are forgotten, so A can be
redefined as another type of object, for example an operator.

If you need to clear a variable whose name must be computed, see the UNSET
statement.

The more general types of LET declarations can also be deleted by using CLEAR.
Simply repeat the LET rule to be deleted, using CLEAR in place of LET, and omit-
ting the equal sign and right-hand part. The same dummy variables must be used
in the FOR ALL part, and the boolean expression in the SUCH THAT part must be
written the same way. (The placing of blanks doesn’t have to be identical.)

Example: The LET rule
for all x such that numberp x and x<0 let h(x)=0;
can be erased by the command

for all x such that numberp x and x<0 clear h(x);

11.2.4 Overlapping LET Rules

CLEAR is not the only way to delete a LET rule. A new LET rule identical to
the first, but with a different expression after the equal sign, replaces the first.
Replacements are also made in other cases where the existing rule would be in
conflict with the new rule. For example, a rule for x~4 would replace a rule for
x~5. The user should however be cautioned against having several LET rules in
effect that relate to the same expression. No guarantee can be given as to which
rules will be applied by REDUCE or in what order. It is best to CLEAR an old rule
before entering a new related LET rule.
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11.2.5 Substitutions for General Expressions

The examples of substitutions discussed in other sections have involved very sim-
ple rules. However, the substitution mechanism used in REDUCE is very general,
and can handle arbitrarily complicated rules without difficulty.

The general substitution mechanism used in REDUCE is discussed in Hearn, A.
C., “REDUCE, A User-Oriented Interactive System for Algebraic Simplification,”
Interactive Systems for Experimental Applied Mathematics, (edited by M. Klerer
and J. Reinfelds), Academic Press, New York (1968), 79-90, and Hearn. A. C.,
“The Problem of Substitution,” Proc. 1968 Summer Institute on Symbolic Mathe-
matical Computation, IBM Programming Laboratory Report FSC 69-0312 (1969).
For the reasons given in these references, REDUCE does not attempt to imple-
ment a general pattern matching algorithm. However, the present system uses far
more sophisticated techniques than those discussed in the above papers. It is now
possible for the rules appearing in arguments of LET to have the form

(substitution expression) = (expression)

where any rule to which a sensible meaning can be assigned is permitted. How-
ever, this meaning can vary according to the form of (substitution expression). The
semantic rules associated with the application of the substitution are completely
consistent, but somewhat complicated by the pragmatic need to perform such sub-
stitutions as efficiently as possible. The following rules explain how the majority
of the cases are handled.

To begin with, the (substitution expression) is first partly simplified by collecting
like terms and putting identifiers (and kernels) in the system order. However, no
substitutions are performed on any part of the expression with the exception of
expressions with the instant evaluation property, such as array and matrix elements,
whose actual values are used. It should also be noted that the system order used is
not changeable by the user, even with the KORDER command. Specific cases are
then handled as follows:

1. If the resulting simplified rule has a left-hand side that is an identifier, an
expression with a top-level algebraic operator or a power, then the rule is
added without further change to the appropriate table.

2. If the operator = appears at the top level of the simplified left-hand side, then
any constant arguments in that expression are moved to the right-hand side
of the rule. The remaining left-hand side is then added to the appropriate
table. For example,

let 2xx*y=3

becomes
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let x*y=3/2

so that xxy is added to the product substitution table, and when this rule is
applied, the expression x*y becomes 3/2, but X or Y by themselves are not
replaced.

3. If the operators +, — or / appear at the top level of the simplified left-hand
side, all but the first term is moved to the right-hand side of the rule. Thus
the rules

let l+m=n, x/2=y, a-b=c
become
let 1=n-m, x=2xy, a=ctb.

One problem that can occur in this case is that if a quantified expression is moved
to the right-hand side, a given free variable might no longer appear on the left-hand
side, resulting in an error because of the unmatched free variable. E.g.,

for all x,y let f£(x)+f(y)=x*y
would become
for all x,y let f(x)=xxy—-f(y)

which no longer has Y on both sides.

The fact that array and matrix elements are evaluated in the left-hand side of rules
can lead to confusion at times. Consider for example the statements

array a(b); let x+a(2)=3; let a(3)=4;

The left-hand side of the first rule will become X, and the second 0. Thus the first
rule will be instantiated as a substitution for X, and the second will result in an
error.

The order in which a list of rules is applied is not easily understandable without
a detailed knowledge of the system simplification protocol. It is also possible for
this order to change from release to release, as improved substitution techniques
are implemented. Users should therefore assume that the order of application of
rules is arbitrary, and program accordingly.

After a substitution has been made, the expression being evaluated is reexamined
in case a new allowed substitution has been generated. This process is continued
until no more substitutions can be made.

As mentioned elsewhere, when a substitution expression appears in a product, the
substitution is made if that expression divides the product. For example, the rule
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let a”2*xc = 3%z;

would cause a”2 xc+x to be replaced by 3«Z+X and a~2+c”2 by 3xZ«C. If the
substitution is desired only when the substitution expression appears in a product
with the explicit powers supplied in the rule, the command MATCH should be used
instead.

For example,
match a”2+c = 3xz;

would cause a”2xcxx to be replaced by 3xZxX, but a”~2+c”~2 would not be
replaced. MATCH can also be used with the FOR ALL constructions described
above.

To remove substitution rules of the type discussed in this section, the CLEAR com-
mand can be used, combined, if necessary, with the same FOR ALL clause with
which the rule was defined, for example:

for all x clear log(e”x),e”log(x),cos(wxt+theta (x));

Note, however, that the arbitrary variable names in this case must be the same as
those used in defining the substitution.

11.3 Rule Lists

Rule lists offer an alternative approach to defining substitutions that is different
from either SUB or LET. In fact, they provide the best features of both, since they
have all the capabilities of LET, but the rules can also be applied locally as is pos-
sible with SUB. In time, they will be used more and more in REDUCE. However,
since they are relatively new, much of the REDUCE code you see uses the older
constructs.

A rule list is a list of rules that have the syntax
<expression> => <expression> (WHEN <boolean expression>)
For example,

{cos (~x) *cos (~y) => (cos (x+y)+cos (x-y))/2,
cos (~nxpi) => (-1)”"n when remainder(n,2)=0}

The tilde preceding a variable marks that variable as free for that rule, much as a
variable in a FOR ALL clause in a LET statement. The first occurrence of that
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variable in each relevant rule must be so marked on input, otherwise inconsistent
results can occur. For example, the rule list

{cos (~x) *xcos (~y) => (cos (x+y)+cos(x-y))/2,
cos (x) "2 => (l+cos(2x))/2}

designed to replace products of cosines, would not be correct, since the second
rule would only apply to the explicit argument X. Later occurrences in the same
rule may also be marked, but this is optional (internally, all such rules are stored
with each relevant variable explicitly marked). The optional WHEN clause allows
constraints to be placed on the application of the rule, much as the SUCH THAT
clause in a LET statement.

A rule list may be named, for example

trigl := {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos (~x) *sin(~y) => (sin(x+y)-sin(x-y))/2,
sin(~x)*sin(~y) => (cos(x-y)-cos(x+y))/2,
cos (~x) "2 => (l4+cos(2*x))/2,
sin(~x)"2 => (l-cos (2xx))/2};

Such named rule lists may be inspected as needed. E.g., the command trigl;
would cause the above list to be printed.

Rule lists may be used in two ways. They can be globally instantiated by means of
the command LET. For example,

let trigl;

would cause the above list of rules to be globally active from then on until cancelled
by the command CLEARRULES, as in

clearrules trigl;
CLEARRULES has the syntax
CLEARRULES <rule list>|<name of rule list>(,...)

The second way to use rule lists is to invoke them locally by means of a WHERE
clause. For example

cos (a) xcos (b+c)
where {cos(~x)*cos (~y) => (cos(x+y)+cos(x-y))/2};

or
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cos (a) *sin(b) where trigrules;
The syntax of an expression with a WHERE clause is:

<expression>
WHERE <rule>|<rule list>(,<rule>|<rule list>

so the first example above could also be written

cos (a) xcos (b+c)
where cos (~x)*cos (~y) => (cos (x+y)+cos(x-y))/2;

The effect of this construct is that the rule list(s) in the WHERE clause only apply to
the expression on the left of WHERE. They have no effect outside the expression. In
particular, they do not affect previously defined WHERE clauses or LET statements.
For example, the sequence

let a=2;
a where a=>4;
aj

would result in the output

Although WHERE has a precedence less than any other infix operator, it still binds
higher than keywords such as ELSE, THEN, DO, REPEAT and so on. Thus the
expression

if a=2 then 3 else a+2 where a=3
will parse as
if a=2 then 3 else (a+2 where a=3)

WHERE may be used to introduce auxiliary variables in symbolic mode expres-
sions, as described in Section 17.4. However, the symbolic mode use has different
semantics, so expressions do not carry from one mode to the other.

Compatibility Note: In order to provide compatibility with older versions of rule
lists released through the Network Library, it is currently possible to use an equal
sign interchangeably with the replacement sign => in rules and LET statements.
However, since this will change in future versions, the replacement sign is prefer-



170 CHAPTER 11. SUBSTITUTION COMMANDS

able in rules and the equal sign in non-rule-based LET statements.

Advanced Use of Rule Lists

Some advanced features of the rule list mechanism make it possible to write more
complicated rules than those discussed so far, and in many cases to write more
compact rule lists. These features are:

e Free operators

e Double slash operator

e Double tilde variables.
A free operator in the left hand side of a pattern will match any operator with the
same number of arguments. The free operator is written in the same style as a

variable. For example, the implementation of the product rule of differentiation
can be written as:

operator diff, !~f, !~g;

prule := {diff (~f(~x) * ~g(~x),x) =>
diff (f(x),x) * g(x) + diff(g(x),x) * £(x)};

let prule;
diff (sin(z)*cos(z),2z);

cos(z)*diff(sin(z),z) + diff(cos(z),z)*sin(z)
The double slash operator may be used as an alternative to a single slash (quotient)

in order to match quotients properly. E.g., in the example of the Gamma function
above, one can use:

gammarule :=
{gamma (~z) // (~cxgamma (~zz)) => gamma (z)/ (cxgamma (zz-1) *zz)
when fixp(zz -z) and (zz -z) >0,
gamma (~z) //gamma (~zz) => gamma (z)/ (gamma (zz-1) xzz)

when fixp(zz -z) and (zz -z) >0};
let gammarule;

gamma (z) /gamma (z+3) ;
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z + 6xz + 1ll*xz + 6

The above example suffers from the fact that two rules had to be written in order
to perform the required operation. This can be simplified by the use of double tilde
variables. E.g. the rule list

GGrule := {
gamma (~z) // (~~cxgamma (~zz)) => gamma (z)/ (cxgamma (zz-1) *xzz)
when fixp(zz -z) and (zz -z) >0};

will implement the same operation in a much more compact way. In general, dou-
ble tilde variables are bound to the neutral element with respect to the operation in
which they are used.

Pattern given Argument used Binding

~7Z+ ~~y X z=x; y=0
~Z + ~~y x+3 z=X; y=3 or z=3; y=x
~z % ~~y X 7=X; y:l
~Z ¥ ~~y X*3 z=X; y=3 or z=3; y=X
~z/ ~~y X z=Xx; y=1
~7 /[ ~~y x/3 z=X; y=3

Remarks: A double tilde variable as the numerator of a pattern is not allowed.
Also, using double tilde variables may lead to recursion errors when the zero case
is not handled properly.

let f(~~a * ~X,Xx) => a * f(x,x) when freeof (a,x);
f(z,2);

x*x%%% f£(z,z) improperly defined in terms of itself

% BUT:

let ff(~~a * ~x,Xx)
=> a % ff(x,x) when freeof (a,x) and a neq 1;

ff(z,2);
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ff(z,z)

ff(3%z,2);
3«xff(z,z)

Displaying Rules Associated with an Operator

The operator SHOWRULES takes a single identifier as argument, and returns in
rule-list form the operator rules associated with that argument. For example:

showrules log;
{LOG (E) => 1,
LOG(1) => O,

~X
LOG(E ) => ~X,

1
DF (LOG (~X) , ~X) => ————}
~X

Such rules can then be manipulated further as with any list. For example rhs
first ws; hasthe value 1. Note that an operator may have other properties that
cannot be displayed in such a form, such as the fact it is an odd function, or has a
definition defined as a procedure.

Order of Application of Rules

If rules have overlapping domains, their order of application is important. In gen-
eral, it is very difficult to specify this order precisely, so that it is best to assume
that the order is arbitrary. However, if only one operator is involved, the order of
application of the rules for this operator can be determined from the following:

1. Rules containing at least one free variable apply before all rules without free
variables.
2. Rules activated in the most recent LET command are applied first.

3. LET with several entries generate the same order of application as a corre-
sponding sequence of commands with one rule or rule set each.
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4. Within a rule set, the rules containing at least one free variable are applied in
their given order. In other words, the first member of the list is applied first.

5. Consistent with the first item, any rule in a rule list that contains no free
variables is applied after all rules containing free variables.

Example: The following rule set enables the computation of exact values of the
Gamma function:

operator gamma, gamma_error;
gamma_rules :=
{gamma (~x) =>sqrt (pi) /2 when x=1/2,

gamma (~n)=>factorial (n-1) when fixp n and n>0,

gamma (~n)=>gamma_error (n) when fixp n,

gamma (~x)=>(x-1) *gamma (x—-1) when fixp(2+x) and x>1,
)

gamma (~x)=>gamma (x+1) /x when fixp (2*x)};

Here, rule by rule, cases of known or definitely uncomputable values are sorted out;
e.g. the rule leading to the error expression will be applied for negative integers
only, since the positive integers are caught by the preceding rule, and the last rule
will apply for negative odd multiples of 1/2 only. Alternatively the first rule could
have been written as

gamma (1/2) => sqrt (pi)/2,

but then the case = 1/2 should be excluded in the WHEN part of the last rule
explicitly because a rule without free variables cannot take precedence over the
other rules.

11.4 Asymptotic Commands

In expansions of polynomials involving variables that are known to be small, it is
often desirable to throw away all powers of these variables beyond a certain point
to avoid unnecessary computation. The command LET may be used to do this. For
example, if only powers of X up to x" 7 are needed, the command

let x78 = 0;

will cause the system to delete all powers of X higher than 7.

CAUTION: This particular simplification works differently from most substitu-
tion mechanisms in REDUCE in that it is applied during polynomial manipulation
rather than to the whole evaluated expression. Thus, with the above rule in effect,
x~10/x75 would give the result zero, since the numerator would simplify to zero.
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Similarly x~20/x"10 would give a Zero divisor error message, since both
numerator and denominator would first simplify to zero.

The method just described is not adequate when expressions involve several vari-
ables having different degrees of smallness. In this case, it is necessary to supply
an asymptotic weight to each variable and count up the total weight of each product
in an expanded expression before deciding whether to keep the term or not. There
are two associated commands in the system to permit this type of asymptotic con-
straint. The command WEIGHT takes a list of equations of the form

(kernel form) = (number)

where (number) must be a positive integer (not just evaluate to a positive integer).
This command assigns the weight (number) to the relevant kernel form. A check
is then made in all algebraic evaluations to see if the total weight of the term is
greater than the weight level assigned to the calculation. If it is, the term is deleted.
To compute the total weight of a product, the individual weights of each kernel
form are multiplied by their corresponding powers and then added.

The weight level of the system is initially set to 1. The user may change this setting
by the command

wtlevel <number>;

which sets (number) as the new weight level of the system. met a must evaluate to
a positive integer. WTLEVEL will also allow NIL as an argument, in which case
the current weight level is returned.
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File Handling Commands

In many applications, it is desirable to load previously prepared REDUCE files
into the system, or to write output on other files. REDUCE offers four commands
for this purpose, namely, IN, OUT, SHUT, LOAD, and LOAD_PACKAGE. The first
three operators are described here; LOAD and LOAD_PACKAGE are discussed in
Section 19.2.

12.1 IN Command

This command takes a list of file names as argument and directs the system to
input each file (that should contain REDUCE statements and commands) into the
system. File names can either be an identifier or a string. The explicit format of
these will be system dependent and, in many cases, site dependent. The explicit
instructions for the implementation being used should therefore be consulted for
further details. For example:

in f1,"ggg.rr.s";

will first load file £1, then ggg . rr.s. When a semicolon is used as the terminator
of the IN statement, the statements in the file are echoed on the terminal or written
on the current output file. If $ is used as the terminator, the input is not shown.
Echoing of all or part of the input file can be prevented, even if a semicolon was
used, by placing an off echo; command in the input file.

Files to be read using IN should end with ; END; . Note the two semicolons! First
of all, this is protection against obscure difficulties the user will have if there are,
by mistake, more BEGINs than ENDs on the file. Secondly, it triggers some file
control book-keeping which may improve system efficiency. If END is omitted, an
error message "End-of-file read" will occur.
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While a file is being loaded, the special identifier ! __ LINE___is replaced by the
number of the current line in the file currently being read. Similarly, ! _ FILE_
is replaced by the name of the file currently being read.

12.2 OUT Command

This command takes a single file name as argument, and directs output to that
file from then on, until another OUT changes the output file, or SHUT closes it.
Output can go to only one file at a time, although many can be open. If the file
has previously been used for output during the current job, and not SHUT, the new
output is appended to the end of the file. Any existing file is erased before its first
use for output in a job, or if it had been SHUT before the new OUT.

To output on the terminal without closing the output file, the reserved file name T
(for terminal) may be used. For example, out ofile; will direct output to the
file OFILE and out t; will direct output to the user’s terminal.

The output sent to the file will be in the same form that it would have on the
terminal. In particular x*~2 would appear on two lines, an X on the lower line and
a 2 on the line above. If the purpose of the output file is to save results to be read
in later, this is not an appropriate form. We first must turn off the NAT switch that
specifies that output should be in standard mathematical notation.

Example: To create a file ABCD from which it will be possible to read — using IN
— the value of the expression XYZ:

standard for ending files for IN

off echos % needed if your input is from a file.

off nats$ % output in IN-readable form. Each expression
% printed will end with a $

out abcd$ % output to new file

linelength 72$ % for systems with fixed input line length.

XYZ:1=XVZ; % will output "XYZ := " followed by the value
% of XYZ

write ";end"$
shut abcd$ save ABCD, return to terminal output

on nats$ % restore usual output form

12.3 SHUT Command

This command takes a list of names of files that have been previously opened via
an OUT statement and closes them. Most systems require this action by the user
before he ends the REDUCE job (if not sooner), otherwise the output may be lost.
If a file is shut and a further OUT command issued for the same file, the file is
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erased before the new output is written.

If it is the current output file that is shut, output will switch to the terminal. At-
tempts to shut files that have not been opened by OUT, or an input file, will lead to
eITors.

12.4 REDUCE startup file

At the start of a REDUCE session, the system checks for the existence of a user’s
startup file, and executes the REDUCE statements in it. This is equivalent to in-
putting the file with the TN command.

To find the directory/folder where the file resides, the system checks the existence
of the following environment variables:

1. HOME,

2. HOMEDRIVE and HOMEPATH together (Windows).

If none of these are set, the current directory is used. The file itself must be named

either . reducerc or reduce. rcl.

'Tf none of these exist, the system checks for a file called reduce . INT in the current directory.
This is historical and may be removed in future.
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Chapter 13

Commands for Interactive Use

REDUCE is designed as an interactive system, but naturally it can also operate in
a batch processing or background mode by taking its input command by command
from the relevant input stream. There is a basic difference, however, between in-
teractive and batch use of the system. In the former case, whenever the system
discovers an ambiguity at some point in a calculation, such as a forgotten type as-
signment for instance, it asks you for the correct interpretation. In batch operation,
it is not practical to terminate the calculation at such points and require resubmis-
sion of the job, so the system makes the most obvious guess of your intentions and
continues the calculation.

13.1 Error Handling: errcont, RETRY

There is also a difference in the handling of errors. In the former case, the compu-
tation can continue since you have the opportunity to correct the mistake. In batch
mode, the error may lead to consequent erroneous (and possibly time consuming)
computations. So in the default case, no further evaluation occurs, although the
remainder of the input is checked for syntax errors. A message "Continuing
with parsing only" informs you that this is happening. On the other hand,
the switch ERRCONT, if on, will cause the system to continue evaluating expres-
sions after such errors occur.

When a syntactical error occurs, the place where the system detected the error is
marked with three dollar signs ($$$). In interactive mode, you can then use ED to
correct the error, or retype the command. When a non-syntactical error occurs in
interactive mode, the command being evaluated at the time the last error occurred
is saved, and may later be reevaluated by the command RETRY.
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13.2 Referencing Previous Results: inpur, ws, p1spray

It is often useful to be able to reference results of previous computations during
a REDUCE session; see also 8.2. For this purpose, REDUCE maintains a his-
tory of all interactive inputs and the results of all interactive computations during a
given session. These results are referenced by the command number that REDUCE
prints automatically in interactive mode. To use a previous input expression in a
new computation, write INPUT (n), where n is the command number. To use a
previous output expression, write WS (n) (where WS stands for WorkSpace). WS
used as a variable (rather than a function) references the previous output expres-
sion. For example:

1: int(x-1, x);

15: 2xinput (1)-ws(7)"2;

16: 2xws (1l)-ws(7)"2;

-1

17: x := 101;
x := 101

18: ws(7);
100

Inputs 15 and 16 above yield the same result, but input 16 does so without re-
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computing the integral. However, an output expression referenced using WS is
re-evaluated in the current context, as shown by the last two statements above.

Note that input that causes an error, and some commands such as LET statements,
file handling and mode changing, do not produce an output expression, so the out-
put from such input cannot be accessed. WS used as a variable returns the last
output expression, which does not necessarily correspond to the last input, and WS
used as a function reports an error if you try to access non-existent output. For
example:

1: 6%x7;
42
2: 0/0;

*xxxx 0/0 formed

3: ws;
42
4: ws 2;

xxxxx Entry 2 not found

5: let x => 0;

6: wWs;
42
7: ws 5;

xxxxx Entry 5 not found

The operator DISPLAY is available to display previous inputs. If its argument
is a positive integer, n say, then the previous n inputs are displayed. If its argu-
ment is ALL (or in fact any non-numerical expression), then all previous inputs are
displayed.
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13.3 Interactive Editing: &b, Ep1TDEF

It is possible when working interactively to edit any REDUCE input that comes
from your terminal, and also some user-defined procedure definitions. At the top
level, you can access any previous command string by the command ED (n) , where
n is the desired command number as prompted by the system in interactive mode.
The command ED (with no argument) accesses the previous command.

After ED has been called, you can now edit the displayed string using a string editor
with the following commands:

B move pointer to beginning

C(character) replace next character by (character)

D delete next character

E end editing and reread text

F(character) move pointer to next occurrence of
(character)

I(string)(escape) insert (string) in front of pointer

K(character) delete all characters until (character)

P print string from current pointer

Q give up with error exit

S(string)(escape) search for first occurrence of (string), po-
sitioning pointer just before it
space or X move pointer right one character.

The above table can be displayed online by typing a question mark followed by a
carriage return to the editor. The editor prompts with an angle bracket. Commands
can be combined on a single line, and all command sequences must be followed by
a carriage return to become effective.

Thus, to change the command x := a+1; to x := a+2; and cause it to be
executed, the following edit command sequence could be used:

flc2e<return>

You can also use the interactive editor to edit a user-defined procedure that has not
been compiled. To do this, use:

editdef (id);

where (id) is the name of the procedure. The procedure definition will then be
displayed in editing mode, and may then be edited and redefined on exiting from
the editor.

Some versions of REDUCE include input editing that uses the capabilities of mod-
ern window systems. Please consult your system dependent documentation to see
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if this is possible. Such editing techniques are usually much easier to use then ED
or EDITDEF.

13.4 Interactive File Control: inT, pausE, conT

If input is coming from an external file, the system treats it as a batch processed
calculation. If you desire interactive response in this case, you can include the
command ON INT; in the file. Likewise, you can issue the command OFF INT;
in the main program if you do not desire continual questioning from the system.
Regardless of the setting of the switch INT, input commands from a file are not
kept in the system, and so cannot be referenced using INPUT or WS, or edited using
ED. However, an implementation of REDUCE may provide a link to an external
system editor that can be used for such editing. The specific instructions for the
particular implementation should be consulted for information on this.

Two commands are available in REDUCE for interactive use of files. PAUSE; may
be inserted at any point in an input file. When this command is encountered on
input, the system prints the message CONT? (Y or N) on your terminal and
halts. If you respond Y (for yes), the calculation continues from that point in the
file. If you respond N (for no), control is returned to the terminal, and you can input
further statements and commands. Later on you can use the command CONT; to
transfer control back to the point in the file following the last PAUSE ; encountered.
A top-level PAUSE; from the terminal has no effect.
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Chapter 14

Matrix Calculations

A very powerful feature of REDUCE is the ease with which matrix calculations
can be performed. To extend our syntax to this class of calculations we need to
add another prefix operator, MAT, and a further variable and expression type as
follows:

14.1 MAT Operator

This prefix operator is used to represent n X m matrices. MAT has n arguments
interpreted as rows of the matrix, each of which is a list of m expressions repre-
senting elements in that row. For example, the matrix

a b ¢
<def>

would be written asmat ( (a,b,c), (d,e, £)).

(3)
Y
becomes mat ( (x), (v)). The inside parentheses are required to distinguish it

from the single row matrix
(z v)

that would be written as mat ( (x,y) ).

Note that the single column matrix

14.2 Matrix Variables

An identifier may be declared a matrix variable by the declaration MATRIX. The
size of the matrix may be declared explicitly in the matrix declaration, or by default
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in assigning such a variable to a matrix expression. For example,
matrix x(2,1),y(3,4),z;

declares X to be a 2 x 1 (column) matrix, Y to be a 3 x 4 matrix and Z a matrix
whose size is to be declared later.

Matrix declarations can appear anywhere in a program. Once a symbol is declared
to name a matrix, it can not also be used to name an array, operator or a procedure,
or used as an ordinary variable. It can however be redeclared to be a matrix, and
its size may be changed at that time. Note however that matrices once declared
are global in scope, and so can then be referenced anywhere in the program. In
other words, a declaration within a block (or a procedure) does not limit the scope
of the matrix to that block, nor does the matrix go away on exiting the block (use
CLEAR instead for this purpose). An element of a matrix is referred to in the
expected manner; thus x (1, 1) gives the first element of the matrix X defined
above. References to elements of a matrix whose size has not yet been declared
leads to an error. All elements of a matrix whose size is declared are initialized to
0. As aresult, a matrix element has an instant evaluation property and cannot stand
for itself. If this is required, then an operator should be used to name the matrix
elements as in:

matrix m; operator x; m := mat((x(1,1),x(1,2));

14.3 Matrix Expressions

These follow the normal rules of matrix algebra as defined by the following syntax:

(matrix expression) — MAT (matrix description) | (matrix variable) |
(scalar expression)~(matrix expression) |
(matrix expression) (matrix expression) |
(matrix expression)+(matrix expression) |
(matrix expression) " (integer) |
(matrix expression) / (matrix expression,)

Sums and products of matrix expressions must be of compatible size; otherwise an
error will result during their evaluation. Similarly, only square matrices may be
raised to a power. A negative power is computed as the inverse of the matrix raised
to the corresponding positive power. a/b is interpreted as a*b” (-1).

Examples:

Assuming X and Y have been declared as matrices, the following are matrix ex-
pressions
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y

Y24 x=3xy" (=2) *x

y + mat((1,a), (b,c))/2
The computation of the quotient of two matrices normally uses a two-step elimina-
tion method due to Bareiss. An alternative method using Cramer’s method is also
available. This is usually less efficient than the Bareiss method unless the matrices

are large and dense, although we have no solid statistics on this as yet. To use
Cramer’s method instead, the switch CRAMER should be turned on.

14.4 Operators with Matrix Arguments

The operator LENGTH applied to a matrix returns a list of the number of rows and
columns in the matrix. Other operators useful in matrix calculations are defined in
the following subsections. Attention is also drawn to the LINALG (section 16.39)
and NORMFORM (section 16.45) packages.

14.4.1 DET Operator
Syntax:
DET (EXPRN:matrix_expression) :algebraic.

The operator DET is used to represent the determinant of a square matrix expres-
sion. E.g.,

det (y~2)

is a scalar expression whose value is the determinant of the square of the matrix Y,
and

det mat ((a,b,c), (d,e, ), (g,h,3));

is a scalar expression whose value is the determinant of the matrix

a
d
g

> o o
)

Determinant expressions have the instant evaluation property. In other words, the
statement

let det mat ((a,b), (c,d)) = 2;



188 CHAPTER 14. MATRIX CALCULATIONS

sets the value of the determinant to 2, and does not set up a rule for the determinant
itself.

14.4.2 MATEIGEN Operator
Syntax:
MATEIGEN (EXPRN:matrix_expression, ID) :1list.

MATEIGEN calculates the eigenvalue equation and the corresponding eigenvectors
of a matrix, using the variable ID to denote the eigenvalue. A square free decom-
position of the characteristic polynomial is carried out. The result is a list of lists
of 3 elements, where the first element is a square free factor of the characteristic
polynomial, the second its multiplicity and the third the corresponding eigenvector
(as an n by 1 matrix). If the square free decomposition was successful, the product
of the first elements in the lists is the minimal polynomial. In the case of degener-
acy, several eigenvectors can exist for the same eigenvalue, which manifests itself
in the appearance of more than one arbitrary variable in the eigenvector. To extract
the various parts of the result use the operations defined on lists.

Example: The command
mateigen(mat ((2,-1,1),(0,1,1), (-1,1,1)),eta);
gives the output
{{ETA - 1,2,
ARBCOMPLEX (1)

[ ]
[ ]
[ARBCOMPLEX (1) ]
[ ]
[ ]

by

(ETA - 2,1,

[ ]
[ ]
[ARBCOMPLEX (2) ]
( ]
[ ]

ARBCOMPLEX (2)
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1}

14.4.3 TP Operator

Syntax:
TP (EXPRN:matrix_expression) :matrix.

This operator takes a single matrix argument and returns its transpose.

14.4.4 Trace Operator
Syntax:
TRACE (EXPRN:matrix_expression) :algebraic.

The operator TRACE is used to represent the trace of a square matrix.

14.4.5 Matrix Cofactors
Syntax:

COFACTOR (EXPRN:matrix_expression, ROW:integer, COLUMN:integer) :
algebraic

The operator COFACTOR returns the cofactor of the element in row ROW and col-

umn COLUMN of the matrix MATRIX. Errors occur if ROW or COLUMN do not
simplify to integer expressions or if MATRIX is not square.

14.4.6 NULLSPACE Operator
Syntax:

NULLSPACE (EXPRN:matrix_expression) :1list
NULLSPACE calculates for a matrix A a list of linear independent vectors (a basis)

whose linear combinations satisfy the equation Az = 0. The basis is provided in a
form such that as many upper components as possible are isolated.

Note that with b nullspace a the expression length b is the nullity of
A, and that second length a — length b calculates the rank of A. The
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rank of a matrix expression can also be found more directly by the RANK operator
described below.

Example: The command
nullspace mat ((1,2,3,4),(5,6,7,8));

gives the output

— —/ o/ o/ o/
[ IR ST S S W '

~

—~ o — — e
N
T

In addition to the REDUCE matrix form, NULLSPACE accepts as input a matrix
given as a list of lists, that is interpreted as a row matrix. If that form of input
is chosen, the vectors in the result will be represented by lists as well. This addi-
tional input syntax facilitates the use of NULLSPACE in applications different from
classical linear algebra.

14.4.7 RANK Operator

Syntax:
RANK (EXPRN:matrix_expression) :integer

RANK calculates the rank of its argument, that, like NULLSPACE can either be a
standard matrix expression, or a list of lists, that can be interpreted either as a row
matrix or a set of equations.

Example:
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rank mat ((a,b,c), (d,e, £));

returns the value 2.

14.5 Matrix Assignments

Matrix expressions may appear in the right-hand side of assignment statements. If
the left-hand side of the assignment, which must be a variable, has not already been
declared a matrix, it is declared by default to the size of the right-hand side. The
variable is then set to the value of the right-hand side.

Such an assignment may be used very conveniently to find the solution of a set of
linear equations. For example, to find the solution of the following set of equations

allxx(l) + al2xx(2) =yl

azl+xx(l) + az22*x(2) = y2
we simply write
x := 1/mat ((all,al2), (a2l1,a22))*mat ((yl), (y2));

14.6 Evaluating Matrix Elements

Once an element of a matrix has been assigned, it may be referred to in standard
array element notation. Thus y (2, 1) refers to the element in the second row and
first column of the matrix Y.
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Chapter 15

Procedures

It is often useful to name a statement for repeated use in calculations with varying
parameters, or to define a complete evaluation procedure for an operator. REDUCE
offers a procedural declaration for this purpose. Its general syntax is:

[(procedural type)] PROCEDURE (name)[(varlist)]; (statement);
where
(varlisty — ({variable), ..., (variable))

This will be explained more fully in the following sections.

In the algebraic mode of REDUCE the (procedural type) can be omitted, since
the default is ALGEBRAIC. Procedures of type INTEGER or REAL may also be
used. In the former case, the system checks that the value of the procedure is
an integer. At present, such checking is not done for a real procedure, although
this will change in the future when a more complete type checking mechanism is
installed. Users should therefore only use these types when appropriate. An empty
variable list may also be omitted.

All user-defined procedures are automatically declared to be operators.

In order to allow users relatively easy access to the whole REDUCE source pro-
gram, system procedures are not protected against user redefinition. If a procedure
is redefined, a message

**%* <procedure name> REDEFINED
is printed. If this occurs, and the user is not redefining his own procedure, he is
well advised to rename it, and possibly start over (because he has already redefined

some internal procedure whose correct functioning may be required for his job!)
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All required procedures should be defined at the top level, since they have global
scope throughout a program. In particular, an attempt to define a procedure within
a procedure will cause an error to occur.

15.1 Procedure Heading

Each procedure has a heading consisting of the word PROCEDURE (optionally
preceded by the word ALGEBRATIC), followed by the name of the procedure to be
defined, and followed by its formal parameters — the symbols that will be used in
the body of the definition to illustrate what is to be done. There are three cases:

1. No parameters. Simply follow the procedure name with a terminator (semi-
colon or dollar sign).

procedure abc;

When such a procedure is used in an expression or command, abc (), with
empty parentheses, must be written.

2. One parameter. Enclose it in parentheses or just leave at least one space,
then follow with a terminator.

procedure abc (x);
or
procedure abc x;

3. More than one parameter. Enclose them in parentheses, separated by com-
mas, then follow with a terminator.

procedure abc (x,VY,2);

Referring to the last example, if later in some expression being evaluated the sym-
bols abc (u, pxq, 123) appear, the operations of the procedure body will be
carried out as if X had the same value as U does, Y the same value as pq does,
and Z the value 123. The values of X, Y, Z, after the procedure body operations are
completed are unchanged. So, normally, are the values of U, P, Q, and (of course)
123. (This is technically referred to as call by value.)

The reader will have noted the word normally a few lines earlier. The call by value
protections can be bypassed if necessary, as described elsewhere.
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15.2 Procedure Body

Following the delimiter that ends the procedure heading must be a single statement
defining the action to be performed or the value to be delivered. A terminator must
follow the statement. If it is a semicolon, the name of the procedure just defined is
printed. It is not printed if a dollar sign is used.

If the result wanted is given by a formula of some kind, the body is just that for-
mula, using the variables in the procedure heading.

Simple Example:
If £ (x) istomean (x+5) % (x+6) / (x+7), the entire procedure definition could
read

procedure f x; (x+5)* (x+6)/ (x+7);
Then £ (10) would evaluate to 240/17, £ (a—6) to Ax (A-1)/ (A+1), and so
on.
More Complicated Example:

Suppose we need a function p (n, x) that, for any positive integer N, is the Legen-
dre polynomial of order n. We can define this operator using the textbook formula
defining these functions:

1 d 1
o Aan 1
n! dyn (yQ _ 21’y + 1)2 =0

pn(T) =

Put into words, the Legendre polynomial p,, () is the result of substituting y = 0
in the n'” partial derivative with respect to y of a certain fraction involving = and
y, then dividing that by n!.

This verbal formula can easily be written in REDUCE:
procedure p(n,x);
sub (y=0,df (1/ (y"2-2xxxy+1) "~ (1/2),y,n))
/(for i:=1:n product 1i);
Having input this definition, the expression evaluation
2p(2,w);

would result in the output

2
3xW -1
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If the desired process is best described as a series of steps, then a group or com-
pound statement can be used.

Example:

The above Legendre polynomial example can be rewritten as a series of steps in-
stead of a single formula as follows:

procedure p(n,x);

begin scalar seed,deriv, top, fact;
seed:=1/(y"2 — 2xx*xy +1)"(1/2);
deriv:=df (seed, y,n);
top:=sub (y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

Procedures may also be defined recursively. In other words, the procedure body can
include references to the procedure name itself, or to other procedures that them-
selves reference the given procedure. As an example, we can define the Legendre
polynomial through its standard recurrence relation:

procedure p(n,x);
if n<0 then rederr "Invalid argument to P (N,X)"
else if n=0 then 1
else if n=1 then x
else ((2+n-1)+*x+p(n-1,x)-(n-1)+*p(n-2,x))/n;

The operator REDERR in the above example provides for a simple error exit from
an algebraic procedure (and also a block). It can take a string as argument.

It should be noted however that all the above definitions of p (n, x) are quite
inefficient if extensive use is to be made of such polynomials, since each call ef-
fectively recomputes all lower order polynomials. It would be better to store these
expressions in an array, and then use say the recurrence relation to compute only
those polynomials that have not already been derived. We leave it as an exercise
for the reader to write such a definition.

15.3 Matrix-valued Procedures

Normally, procedures can only return scalar values. In order for a procedure to
return a matrix, it has to be declared of type MATRIXPROC:

matrixproc SkewSyml (w);
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mat((or_w(3ll)rw(2ll))l
(w(3,1),0,-w(1l,1)),
(_W(2rl)r W(l,l), O));

Following this declaration, the call to SkewSym1 can be used as a matrix, e.g.

X := SkewSyml (mat ((gx), (qy), (9z)));
[ 0 - gz ay 1]
[ ]
x = [ gz 0 - gx]
[ ]
[ — ay ax 0 ]

[ gy*rz - gz*ry |
[ 1
[ - gx*xrz + gz*rx]
[ ]
[ ]

gxXxry — gy*rx

15.4 Using LET Inside Procedures

By using LET instead of an assignment in the procedure body it is possible to
bypass the call-by-value protection. If X is a formal parameter or local variable
of the procedure (i.e. is in the heading or in a local declaration), and LET is used
instead of := to make an assignment to X, e.g.

let x = 123;

then it is the variable that is the value of X that is changed. This effect also occurs
with local variables defined in a block. If the value of X is not a variable, but a
more general expression, then it is that expression that is used on the left-hand side
of the LET statement. For example, if X had the value pxq, itisasif let pxg =
123 had been executed.
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15.5 LET Rules as Procedures

The LET statement offers an alternative syntax and semantics for procedure defi-
nition.

In place of
procedure abc(x,vy,z); <procedure body>;
one can write
for all x,y,z let abc(x,y,z) = <procedure body>;

There are several differences to note.

If the procedure body contains an assignment to one of the formal parameters, e.g.
x := 123;

in the PROCEDURE case it is a variable holding a copy of the first actual argument
that is changed. The actual argument is not changed.

In the LET case, the actual argument is changed. Thus, if ABC is defined using
LET, and abc (u, v, w) is evaluated, the value of U changes to 123. That is, the
LET form of definition allows the user to bypass the protections that are enforced
by the call by value conventions of standard PROCEDURE definitions.

Example: We take our earlier FACTORIAL procedure and write it as a LET state-
ment.

for all n let factorial n =
begin scalar m,s;
:=1; s:=n;
11: if s=0 then return m;

m:=mx*s;

s:=s-1;

go to 11
end;

The reader will notice that we introduced a new local variable, S, and set it equal
to N. The original form of the procedure contained the statement n:=n-1;. If the
user asked for the value of factorial (5) then N would correspond to, not just
have the value of, 5, and REDUCE would object to trying to execute the statement
5:=5—-1.

If POR is a procedure with no parameters,
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procedure pgr;
<procedure body>;

it can be written as a LET statement quite simply:
let pgr = <procedure body>;

To call procedure PQR, if defined in the latter form, the empty parentheses would
not be used: use POR not PQR () where a call on the procedure is needed.

The two notations for a procedure with no arguments can be combined. PQR can
be defined in the standard PROCEDURE form. Then a LET statement

let pgr = par();

would allow a user to use PQR instead of PQR () in calling the procedure.
A feature available with LET-defined procedures and not with procedures defined
in the standard way is the possibility of defining partial functions.

for all x such that numberp x let uvw(x)=<procedure body>;

Now UVW of an integer would be calculated as prescribed by the procedure body,
while UVW of a general argument, such as Z or p+qg (assuming these evaluate to
themselves) would simply stay uvw (z) or uvw (p+q) as the case may be.

15.6 REMEMBER Statement

Setting the remember option for an algebraic procedure by
REMEMBER (PROCNAME :procedure) ;

saves all intermediate results of such procedure evaluations, including recursive
calls. Subsequent calls to the procedure can then be determined from the saved
results, and thus the number of evaluations (or the complexity) can be reduced.
This mode of evalation costs extra memory, of course. In addition, the procedure
must be free of side—effects.

The following examples show the effect of the remember statement on two well—
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known examples.

procedure H(n); % Hofstadter’s function
if numberp n then
<< ¢cnn := cnn +1; % counts the calls

if n < 3 then 1 else H(n-H(n-1))+H(n-H(n-2))>>;
remember h;
<< cnn := 0; H(100); cnn>>;

100

[o)

% H has been called 100 times only.

o

procedure A (m,n); % Ackermann function
if m=0 then n+l else
if n=0 then A(m-1,1) else
A(m-1,A(m,n-1));

remember aj;

A(3,3);



Chapter 16

User Contributed Packages

The complete REDUCE system includes a number of packages contributed by
users that are provided as a service to the user community. Questions regarding
these packages should be directed to their individual authors.

All such packages have been precompiled as part of the installation process. How-
ever, many must be specifically loaded before they can be used. (Those that are
loaded automatically are so noted in their description.) You should also consult the
user notes for your particular implementation for further information on whether
this is necessary. If it is, the relevant command is LOAD_PACKAGE, which takes a
list of one or more package names as argument, for example:

load_package algint;

although this syntax may vary from implementation to implementation.

Nearly all these packages come with separate documentation and test files (except
those noted here that have no additional documentation), which is included, along
with the source of the package, in the REDUCE system distribution. These items
should be studied for any additional details on the use of a particular package.

The packages available in the current release of REDUCE are as follows:

201
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16.1 ALGINT: Integration of square roots

This package, which is an extension of the basic integration package distributed
with REDUCE, will analytically integrate a wide range of expressions involving
square roots where the answer exists in that class of functions. It is an implemen-
tation of the work described in J.H. Davenport, “On the Integration of Algebraic
Functions", LNCS 102, Springer Verlag, 1981. Both this and the source code
should be consulted for a more detailed description of this work.

The ALGINT package is loaded automatically when the switch ALGINT is turned
on. One enters an expression for integration, as with the regular integrator, for
example:

int (sgrt (x+sqgrt (x*x2+1)) /x, X);
If one later wishes to integrate expressions without using the facilities of this pack-

age, the switch ALGINT should be turned off.

The switches supported by the standard integrator (e.g., TRINT) are also sup-
ported by this package. In addition, the switch TRA, if on, will give further tracing
information about the specific functioning of the algebraic integrator.

There is no additional documentation for this package.

Author: James H. Davenport.
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16.2 APPLYSYM: Infinitesimal symmetries of differen-
tial equations

This package provides programs APPLYSYM, QUASILINPDE and DETRAFO
for applying infinitesimal symmetries of differential equations, the generalization
of special solutions and the calculation of symmetry and similarity variables.

Author: Thomas Wolf.

In this paper the programs APPLYSYM, QUASILINPDE and DETRAFO are de-
scribed which aim at the utilization of infinitesimal symmetries of differential
equations. The purpose of QUASILINPDE is the general solution of quasilinear
PDEs. This procedure is used by APPLYSYM for the application of point symme-
tries for either

e calculating similarity variables to perform a point transformation which low-
ers the order of an ODE or effectively reduces the number of explicitly oc-
curing independent variables in a PDE(-system) or for

e generalizing given special solutions of ODEs / PDEs with new constant pa-
rameters.

The program DETRAFO performs arbitrary point- and contact transformations of
ODEs / PDEs and is applied if similarity and symmetry variables have been found.
The program APPLYSYM is used in connection with the program LIEPDE for
formulating and solving the conditions for point- and contact symmetries which is
described in [ ]. The actual problem solving is done in all these programs
through a call to the package CRACK for solving overdetermined PDE-systems.

16.2.1 Introduction and overview of the symmetry method

The investigation of infinitesimal symmetries of differential equations (DEs) with
computer algebra programs attrackted considerable attention over the last years.
Corresponding programs are available in all major computer algebra systems. In
a review article by W. Hereman [ ] about 200 references are given, many of
them describing related software.

One reason for the popularity of the symmetry method is the fact that Sophus Lie’s
method [ , ] is the most widely used method for computing exact solu-
tions of non-linear DEs. Another reason is that the first step in this method, the
formulation of the determining equation for the generators of the symmetries, can
already be very cumbersome, especially in the case of PDEs of higher order and/or
in case of many dependent and independent variables. Also, the formulation of
the conditions is a straight forward task involving only differentiations and basic
algebra - an ideal task for computer algebra systems. Less straight forward is the
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automatic solution of the symmetry conditions which is the strength of the program
LIEPDE (for a comparison with another program see [ D.

The novelty described in this paper are programs aiming at the final third step:
Applying symmetries for

e calculating similarity variables to perform a point transformation which low-
ers the order of an ODE or effectively reduces the number of explicitly oc-
curing independent variables of a PDE(-system) or for

e generalizing given special solutions of ODEs/PDEs with new constant pa-
rameters.

Programs which run on their own but also allow interactive user control are indis-
pensible for these calculations. On one hand the calculations can become quite
lengthy, like variable transformations of PDEs (of higher order, with many vari-
ables). On the other hand the freedom of choosing the right linear combination
of symmetries and choosing the optimal new symmetry- and similarity variables
makes it necessary to ‘play’ with the problem interactively.

The focus in this paper is directed on questions of implementation and efficiency,
no principally new mathematics is presented.

In the following subsections a review of the first two steps of the symmetry method
is given as well as the third, i.e. the application step is outlined. Each of the re-
maining sections is devoted to one procedure.

The first step: Formulating the symmetry conditions

To obey classical Lie-symmetries, differential equations
Hy=0 (16.1)

for unknown functions y®, 1 < a < p of independent variables xi, 1<1<q
must be forminvariant against infinitesimal transformations

P=atel, =y +en® (16.2)

in first order of €. To transform the equations (16.1) by (16.2), derivatives of y®
must be transformed, i.e. the part linear in € must be determined. The correspond-
ing formulas are (see e.g. [ s D

U5 oge = Yhog.TENS .t O(?)

Mjrdvarie = 7 pgk Yidedv—1 Dok :
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where D/Dz* means total differentiation w.r.t. ¥ and from now on lower latin
indices of functions y“, (and later ©®) denote partial differentiation w.r.t. the inde-
pendent variables x*, (and later v*). The complete symmetry condition then takes
the form

XHy = 0 mod Hy=0 (16.4)
.0 0 0 0 0

X = &— “ @ a « .5

§ 5gi T 3y + By + Mo, o +...+ nmn...p%%éay%nmp )

where mod H4 = 0 means that the original PDE-system is used to replace some
partial derivatives of y to reduce the number of independent variables, because
the symmetry condition (16.4) must be fulfilled identically in ¢, y* and all partial
derivatives of y.

For point symmetries, &%, 7% are functions of =7, y® and for contact symmetries
they depend on 7, y” and yg . We restrict ourself to point symmetries as those are
the only ones that can be applied by the current version of the program APPLYSYM
(see below). For literature about generalized symmetries see [ ].

Though the formulation of the symmetry conditions (16.4), (16.5), (16.3) is
straightforward and handled in principle by all related programs [ ], the com-
putational effort to formulate the conditions (16.4) may cause problems if the num-
ber of 2 and 4 is high. This can partially be avoided if at first only a few condi-
tions are formulated and solved such that the remaining ones are much shorter and
quicker to formulate.

A first step in this direction is to investigate one PDE H, = 0 after another, as
done in [ ]. Two methods to partition the conditions for a single PDE are
described by Bocharov/Bronstein [ ] and Stephani [ ].

In the first method only those terms of the symmetry condition X H4 = 0 are
calculated which contain at least a derivative of y“ of a minimal order m. Setting
coefficients of these u-derivatives to zero provides symmetry conditions. Lowering
the minimal order m successively then gradually provides all symmetry conditions.

The second method is even more selective. If H 4 is of order n then only terms of
the symmetry condition X H 4 = 0 are generated which contain n'th order deriva-
tives of y®. Furthermore these derivatives must not occur in H 4 itself. They can
therefore occur in the symmetry condition (16.4) only in 7, , . i.e. in the terms

If only coefficients of n’th order derivatives of y® need to be accurate to formulate
preliminary conditions then from the total derivatives to be taken in (16.3) only
that part is performed which differentiates w.r.t. the highest y*-derivatives. This
means, for example, to form only y% . 0/0ys,, if the expression, which is to be
differentiated totally w.r.t. z¥, contains at most second order derivatives of 5.



206 CHAPTER 16. USER CONTRIBUTED PACKAGES

The second method is applied in LIEPDE. Already the formulation of the remain-
ing conditions is speeded up considerably through this iteration process. These
methods can be applied if systems of DEs or single PDEs of at least second order
are investigated concerning symmetries.

The second step: Solving the symmetry conditions

The second step in applying the whole method consists in solving the determining
conditions (16.4), (16.5), (16.3) which are linear homogeneous PDEs for §i, n.
The complete solution of this system is not algorithmic any more because the so-
lution of a general linear PDE-system is as difficult as the solution of its non-linear
characteristic ODE-system which is not covered by algorithms so far.

Still algorithms are used successfully to simplify the PDE-system by calculating its
standard normal form and by integrating exact PDEs if they turn up in this simpli-
fication process [ ]. One problem in this respect, for example, concerns the
optimization of the symbiosis of both algorithms. By that we mean the ranking of
priorities between integrating, adding integrability conditions and doing simplifi-
cations by substitutions - all depending on the length of expressions and the overall
structure of the PDE-system. Also the extension of the class of PDEs which can be
integrated exactly is a problem to be pursuit further.

The program LIEPDE which formulates the symmetry conditions calls the pro-
gram CRACK to solve them. This is done in a number of successive calls in order
to formulate and solve some first order PDEs of the overdetermined system first and
use their solution to formulate and solve the next subset of conditions as described
in the previous subsection. Also, LIEPDE can work on DEs that contain paramet-
ric constants and parametric functions. An ansatz for the symmetry generators can
be formulated. For more details see [ Jor [ ].

The procedure LIEPDE is called through
LIEPDE (problem, symtype, f1ist, inequ) ;
All parameters are lists.

The first parameter specifies the DEs to be investigated:
problem has the form {equations, ulist, xlist} where

equations is a list of equations, each has the form df (ui, ..)=... where the
LHS (left hand side) df (ui, ..) is selected such that

e The RHS (right h.s.) of an equations must not include the derivative on
the LHS nor a derivative of it.

o Neither the LHS nor any derivative of it of any equation may occur in
any other equation.

e Each of the unknown functions occurs on the LHS of exactly one equat-
ion.
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ulist is a list of function names, which can be chosen freely.

xlist is a list of variable names, which can be chosen freely.

Equations can be given as a list of single differential expressions and then the
program will try to bring them into the ‘solved form’ df (ui,..)=... auto-
matically. If equations are given in the solved form then the above conditions are
checked and execution is stopped it they are not satisfied. An easy way to get the
equations in the desired form is to use

FIRST SOLVE ({eql,eq2,...} , {one highest derivative for each function
u})
(see the example of the Karpman equations in LIEPDE . TST). The example of the
Burgers equation in LIEPDE . TST demonstrates that the number of symmetries
for a given maximal order of the infinitesimal generators depends on the derivative
chosen for the LHS.

The second parameter symtype of LIEPDE is a list { } that specifies the symmetry
to be calculated. symtype can have the following values and meanings:

{"point"} Point symmetries with & = &' (27, uf), n* = (27, u?) are deter-
mined.

{"contact"} Contact symmetries with & = 0, n = n(z?,u,us,) are deter-
mined (uy, = Ou/0x*), which is only applicable if a single equation (16.1)
with an order > 1 for a single function u is to be investigated. (The sym-
type {"contact"} isequivalentto { "general", 1} (seebelow) apart
from the additional checks done for {"contact"}.)

{"general", order} where order is an integer > (0. Generalized symmetries
€ =0,n"=n%l,uP, ..., u%) of a specified order are determined (where
K 1s a multiple index representing order many indices.)

NOTE: Characteristic functions of generalized symmetries (= 7 if £ =
0) are equivalent if they are equal on the solution manifold. Therefore, all
dependences of characteristic functions on the substituted derivatives and
their derivatives are dropped. For example, if the heat equation is given as
Ut = Ugyy (1.€. ug 1 substituted by u,) then { "general", 2} would not
include characteristic functions depending on w;, Or Uyyy.

THEREFORE:

If you want to find all symmetries up to a given order then either

e avoid using H4 = 0 to substitute lower order derivatives by expres-
sions involving higher derivatives, or
e increase the order specified in symtype.

For an illustration of this effect see the two symmetry determinations of the
Burgers equation in the file LIEPDE . TST.
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{%i! xI =...,..., eta!_ul =...,...} It is possible to specify an
ansatz for the symmetry. Such an ansatz must specify all & for all indepen-
dent variables and all n® for all dependent variables in terms of differential
expressions which may involve unknown functions/constants. The depen-
dences of the unknown functions have to be declared in advance by using
the DEPEND command. For example,

DEPEND f, t, x, u$
specifies f to be a function of ¢, x, u. If one wants to have f as a function of
derivatives of u(t, ), say f depending on u;,, then one cannot write
DEPEND f, df(u,t,x,2)5$
but instead must write
DEPEND f, u!‘1!'2!'2$
assuming x/ist has been specified as {t, x}. Because t is the first variable
and z is the second variable in x/ist and u is differentiated oncs wrt. ¢ and
twice wrt. « we thereforeuse u! *1! 2! *2. The character ! is the escape
character to allow special characters like ‘ to occur in an identifier.

For generalized symmetries one usually sets all £/ = 0. Then the 7 are
equal to the characteristic functions.

The third parameter flist of LIEPDE is a list { } that includes

e all parameters and functions in the equations which are to be determined
such that symmetries exist (if any such parameters/functions are specified in
flist then the symmetry conditions formulated in LIEPDE become non-linear
conditions which may be much harder for CRACK to solve with many cases
and subcases to be considered.)

e all unknown functions and constants in the ansatz xi!_ .. and eta!_..
if that has been specified in symtype.

The fourth parameter inequ of LIEPDE is a list { } that includes all non-vanishing
expressions which represent inequalities for the functions in flist.
The result of LIEPDE is a list with 3 elements, each of which is a list:

{{coni,cong,.. },{xi_ . =...,...;eta_ . =...,...}, {flist}}.

The first list contains remaining unsolved symmetry conditions con;. It is the empty
list {} if all conditions have been solved. The second list gives the symmetry
generators, i.e. expressions for &; and 7;. The last list contains all free constants
and functions occuring in the first and second list.

The third step: Application of infinitesimal symmetries

If infinitesimal symmetries have been found then the program APPLYSYM can use
them for the following purposes:
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1. Calculation of one symmetry variable and further similarity variables. After
transforming the DE(-system) to these variables, the symmetry variable will
not occur explicitly any more. For ODE:s this has the consequence that their
order has effectively been reduced.

2. Generalization of a special solution by one or more constants of integration.

Both methods are described in the following section.

16.2.2 Applying symmetries with APPLYSYM
The first mode: Calculation of similarity and symmetry variables

In the following we assume that a symmetry generator X, given in (16.5), is known
such that ODE(s)/PDE(s) H 4 = 0 satisfy the symmetry condition (16.4). The aim
is to find new dependent functions u® = u® (27, y”) and new independent variables
vt = vi(27,y%), 1< a,B8<p, 1<i,j < qsuch that the symmetry generator
X = &(a7,yP)0,i + n¥(27,y?)0yo transforms to

X =0,. (16.6)

Inverting the above transformation to 2 = z*(v7, u%), y® = y®(v7, u?) and setting
Ha(z' (v, uf),y* (v, uP),...) = ha(v?,uP, ...) this means that

0 = XHa(a',y%y],...) mod Hy=0
= XhA(vi,ua,u?,...) mod hg =0

avlhA<’l)i,Ua,U§), ...) mod hy=0.
Consequently, the variable v! does not occur explicitly in h4. In the case of
an ODE(-system) (v! = v) the new equations 0 = ha(v,u®, du’/dv,...) are
then of lower total order after the transformation z = z(u') = du!/dv with now

z,u?, ... uP as unknown functions and «' as independent variable.

The new form (16.6) of X leads directly to conditions for the symmetry variable
v! and the similarity variables v|;+1, u® (all functions of z*, y7):

Xol =1 = & y)00" + 1%k, y)devt  (16.7)
ij|j¢1 =Xu’ =0 = &k y)ouu’ + no‘(ﬂck,yv)ﬁyauﬂ (16.8)

The general solutions of (16.7), (16.8) involve free functions of p+¢g—1 arguments.
From the general solution of equation (16.8), p + ¢ — 1 functionally independent
special solutions have to be selected (v?,...,vP and !, ..., u%), whereas from
(16.7) only one solution v is needed. Together, the expressions for the symmetry
and similarity variables must define a non-singular transformation z,y — u, v.
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Different special solutions selected at this stage will result in different resulting
DEs which are equivalent under point transformations but may look quite differ-
ently. A transformation that is more difficult than another one will in general only
complicate the new DE(s) compared with the simpler transformation. We therefore
seek the simplest possible special solutions of (16.7), (16.8). They also have to be
simple because the transformation has to be inverted to solve for the old variables
in order to do the transformations.

The following steps are performed in the corresponding mode of the program
APPLYSYM:

e The user is asked to specify a symmetry by selecting one symmetry from all
the known symmetries or by specifying a linear combination of them.

e Through a call of the procedure QUASILINPDE (described in a later sec-
tion) the two linear first order PDEs (16.7), (16.8) are investigated and, if
possible, solved.

e From the general solution of (16.7) 1 special solution is selected and from
(16.8) p + q — 1 special solutions are selected which should be as simple as
possible.

o The user is asked whether the symmetry variable should be one of the inde-
pendent variables (as it has been assumed so far) or one of the new functions
(then only derivatives of this function and not the function itself turn up in
the new DE(s)).

e Through a call of the procedure DETRAFO the transformation x?,y® —
v7, uP of the DE(s) H4 = 0 is finally done.

e The program returns to the starting menu.

The second mode: Generalization of special solutions

A second application of infinitesimal symmetries is the generalization of a known
special solution given in implicit form through 0 = F(x%, 3*). If one knows a
symmetry variable v! and similarity variables v",u®, 2 < r < p then v! can
be shifted by a constant ¢ because of 9,1 H4 = 0 and therefore the DEs 0 =
Hy(v", u®, u]'B , .. .) are unaffected by the shift. Hence from

0= F(a:i,yo‘) = F(xi(vj,uﬁ),ya(vj,uﬁ)) = F(vj,u’g)
follows that
0= F(vl +c,v", uﬁ) = F(vl(azi,ya) +c, UT($i, ya),uﬁ(xi, y%))

defines implicitly a generalized solution y* = y® (27, ).
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This generalization works only if 9,1 F # 0 and if F does not already have a
constant additive to v'.

The method above needs to know z* = z*(u”,v7), y* = y*(u®,v7) and u® =
u®(z7,y%), v = v*(27,y") which may be practically impossible. Better is, to
integrate z%, y along X:

dz
de

= &2 (), 57 (2)), % =1%(27(¢),5°(¢)) (16.9)

with initial values Z° = 2%, §® = y® for ¢ = 0. (This ODE-system is the character-
istic system of (16.8).)

Knowing only the finite transformations

gives immediately the inverse transformation T = a’:i(m‘j,yﬂ ,€), y* =

7*(27,yP, ¢) just by e — —e and renaming z*, y® > 7%, 7.

The special solution 0 = F(z%,y®) is generalized by the new constant ¢ through
0=F(a',y") = F'@, 5% ¢),y*(. 5%, ¢))

after dropping the .

The steps performed in the corresponding mode of the program APPLYSYM show

features of both techniques:

o The user is asked to specify a symmetry by selecting one symmetry from all
the known symmetries or by specifying a linear combination of them.

e The special solution to be generalized and the name of the new constant have
to be put in.

e Through a call of the procedure QUASILINPDE, the PDE (16.7) is solved

which amounts to a solution of its characteristic ODE system (16.9) where

’UlZE.

e QUASILINPDE returns a list of constant expressions

¢ =ci(2%yPe), 1<i<p+yq (16.11)

which are solved for 77 = 27(c;,€), y® = y®(c;, €) to obtain the general-

ized solution through
0 = F<$]7 ya) = F(.%'](Cz(l'k, yﬁa 0)7 6)7 ya(ci(xka Z/B’ 0)7 6))

e The new solution is availabe for further generalizations w.r.t. other symme-
tries.
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If one would like to generalize a given special solution with m new constants be-
cause m symmetries are known, then one could run the whole program m times,
each time with a different symmetry or one could run the program once with a lin-
ear combination of m symmetry generators which again is a symmetry generator.
Running the program once adds one constant but we have in addition m — 1 arbi-
trary constants in the linear combination of the symmetries, so m new constants are
added. Usually one will generalize the solution gradually to make solving (16.9)
gradually more difficult.

Syntax

The call of APPLYSYM is APPLYSYM({de, fun, var}, {sym, cons});

e de is a single DE or a list of DEs in the form of a vanishing expression or in
theform...=... .

e fun is the single function or the list of functions occuring in de.
e var is the single variable or the list of variables in de.

e sym is a linear combination of all symmetries, each with a different constant

coefficient, in form of a list of the §i andn®: {Xi_...=...,...,eta_...=...,... },
where the indices after ‘xi_’ are the variable names and after ‘eta_’ the func-
tion names.

e cons is the list of constants in sym, one constant for each symmetry.

The list that is the first argument of APPLYSYM is the same as the first argument of
LIEPDE and the second argument is the list that LIEPDE returns without its first
element (the unsolved conditions). An example is given below.

What APPLYSYM returns depends on the last performed modus. After modus 1
the return is

{{newde, newfun, newvar}, trafo}

where

o newde lists the transformed equation(s)
e newfun lists the new function name(s)
e newvar lists the new variable name(s)

e trafo lists the transformations % = 2% (v7, u?), y* = y*(v7, uP)

After modus 2, APPLYSYM returns the generalized special solution.
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Example: A second order ODE

Weyl’s class of solutions of Einsteins field equations consists of axialsymmetric
time independent metrics of the form

ds? = =2V [e% (dp? + dz2) + deﬂ — Vg, (16.12)

where U and k are functions of p and z. If one is interested in generalizing these
solutions to have a time dependence then the resulting DEs can be transformed such
that one longer third order ODE for U results which contains only p derivatives
[Kub]. Because U appears not alone but only as derivative, a substitution

g=dU/dp (16.13)
lowers the order and the introduction of a function
h=pg—1 (16.14)
simplifies the ODE to
0=3p°hh" —5p° W2 +5phh —20ph3h —20h* + 16 h® + 4 K.  (16.15)
where ' = d/dp. Calling LIEPDE through
depend h, r;
prob:={{-20xhx*x4+16xhxx6+3*r**x2xh*xdf (h,r,2)+5+xr+xhxdf (h, r)
—20+xh**3xr*xdf (h, r) +4+«h*x2-5xr*+x2+xdf (h, r) x*x2},
{h}, {r}};
sym:=liepde (prob, {"point"}, {},{});
end;

gives

3 2
sym := {{}, {xi_r= - clOxr - cllxr, eta_h=clOxhxr }, {cl0,cll}}.

All conditions have been solved because the first element of sym is {}. The two
existing symmetries are therefore

—p*0, +hp*d,  and  pd,. (16.16)
Corresponding finite transformations can be calculated with APPLYSYM through
newde:=applysym(prob, rest sym);

The interactive session is given below with the user input following the prompt
‘Input:3:’ or following ‘?’. (Empty lines have been deleted.)
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Do you want to find similarity and symmetry variables (enter ‘1;')
or generalize a special solution with new parameters (enter ‘2;')
or exit the program (enter ;')
Input:3: 1;

We enter ‘1;” because we want to reduce dependencies by finding similarity vari-
ables and one symmetry variable and then doing the transformation such that the
symmetry variable does not explicitly occur in the DE.

—————————————————————— The 1. symmetry is:
3
xi r= - r
2
eta_h=hxr
—————————————————————— The 2. symmetry is:
xi_r= - r

Which single symmetry or linear combination of symmetries
do you want to apply?

Enter an expression with ‘sy_ (i)’ for the i’th symmetry.
sy_(1);

We could have entered ‘sy_(2);’ or a combination of both as well with the calcula-
tion running then differently.

The symmetry to be applied in the following is

3 2
{xi_r= - r ,eta_h=h+*r }
Enter the name of the new dependent variables:
Input:3: u;
Enter the name of the new independent variables:
Input:3: v;

This was the input part, now the real calculation starts.

The ODE/PDE (-system) under investigation is

2 2 2 3
0 = 3xdf(h,r,2)*hxr - 5*«df(h,r) *r - 20xdf(h,r)+h *r
6 4 2
+ 5%df (h,r)*h*r + 16¥xh - 20+«h + 4xh
for the function(s) : h.

It will be looked for a new dependent variable u
and an independent variable v such that the transformed
de (-system) does not depend on u or v.
1. Determination of the similarity wvariable
2

The quasilinear PDE: 0 = r «(df (u_,h)*h — df(u_,r)*r).
The equivalent characteristic system:

3
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0= — df(u_, r)*r
2
0= - r x(df (h,r)*r + h)
for the functions: h(r) u_(r).

The PDE is equation (16.8).

The general solution of the PDE is given through
0 = ff(u_,hx*r)

with arbitrary function ff(..).

A suggestion for this function ff provides:

0 = - h*xr + u_

Do you like this choice? (Y or N)
?

Yy

For the following calculation only a single special solution of the PDE is neces-
sary and this has to be specified from the general solution by choosing a special
function ££. (This function is called £f to prevent a clash with names of user
variables/functions.) In principle any choice of £f would work, if it defines a non-
singular coordinate transformation, i.e. here » must be a function of u_. If we have
q independent variables and p functions of them then f£f has p + ¢ arguments.
Because of the condition 0 =ff one has essentially the freedom of choosing a
function of p + ¢ — 1 arguments freely. This freedom is also necessary to select
p + g — 1 different functions £ £ and to find as many functionally independent so-
lutions u_ which all become the new similarity variables. ¢ of them become the
new functions u® and p — 1 of them the new variables v, ..., v?. Here we have
p = q = 1 (one single ODE).

Though the program could have done that alone, once the general solution ££ (. .)
is known, the user can interfere here to enter a simpler solution, if possible.

2. Determination of the symmetry variable

2 3

The quasilinear PDE: 0 = df(u_,h)+xhxr - df(u_,r)*»r - 1.
The equivalent characteristic system:

3
O=df (r,u_) + r

2

O0=df (h,u_) - hxr
for the functions: r(u_) hi(u_)

New attempt with a different independent variable
The equivalent characteristic system:
2
O=df (u_,h) *xhxr -1
2
O=r *(df(r,h)+h + r)
for the functions: r(h) u_ (h)

The general solution of the PDE is given through
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2 2 2
— 2+xh *r *xu_ + h

with arbitrary function ff(..).
A suggestion for this function ff(..) yields:

Do you like this choice? (Y or N)
?
Y%

Similar to above.

The suggested solution of the algebraic system which will
do the transformation is:

{h=sqrt (v) *xsgrt (2) »u, r=——————--—--—-———- }

Is the solution ok? (Y or N)

2y

In the intended transformation shown above the dependent
variable is u and the independent variable is v.

The symmetry variable is v, i.e. the transformed expression
will be free of v.

Is this selection of dependent and independent variables ok?
?n

We so far assumed that the symmetry variable is one of the new variables, but,
of course we also could choose it to be one of the new functions. If it is one
of the functions then only derivatives of this function occur in the new DE, not
the function itself. If it is one of the variables then this variable will not occur
explicitly.

In our case we prefer (without strong reason) to have the function as symmetry vari-
able. We therefore answered with ‘no’. As a consequence, u and v will exchange
names such that still all new functions have the name u and the new variables have
name v:

Please enter a list of substitutions. For example, to
make the variable, which is so far call ul, to an
independent variable v2 and the wvariable, which is

so far called v2, to an dependent variable ul,

enter: ‘{ul=v2, v2=ul};’

Input:3: {u=v,v=u};

The transformed equation which should be free of u:
3 6 2 3

(Y or N)



217

0=3*«df (u,v,2)*v — loxdf(u,v) v - 20+xdf(u,v) *v + 5xdf(u,v)

Do you want to find similarity and symmetry variables (enter ‘1;')
or generalize a special solution with new parameters (enter ‘2;7)
or exit the program (enter ;)
Input:3: ;

We stop here. The following is returned from our APPLYSYM call:

3 6 2 3
{{{3%df (u,Vv,2)*v — 16+df(u,v) v - 20+df(u,v) v + 5xdf (u,v)},
{ul,
{vi},
sgrt (u) *sqgrt (2)
{r=——— , h=sqgrt (u) *sqrt (2) *v }}

The use of APPLYSYM effectively provided us the finite transformation
p=02u) "2  h=2u)?0. (16.17)
and the new ODE
0 = 3u"v — 16u0v® — 20003 + 50/ (16.18)

where u = u(v) and " = d/dv. Using one symmetry we reduced the 2. order ODE
(16.15) to a first order ODE (16.18) for «/ plus one integration. The second symme-
try can be used to reduce the remaining ODE to an integration too by introducing
a variable w through v3d/dv = d/dw, i.e. w = —1/(2v?). With

p = du/dw (16.19)

the remaining ODE is

dp
— 3w -2 42 (4p+1
0=3w-~+ p(p+1)(4p+1)

with solution 5
p(p+1)
(4p+ 1)
Writing (16.19) as p = v3(du/dp)/(dv/dp) we get u by integration and with
(16.17) further a parametric solution for p, h:

3c2(2p — 1) —1/2
o (e P(p+ )Y+ 6ctp — 3ch)!2p/2 (16.21)
a(dp+1) '

cw 2 /4=t = ¢ = const.

where ¢y, ¢y = const. and ¢; = ¢/%. Finally, the metric function U (p) is obtained
as an integral from (16.13),(16.14).
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Limitations of APPLYSYM

Restrictions of the applicability of the program APPLYSYM result from limita-
tions of the program QUASILINPDE described in a section below. Essentially this
means that symmetry generators may only be polynomially non-linear in z¢, y*.
Though even then the solvability can not be guaranteed, the generators of Lie-
symmetries are mostly very simple such that the resulting PDE (16.22) and the
corresponding characteristic ODE-system have good chances to be solvable.

Apart from these limitations implied through the solution of differential equations
with CRACK and algebraic equations with SOLVE the program APPLYSYM itself
is free of restrictions, i.e. if once new versions of CRACK, SOLVE would be avail-
able then APPLYSYM would not have to be changed.

Currently, whenever a computational step could not be performed the user is in-
formed and has the possibility of entering interactively the solution of the unsolved
algebraic system or the unsolved linear PDE.

16.2.3 Solving quasilinear PDEs
The content of QUASILINPDE

The generalization of special solutions of DEs as well as the computation of sim-
ilarity and symmetry variables involve the general solution of single first order
linear PDEs. The procedure QUASILINPDE is a general procedure aiming at the
general solution of PDEs

al(wiu ¢)¢w1 + az(wi) ¢)¢w2 +...+ an(wiu ¢)¢wn = b(w27 ¢) (1622)

in n independent variables w;,i = 1...n for one unknown function ¢ = ¢(w;).

1. The first step in solving a quasilinear PDE (16.22) is the formulation of the
corresponding characteristic ODE-system

dw; .

= = ai(wj, @) (16.23)

dp .

= = b(wj, @) (16.24)

for ¢, w; regarded now as functions of one variable €.

Because the a; and b do not depend explicitly on ¢, one of the equations
(16.23),(16.24) with non-vanishing right hand side can be used to divide all
others through it and by that having a system with one less ODE to solve. If
the equation to divide through is one of (16.23) then the remaining system



219

would be
dwi a; .
= —, i=12,...k—1k+1,...n (16.25)
dwy, ak
d b
4 _ b (16.26)
dwk Qaf

with the independent variable wy, instead of €. If instead we divide through
equation (16.24) then the remaining system would be
dwi a;

= =, i=12,... 16.27
d¢) b? 7 = n ( )

with the independent variable ¢ instead of €.

The equation to divide through is chosen by a subroutine with a heuristic to
find the “simplest” non-zero right hand side (aj, or b), i.e. one which

e is constant or
e depends only on one variable or

e is a product of factors, each of which depends only on one variable.

One purpose of this division is to reduce the number of ODEs by one. Sec-
ondly, the general solution of (16.23), (16.24) involves an additive constant
to € which is not relevant and would have to be set to zero. By dividing
through one ODE we eliminate € and lose the problem of identifying this
constant in the general solution before we would have to set it to zero.

. To solve the system (16.25), (16.26) or (16.27), the procedure CRACK is
called. Although being designed primarily for the solution of overdeter-
mined PDE-systems, CRACK can also be used to solve simple not overdeter-
mined ODE-systems. This solution process is not completely algorithmic.
Improved versions of CRACK could be used, without making any changes of
QUASTILINPDE necessary.

If the characteristic ODE-system can not be solved in the form (16.25),
(16.26) or (16.27) then successively all other ODEs of (16.23), (16.24) with
non-vanishing right hand side are used for division until one is found such
that the resulting ODE-system can be solved completely. Otherwise the PDE
can not be solved by QUASILINPDE.

. If the characteristic ODE-system (16.23), (16.24) has been integrated com-
pletely and in full generality to the implicit solution

0= Gi(p,wj,cp,¢), 1,k=1,...,n+1, j=1,...,n (16.28)

then according to the general theory for solving first order PDEs, ¢ has to be
eliminated from one of the equations and to be substituted in the others to



220 CHAPTER 16. USER CONTRIBUTED PACKAGES
have left n equations. Also the constant that turns up additively to ¢ is to be
set to zero. Both tasks are automatically fulfilled, if, as described above, ¢ is
already eliminated from the beginning by dividing all equations of (16.23),
(16.24) through one of them.

On either way one ends up with n equations
0=gi(p,wj,ck), i, j,k=1...n (16.29)

involving n constants cy.
The final step is to solve (16.29) for the ¢; to obtain

¢i = ci(p,wi,...,wy) 1=1,...n. (16.30)
The final solution ¢ = ¢(w;) of the PDE (16.22) is then given implicitly
through

0= F(Cl((ba wi)a 02(¢7 wi)a .. 7Cn(¢7 wz))
where F'is an arbitrary function with n arguments.
Syntax

The call of QUASILINPDE is
QUASILINPDE(de, fun, varlist);

e de is the differential expression which vanishes due to the PDE de = 0 or,

de may be the differential equation itself in the form ...=... .

e fun is the unknown function.

e varlist is the list of variables of fun.

The result of QUASILINPDE is a list of general solutions

{soly, sols, .. .}.

If QUASILINPDE can not solve the PDE then it returns { }. Each solution sol; is a
list of expressions

{ex1,exa,...}

such that the dependent function (¢ in (16.22)) is determined implicitly through an
arbitrary function F' and the algebraic equation

0 = F(exy,exa,...).
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Examples

Example 1:
To solve the quasilinear first order PDE

1 = zu,; +uu,, —zu,,

for the function v = u(x, y, z), the input would be

depend u,x,vy,2z;

de:=x*df (u, x) +tuxdf (u,y) —zxdf (u,z) - 1;
varlist:={x,vy,z};

QUASILINPDE (de,u,varlist);

In this example the procedure returns

{{z/e", ze",u® — 29}},

i.e. there is one general solution (because the outer list has only one element which
itself is a list) and w is given implicitly through the algebraic equation

0= F(zx/e*, ze*, u* — 2y)

with arbitrary function F.
Example 2:
For the linear inhomogeneous PDE

0=yz,,+x2z,y—1, for z=z(z,y)

QUASILINPDE returns the result that for an arbitrary function F the equation

0:F<xty,ez(x—y)>

e

defines the general solution for z.
Example 3:
For the linear inhomogeneous PDE (3.8) from [ ]

0=2aw,,+y+2)(w,y—w,;), for w=wx,vy,z)
QUASILINPDE returns the result that for an arbitrary function F) the equation
0=F(w, y+z In(@)(y+2) —y)
defines the general solution for w, i.e. for any function f

w=f(y+z In(x)(y+2) —vy)

solves the PDE.
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Limitations of QUASILINPDE

One restriction on the applicability of QUASILINPDE results from the program
CRACK which tries to solve the characteristic ODE-system of the PDE. So far
CRACK can be applied only to polynomially non-linear DE’s, i.e. the characteristic
ODE-system (16.25),(16.26) or (16.27) may only be polynomially non-linear, i.e.
in the PDE (16.22) the expressions a; and b may only be rational in w;, ¢.

The task of CRACK is simplified as (16.28) does not have to be solved for w;, ¢. On
the other hand (16.28) has to be solved for the ¢;. This gives a second restriction
coming from the REDUCE function SOLVE. Though SOLVE can be applied to
polynomial and transzendential equations, again no guarantee for solvability can
be given.

16.2.4 Transformation of DEs
The content of DETRAFO

Finally, after having found the finite transformations, the program APPLYSYM calls
the procedure DETRAFO to perform the transformations. DETRAFO can also be
used alone to do point- or higher order transformations which involve a consid-
erable computational effort if the differential order of the expression to be trans-
formed is high and if many dependent and independent variables are involved. This
might be especially useful if one wants to experiment and try out different coordi-
nate transformations interactively, using DETRAFO as standalone procedure.

To run DETRAFO, the old functions 3 and old variables z* must be known explic-
itly in terms of algebraic or differential expressions of the new functions «® and
new variables v7. Then for point transformations the identity

dy* = (yawi s 0 ) v’ (16.31)
=y, da’ (16.32)
= yanrj <mjwi +$j>u5 uﬂmi ) dvi (16.33)

provides the transformation

i\ —1
dy® [ da
Y& i = dgﬂ. : ( dvi> (16.34)

with det(dz:j / dvi) # 0 because of the regularity of the transformation which is
checked by DETRAFO. Non-regular transformations are not performed.

DETRAFO is not restricted to point transformations. In the case of contact- or
higher order transformations, the total derivatives dy®/dv* and dx’ /dv* then only
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include all v®— derivatives of u® which occur in

y¢ = ya(vi,uﬁ,uﬁ,vj yert)

o = 2FhdP P, ).

Syntax

The call of DETRAFO is

DETRAFO({exy, exo, ..., expm },

{ofun, =fex1, ofuny =fexs, ... ,ofun, =fex,},

{ovar =vexy, ovary =vexa, ..., ovary =vex,},
9

{nfuny, nfuns, ..., nfuny},

{nvarq, nvara, ..., nvar,});

where m, p, q are arbitrary.

o The ex; are differential expressions to be transformed.

e The second list is the list of old functions ofun expressed as expressions fex
in terms of new functions nfun and new independent variables nvar.

o Similarly the third list expresses the old independent variables ovar as ex-
pressions vex in terms of new functions nfun and new independent variables
nvar.

e The last two lists include the new functions nfun and new independent vari-
ables nvar.

Names for ofun, ovar, nfun and nvar can be arbitrarily chosen.

As the result DETRAFO returns the first argument of its input, i.e. the list

{ex1,exa, ... exp}

where all ex; are transformed.

Limitations of DETRAFO

The only requirement is that the old independent variables z* and old functions
y® must be given explicitly in terms of new variables v/ and new functions u”
as indicated in the syntax. Then all calculations involve only differentiations and
basic algebra.
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16.3 ARNUM: An algebraic number package

This package provides facilities for handling algebraic numbers as polynomial co-
efficients in REDUCE calculations. It includes facilities for introducing indetermi-
nates to represent algebraic numbers, for calculating splitting fields, and for factor-
ing and finding greatest common divisors in such domains.

Author: Eberhard Schriifer.

Algebraic numbers are the solutions of an irreducible polynomial over some
ground domain. The algebraic number ¢ (imaginary unit), for example, would
be defined by the polynomial 52 + 1. The arithmetic of algebraic number s can be
viewed as a polynomial arithmetic modulo the defining polynomial.

Given a defining polynomial for an algebraic number a

a® + pp_1a™t 4+ L+ po

All algebraic numbers which can be built up from a are then of the form:
P10t 4+ rp_0a™ % + ..+ 70
where the 7;’s are rational numbers.

The operation of addition is defined by

24 ) =

-2 4 .

(rn_lan_1 + rp_oa™ % + o)+ (sn_lan_l + sp_0a””
(P14 sn-1)a" " + (rn2+sn2)a”
Multiplication of two algebraic numbers can be performed by normal polynomial

multiplication followed by a reduction of the result with the help of the defining
polynomial.

(Tn1a™ 1 0a™ 2 4 ) X (510" 5, 00" 24 ) =
15" ta® 2 + . modulo " + pp_1a™ ' + ... + po

= Qn—lanil + Qn—2an72 + ..

Division of two algebraic numbers r and s yields another algebraic number q.
T =gqorr =gs.
The last equation written out explicitly reads
(Tn1a™ ™t 1y 9a™ 2 4 ...)
= (gn_10"" 4 qn0a""? 4+ ..) X (8p-10" " 8, 00" 4L L)
modulo(a" + pp,_1a” 1 +..))

= (tn,lan_l + tn,QCLn_2 + .. )
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The t; are linear in the g;. Equating equal powers of a yields a linear system for
the quotient coefficients g;.

With this, all field operations for the algebraic numbers are available. The transla-
tion into algorithms is straightforward. For an implementation we have to decide
on a data structure for an algebraic number. We have chosen the representation
REDUCE normally uses for polynomials, the so-called standard form. Since our
polynomials have in general rational coefficients, we must allow for a rational num-
ber domain inside the algebraic number.

< algebraic number > ::=
rar: . <univariate polynomial over the rationals >

< univariate polynomial over the rationals > ::=
<variable > ** <ldeg > .* <rational > .+ < reductum >

< ldeg > ::= integer

<rational > ::=
:rn: . <integer numerator > . < integer denominator > : integer

< reductum > ::= < univariate polynomial > : < rational > : nil

This representation allows us to use the REDUCE functions for adding and multi-
plying polynomials on the tail of the tagged algebraic number. Also, the routines
for solving linear equations can easily be used for the calculation of quotients.
We are still left with the problem of introducing a particular algebraic number. In
the current version this is done by giving the defining polynomial to the statement
defpoly. The algebraic number sqrt(2), for example, can be introduced by

defpoly sqrt2**x2 - 2;

This statement associates a simplification function for the translation of the vari-
able in the defining polynomial into its tagged internal form and also generates a
power reduction rule used by the operations times and quotient for the reduction
of their result modulo the defining polynomial. A basis for the representation of
an algebraic number is also set up by the statement. In the working version, the
basis is a list of powers of the indeterminate of the defining polynomial up to one
less then its degree. Experiments with integral bases, however, have been very
encouraging, and these bases might be available in a later version. If the defining
polynomial is not monic, it will be made so by an appropriate substitution.

Example 1

defpoly sqrt2*%2-2;
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1/ (sgrt2+1);

sgqrt2 - 1

(x*x*x2+2xsqrt2+x+2) / (x+sqgrt2) ;

x + sqgrtz

on gcd;

(xxx3+ (sqQrt2-2) *x**2— (2+%sqrt2+3) *xx—-3xsqrt2) / (x**2-2) ;

2
(x = 2xx = 3)/(x - sqrt2)

off gcd;
SArt (X*x*2-2+sgrt2xx*y+2*xy*x*2);
abs (x — sqgrt2x*y)

Until now we have dealt with only a single algebraic number. In practice this is not
sufficient as very often several algebraic numbers appear in an expression. There
are two possibilities for handling this: one can use multivariate extensions [ ]
or one can construct a defining polynomial that contains all specified extensions.
This package implements the latter case (the so called primitive representation).
The algorithm we use for the construction of the primitive element is the same as
given by Trager [ ]. In the implementation, multiple extensions can be given
as a list of equations to the statement defpoly, which, among other things, adds
the new extension to the previously defined one. All algebraic numbers are then
expressed in terms of the primitive element.

Example 2
defpoly sqrt2+x2-2,cbrt5++x3-5;
**x% defining polynomial for primitive element:

6 4 3 2
al - 6%xal - 10xal + 12xal - 60xal + 17

sqgrt2;
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48/1187%al + 45/1187xal - 320/1187xal - 780/1187=al

735/1187+al - 1820/1187

Sqrt2xx2;

We can provide factorization of polynomials over the algebraic number domain by
using Trager’s algorithm. The polynomial to be factored is first mapped to a poly-
nomial over the integers by computing the norm of the polynomial, which is the
resultant with respect to the primitive element of the polynomial and the defining
polynomial. After factoring over the integers, the factors over the algebraic number
field are recovered by GCD calculations.

Example 3

defpoly ax*2-5;

on factor;

X*x2 + x — 1;

(x + (1/2*a + 1/2))x(x - (1/2xa - 1/2))
We have also incorporated a function split_field for the calculation of a primitive
element of minimal degree for which a given polynomial splits into linear factors.

The algorithm as described in Trager’s article is essentially a repeated primitive
element calculation.

Example 4
split_field (xx*3-3%x+7);
*xx Splitting field is generated by:

6 4 2
a2 - 18%xa2 + 81lxa2 + 1215

4 2
{1/126%a2 - 5/42xa2 - 1/2%a2 + 2/7,
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4 2
- (1/63%a2 - 5/21xa2 + 4/7),

4 2
1/126%a2 - 5/42%a2 + 1/2%a2 + 2/7}

for each j in ws product (x-73);

3
X = 3xx + 7

A more complete description can be found in [ ].
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16.4 ASSERT: Dynamic Verification of Assertions on Func-
tion Types

ASSERT admits to add to symbolic mode RLISP code assertions (partly) specify-
ing types of the arguments and results of RLISP expr procedures. These types can
be associated with functions testing the validity of the respective arguments during
runtime.

Author: Thomas Sturm.

16.4.1 Loading and Using

The package is loaded using 1oad_package or load!-package in algebraic
or symbolic mode, resp. There is a central switch assert, which is off by default.
With assert off, all type definitions and assertions described in the sequel are
ignored and have the status of comments. For verification of the assertions it most
be turned on (dynamically) before the first relevant type definition or assertion.

ASSERT aims at the dynamic analysis of RLISP expr procedure in symbolic mode.
All uses of typedef and assert discussed in the following have to take place
in symbolic mode. There is, in contrast, a final print routine assert_analyze
that is available in both symbolic and algebraic mode.

16.4.2 Type Definitions
Here are some examples for definitions of types:

typedef any;

typedef number checked by numberp;
typedef sf checked by sfpx;
typedef sqg checked by sgp;

The first one defines a type any, which is not possibly checked by any function.
This is useful, e.g., for functions which admit any argument at one position but at
others rely on certain types or guarantee certain result types, e.g.,

procedure cellcnt (a);

% a 1s any, returns a number.
if not pairp a then 0 else cellcnt car a + cellcnt cdr a + 1;

The other ones define a type number, which can be checked by the RLISP func-
tion numberp, atype s f for standard forms, which can be checked by the function
sfpx provided by ASSERT, and similarly a type for standard quotients.



230 CHAPTER 16. USER CONTRIBUTED PACKAGES

All type checking functions take one argument and return extended Boolean, i.e.,
non-nil iff their argument is of the corresponding type.

16.4.3 Assertions

Having defined types, we can formulate assertions on expr procedures in terms of
these types:

assert cellcnt: (any) -> number;
assert addsqg: (sqg,sq) —> sqg;

Note that on the argument side parenthesis are mandatory also with only one argu-
ment. This notation is inspired by Haskell but avoids the intuition of currying.'

Assertions can be dynamically checked only for expr procedures. When making
assertions for other types of procedures, a warning is issued and the assertion has
the status of a comment.

It is important that assertions via assert come after the definitions of the used types
via typedef and also after the definition of the procedures they make assertions
on.

A natural order for adding type definitions and assertions to the source code files
would be to have all typedefs at the beginning of a module and assertions immedi-
ately after the respective functions. Fig. 16.1 illustrates this. Note that for dynamic
checking of the assertions the switch assert has to be on during the translation
of the module; i.e., either when reading it with in or during compilation. For com-
pilation this can be achieved by commenting in the on assert at the beginning
or by parameterizing the Lisp-specific compilation scripts in a suitable way.

An alternative option is to have type definitions and assertions for specific packages
right after 1oad_package in batch files as illustrated in Fig. 16.2.

16.4.4 Dynamic Checking of Assertions

Recall that with the switch assert off at translation time, all type definitions and
assertions have the status of comments. We are now going to discuss how these
statements are processed with assert on.

typedef marks the type identifier as a valid type and possibly associates the given
typechecking function with it. Technically, the property list of the type identifier is
used for both purposes.

assert encapsulates the procedure that it asserts on into another one, which

!This notation has benn suggested by C. Zengler
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module sizetools;

load!-package ’"assert;

[

% on assert;

typedef any;
typedef number checked by number;

procedure cellcnt (a);

% a 1s any, returns a number.
if not pairp a then 0 else cellcnt car a + cellcnt cdr a + 1;

assert cellcnt: (any) —-> number;

o

endmodule;

o)

end; % of file

Figure 16.1: Assertions in the source code.

load_package sizetools;
load_package assert;

on assert;
lisp <<
typedef any;

typedef number checked by numberp;

assert cellcnt: (any) —-> number
>>

o

computations
assert_analyze();

end; % of file

Figure 16.2: Assertions in a batch file.
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checks the types of the arguments and of the result to the extent that there are
typechecking functions given. Whenever some argument does not pass the test by
the typechecking function, there is a warning message issued. Furthermore, the
following numbers are counted for each asserted function:

1. The number of overall calls,
2. the number of calls with at least one assertion violation,

3. the number of assertion violations.

These numbers can be printed anytime in either symbolic or algebraic mode using
the command assert_analyze (). This command at the same time resets all
the counters.

Fig. 16.3 shows an interactive sample session.

16.4.5 Switches

As discussed above, the switch assert controls at translation time whether or not
assertions are dynamically checked.

There is a switch assertbreak, which is off by default. When on, there are not
only warnings issued for assertion violations but the computations is interrupted
with a corresponding error.

The statistical counting of procedure calls and assertion violations is toggled by
the switch assertstatistics, which is on by default.

16.4.6 Efficiency

The encapsulating functions introduced with assertions are automatically com-
piled.

We have experimentally checked assertions on the standard quotient arithmetic
addsg, multsqg, quotsq, invsqg, negsq for the test file taylor.tst of the
TAYLOR package. For CSL we observe a slowdown of factor 3.2, and for PSL
we observe a slowdown of factor 1.8 in this particular example, where there are
323750 function calls checked altogether.

The ASSERT package is considered an analysis and debugging tool. Production
system should as a rule not run with dynamic assertion checking. For critical ap-
plications, however, the slowdown might be even acceptable.
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1: symbolic$
2+ load_package assert$
3% on asserts$

4%« typedef sg checked by sqgp;
sqp

5x assert negsqg: (sq) —-> sqg;
+++ negsqg compiled, 13 + 20 bytes

(negsq)

6% assert addsqg: (sq,sq) —> sq;
+++ addsqg compiled, 14 + 20 bytes

(addsq)
7« addsqg(simp ’'x,negsq simp ’'vy);
((((x . 1) . 1) ((y . 1) .-1)) . 1)

8% addsqg(simp ’'x,negsq numr simp 'vy);

*%% assertion negsqg: (sq) —-> sqg violated by argl (((y . 1) . 1))

*%% assertion negsqg: (sqg) —-> sqg violated by result (((y . -1) . -1))
*xx assertion addsqg: (sq,sq) —-> sq violated by arg2 (((y . -1) . =-1))
*%% assertion addsqg: (sq,sq) —-> sqg violated by result (((y . -1) . =-1))
(((y . =1) . -1))

9+ assert_analyze()$

function #calls #bad calls #assertion violations
addsqg 2 1 2
negsq 2 1 2
sum 4 2 4

Figure 16.3: An interactive sample session.
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16.4.7 Possible Extensions

Our assertions could be used also for a static type analysis of source code. In
that case, the type checking functions become irrelevant. On the other hand, the
introduction of variouse unchecked types becomes meaningful.

In a model, where the source code is systematically annotated with assertions, it
is technically no problem to generalize the specification of procedure definitions
such that assertions become implicit. For instance, one could optionally admit
procedure definitions like the following:

procedure cellcnt (a:any) :number;
if not pairp a then 0 else cellcnt car a + cellcnt cdr a + 1;
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16.5 ASSIST: Useful utilities for various applications

ASSIST contains a large number of additional general purpose functions that allow
a user to better adapt REDUCE to various calculational strategies and to make the
programming task more straightforward and more efficient.

Author: Hubert Caprasse.

16.5.1 Introduction

The package ASSIST contains an appreciable number of additional general pur-
pose functions which allow one to better adapt REDUCE to various calculational
strategies, to make the programming task more straightforward and, sometimes,
more efficient.

In contrast with all other packages, ASSIST does not aim to provide either a new
facility to compute a definite class of mathematical objects or to extend the base of
mathematical knowledge of REDUCE. The functions it contains should be useful
independently of the nature of the application which is considered. They were ini-
tially written while applying REDUCE to specific problems in theoretical physics.
Most of them were designed in such a way that their applicability range is broad.
Though it was not the primary goal, efficiency has been sought whenever possible.

The source code in ASSIST contains many comments concerning the meaning
and use of the supplementary functions available in the algebraic mode. These
comments, hopefully, make the code transparent and allow a thorough exploitation
of the package. The present documentation contains a non-technical description of
it and describes the various new facilities it provides.

16.5.2 Survey of the Available New Facilities

An elementary help facility is available both within the MS-DOS and Windows
environments. It is independent of the help facility of REDUCE itself. It includes
two functions:

ASSIST is a function which takes no argument. If entered, it returns the informa-
tions required for a proper use of ASSISTHELP.
ASSISTHELP takes one argument.

i. Ifthe argument is the identifier assist, the function returns the information
necessary to retrieve the names of all the available functions.

ii. If the argument is an integer equal to one of the section numbers of the
present documentation. The names of the functions described in that section
are obtained.
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There is, presently, no possibility to retrieve the number and the type of the
arguments of a given function.

The package contains several modules. Their content reflects closely the various
categories of facilities listed below. Some functions do already exist inside the
KERNEL of REDUCE. However, their range of applicability is extended.

e Control of Switches:
SWITCHES SWITCHORG
e Operations on Lists and Bags:

MKLIST KERNLIST ALGNLIST LENGTH
POSITION FREQUENCY SEQUENCES SPLIT
INSERT INSERT_KEEP_ORDER MERGE_LIST
FIRST SECOND THIRD REST REVERSE LAST
BELAST CONS ( . ) APPEND APPENDN
REMOVE DELETE DELETE_ALL DELPAIR
MEMBER ELMULT PAIR DEPTH MKDEPTH_ONE
REPFIRST REPREST ASFIRST ASLAST ASREST
ASFLIST ASSLIST RESTASLIST SUBSTITUTE
BAGPROP PUTBAG CLEARBAG BAGP BAGLISTP
ALISTP ABAGLISTP LISTBAG

e Operations on Sets:
MKSET SETP UNION INTERSECT DIFFSET SYMDIFF
e General Purpose Utility Functions:

LIST_TO_IDS MKIDN MKIDNEW DELLASTDIGIT DETIDNUM
ODDP FOLLOWLINE == RANDOMLIST MKRANDTABL
PERMUTATIONS CYCLICPERMLIST PERM_TO_NUM NUM_TO_PERM
COMBNUM COMBINATIONS SYMMETRIZE REMSYM

SORTNUMLIST SORTLIST ALGSORT EXTREMUM GCDNL

DEPATOM FUNCVAR IMPLICIT EXPLICIT REMNONCOM
KORDERLIST SIMPLIFY CHECKPROPLIST EXTRACTLIST

e Properties and Flags:

PUTFLAG PUTPROP DISPLAYPROP DISPLAYFLAG
CLEARFLAG CLEARPROP

e Control Statements, Control of Environment:

NORDP DEPVARP ALATOMP ALKERNP PRECP
SHOW SUPPRESS CLEAROP CLEARFUNCTIONS
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e Handling of Polynomials:

ALG_TO_SYMB SYMB_TO_ALG
DISTRIBUTE LEADTERM REDEXPR MONOM
LOWESTDEG DIVPOL SPLITTERMS SPLITPLUSMINUS

e Handling of Transcendental Functions:
TRIGEXPAND HYPEXPAND TRIGREDUCE HYPREDUCE
e Coercion from Lists to Arrays and converse:
LIST_TO_ARRAY ARRAY_TO_LIST
e Handling of n-dimensional Vectors:
SUMVECT MINVECT SCALVECT CROSSVECT MPVECT
e Handling of Grassmann Operators:
PUTGRASS REMGRASS GRASSP GRASSPARITY GHOSTFACTOR
e Handling of Matrices:

UNITMAT MKIDM BAGLMAT COERCEMAT

SUBMAT MATSUBR MATSUBC RMATEXTR RMATEXTC
HCONCMAT VCONCMAT TPMAT HERMAT

SETELTMAT GETELTMAT

e Control of the HEPHYS package:

REMVECTOR REMINDEX MKGAM

In the following all these functions are described.

16.5.3 Control of Switches

The two available functions i.e. SWITCHES, SWITCHORG have no argument and
are called as if they were mere identifiers.

SWITCHES displays the actual status of the most frequently used switches when
manipulating rational functions. The chosen switches are

EXP, ALLFAC, EZGCD, GCD, MCD, LCM, DIV, RAT,
INTSTR, RATIONAL, PRECISE, REDUCED, RATIONALIZE,
COMBINEEXPT, COMPLEX, REVPRI, DISTRIBUTE.
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The selection is somewhat arbitrary but it may be changed in a trivial fashion by
the user.

The new switch DISTRIBUTE allows one to put polynomials in a distributed form
(see the description below of the new functions for manipulating them).

Most of the symbolic variables ! *xEXP, !%DIV, ...whichhave either the value
T or the value NIL are made available in the algebraic mode so that it becomes
possible to write conditional statements of the kind

IF !«EXP THEN DO ......
IF !«GCD THEN OFF GCDj;

SWITCHORG resets the switches enumerated above to the status they had when
starting REDUCE.

16.5.4 Manipulation of the List Structure

Additional functions for list manipulations are provided and some already defined
functions in the kernel of REDUCE are modified to properly generalize them to
the available new structure BAG.

i. Generation of a list of length n with all its elements initialized to 0 and
possibility to append to a list [ a certain number of zero’s to make it of length
n:

MKLIST n ; n is an INTEGER

MKLIST (1,n); 1l is List—-like, n is an INTEGER

ii. Generation of a list of sublists of length n containing p elements equal to O
and q elements equal to 1 such that

p+q=n.

The function SEQUENCES works both in algebraic and symbolic modes.
Here is an example in the algebraic mode:

SEQUENCES 2 ; ==> {{0,0},{0,1},{1,0},{1,1}}

An arbitrary splitting of a list can be done. The function SPLIT generates a
list which contains the splitted parts of the original list.

SPLIT ({a,b,c,d},{1,1,2}) ==> {{a},{b},{c,d}}
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The function ALGNLIST constructs a list which contains n copies of a list
bound to its first argument.

ALGNLIST ({a,b,c,d},2); ==> {{a,b,c,d},{a,b,c,d}}

The function KERNLIST transforms any prefix of a kernel into the 1ist
prefix. The output list is a copy:

KERNLIST (<kernel>); ==> {<kernel arguments>}
Four functions to delete elements are DELETE, REMOVE, DELETE_ALL
and DELPATIR. The first two act as in symbolic mode, and the third elimi-
nates from a given list all elements equal to its first argument. The fourth
acts on a list of pairs and eliminates from it the first pair whose first element
is equal to its first argument :

DELETE (x, {a,b,x,f,x}); ==> {a,b, f, x}

REMOVE ({a, b, x,f,x},3); ==> {a,b, f,x}

DELETE_ALL(x, {a,b,x,f,x}); ==> {a,b, f}

DELPAIR(a, {{a,1},{b,2},{c,3}}; ==> {{b,2},{c,3}}

iv. The function ELMULT returns an integer which is the multiplicity of its

first argument inside the list which is its second argument. The function
FREQUENCY gives a list of pairs whose second element indicates the num-
ber of times the first element appears inside the original list:

ELMULT (x, {a, b, x, £,x}) ==> 2
FREQUENCY ({a,b,c,a}); ==> {{a,2},{b,1},{c,1}}

. The function INSERT allows one to insert a given object into a list at the
desired position.

The functions INSERT_KEEP_ORDER and MERGE_LIST allow one to
keep a given ordering when inserting one element inside a list or when merg-
ing two lists. Both have 3 arguments. The last one is the name of a binary
boolean ordering function:

11:={1,2,3}5%

INSERT (x,11,3); ==> {1,2,x,3}
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INSERT_KEEP_ORDER (5,11, lessp); ==> {1,2,3,5}
MERGE_LIST (11,11, lessp); ==> {1,1,2,2,3,3}

Notice that MERGE_LIST will act correctly only if the two lists are well
ordered themselves.

Algebraic lists can be read from right to left or left to right. They look sym-
metrical. One would like to dispose of manipulation functions which reflect
this. So, to the already defined functions FIRST and REST are added the
functions LAST and BELAST. LAST gives the last element of the list while
BELAST gives the list without its last element.

Various additional functions are provided. They are:

(“dot”), POSITION, DEPTH, MKDEPTH_ONE,
PAIR, APPENDN, REPFIRST, REPREST

The token “dot” needs a special comment. It corresponds to several different
operations.

1. If one applies it on the left of a list, it acts as the CONS function. Note
however that blank spaces are required around the dot:

4 . {a,b}; ==> {4Ialb}

2. If one applies it on the right of a list, it has the same effect as the PART
operator:

{a,b,c}.2; ==>D

3. If one applies it to a 4-dimensional vectors, it acts as in the HEPHYS
package.

POSITION returns the POSITION of the first occurrence of x in a list or a
message if X is not present in it.

DEPTH returns an integer equal to the number of levels where a list is found
if and only if this number is the same for each element of the list otherwise
it returns a message telling the user that the list is of unequal depth. The
function MKDEPTH_ONE allows to transform any list into a list of depth
equal to 1.

PAIR has two arguments which must be lists. It returns a list whose ele-
ments are lists of two elements. The n'" sublist contains the n** element of
the first list and the n'” element of the second list. These types of lists are
called association lists or ALISTS in the following. To test for these type of
lists a boolean function ABAGLISTP is provided. It will be discussed below.
APPENDN has any fixed number of lists as arguments. It generalizes the al-
ready existing function APPEND which accepts only two lists as arguments.
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It may also be used for arbitrary kernels but, in that case, it is important to
notice that the concatenated object is always a list.

REPFIRST has two arguments. The first one is any object, the second one
is a list. It replaces the first element of the list by the object. It works like the
symbolic function REPLACA except that the original list is not destroyed.
REPREST has also two arguments. It replaces the rest of the list by its first
argument and returns the new list without destroying the original list. It is
analogous to the symbolic function REPLACD. Here are examples:

11:={{a,b}}s
111:=11.1; ==> {a,b}
11.0; ==> list

0 . 11; ==> {0,{a,b}}

DEPTH 11; ==> 2

PATIR(111,111); ==> {{a,a},{b,b}}
REPFIRST{new, 11l); ==> {new}
113:=APPENDN(111,111,111); ==> {a,b,a,b,a,b}
POSITION (b, 113); ==> 2

REPREST (new, 113); ==> {a,new}

vii. The functions ASFIRST, ASLAST, ASREST, ASFLIST, ASSLIST,
RESTASLIST act on ALISTS or on lists of lists of well defined depths and
have two arguments. The first is the key object which one seeks to associate
in some way with an element of the association list which is the second argu-
ment.

ASFIRST returns the pair whose first element is equal to the first argument.
ASLAST returns the pair whose last element is equal to the first argument.
ASREST needs a list as its first argument. The function seeks the first sublist
of a list of lists (which is its second argument) equal to its first argument and
returns it.

RESTASLIST has a list of keys as its first argument. It returns the collection
of pairs which meet the criterium of ASREST.

ASFLIST returns a list containing all pairs which satisfy the criteria of the
function ASFIRST. So the output is also an association list.

ASSLIST returns a list which contains all pairs which have their second
element equal to the first argument.

Here are a few examples:

lp:={{a,1},{b, 2}, {c,3}}8%
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ASFIRST (a,1lp); ==> {a, 1}

ASLAST (1,1p); ==> {a,1}

ASREST ({1},1p); ==> {a,1}
RESTASLIST ({a,b},1p); ==> {{1},{2}}
lpp:=APPEND (1p, 1p) $

ASFLIST (a, lpp); ==> {{a,1},{a,1}}

ASSLIST (1, 1lpp); ==> {{a,1},{a,1}}

vii. The function SUBSTITUTE has three arguments. The first is the object to
be substituted, the second is the object which must be replaced by the first,
and the third is the list in which the substitution must be made. Substitution
is made to all levels. It is a more elementary function than SUB but its
capabilities are less. When dealing with algebraic quantities, it is important
to make sure that all objects involved in the function have either the prefix
lisp or the standard quotient representation otherwise it will not properly
work.

16.5.5 The Bag Structure and its Associated Functions

The LIST structure of REDUCE is very convenient for manipulating groups of ob-
jects which are, a priori, unknown. This structure is endowed with other properties
such as “mapping” i.e. the fact that if OP is an operator one gets, by default,

OP ({x,y}); ==> {OP(x),0P(y)}

It is not permitted to submit lists to the operations valid on rings so that, for exam-
ple, lists cannot be indeterminates of polynomials.

Very frequently too, procedure arguments cannot be lists. At the other extreme,
so to say, one has the KERNEL structure associated with the algebraic declaration
operator . This structure behaves as an “unbreakable” one and, for that reason,
behaves like an ordinary identifier. It may generally be bound to all non-numeric
procedure parameters and it may appear as an ordinary indeterminate inside poly-
nomials.

The BAG structure is intermediate between a list and an operator. From the operator
it borrows the property of being a KERNEL and, therefore, may be an indetermi-
nate of a polynomial. From the list structure it borrows the property of being a
composite object.
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Definition:

A bag is an object endowed with the following properties:

1. Itis a KERNEL i.e. it is composed of an atomic prefix (its envelope) and its
content (miscellaneous objects).

2. Its content may be handled in an analogous way as the content of a list. The
important difference is that during these manipulations the name of the bag
is kept.

3. Properties may be given to the envelope. For instance, one may declare it
NONCOM or SYMMETRIC etc. ...

Available Functions:

i. A default bag envelope BAG is defined. It is a reserved identifier. An iden-
tifier other than LIST or one which is already associated with a boolean
function may be defined as a bag envelope through the command PUTBAG.
In particular, any operator may also be declared to be a bag. When and only
when the identifier is not an already defined function does PUTBAG put on
it the property of an OPERATOR PREFIX. The command:

PUTBAG idl,id2,....idn;
declares 1d1, ..... , 1dn as bag envelopes. Analogously, the command
CLEARBAG idl, ...idn;

eliminates the bag property on 1d1, ..., idn.

ii. The boolean function BAGP detects the bag property. Here is an example:
aa:=bag(x,vy,2z)$
if BAGP aa then "ok"; ==> ok

iii. The functions listed below may act both on lists or bags. Moreover, functions
subsequently defined for SETS also work for a bag when its content is a set.
Here is a list of the main ones:

FIRST, SECOND, LAST, REST, BELAST, DEPTH, LENGTH,
REVERSE,
MEMBER, APPEND, . (“dot”), REPFIRST, REPREST
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However, since they keep track of the envelope, they act somewhat differ-
ently. Remember that

the NAME of the ENVELOPE is KEPT by the functions
FIRST, SECOND and LAST.

Here are a few examples (more examples are given inside the test file):
PUTBAG op; ==> T
aa:=op(x,y,z)$
FIRST op(x,y,2z); ==> op(x)
REST op(x,v,z); ==> opl(y,z)
BELAST op(x,y,z); ==> op(X,Y)
APPEND (aa,aa); ==> op(X,Y,2,%X,V,2)
APPENDN (aa,aa,aa); ==> {X,Y,2,%,Y,2,%,Y,2}
LENGTH aa; ==> 3
DEPTH aa; ==> 1
MEMBER (y,aa); ==> op(y,z)
When “appending” two bags with different envelopes, the resulting bag
gets the name of the one bound to the first parameter of APPEND. When

APPENDN is used, the output is always a list.
The function LENGTH gives the number of objects contained in the bag.

The connection between the list and the bag structures is made easy thanks
to KERNLIST which transforms a bag into a list and thanks to the coercion
function LISTBAG which transforms a list into a bag. This function has 2
arguments and is used as follows:

LISTBAG (<list>,<id>); ==> <id>(<arg_list>)

The identifier <id>, if allowed, is automatically declared as a bag envelope
or an error message is generated.

Finally, two boolean functions which work both for bags and lists are pro-
vided. They are BAGLISTP and ABAGLISTP. They return t or nil (in a
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conditional statement) if their argument is a bag or a list for the first one, or
if their argument is a list of sublists or a bag containing bags for the second
one.

16.5.6 Sets and their Manipulation Functions

Functions for sets exist at the level of symbolic mode. The package makes them
available in algebraic mode but also generalizes them so that they can be applied
to bag-like objects as well.

ii.

The constructor MKSET transforms a list or bag into a set by eliminating
duplicates.

MKSET ({1,a,a}); ==> {1,a}
MKSET bag(l,a,l,a); ==> bag(l,a)

SETP is a boolean function which recognizes set-like objects.
if SETP {1,2,3} then ... ;
The available functions are
UNION, INTERSECT, DIFFSET, SYMDIFF.
They have two arguments which must be sets otherwise an error message
is issued. Their meaning is transparent from their name. They respectively

give the union, the intersection, the difference and the symmetric difference
of two sets.

16.5.7 General Purpose Utility Functions

Functions in this sections have various purposes. They have all been used many
times in applications in some form or another. The form given to them in this
package is adjusted to maximize their range of applications.

i. The functions MKIDNEW DELLASTDIGIT DETIDNUM LIST_TO_IDS

handle identifiers.

MKIDNEW has either O or 1 argument. It generates an identifier which has
not yet been used before.

MKIDNEW () ; ==> g0001

MKIDNEW (a); ==> ag0002
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DELLASTDIGIT takes an integer as argument and strips it from its last digit.
DELLASTDIGIT 45; ==> 4
DETIDNUM deletes the last digit from an identifier. It is a very convenient
function when one wants to make a do loop starting from a set of indices
Aly...,0n.
DETIDNUM az23; ==> 23
LIST_to_IDS generalizes the function MKID to a list of atoms. It creates
and intern an identifier from the concatenation of the atoms. The first atom
cannot be an integer.

LIST_TO_IDS {a,1,id,10}; ==> alidloO

The function ODDP detects odd integers.
The function FOLLOWLINE is convenient when using the function PRIN2.
It allows one to format output text in a much more flexible way than with the
function WRITE.
Try the following examples :

<<prin2 2; prin2 5>>$ ==> ?

<<prin2 2; followline(5); prinz 5;>>; ==> ?

The function == is a short and convenient notation for the SET function. In
fact it is a generalization of it to allow one to deal also with KERNELS:

operator op;

op (x) :=abs (x) $

op(x) == x; ==> x
op(x); ==> x
abs (x); ==> x

The function RANDOMLI ST generates a list of random numbers. It takes two
arguments which are both integers. The first one indicates the range inside
which the random numbers are chosen. The second one indicates how many
numbers are to be generated. Its output is the list of generated numbers.
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RANDOMLIST (10,5); ==> {2,1,3,9,6}

MKRANDTABL generates a table of random numbers. This table is either a
one or two dimensional array. The base of random numbers may be either an
integer or a decimal number. In this last case, to work properly, the switch
rounded must be ON. It has three arguments. The first is either a one
integer or a two integer list. The second is the base chosen to generate the
random numbers. The third is the chosen name for the generated array. In
the example below a two-dimensional table of random integers is generated
as array elements of the identifier ar.

MKRANDTABL ({3,4},10,ar); ==>
**x array ar redefined
{3,4}

The output is the dimension of the constructed array.

PERMUTATIONS gives the list of permutations of n objects. Each permuta-
tion is itself a list. CYCLICPERMLIST gives the list of cyclic permutations.
For both functions, the argument may also be a bag.

PERMUTATIONS {1,2} ==> {{1,2},1{2,1}}
CYCLICPERMLIST {1,2,3} ==>
{{1,2,3},1{2,3,1},1{3,1,2}}

PERM_TO_NUM and NUM_TO_PERM allow to associate to a given permu-
tation of n numbers or identifiers a number between 0 and n! — 1. The first
function has the two permutated lists as its arguments and it returns an in-
teger. The second one has an integer as its first argument and a list as its
second argument. It returns the list of permutated objects.

PERM_TO_NUM({4,3,2,1},{1,2,3,4}) ==> 23
NUM_TO_PERM (23, {1,2,3,4}); ==> {4,3,2,1}

COMBNUM gives the number of combinations of n objects taken p at a time.
It has the two integer arguments n and p.

COMBINATIONS gives a list of combinations on n objects taken p at a time.
It has two arguments. The first one is a list (or a bag) and the second one is
the integer p.
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COMBINATIONS ({1,2,3},2) ==> {{2,3},{1,3},{1,2}}

REMSYM is a command that suppresses the effect of the REDUCE com-
mands symmetricor antisymmetric.

SYMMETRIZE is a powerful function which generates a symmetric expres-
sion. It has 3 arguments. The first is a list (or a list of lists) containing the
expressions which will appear as variables for a kernel. The second argu-
ment is the kernel-name and the third is a permutation function which exists
either in algebraic or symbolic mode. This function may be constructed
by the user. Within this package the two functions PERMUTATIONS and
CYCLICPERMLIST may be used. Examples:
ll:={a,b,c}$
SYMMETRIZE (11, 0p,cyclicpermlist); ==>
oP(A,B,C) + OP(B,C,A) + OP(C,A,B)
SYMMETRIZE (1list 11,o0p,cyclicpermlist),; ==>
Op ({a,B,C}) + OP({B,C,A}) + OP({C,A,B})
Notice that, taking for the first argument a list of lists gives rise to an ex-
pression where each kernel has a list as argument. Another peculiarity of
this function is the fact that, unless a pattern matching is made on the oper-
ator OP, it needs to be reevaluated. This peculiarity is convenient when OP

is an abstract operator if one wants to control the subsequent simplification
process. Here is an illustration:

op(a,b,c) :=axbxc$
SYMMETRIZE (11, 0p,cyclicpermlist); ==>
OP(A,B,C) + OP(B,C,A) + OP(C,A,B)
REVAL ws; ==>
OP(B,C,A) + OP(C,A,B) + AxBxC
for all x let op(x,a,b)=sin(x*xaxb);
SYMMETRIZE (11, 0p,cyclicpermlist); ==>

OP (B,C,A) + SIN(AxBxC) + OP(A,B,C)
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The functions SORTNUMLIST and SORTLIST are functions which sort
lists. They use the bubblesort and the quicksort algorithms.

SORTNUMLIST takes as argument a list of numbers. It sorts it in increasing
order.

SORTLIST is a generalization of the above function. It sorts the list accord-
ing to any well defined ordering. Its first argument is the list and its second
argument is the ordering function. The content of the list need not necessar-
ily be numbers but must be such that the ordering function has a meaning.
ALGSORT exploits the PSL SORT function. It is intended to replace the two
functions above.

1:={1,3,4,0}$ SORTNUMLIST 1; ==> {0,1,3,4}

11:={1,a,tt,z}$ SORTLIST(1ll,ordp); ==> {a,z,tt,1}

1:={-1,3,4,0}$ ALGSORT(1l,>); ==> {4,3,0,-1}

It is important to realise that using these functions for kernels or bags may
be dangerous since they are destructive. If it is necessary, it is recommended
to first apply KERNLIST to them to act on a copy.

The function EXTREMUM is a generalization of the already defined functions
MIN, MAX to include general orderings. It is a 2 argument function. The
first is the list and the second is the ordering function. With the list 11
defined in the last example, one gets

EXTREMUM (11, ordp); ==> 1

GCDNL takes a list of integers as argument and returns their gcd.

There are four functions to identify dependencies. FUNCVAR takes any ex-
pression as argument and returns the set of variables on which it depends.
Constants are eliminated.

FUNCVAR (e+pi+sin (log(y)); ==> {y}

DEPATOM has an atom as argument. It returns it if it is a number or if no
dependency has previously been declared. Otherwise, it returns the list of
variables which the prevoius DEPEND declarations imply.

depend a, x,v;
DEPATOM a; ==> {x,y}

The functions EXPLICIT and IMPLICIT make explicit or implicit the de-
pendencies. This example shows how they work:
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depend a, x; depend x,y,Z;
EXPLICIT a; ==> a(x(y,z))
IMPLICIT ws; ==> a

These are useful when one wants to trace the names of the independent vari-
ables and (or) the nature of the dependencies.

KORDERLIST is a zero argument function which displays the actual order-
ing.

korder x,y,z;
KORDERLIST; ==> (xX,V,2z)

A command REMNONCOM to remove the non-commutativity of operators
previously declared non-commutative is available. Its use is like the one of
the command NONCOM.

Filtering functions for lists.

CHECKPROPLIST is a boolean function which checks if the elements of a
list have a definite property. Its first argument is the list, its second argument
is a boolean function (FIXP NUMBERP ...) or an ordering function (as
ORDP).

EXTRACTLIST extracts from the list given as its first argument the elements
which satisfy the boolean function given as its second argument. For exam-
ple:

if CHECKPROPLIST ({1,2},fixp) then "ok"; ==>
l1:={1,a,b,"st")s

EXTRACTLIST (1, fixp); ==> {1}
EXTRACTLIST (1, stringp); ==> {st}

Coercion.

Since lists and arrays have quite distinct behaviour and storage properties,
it is interesting to coerce lists into arrays and vice-versa in order to fully
exploit the advantages of both datatypes. The functions ARRAY_TO_LIST
and LIST_TO_ARRAY are provided to do that easily. The first function has
the array identifier as its unique argument. The second function has three
arguments. The first is the list, the second is the dimension of the array

ok



251

and the third is the identifier which defines it. If the chosen dimension is
not compatible with the the list depth, an error message is issued. As an
illustration suppose that ar is an array whose components are 1,2,3,4. then

ARRAY_TO_LIST ar; ==> {1,2,3,4}
LIST_TO_ARRAY ({1,2,3,4},1,arr}; ==>

generates the array arr with the components 1,2,3,4.

vii. Control of the HEPHYS package.

The commands REMVECTOR and REMINDEX remove the property of being
a 4-vector or a 4-index respectively.

The function MKGAM allows to assign to any identifier the property of a Dirac
gamma matrix and, eventually, to suppress it. Its interest lies in the fact that,
during a calculation, it is often useful to transform a gamma matrix into an
abstract operator and vice-versa. Moreover, in many applications in basic
physics, it is interesting to use the identifier g for other purposes. It takes
two arguments. The first is the identifier. The second must be chosen equal
to t if one wants to transform it into a gamma matrix. Any other binding for
this second argument suppresses the property of being a gamma matrix the
identifier is supposed to have.

16.5.8 Properties and Flags

In spite of the fact that many facets of the handling of property lists is easily acces-
sible in algebraic mode, it is useful to provide analogous functions genuine to the
algebraic mode. The reason is that, altering property lists of objects, may easily
destroy the integrity of the system. The functions, which are here described, do
ignore the property list and flags already defined by the system itself. They gen-
erate and track the addtional properties and flags that the user issues using them.
They offer him the possibility to work on property lists so that he can design a
programming style of the “conceptual” type.

i. We first consider “flags”.
To a given identifier, one may associate another one linked to it “in
the background”. The three functions PUTFLAG, DISPLAYFLAG and
CLEARFLAG handle them.

PUTFLAG has 3 arguments. The first one is the identifier or a list of iden-
tifiers, the second one is the name of the flag, and the third one is T (true)
or 0 (zero). When the third argument is T, it creates the flag, when it is 0 it
destroys it. In this last case, the function does return nil (not seen inside the
algebraic mode).
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PUTFLAG(zl, flag_name,t); ==> flag_name
PUTFLAG ({zl,z2},flagl_name,t); ==> t
PUTFLAG (z2, flagl_name,0) ==>

DISPLAYFLAG allows one to extract flags. The previous actions give:
DISPLAYFLAG z1; ==>{flag_name, flagl_name}
DISPLAYFLAG z2 ; ==> {}

CLEARFLAG is a command which clears all flags associated with the iden-
tifiers idy, . . . , idy,.

ii. Properties are handled by similar functions. PUTPROP has four arguments.
The second argument is, here, the indicator of the property. The third argu-
ment may be any valid expression. The fourth one is also T or 0.
PUTPROP (z1,property,x"2,t); ==> z1
In general, one enters
PUTPROP (LIST (idpl, idp2, ..), <propname>, <value>,T);
To display a specific property, one uses DISPLAYPROP which takes two
arguments. The first is the name of the identifier, the second is the indicator

of the property.

2
DISPLAYPROP (z1, property); ==> {property,x 1}

Finally, CLEARPROP is a nary commmand which clears all properties of the
identifiers which appear as arguments.

16.5.9 Control Functions

Here we describe additional functions which improve user control on the environ-
ment.

i. The first set of functions is composed of unary and binary boolean functions.
They are:
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ALATOMP x; x 1s anything.
ALKERNP x; x 1is anything.
DEPVARP (x,Vv); x 1s anything.

(v is an atom or a kernel)

ALATOMP has the value T iff x is an integer or an identifier after it has been
evaluated down to the bottom.

ALKERNP has the value T iff x is a kernel after it has been evaluated down
to the bottom.

DEPVARP returns T iff the expression x depends on v at any level.

The above functions together with PRECP have been declared operator func-
tions to ease the verification of their value.

NORDP is equal to NOT ORDP.

ii. The next functions allow one to analyze and to clean the environment of

REDUCE created by the user while working interactively. Two functions
are provided:

SHOW allows the user to get the various identifiers already assigned and to
see their type. SUPPRESS selectively clears the used identifiers or clears
them all. It is to be stressed that identifiers assigned from the input of files
are ignored. Both functions have one argument and the same options for this
argument:

SHOW (SUPPRESS) all
SHOW (SUPPRESS) scalars
SHOW (SUPPRESS) lists

(
(
(
SHOW (SUPPRESS) saveids (for saved expressions)
(
(
(

SHOW (SUPPRESS) matrices
SHOW (SUPPRESS) arrays
SHOW (SUPPRESS) vectors

(contains vector, index and tvector)
SHOW (SUPPRESS) forms

The option all is the most convenient for SHOW but, with it, it may takes
some time to get the answer after one has worked several hours. When en-
tering REDUCE the option al1l for SHOW gives:

SHOW all; ==>
scalars are: NIL

arrays are: NIL
lists are: NIL
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matrices are: NIL
vectors are: NIL
forms are: NIL

It is a convenient way to remind the various options. Here is an example
which is valid when one starts from a fresh environment:

a:=pb:=1$

SHOW scalars; ==> scalars are: (A B)
SUPPRESS scalars; ==> t

SHOW scalars; ==> scalars are: NIL

iii. The CLEAR function of the system does not do a complete cleaning of
OPERATORS and FUNCTIONS. The following two functions do a more
complete cleaning and, also, automatically takes into account the user flag
and properties that the functions PUTFLAG and PUTPROP may have intro-
duced.

Their names are CLEAROP and CLEARFUNCTIONS. CLEAROP takes one
operator as its argument.
CLEARFUNCTIONS is a nary command. If one issues

CLEARFUNCTIONS al,a2, ... , an $

The functions with names al, a2, ... ,an are cleared. One should
be careful when using this facility since the only functions which cannot be
erased are those which are protected with the 1ose flag.

16.5.10 Handling of Polynomials

The module contains some utility functions to handle standard quotients and sev-
eral new facilities to manipulate polynomials.

i. Two functions ALG_TO_SYMB and SYMB_TO_ALG allow one to change
an expression which is in the algebraic standard quotient form into a prefix
lisp form and vice-versa. This is done in such a way that the symbol 1ist
which appears in the algebraic mode disappears in the symbolic form (there
it becomes a parenthesis “()” ) and it is reintroduced in the translation from
a symbolic prefix lisp expression to an algebraic one. Here, is an exam-
ple, showing how the wellknown lisp function FLATTENS can be trivially
transposed inside the algebraic mode:
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algebraic procedure ecrase x;

lisp symb_to_alg flattensl alg_to_symb algebraic x;

symbolic procedure flattensl x;
11; ==> ((A B) ((C D) E))
flattensl 11; (A B C D E)
if atom x then list x else
if cdr x then
append (flattensl car x, flattensl cdr x)
else flattensl car x;

o° oo

gives, for instance,
1l:={a, {b, {c},d,e}, {{{z}}}}$
ECRASE 11; ==> (A, B, C, D, E, 7}

The function MKDEPTH_ONE described above implements that functional-
ity.

LEADTERM and REDEXPR are the algebraic equivalent of the symbolic
functions LT and RED. They give, respectively, the leading term and the
reductum of a polynomial. They also work for rational functions. Their in-
terest lies in the fact that they do not require one to extract the main variable.
They work according to the current ordering of the system:

pol:=x++y+z$

LEADTERM pol; ==> x
korder vy, x,z;

LEADTERM pol; ==> vy
REDEXPR pol; ==> x + z

By default, the representation of multivariate polynomials is recursive. It
is justified since it is the one which takes the least memory. With such a
representation, the function LEADTERM does not necessarily extract a true
monom. It extracts a monom in the leading indeterminate multiplied by a
polynomial in the other indeterminates. However, very often, one needs to
handle true monoms separately. In that case, one needs a polynomial in dis-
tributive form. Such a form is provided by the package GROEBNER (H.
Melenk et al.). The facility there is, however, much too involved in many
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applications and the necessity to load the package makes it interesting to
construct an elementary facility to handle the distributive representation of
polynomials. A new switch has been created for that purpose. It is called
DISTRIBUTE and a new function DISTRIBUTE puts a polynomial in dis-
tributive form. With that switch set to on, LEADTERM gives true monoms.

MONOM transforms a polynomial into a list of monoms. It works whatever
the position of the switch DISTRIBUTE.

SPLITTERMS is analoguous to MONOM except that it gives a list of two lists.
The first sublist contains the positive terms while the second sublist contains
the negative terms.

SPLITPLUSMINUS gives a list whose first element is the positive part of
the polynomial and its second element is its negative part.

iii. Two complementary functions LOWESTDEG and DIVPOL are provided. The
first takes a polynomial as its first argument and the name of an indeterminate
as its second argument. It returns the lowest degree in that indeterminate.
The second function takes two polynomials and returns both the quotient
and its remainder.

16.5.11 Handling of Transcendental Functions

The functions TRIGREDUCE and TRIGEXPAND and the equivalent ones for hy-
perbolic functions HYPREDUCE and HYPEXPAND make the transformations to
multiple arguments and from multiple arguments to elementary arguments. Here
is a simple example:

aa:=sin (x+y) $

TRIGEXPAND aa; ==> SIN(X)*COS(Y) + SIN(Y)*COS (X)

TRIGREDUCE ws; ==> SIN(Y + X)
When a trigonometric or hyperbolic expression is symmetric with respect to the in-
terchange of SIN (SINH) and COS (COSH), the application of
TRIG (HYP) -REDUCE may often lead to great simplifications. However, if it is
highly asymmetric, the repeated application of TRIG (HYP) ~-REDUCE followed
by the use of TRIG (HYP) —~EXPAND will lead to more complicated but more sym-
metric expressions:

aa:=(sin (x)"2+cos (x)"2)"3$

TRIGREDUCE aa; ==> 1
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bb:=1+sin(x)"~3$
TRIGREDUCE bb; ==>
— SIN(3*X) + 3*xSIN(X) + 4

TRIGEXPAND ws; ==>

SIN (X) — 3%SIN(X) *COS (X) + 3%SIN(X) + 4

16.5.12 Handling of n-dimensional Vectors
Explicit vectors in EUCLIDEAN space may be represented by list-like or bag-like
objects of depth 1. The components may be bags but may not be lists. Funct-
ions are provided to do the sum, the difference and the scalar product. When the
space-dimension is three there are also functions for the cross and mixed prod-
ucts. SUMVECT, MINVECT, SCALVECT, CROSSVECT have two arguments.
MPVECT has three arguments. The following example is sufficient to explain how
they work:

1:={1,2,3}$

ll:=list(a,b,c)$

SUMVECT (1,11); ==> {A + 1,B + 2,C + 3}

MINVECT (1,11); ==> { - A+ 1, - B + 2, - C + 3}

SCALVECT (1,11); ==> A + 2B + 3xC

CROSSVECT (1,11); ==> { — 3xB + 2«C,3xA - C, — 2xA + B}

MPVECT (1,11,1); ==> 0
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16.5.13 Handling of Grassmann Operators

Grassman variables are often used in physics. For them the multiplication oper-
ation is associative, distributive but anticommutative. The KERNEL of REDUCE
does not provide it. However, implementing it in full generality would almost cer-
tainly decrease the overall efficiency of the system. This small module together
with the declaration of antisymmetry for operators is enough to deal with most cal-
culations. The reason is, that a product of similar anticommuting kernels can easily
be transformed into an antisymmetric operator with as many indices as the number
of these kernels. Moreover, one may also issue pattern matching rules to imple-
ment the anticommutativity of the product. The functions in this module represent
the minimum functionality required to identify them and to handle their specific
features.

PUTGRASS is a (nary) command which give identifiers the property of being the
names of Grassmann kernels. REMGRASS removes this property.

GRASSP is a boolean function which detects grassmann kernels.

GRASSPARITY takes a monom as argument and gives its parity. If the monom is
a simple grassmann kernel it returns 1.

GHOSTFACTOR has two arguments. Each one is a monom. It is equal to
(—1) ** (GRASSPARITY u * GRASSPARITY v)
Here is an illustration to show how the above functions work:

PUTGRASS eta; ==> t

if GRASSP eta(l) then "grassmann kernel"; ==>
grassmann kernel
aa:=eta (l) xeta(2)—-eta(2)*eta(l); ==>
AA := - ETA(2)+ETA(1l) + ETA(1l)+*ETA(2)

GRASSPARITY eta(l); ==> 1

GRASSPARITY (eta(l)=*eta(2)); ==> 0

GHOSTFACTOR (eta (1) ,eta(2)); ==> -1

grasskernel:=

{eta(~x)*eta(~y) => —-eta y * eta x when nordp(x,vy),
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(~x)* (~x) => 0 when grassp x};
exp:=eta(l) "2$
exp where grasskernel; ==> 0

aa where grasskernel; ==> - 2xETA(2)*ETA(1)

16.5.14 Handling of Matrices

This module provides functions for handling matrices more comfortably.

i. Often, one needs to construct some UNIT matrix of a given dimension. This
construction is done by the system thanks to the function UNITMAT. It is a
nary function. The command is

UNITMAT M1 (nl), M2(n2), ..... Mi(ni) ;

where M1, .. .Mi are names of matrices and nl, n2, ..., ni are
integers.

MKIDM is a generalization of MKID. It allows one to connect two or several
matrices. If u and ul are two matrices, one can go from one to the other:

matrix u(2,2);$ unitmat ul(2)$

ul; ==>
[1 O]
[ ]
[0 1]

mkidm(u,1l); ==>
[1 O]
[ ]
[0 1]

This function allows one to make loops on matrices like in the following
illustration. If U, U1, U2, .., U5 are matrices:

FOR I:=1:5 DO U:=U-MKIDM(U,I);

can be issued.
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The next functions map matrices on bag-like or list-like objects and con-
versely they generate matrices from bags or lists.

COERCEMAT transforms the matrix U into a list of lists. The entry is
COERCEMAT (U, id)

where idisequal to 1ist othewise it transforms it into a bag of bags whose
envelope is equal to id.

BAGLMAT does the opposite job. The first argument is the bag-like or list-
like object while the second argument is the matrix identifier. The entry is

BAGLMAT (bgl, U)

bgl becomes the matrix U . The transformation is not done if U is already
the name of a previously defined matrix. This is to avoid ACCIDENTAL
redefinition of that matrix.

The functions SUBMAT, MATEXTR, MATEXTC take parts of a given ma-
trix.

SUBMAT has three arguments. The entry is
SUBMAT (U, nr, nc)

The first is the matrix name, and the other two are the row and column num-
bers. It gives the submatrix obtained from U by deleting the row nr and the
column nc. When one of them is equal to zero only column nc or row nr
is deleted.

MATEXTR and MATEXTC extract a row or a column and place it into a list-
like or bag-like object. The entries are

MATEXTR (U, VN, nr)
MATEXTC (U, VN, nc)

where U is the matrix, VN is the “vector name”, nr and nc are integers. If
VN is equal to 1ist the vector is given as a list otherwise it is given as a
bag.

Functions which manipulate matrices. They are MATSUBR, MATSUBC,
HCONCMAT, VCONCMAT, TPMAT, HERMAT

MATSUBR MATSUBC substitute rows and columns. They have three argu-
ments. Entries are:
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MATSUBR (U, bgl, nr)
MATSUBC (U, bgl, nc)

The meaning of the variables U, nr, nc is the same as above while bgl
is a list-like or bag-like vector. Its length should be compatible with the
dimensions of the matrix.

HCONCMAT VCONCMAT concatenate two matrices. The entries are
HCONCMAT (U, V)
VCONCMAT (U, V)

The first function concatenates horizontally, the second one concatenates
vertically. The dimensions must match.

TPMAT makes the tensor product of two matrices. It is also an infix function.
The entry is

TPMAT (U,V) or U TPMAT V
HERMAT takes the hermitian conjuguate of a matrix. The entry is
HERMAT (U, HU)

where HU is the identifier for the hermitian matrix of U. It should be unas-
signed for this function to work successfully. This is done on purpose to
prevent accidental redefinition of an already used identifier.

SETELMAT GETELMAT are functions of two integers. The first one resets
the element (i, j) while the second one extracts an element identified by
(1, j) . They may be useful when dealing with matrices inside procedures.
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16.6 AVECTOR: A vector algebra and calculus package

This package provides REDUCE with the ability to perform vector algebra using
the same notation as scalar algebra. The basic algebraic operations are supported,
as are differentiation and integration of vectors with respect to scalar variables,
cross product and dot product, component manipulation and application of scalar
functions (e.g. cosine) to a vector to yield a vector result.

Author: David Harper.

16.6.1 Introduction

This package 2 is written in RLISP (the LISP meta-language) and is intended for
use with REDUCE 3.4. It provides REDUCE with the ability to perform vector
algebra using the same notation as scalar algebra. The basic algebraic operations
are supported, as are differentiation and integration of vectors with respect to scalar
variables, cross product and dot product, component manipulation and application
of scalar functions (e.g. cosine) to a vector to yield a vector result.

A set of vector calculus operators are provided for use with any orthogonal curvi-
linear coordinate system. These operators are gradient, divergence, curl and del-
squared (Laplacian). The Laplacian operator can take scalar or vector arguments.

Several important coordinate systems are pre-defined and can be invoked by name.
It is also possible to create new coordinate systems by specifying the names of the
coordinates and the values of the scale factors.

16.6.2 Vector declaration and initialisation

Any name may be declared to be a vector, provided that it has not previously been
declared as a matrix or an array. To declare a list of names to be vectors use the
VEC command:

VEC A,B,C;
declares the variables A, B and C to be vectors. If they have already been assigned

(scalar) values, these will be lost.

When a vector is declared using the VEC command, it does not have an initial
value.

If a vector value is assigned to a scalar variable, then that variable will automati-
cally be declared as a vector and the user will be notified that this has happened.

2Reference: Computer Physics Communications, 54, 295-305 (1989)
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A vector may be initialised using the AVEC function which takes three scalar argu-
ments and returns a vector made up from those scalars. For example

A := AVEC(Al, A2, A3);

sets the components of the vector A to A1, A2 and A3.

16.6.3 Vector algebra

(In the examples which follow, vV, V1, V2, efc. are assumed to be vectors while S,
S1, S2, etc. are scalars.)

The scalar algebra operators +,-,* and / may be used with vector operands accord-
ing to the rules of vector algebra. Thus multiplication and division of a vector by
a scalar are both allowed, but it is an error to multiply or divide one vector by
another.

V := V1l 4+ V2 - V3; Addition and subtraction
V := S1x3xV1; Scalar multiplication

V := V1/S; Scalar division

vV = -V1; Negation

Vector multiplication is carried out using the infix operators DOT and CROSS.
These are defined to have higher precedence than scalar multiplication and divi-
sion.

V := V1 CROSS V2; Cross product
S := V1 DOT V2; Dot product
V := V1 CROSS V2 + V3;

V := (V1 CROSS V2) + V3;

The last two expressions are equivalent due to the precedence of the CROSS oper-
ator.

The modulus of a vector may be calculated using the VMOD operator.
S := VMOD V;

A unit vector may be generated from any vector using the VMOD operator.
V1l := V/(VMOD V) ;

Components may be extracted from any vector using index notation in the same
way as an array.
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V := AVEC (AX, AY, AZ);

V(0); yields AX
V(1l); yields AY
V(2); yields AZ

It is also possible to set values of individual components. Following from above:

The vector V now has components AX, B, AZ.

Vectors may be used as arguments in the differentiation and integration routines in
place of the dependent expression.

V := AVEC (X*x2, SIN(X), Y);
DF (V, X) ; yields (2*X, COS(X), 0)
INT (V, X); yields (X**3/3, -COS(X), Y*X)

Vectors may be given as arguments to monomial functions such as SIN, LOG and
TAN. The result is a vector obtained by applying the function component-wise to
the argument vector.

V := AVEC(Al, A2, A3);
SIN(V); yields (SIN(A1), SIN(A2), SIN(A3))

16.6.4 Vector calculus

The vector calculus operators div, grad and curl are recognised. The Laplacian
operator is also available and may be applied to scalar and vector arguments.

V := GRAD S; Gradient of a scalar field

S := DIV V; Divergence of a vector field
V := CURL V1; Curl of a vector field

S := DELSQ S1; Laplacian of a scalar field
V := DELSQ V1; Laplacian of a vector field

These operators may be used in any orthogonal curvilinear coordinate system. The
user may alter the names of the coordinates and the values of the scale factors.
Initially the coordinates are X, Y and Z and the scale factors are all unity.

There are two special vectors : COORDS contains the names of the coordinates in
the current system and HFACTORS contains the values of the scale factors.

The coordinate names may be changed using the COORDINATES operator.
COORDINATES R, THETA,PHI;

This command changes the coordinate names to R, THETA and PHT.
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The scale factors may be altered using the SCALEFACTORS operator.
SCALEFACTORS (1,R,R*xSIN (THETA)) ;

This command changes the scale factors to 1, Rand R SIN (THETA).

Note that the arguments of SCALEFACTORS must be enclosed in parentheses.
This is not necessary with COORDINATES.

When vector differential operators are applied to an expression, the current set of
coordinates are used as the independent variables and the scale factors are em-
ployed in the calculation. (See, for example, Batchelor G.K. ’An Introduction to
Fluid Mechanics’, Appendix 2.)

Several coordinate systems are pre-defined and may be invoked by name. To see a
list of valid names enter

SYMBOLIC !*CSYSTEMS;
and REDUCE will respond with something like
(CARTESIAN SPHERICAL CYLINDRICAL)

To choose a coordinate system by name, use the command GETCSYSTEM.

To choose the Cartesian coordinate system :
GETCSYSTEM ’'CARTESIAN;
Note the quote which prefixes the name of the coordinate system. This is required

because GETCSYSTEM (and its complement PUTCSYSTEM) is a SYMBOLIC pro-
cedure which requires a literal argument.

REDUCE responds by typing a list of the coordinate names in that coordinate
system. The example above would produce the response

(X' Y Z)
whilst

GETCSYSTEM ' SPHERICAL;
would produce

(R THETA PHI)

Note that any attempt to invoke a coordinate system is subject to the same restric-
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tions as the implied calls to COORDINATES and SCALEFACTORS. In particular,
GETCSYSTEM fails if any of the coordinate names has been assigned a value and
the previous coordinate system remains in effect.

A user-defined coordinate system can be assigned a name using the command
PUTCSYSTEM. It may then be re-invoked at a later stage using GETCSYSTEM.

Example 5
We define a general coordinate system with coordinate names X,Y,Z and scale fac-

tors H1,H2,H3 :

COORDINATES X, Y, Z;
SCALEFACTORS (H1, H2,H3) ;
PUTCSYSTEM ’GENERAL;

This system may later be invoked by entering

GETCSYSTEM ' GENERAL;

16.6.5 Volume and Line Integration

Several functions are provided to perform volume and line integrals. These operate
in any orthogonal curvilinear coordinate system and make use of the scale factors
described in the previous section.

Definite integrals of scalar and vector expressions may be calculated using the
DEF INT function.

Example 6

To calculate the definite integral of sin(x)? between 0 and 27 we enter
DEFINT (SIN(X)*%2,X,0,2%PI);
This function is a simple extension of the INT function taking two extra arguments,

the lower and upper bounds of integration respectively.

Definite volume integrals may be calculated using the VOLINTEGRAL function
whose syntax is as follows :

VOLINTEGRAL(integrand, vector lower—-bound, vector upper—-bound);
Example 7

In spherical polar coordinates we may calculate the volume of a sphere by integrat-
ing unity over the range =0 to RR, =0 to PI, ¢=0 to 2*7 as follows :
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VLB := AVEC(0,0,0); Lower bound
VUB := AVEC(RR,PI,2«PI); Upperboundinr,8, ¢ respectively
VOLINTORDER := (0,1,2); The order of integration

VOLINTEGRAL (1, VLB, VUB) ;

Note the use of the special vector VOLINTORDER which controls the order in
which the integrations are carried out. This vector should be set to contain the
number 0, 1 and 2 in the required order. The first component of VOLINTORDER
contains the index of the first integration variable, the second component is the
index of the second integration variable and the third component is the index of the
third integration variable.

Example 8

Suppose we wish to calculate the volume of a right circular cone. This is equivalent
to integrating unity over a conical region with the bounds:

z=0toH (H = the height of the cone)
r=0topZ (p = ratio of base diameter to height)
phi =0 to 2*PI

We evaluate the volume by integrating a series of infinitesimally thin circular disks
of constant z-value. The integration is thus performed in the order : d(¢) from O to
2m, dr from O to p*Z, dz from O to H. The order of the indices is thus 2, 0, 1.

VOLINTORDER := AVEC(2,0,1);
VLB AVEC (0,0, 0);

VUB AVEC (P*Z,H, 2+PI);
VOLINTEGRAL (1, VLB, VUB) ;

(At this stage, we replace P«H by RR, the base radius of the cone, to obtain the
result in its more familiar form.)

Line integrals may be calculated using the LINEINT and DEFLINEINT funct-
ions. Their general syntax is

LINEINT(vector—function, vector—-curve, variable);

DEFLINENINT(vector—-function, vector—curve,variable, lower—-bound,
upper-bound);

where
vector—function is any vector-valued expression;

vector—curve is a vector expression which describes the path of integration in
terms of the independent variable;

variable is the independent variable;

lower—-bound
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upper-bound are the bounds of integration in terms of the independent variable.

Example 9

In spherical polar coordinates, we may integrate round a line of constant theta
(‘latitude’) to find the length of such a line. The vector function is thus the tangent
to the ‘line of latitude’, (0,0,1) and the path is (0, LAT, PHI) where PHI is the
independent variable. We show how to obtain the definite integral i.e. from ¢ = 0
to 27 :

DEFLINEINT (AVEC(0,0,1),AVEC(0,LAT,PHTI),PHI,0,2%PI);

16.6.6 Defining new functions and procedures

Most of the procedures in this package are defined in symbolic mode and are in-
voked by the REDUCE expression-evaluator when a vector expression is encoun-
tered. It is not generally possible to define procedures which accept or return vector
values in algebraic mode. This is a consequence of the way in which the REDUCE
interpreter operates and it affects other non-scalar data types as well : arrays cannot
be passed as algebraic procedure arguments, for example.

16.6.7 Acknowledgements

This package was written whilst the author was the U.K. Computer Algebra Sup-
port Officer at the University of Liverpool Computer Laboratory.
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16.7 BIBASIS: A Package for Calculating Boolean Invo-
lutive Bases

Authors: Yuri A. Blinkov and Mikhail V. Zinin

16.7.1 Introduction

Involutive polynomial bases are redundant Grébner bases of special structure with
some additional useful features in comparison with reduced Grobner bases [ ].
Apart from numerous applications of involutive bases [ ] the involutive algo-
rithms [ ] provide an efficient method for computing reduced Grobner bases.
A reduced Grobner basis is a well-determined subset of an involutive basis and can
be easily extracted from the latter without any extra reductions. All this takes place
not only in rings of commutative polynomials but also in Boolean rings.

Boolean Grobner basis already have already revealed their value and usability in
practice. The first impressive demonstration of practicability of Boolean Grobner
bases was breaking the first HFE (Hidden Fields Equations) challenge in the pub-
lic key cryptography done in [ ] by computing a Boolean Grobner basis for
the system of quadratic polynomials in 80 variables. Since that time the Boolean
Grobner bases application area has widen drastically and nowadays there is also
a number of quite successful examples of using Grobner bases for solving SAT
problems.

During our research we had developed [ , , ] Boolean involu-
tive algorithms based on Janet and Pommaret divisions and applied them to com-
putation of Boolean Grobner bases. Our implementation of both divisions has
experimentally demonstrated computational superiority of the Pommaret division
implementation. This package BIBASIS is the result of our thorough research in
the field of Boolean Grobner bases. BIBASIS implements the involutive algorithm
based on Pommaret division in a multivariate Boolean ring.

In section 2 the Boolean ring and its peculiarities are shortly introduced. In section
3 we briefly argue why the involutive algorithm and Pommaret division are good
for Boolean ring while the Buhberger’s algorithm is not. And finally in section 4
we give the full description of BIBASIS package capabilities and illustrate it by
examples.

16.7.2 Boolean Ring

Boolean ring perfectly goes with its name, it is a ring of Boolean functions of n
variables, i.e mappings from {0,1}" to {0, 1}". Considering these variables are
X :={z1,..., 2z} and Fs is the finite field of two elements {0, 1}, Boolean ring
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can be regarded as the quotient ring
B[X]:=Fo[X]/ <a?+xq,...,2° +2, >.
Multiplication in B [X] is idempotent and addition is nilpotent
VbeB[X] : b¥®=b,b+b=0.

Elements in B [X] are Boolean polynomials and can be represented as finite sums

> II =

j zeQ;CX

of Boolean monomials. Each monomial is a conjunction. If set {2 is empty, then
the corresponding monomial is the unity Boolean function 1. The sum of zero
monomials corresponds to zero polynomial, i.e. is zero Boolean function 0.

16.7.3 Pommaret Involutive Algorithm

Detailed description of involutive algorithm can found in [ ]. Here we note
that result of both involutive and Buhberger’s algorithms depend on chosen mono-
mial ordering. At that the ordering must be admissible, i.e.

m#1<=m> 1, mi = Mo <= mim = mom YV m,mi, mo.

But as one can easily check the second condition of admissibility does not hold for
any monomial ordering in Boolean ring:

kX
Tl > Ty ——— T *T] - TokTo —— T < T1To

Though B [X] is a principal ideal ring, boolean singleton {p} is not necessarily a
Grobner basis of ideal < p >, for example:

T1,T2 E< x1Ta+x1 + a2 >CB [:L'l,xg}.

That the reason why one cannot apply the Buhberger’s algorithm directly in a
Boolean ring, using instead a ring Fo[X] and the field binomials 3 + x1, . . . ,x2 +
Tp.

The involutive algorithm based on Janet division has the same disadvantage unlike
the Pommaret division algorithm as shown in [ ]. The Pommaret division
algorithm can be applied directly in a Boolean ring and admits effective data struc-
tures for monomial representation.
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16.7.4 BIBASIS Package

The package BIBASIS implements the Pommaret division algorithm in a Boolean
ring. The first step to using the package is to load it:

1: load_package bibasis;

The current version of the BIBASIS user interface consists only of 2 functions:
bibasisand bibasis_print_statistics.
The bibasis is the function that performs all the computation and has the fol-

lowing syntax:

bibasis (initial_polynomial_list, wvariables_list,
monomial_ordering, reduce_to_groebner);

Input:

e initial_polynomial_list is the list of polynomials containing the
known basis of initial Boolean ideal. All given polynomials are treated mod-
ulo 2. See Example 1.

e variables_1list is the list of independent variables in decreasing order.

e monomial_ordering is a chosen monomial ordering and the supported
ones are:

lex — pure lexicographical ordering;
deglex — degree lexicographic ordering;

degrevlex — degree reverse lexicographic.

See Examples 2—4 to check that Grobner (as well as involutive) basis de-
pends on monomial ordering.

e reduce_to_groebner is a Boolean value, if it is t the output is the
reduced Boolean Grobner basis, if ni 1, then the reduced Boolean Pommaret
basis. Examples 5,6 show distinctions between these two outputs.

Output:

o The list of polynomials which constitute the reduced Boolean Grébner or
Pommaret basis.

The syntax of bibasis_print_statistics is simple:

bibasis_print_statistics{();
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This function prints out a brief statistics for the last invocation of bibasis func-
tion. See Example 7.

16.7.5 Examples
Example 1:
1: load_package bibasis;

2: bibasis ({x+2*y}, {x,y}, lex, t);
{x}

Example 2:

1: load_package bibasis;

2: variables :={x0,x1,x2,x3,x4}$

3: polynomials := {x0*x3+x1+x2,x2+xx4+x0}$
4: bibasis (polynomials, variables, lex, t);
{x0 + x2*x4,x2+(x1 + x3%x4)}

Example 3:

1: load_package bibasis;

2: variables :={x0,x1,x2,x3,x4}$

3: polynomials := {x0*x3+x1*x2,x2+xx4+x0}$
4: bibasis (polynomials, variables, deglex, t);

{x1*x2+(x3 + 1),
x1* (x0 + x2),
x0x (x2 + 1),
x0*xx3 + x1*x2,
x0* (x4 + 1),
x2*x4 + x0}

Example 4:

1: load_package bibasis;

2: variables :={x0,x1,x2,x3,x4}$

3: polynomials := {x0*x3+x1*x2,x2+xx4+x0}$

4: bibasis (polynomials, variables, degrevlex, t);

{x0* (x1 + x3),
x0* (x2 + 1),
x1*x2 + x0*xx3,
x0* (x4 + 1),
x2+*x4 + x0}
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Example 5:
1: load_package bibasis;
2: variables :={x,vy,z}$
3: polinomials := {x, z}$
4: bibasis(polinomials, variables, degrevlex, t);
{x,2}
Example 6:
1: load_package bibasis;
2: variables :={x,vy,z}$
3: polinomials := {x, z}$
4: bibasis(polinomials, variables, degrevlex, nil);
{x,z,y*xz}
Example 7:
1: load_package bibasis;
2: variables :={ul0,ul,u2,u3,u4,ub,u6,u7,u8,ud}ts
3: polinomials := {uOxul+ul*u2+ul+u2+u3d+u3xud+udrub+ubrub+ub*xu7+u7+ u8+ud*u9,
3 ul0xu2+ul+ul*u3+tu2+ud+u2+u3d*udbtudrub6+ubru7+u6+u8+tu7xu9,
3 ulxu3+ul+u2+ul+ud+u2+ub+uld ub+u3d+tudru/7+udb~u8+ub*u9,
3: ul*ud+ul+u3d+ulrub+u2+u2+uob+uldru7+ud+u8+ud+ub+u9,
3: u0+ub+ul*ud+ulruob+u2+ul3+u2+ u7+uld+ru8+ud+u9+ub,
3 ul+u6+tul+udS+tulru7+u2+ud+u2+«u8+uld+uldru9+ub,
3 ul+u7+ulxubtul+u8+u2+udb+u2+xu9+ul+ud+u’,
3 ul0xu8+ulru7+ul+xu9+u2+ub+uld~ub+ud+us,
3 ul+ul+u2+u3+ud+ub+ub+u7+u8+ud9+1}$
4: bibasis(polinomials, variables, degrevlex, t);
{u3+u6,
ul3*u’,
u7+(ue + 1),
u3+xus8,
u6+u8 + u6 + u’,
u7+u8,

ul3* (u9 + 1),

u6+*u9 + u’,

u7+(u9 + 1),

u8+«u9 + u6 + u7 + us§,
u0 + u3 + u6 + u9 + 1,
ul + u7,

u2 + u’7 + us8,

ud + u6 + us,
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ub + u6 + u7 + u8}

5: bibasis_print_statistics{();

Variables order
Normal forms calculated
Non—-zero normal forms
Reductions made
Time: 270 ms
GC time: 0 ms

u0 > ul > u2 > u3 > ud4 > ub > u6 > u7 > u8

216
85
4488
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16.8 BOOLEAN: A package for boolean algebra

This package supports the computation with boolean expressions in the proposi-
tional calculus. The data objects are composed from algebraic expressions con-
nected by the infix boolean operators and, or, implies, equiv, and the unary prefix
operator not. Boolean allows you to simplify expressions built from these oper-
ators, and to test properties like equivalence, subset property etc.

Author: Herbert Melenk.

16.8.1 Introduction

The package Boolean supports the computation with boolean expressions in the
propositional calculus. The data objects are composed from algebraic expressions
(“atomic parts”, “leafs””) connected by the infix boolean operators and, or, im-
plies, equiv, and the unary prefix operator not. Boolean allows you to simplify
expressions built from these operators, and to test properties like equivalence, sub-
set property etc. Also the reduction of a boolean expression by a partial evaluation
and combination of its atomic parts is supported.

16.8.2 Entering boolean expressions

In order to distinguish boolean data expressions from boolean expressions in the
REDUCE programming language (e.g. in an if statement), each expression must
be tagged explicitly by an operator boolean. Otherwise the boolean operators
are not accepted in the REDUCE algebraic mode input. The first argument of
boolean can be any boolean expression, which may contain references to other
boolean values.

boolean (a and b or c);
g := boolean(a and b implies c);
boolean (g or not c);

Brackets are used to override the operator precedence as usual. The leafs or atoms
of a boolean expression are those parts which do not contain a leading boolean
operator. These are considered as constants during the boolean evaluation. There
are two pre-defined values:

e true,torl

o false, nil or 0

These represent the boolean constants. In a result form they are used only as 1 and
0.
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By default, a boolean expression is converted to a disjunctive normal form, that is
a form where terms are connected by or on the top level and each term is set of
leaf expressions, eventually preceded by not and connected by and. An operators
or or and is omitted if it would have only one single operand. The result of the
transformation is again an expression with leading operator boolean such that the
boolean expressions remain separated from other algebraic data. Only the boolean
constants 0 and 1 are returned untagged.

On output, the operators and and or are represented as /\ and \ /, respectively.

boolean (true and false); > 0
boolean(a or not (b and c)); —-> boolean (not(b) \/ not(c) \/ a)
boolean (a equiv not c); -> boolean (not (a)/\c \/ a/\not (c))

16.8.3 Normal forms

The disjunctive normal form is used by default. It represents the “natural” view
and allows us to represent any form free or parentheses. Alternatively a conjunc-
tive normal form can be selected as simplification target, which is a form with
leading operator and. To produce that form add the keyword and as an additional
argument to a call of boolean.

boolean (a or b implies c);
>
boolean (not (a) /\not (b) \/ c)

boolean (a or b implies c, and);
—>
boolean ( (not (a) \/ c)/\(not(b) \/ c))

Usually the result is a fully reduced disjunctive or conjuntive normal form, where
all redundant elements have been eliminated following the rules

aANbV -aANb+—b
aVbAN—-aVb+—b

Internally the full normal forms are computed as intermediate result; in these forms
each term contains all leaf expressions, each one exactly once. This unreduced
form is returned when you set the additional keyword full:

boolean (a or b implies ¢, full);
->
boolean(a/\b/\c \/ a/\not (b)/\c \/ not(a)/\b/\c \/ not(a)/\not (b)/\c
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\/ not (a) /\not (b) /\not (c))

The keywords full and and may be combined.

16.8.4 Evaluation of a boolean expression

If the leafs of the boolean expression are algebraic expressions which may eval-
uate to logical values because the environment has changed (e.g. variables have
been bound), you can re—investigate the expression using the operator testbool
with the boolean expression as argument. This operator tries to evaluate all leaf
expressions in REDUCE boolean style. As many terms as possible are replaced
by their boolean values; the others remain unchanged. The resulting expression is
contracted to a minimal form. The result 1 (= true) or 0 (=false) signals that the
complete expression could be evaluated.

In the following example the leafs are built as numeric greater test. For using > in
the expressions the greater sign must be declared operator first. The error messages
are meaningless.

operator >;
fm:=boolean (x>v or not (u>v));
—>
fm := boolean (not (u>v) \/ x>v)

v:=10%

testbool fm;

**x*x%x U — 10 invalid as number
***xxx x — 10 invalid as number
->

boolean (not (u>10) \/ x>10)

X:=3$
testbool fm;

*xx*x U — 10 invalid as number

>
boolean (not (u>10))

x:=17$
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testbool fm;

**xxx* U — 10 invalid as number
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16.9 CALI: A package for computational commutative
algebra

Author: Hans-Gert Gribe.

Key words: affine and projective monomial curves, affine and projective sets of
points, analytic spread, associated graded ring, blowup, border bases, construc-
tive commutative algebra, dual bases, elimination, equidimensional part, extended
Grobner factorizer, free resolution, Grobner algorithms for ideals and module,
Grobner factorizer, ideal and module operations, independent sets, intersections,
lazy standard bases, local free resolutions, local standard bases, minimal gen-
erators, minors, normal forms, pfaffians, polynomial maps, primary decomposi-
tion, quotients, symbolic powers, symmetric algebra, triangular systems, weighted
Hilbert series, primality test, radical, unmixed radical.

16.9.1 Introduction

This package contains algorithms for computations in commutative algebra closely
related to the Grobner algorithm for ideals and modules. Its heart is a new imple-
mentation of the Grobner algorithm? that allows the computation of syzygies, too.
This implementation is also applicable to submodules of free modules with gener-
ators represented as rows of a matrix.

Moreover CALI contains facilities for local computations, using a modern imple-
mentation of Mora’s standard basis algorithm, see [ ] and [ ], that
works for arbitrary term orders. The full analogy between modules over the lo-
cal ring k[z, : v € H]y, and homogeneous (in fact H-local) modules over
klx, : v € H] is reflected through the switch . Turn it on (Grobner basis, the
default) or off (local standard basis) to choose appropriate algorithms automati-
cally. In v. 2.2 we present an unified approach to both cases, using reduction with
bounded ecart for non Noetherian term orders, see [ ] for details. This allows
to have a common driver for the Grobner algorithm in both cases.

CALI extends also the restricted term order facilities of the groebner package,
defining term orders by degree vector lists, and the rigid implementation of the
sugar idea, by a more flexible ecart vector, in particular useful for local computa-
tions, see [ ].

The package was designed mainly as a symbolic mode programming environment
extending the build-in facilities of REDUCE for the computational approach to
problems arising naturally in commutative algebra. An algebraic mode interface
accesses (in a more rigid frame) all important features implemented symbolically

>The data representation even for polynomials is different from that given in the groebner
package distributed with REDUCE (and rests on ideas used in the dipoly package).
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and thus should be favored for short sample computations.

On the other hand, tedious computations are strongly recommended to be done
symbolically since this allows considerably more flexibility and avoids unneces-
sary translations of intermediate results from CALI’s internal data representation
to the algebraic mode and vice versa. Moreover, one can easily extend the package
with new symbolic mode scripts, or do more difficult interactive computations. For
all these purposes the symbolic mode interface offers substantially more facilities
than the algebraic one.

For a detailed description of special symbolic mode procedures one should consult
the source code and the comments therein. In this manual we can give only a brief
description of the main ideas incorporated into the package CALI. We concentrate
on the data structure design and the description of the more advanced algorithms.
For sample computations from several fields of commutative algebra the reader
may consult also the cali.zst file.

As main topics CALI contains facilities for

o defining rings, ideals and modules,
e computing Grobner bases and local standard bases,
e computing syzygies, resolutions and (graded) Betti numbers,

e computing (now also weighted) Hilbert series, multiplicities, independent
sets, and dimensions,

e computing normal forms and representations,

e computing sums, products, intersections, quotients, stable quotients, elimi-
nation ideals etc.,

e primality tests, computation of radicals, unmixed radicals, equidimensional
parts, primary decompositions etc. of ideals and modules,

e advanced applications of Grobner bases (blowup, associated graded ring,
analytic spread, symmetric algebra, monomial curves etc.),

e applications of linear algebra techniques to zero dimensional ideals, as e.g.
the FGLM change of term orders, border bases and affine and projective
ideals of sets of points,

e splitting polynomial systems of equations mixing factorization and the Grob-
ner algorithm, triangular systems, and different versions of the extended
Grobner factorizer.
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Below we will use freely without further explanation the notions common for text
books and papers about constructive commutative algebra, assuming the reader to
be familiar with the corresponding ideas and concepts. For further references see
e.g. the text books [ 1,1 ]and [ ] or the survey papers [ 1,
[ ] and [ 1.

Description of the Documents Distributed with CALI

The CALI package contains the following files:

cali.chg
a detailed report of changes from v. 2.1 to v. 2.2. and 2.2.1

cali.log
the output file, that cali.tst should produce with
load_package calij;
out "logfile"$
in "cali.tst";
shut "logfile"s$
cali.red

the CALI source file.

cali.tex

this manual.

cali.tst

a test file with various examples and applications of CALIL.

CALI should be precompiled as usual, i.e. either using the makefas! utility of RE-
DUCE or “by hand” via

faslout "cali"$
in "cali.red"$
faslend$

and then loaded via

load_package cali;
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Upon successful loading CALI responds with a message containing the version
number and the last update of the distribution.

Feel free to contact me by email if You have problems to get CALI started.
Also comments, hints, bug reports etc. are welcome.

CALDI’s Language Concept

From a certain point of view one of the major disadvantage of the current RLISP
(and the underlying PSL) language is the fact that it supports modularity and data
encapsulation only in a rudimentary way. Since all parts of code loaded into a
session are visible all the time, name conflicts between different packages may
occur, will occur (even not issuing a warning message), and are hard to prevent,
since packages are developed (and are still developing) by different research groups
at different places and different time.

A (yet rudimentary) concept of REDUCE packages and modules indicates the di-
rection into what the REDUCE designers are looking for a solution for this general
problem.

CALI (2.0 and higher) follows a name concept for internal procedures to mimick
data encapsulation at a semantical level. We hope this way on the one hand to
resolve the conflicts described above at least for the internal part of CALI and on
the other hand to anticipate a desirable future and already foregoing development
of REDUCE towards a true modularity.

The package CALI is divided into several modules, each of them introducing either
a single new data type together with basic facilities, constructors, and selectors or
a collection of algorithms subject to a common problem. Each module contains in-
ternal procedures, conceptually hidden by this module, local procedures, designed
for a CALI wide use, and global procedures, exported by CALI into the general
(algebraic or symbolic) environment of REDUCE. A header module cali contains
all (fluid) global variables and switches defined by the pacakge CALIL.

Along these lines the CALI procedures available in symbolic mode are divided into
three types with the following naming convention:

module!=procedure

internal to the given module.

module_procedure

exported by the given module into the local CALI environment.
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procedure! %

a global procedure usually having a semantically equivalent procedure (possi-
bly with another parameter list) without trailing asterisk in algebraic mode.

There are also symbolic mode equivalents without trailing asterisk, if the algebraic
procedure is not a psopfn, but a symbolic operator. They transfer data to CALI’s
internal structure and call the corresponding procedure with trailing asterisk. CALI
2.2 distinguishes between algebraic and symbolic calls of such a procedure. In
symbolic mode such a procedure calls the corresponding procedure with trailing
asterisk directly without data transfer.

CALI 2.2 follows also a more concise concept for global variables. There are three
types of them:

True fluid global variables,

that are part of the current data structure, as e.g. the current base ring and the
degree vector. They are often locally rebound to be restored after interrupts.

Global variables, stored on the property list of the package name
cali,

that reflect the state of the computational model as e.g. the trace level, the
output print level or the chosen version of the Grobner basis algorithm. There
are several such parameters in the module dualbases to serve the common dual
basis driver with information for different applications.

Switches,

that allow to choose different branches of algorithms. Note that this concept
interferes with the second one. Different versions of algorithms, that apply
different functions in a common driver, are not implemented through switches.

New and Improved Facilities in v. 2.1

The major changes in v. 2.1 reflect the experience we’ve got from the use of CALI
2.0. The following changes are worth mentioning explicitely:

1. The algebraic rule concept was adapted to CALIL It allows to supply rule
based coefficient domains. This is a more efficient way to deal with (easy)
algebraic numbers than through the arnum package.

2. listtest and listminimize provide an unified concept for different list opera-
tions previously scattered in the source text.
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3. There are several new quotient algorithms at the symbolic level (both the
general element and the intersection approaches are available) and new fea-
tures for the computation of equidimensional hull and equidimensional rad-
ical.

4. A new module scripts offers advanced applications of Grobner bases.

5. Several advanced procedures initialize a Grobner basis computation over a
certain intermediate base ring or term order as e.g. eliminate, resolve, matin-
tersect or all primary decomposition procedures. Interrupting a computation
in v. 2.1 now restores the original values of CALI’s global variables, since
all intermediate procedures work with local copies of the global variables.*
This doesn’t apply to advanced procedures that change the current base ring
as e.g. blowup, preimage, sym etc.

New and Improved Facilities in v. 2.2

Version 2.2 (beside bug fixes) incorporates several new facilities of constructive
non linear algebra that we investigated the last two years, as e.g. dual bases, the
Grobner factorizer, triangular systems, and local standard bases. Essential changes
concern the following topics:

1. The CALI modules red and groeb were rewritten and the module mora was
removed. This is due to new theoretical insight into standard bases theory
as e.g. described in [ ] or [ ]. The Grobner basis algorithm
is reorganized as a Grobner driver with simplifier and base lists, that in-
volves different versions of polynomial reduction according to the setting
via gbtestversion. It applies now to both noetherian and non noetherian term
orders in a unified way.

The switches and were removed.

2. The Grobner factorizer was thoroughly revised, extended along the lines ex-
plained in [ ], and collected into a separate module groebf. It now
allows a list of constraints also in algebraic mode. Two versions of an ex-
tended Grobner factorizer produce triangular systems, i.e. a decomposition
into quasi prime components, see [ ], that are well suited for further
(numerical) evaluation. There is also a version of the Grébner factorizer that
allows a list of problems as input. This is especially useful, if a system is
splitted with respect to a “cheap” (e.g. degrevlex) term order and the pieces
are recomputed with respect to a “hard” (e.g. pure lex) term order.

The extended Grobner factorizer involves, after change to dimension zero,
the computation of triangular systems. The corresponding module triang

“Note that recovering the base ring this way may cause some trouble since the intermediate ring,
installed with setring, changed possibly the internal variable order set by setkorder.
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extends the facilities for zero dimensional ideals and modules in the module
odim.

3. A new module If implements the dual bases approach as described in
[ ]. On this basis there are new implementations of affine_points
and proj_points, that are significantly faster than the old ones. The linear
algebra change of term orders | ] is available, too. There are two
versions, one with precomputed border basis, the other with conventional
normal forms.

4. dpmats now have a gb-tag that indicates, whether the given ideal or module
basis is already a Grobner basis. This avoids certain Grobner basis recompu-
tations especially during advanced algorithms as e.g. prime decomposition.
In the algebraic interface Grobner bases are computed automatically when
needed rather than to issue an error message as in v. 2.1. So one can call mod-
equalp or dim etc. not having computed Grobner bases in advance. Note that
such automatic computation can be avoided with setgbasis.

5. Hilbert series are now weighted Hilbert series, since e.g. for blow up rings
the generating ideal is multigraded. Usual Hilbert series are computed as in
v. 2.1 with respect to the ecart vector. Weighted Hilbert series accept a list
of (integer) weight lists as second parameter.

6. There are some name and conceptual changes to existing procedures and
variables to have a more concise semantic concept. This concerns

tracing (the trace parameter is now stored on the property list of
cali and should be set with setcalitrace),

choosing different versions of the Grobner algorithm (through
gbtestversion) and the Hilbert series computation (through hftestver-
sion),

some names (mat2list replaced flatten, HilbertSeries replaced
hilbseries) and

parameter lists of some local and internal procedures (consult
cali.chg for details).

7. The revlex term order is now the reverse lexicographic term order on the
reversely ordered variables. This is consistent with other computer algebra
systems (e.g. SINGULAR or AXIOM)’ and implies the same order on the
variables for deglex and degrevlex term orders (this was the main reason to
change the definition).

8. Ideals of minors, pfaffians and related stuff are now implemented as exten-
sion of the internal mat rix package and collected into a separate module

But different to the currently distibuted groebner package in REDUCE. Note that the compu-
tations in [ ] were done before these changes.
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calimat. Thus they allow more general expressions, especially with vari-
able exponents, as general REDUCE matrices do. So one can define generic
ideals as e.g. ideals of minors or pfaffians of matrices, containing generic
expressions as elements. They must be specified for further use in CALI
substituting general exponents by integers.

New and Improved Facilities in v. 2.2.1

The main change concerns the primary decomposition algorithm, where I fixed a
serious bug for deciding, which embedded primes are really embedded®. During
that remake I incorporated also the Grobner factorizer to compute isolated primes.
Since REDUCE has no multivariate modular factorizer, the switch factorprimes
may be turned off to switch to the former algorithm.

Some minor bugs are fixed, too, e.g. the bug that made radical crashing.

16.9.2 The Computational Model

This section gives a short introduction into the data type design of CALI at dif-
ferent levels. First (§1 and 2) we describe CALI’s way of algorithmic translation
of the abstract algebraic objects ring of polynomials, ideal and (finitely generated)
module. Then (§3 and 4) we describe the algebraic mode interface of CALI and
the switches and global variables to drive a session. In the next chapter we give a
more detailed overview of the basic (symbolic mode) data structures involved with
CALI We refer to the appendix for a short summary of the commands available in
algebraic mode.

The Base Ring

A polynomial ring consists in CALI of the following data:

a list of variable names

All variables not occuring in the list of ring names are treated as parameters.
Computations are executed denominatorfree, but the results are valid only over
the corresponding parameter field extension.

®That there must be a bug was pointed out to me by Shimoyama Takeshi who compared different
p-d. implementations. The bug is due to an incorrect test for embedded primes: A (superfluous)
primary component may contain none of the isolated primary components, but their intersection!
Note that neither [ ] nor [ ] comment on that. Details of the implementation will appear

in [ 1.
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a term order and a term order tag

They describe the way in which the terms in each polynomial (and polynomial
vector) are ordered.

an ecart vector

A list of positive integers corresponding to the variable names.

A base ring may be defined (in algebraic mode) through the command
setring <ring>

with < reng > ::={ vars, tord, tag [, ecart ] } resp.
setring(vars, tord, tag [,ecart])

his sets the global (symbolic) variable cali/=basering. Here vars is the list of
variable names, tord a (possibly empty) list of weight lists, the degree vectors,
and tag the tag LEX or REVLEX. Optionally one can supply ecart, a list of
positive integers of the same length as vars, to set an ecart vector different from
the default one (see below).

The degree vectors must have the same length as vars. If (w; ... wy) is the list
of degree vectors then

¢ < 2? & either w;(2%) = w;(z®)  forj <i and

w;i(2?) < w;(x?)
or w;(2%) = w;(z)  forall j and
T <jep 0 1ESP. T <pepiex T°

Here <je, resp. <jeuier denote the lexicographic (tag=LEX) resp. reverse lexi-
cographic (tag=REVLEX) term orders’ with respect to the variable order given in
vars,i.e.

a b

Tt <z < djVi<j:a;=b and a; <bj(lex.)
or
<2’ = 3IjVi>j:a=0b; and a; > b; (revlex.)
Every term order can be represented in such a way, see [ 1.

During the ring setting the term order will be checked to be Noetherian (i.e. to fulfill
the descending chain condition) provided the switch is on (the default). The same

"The definition of the revlex term order changed for version 2.2.
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applies turning noetherian on: If the term order of the underlying base ring isn’t
Noetherian the switch can’t be turned over. Hence, starting from a non Noetherian
term order, one should define first a new ring and then turn the switch on.

Useful term orders can be defined by the procedures

degreeorder vars,
that returns tord = {{1,...,1}}.

localorder vars,

that returns tord = {{—1,..., —1}} (a non Noetherian term order for compu-
tations in local rings).

eliminationorder (vars,elimvars),

that returns a term order for elimination of the variables in elimvars, a sub-
set of all vars. It’s recommended to combine it with the tag REVLEX.
blockorder (vars, integerlist),

that returns the list of degree vectors for the block order with block lengths
given in the integerlist. Note that these numbers should sum up to the
length of the variable list supplied as the first argument.

Examples:

vars:={x,vy,z};

tord:=degreeorder vars; % Returns {{1,1,1}}.

setring (vars, tord, lex) ; % GRADLEX in the groebner package.

% or

setring({a,b,c,d}, {},1lex); % LEX in the groebner package.

o\°

or

vars:={a,b,c,x,y,2};
tord:=eliminationorder (vars, {xX,v,2});
tord:=reverse blockorder (vars, {3,3});
% Return both {{0,0,0,1,1,1},{1,1,1,0,0,0}}
setring(vars, tord, revlex);

The base ring is initialized with
{{t,x,y,2},{{1,1,1,1}},revlex, {1,1,1,1}},

i.e. S = k[t,x,y, z] supplied with the degree wise reverse lexicographic term order.
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getring m

returns the ring attached to the object with the identifier m. E.g.

setring getring m

(re)sets the base ring to the base ring of the formerly defined object (ideal or
module) m.

getring ()

returns the currently active base ring.

CALI defines also an ecart vector, attaching to each variable a positive weight with
respect to that homogenizations and related algorithms are executed. It may be set
optionally by the user during the setring command. (Default: If the term order is a
(positive) degree order then the ecart is the first degree vector, otherwise each ecart
equals 1).

The ecart vector is used in several places for efficiency reason (Grobner basis com-
putation with the sugar strategy) or for termination (local standard bases). If the
input is homogeneous the ecart vector should reflect this homogeneity rather than
the first degree vector to obtain the best possible performance. For a discussion of
local computations with encoupled ecart vector see [ ]. In general the ecart
vector is recommended to be chosen in such a way that the input examples become
close to be homogeneous. Homogenizations and Hilbert series are computed with
respect to this ecart vector.

getecart () returns the ecart vector currently set.

Ideals and Modules

If S = k[z,, v € H] is a polynomial ring, a matrix M of size r x ¢ defines a map
f:8—5
by the following rule
fw)y:=v-M forve S".

There are two modules, connected with such a map, im f, the submodule of S¢
generated by the rows of M, and coker f (= S¢/im f). Conceptually we will
identify M with ¢m f for the basic algebra, and with coker f for more advanced
topics of commutative algebra (Hilbert series, dimension, resolution etc.) follow-
ing widely accepted conventions.
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With respect to a fixed basis {e, . . ., e.} one can define module term orders on S¢,
Grobner bases of submodules of S¢ etc. They generalize the corresponding notions
for ideal bases. See [ Jor|[ ] for a detailed introduction to this area of

computational commutative algebra. This allows to define joint facilities for both
ideals and submodules of free modules. Moreover computing syzygies the latter
come in in a natural way.

CALI handles ideal and module bases in a unique way representing them as rows
of a dpmat (distributive polynomial matrix). It attaches to each unit vector e; a
monomial %, the i-th column degree and represents the rows of a dpmat M as
lists of module terms x“e;, sorted with respect to a module term order, that may be
roughly® described as

Tle; < xbej &< either %% < xPz% in S

or 2% = pbyti
and

1 < 7 (Iex.) resp. ¢ > j (revlex.)

Every dpmat M has its own column degrees (no default !). They are managed
through a global (symbolic) variable cali/=degrees.

getdegrees m

returns the column degrees of the object with identifier m.

getdegrees ()

returns the current setting of cali/=degrees.

setdegrees <list of monomials>

sets cali!=degrees correspondingly. Use this command before executing set-
module to give a dpmat prescribed column degrees since cali!=degrees has no
default value and changes during computations. A good guess is to supply
the empty list (i.e. all column degrees are equal to x°). Be careful defining
modules without prescribed column degrees.

To distinguish between ideals and modules the former are represented as a dpmat
with ¢ = 0 (and hence without column degrees). If I C .S is such an ideal one has
to distinguish between the ideal I (with ¢ = 0, allowing special ideal operations as
e.g. ideal multiplication) and the submodule I of the free one dimensional module

8The correct definition is even more difficult.
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S1 (with ¢ = 1, allowing matrix operations as e.g. transposition, matrix multiplica-
tion etc.). ideal2mat converts an (algebraic) list of polynomials into an (algebraic)
matrix column whereas mat2list collects all matrix entries into a list.

The Algebraic Mode Interface

Corresponding to CALI’s general philosophy explained in the introduction the al-
gebraic mode interface translates algebraic input into CALI’s internal data repre-
sentation, calls the corresponding symbolic functions, and retranslates the result
back into algebraic mode. Since Grobner basis computations may be very tedious
even on small examples, one should find a well balance between the storage of
results computed earlier and the unavoidable time overhead and memory request
associated with the management of these results.

Therefore CALI distinguishes between free and bounded identifiers. Free iden-
tifiers stand only for their value whereas to bounded identifiers several internal
information is attached to their property list for later use.

After the initialization of the base ring bounded identifiers for ideals or modules
should be declared via

setmodule (name, matrix value)
resp.
setideal (name, list of polynomials)

This way the corresponding internal representation (as dpmat) is attached to name
as the property basis, the prefix form as its value and the current base ring as the
property ring.

Performing any algebraic operation on objects defined this way their ring will be
compared with the current base ring (including the term order). If they are different
an error message occurs. If m is a valid name, after resetting the base ring

setmodule (ml,m)

reevaluates m with respect to the new base ring (since the value of m is its prefix
form) and assigns the reordered dpmat to m1 clearing all information previously
computed for m1 (m1 and m may coincide).

All computations are performed with respect to the ring S = k[z, € vars] over
the field k. Nevertheless by efficiency reasons base coefficients are represented in
a denominator free way as standard forms. Hence the computational properties of
the base coefficient domain depend on the dmode and also on auxiliary variables,
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contained in the expressions, but not in the variable list. They are assumed to be
parameters.

Best performance will be obtained with integer or modular domain modes, but one
can also try algebraic numbers as coefficients as e.g. generated by sqrt or the
arnum package. To avoid an unnecessary slow-down connected with the man-
agement of simplified algebraic expressions there is a switch hardzerotest (default:
off) that may be turned on to force an additional simplification of algebraic coeffi-
cients during each zero test. It should be turned on only for domain modes without
canonical representations as e.g. mixtures of arnums and square roots. We remind
the general zero decision problem for such domains.

Alternatively, CALI offers the possibility to define a set of algebraic substitution
rules that will affect CALI’s base coefficient arithmetic only.

setrules <rule list>

transfers the (algebraic) rule list into the internal representation stored at the
cali value rules.
In particular, setrules {} clears the rules previously set.

getrules ()

returns the internal CALI rules list in algebraic form.

We recommend to use setrules for computations with algebraic numbers since they
are better adapted to the data structure of CALI than the algebraic numbers pro-
vided by the arnum package. Note, that due to the zero decision problem compli-
cated setrules based computations may produce wrong results if base coefficient’s
pseudo division is involved (as e.g. with dp_pseudodivmod). In this case we rec-
ommend to enlarge the variable set and add the defining equations of the algebraic
numbers to the equations of the problem”.

The standard domain (Integer) doesn’t allow denominators for input. setideal
clears automatically the common denominator of each input expression whereas
a polynomial matrix with true rational coefficients will be rejected by setmodule.

One can save/initialize ideal and module bases together with their accompanying
data (base ring, degrees) to/from a file:

savemat (m, name)
resp.

initmat name

°A gring facility for the computation over quotient rings will be incorporated into future versions.
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execute the file transfer from/to disk files with the specified file name. e.g.
savemat (m, "myfile");

saves the base ring and the ideal basis of m to the file “myfile” whereas
setideal (m, initmat "myfile");

sets the current base ring (via a call to setring) to the base ring of m saved at
“myfile” and then recovers the basis of m from the same file.

Switches and Global Variables

There are several switches, (fluid) global variables, a trace facility, and global pa-
rameters on the property list of the package name cali to control CALI’s compu-
tations.

Switches

besimp

on: Cancel out gcd’s of base coefficients. (Default: on)

detectunits

on: replace polynomials of the form
(monomial) * (polynomial unit) by (monomial) during interreductions and
standard basis computations.

Affects only local computations. (Default: off)

factorprimes

on: Invoke the Grobner factorizer during computation of isolated primes. (De-
fault: on). Note that REDUCE lacks a modular multivariate factorizer, hence
for modular prime decomposition computations this switch has to be turned
off.

factorunits

on: factor polynomials and remove polynomial unit factors during interreduc-
tions and standard basis computations.
Affects only local computations. (Default: off)

hardzerotest
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on: try an additional algebraic simplification of base coefficients at each base
coefficient’s zero test. Useful only for advanced base coefficient domains with-
out canonical REDUCE representation. May slow down the computation dras-
tically. (Default: off)

lexefgh

on: Use the pure lexicographic term order and zerosolve during reduction to di-
mension zero in the extended Grobner factorizer. This is a single, but possibly
hard task compared to the degrevlex invocation of zerosolvel. See [ ]
for a discussion of different zero dimensional solver strategies. (Default: off)

Noetherian

on: choose algorithms for Noetherian term orders.
off: choose algorithms for local term orders.
(Default: on)

red_total

on: compute total normal forms, i.e. apply reduction (Noetherian term orders)
or reduction with bounded ecart (non Noetherian term orders to tail terms of
polynomials, too.

oft: Do only top reduction.

(Default: on)

Tracing

Different to v. 2.1 now intermediate output during the computations is controlled
by the value of the trace and printterms entries on the property list of the
package name cali. The former value controls the intensity of the intermedi-
ate output (Default: 0, no tracing), the latter the number of terms printed in such
intermediate polynomials (Default: all).

setcalitrace <n>

changes the trace intensity. Set n = 2 for a sparse tracing (a dot for each
reduction step). Other good suggestions are the values 30 or 40 for tracing
the Grobner algorithm or n > 70 for tracing the normal form algorithm. The
higher n the more intermediate information will be given.

setcaliprintterms <n>

sets the number of terms that are printed in intermediate polynomials. Note
that this does not affect the output of whole dpmats. The output of polynomials
with more than n terms (n > 0) breaks off and continues with ellipses.
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clearcaliprintterms ()

clears the printterms value forcing full intermediate output (according to
the current trace level).

Global Variables

cali!=basering

The currently active base ring initialized e.g. by setring.

cali!=degrees

The currently active module component degrees initialized e.g. by setdegrees.

cali!=monset

A list of variable names considered as non zero divisors during Grobner ba-
sis computations initialized e.g. by setmonset. Useful e.g. for binomial ideals
defining monomial varieties or other prime ideals.

Entries on the Property List of cali

This approach is new for v. 2.2. Information concerning the state of the computa-
tional model as e.g. trace intensity, base coefficient rules, or algorithm versions are
stored as values on the property list of the package name cali. This concerns

trace and printterms

see above.

efgb
Changed by the switch lexefgb.

groeb!=rf

Reduction function invoked during the Grobner algorithm. It can be changed
with gbtestversion < n > (n = 1,2, 3, default is 1).

hf!=hf
Variant for the computation of the Hilbert series numerator. It can be changed
with hftestversion < n > (n = 1,2, default is 1).

rules

Algebraic “replaceby” rules introduced to CALI with the setrules command.
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evlf, varlessp, sublist, varnames, oldborderbasis, oldring, oldbasis

see module If, implementing the dual bases approach.

16.9.3 Basic Data Structures

In the following we describe the data structure layers underlying the dpmat rep-
resentation in CALI and some important (symbolic) procedures to handle them.
We refer to the source code and the comments therein for a more complete survey
about the procedures available for different data types.

The Coefficient Domain

Base coefficients as implemented in the module bcsf are standard forms in the vari-
ables outside the variable list of the current ring. All computations are executed
"denominator free" over the corresponding quotient field, i.e. gcd’s are canceled
out without request. To avoid this set the switch besimp off.'0 In the given imple-
mentation we use the s.f. procedure gremf for effective divisibility test. We had
some trouble with it under on factor.

Additionally it is possible to supply the parameters occuring as base coefficients
with a (global) set of algebraic rules.'!

setrules!*x r

converts an algebraic mode rules list  as e.g. used in WHERE statements into
the internal CALI format.

The Base Ring

The base ring is defined by its name 1ist,the degree matrix (alist of lists
of integers), the ring tag (LEX or REVLEX), and the ecart. The name list
contains a phantom name cali ! =mk for the module component at place 0.

The module ring exports among others the selectors ring_names, ring_degrees,
ring_tag, ring_ecart, the test function ring_isnoetherian and the transfer pro-
cedures from/to an (appropriate, printable by mathprint) algebraic prefix form

10This induces a rapid base coefficient’s growth and doesn’t yield Z-Grébner bases in the sense of
[ ] since the S-pair criteria are different.

"This is different from the LET rule mechanism since they must be present in symbolic mode.
Hence for a simultaneous application of the same rules in algebraic mode outside CALI they must
additionally be declared in the usual way.
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ring_from_a (including extensive tests of the supplied parameters for consistency)
and ring_2a.

The following procedures allow to define a base ring:

ring_define (name list, degree matrix, ring tag, ecart)
combines the given parameters to a ring.

setring!x <ring>

sets cali!=basering and checks for consistency with the switch Noetherian. It
also sets through setkorder the current variable list as main variables. It is
strongly recommended to use setring!* ... instead of cali/=basering:=. ...

degreeorder!*,localorder!*,eliminationorder!*,andblockorder!
define term order matrices in full analogy to algebraic mode.

There are three ring constructors for special purposes:

ring_sum(a,b)

returns a ring, that is constructed in the following way: Its variable list is the
union of the (disjoint) lists of the variables of the rings a and b (in this order)
whereas the degree list is the union of the (appropriately shifted) degree lists of
b and a (in this order). The ring tag is that of a. Hence it returns (essentially)
the ring b€ a if b has a degree part (e.g. useful for elimination problems,
introducing “big” new variables) and the ring a @ b if b has no degree part
(introducing “small” new variables).

ring_rlp(r,u)

u is a subset of the names of the ring r. Returns the ring r, but with a term
order “first degrevlex on u, then the order on r”.

ring_lp (r,u)

As rlp, but with a term order “first lex on u, then the order on r”’.

Example:

vars:='"(x y z)
setring!* ring _define (vars,degreeorder!x vars,’lex,’” (1 1 1));
% GRADLEX in the groebner package.
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Monomials

The current version uses a place-driven exponent representation closely related to
a vector model. This model handles term orders on S and module term orders
on S€¢ in a unique way. The zero component of the exponent list of a monomial
contains its module component (> 0) or O (ring element). All computations are
executed with respect to a current ring (cali!=basering) and current (monomial)
weights of the free generators e;,i = 1,. .., ¢, of S¢ (cali!=degrees). For efficiency
reasons every monomial has a precomputed degree part that should be reevaluated
if cali!=basering (i.e. the term order) or cali!=degrees were changed.
calil!=degrees contains the list of column degrees of the current module as
an assoc. list and will be set automatically by (almost) all dpmat procedure calls.
Since monomial operations use the degree list that was precomputed with respect
to fixed column degrees (and base ring)

watch carefully for cali!=degrees programming at the mono-
mial or dpoly level !

As procedures there are selectors for the module component, the exponent and
the degree parts, comparison procedures, procedures for the management of the
module component and the degree vector, monomial arithmetic, transfer from/to
prefix form, and more special tools.

Polynomials and Polynomial Vectors

CALI uses a distributive representation as a list of terms for both polynomials and
polynomial vectors, where a term is a dotted pair

(< monomial > . < base coef ficient >).
The ecart of a polynomial (vector) f = > t; with (module) terms ¢; is defined as
max(ec(t;)) — ec(lt(t;)),

see [ ]. Here ec(t;) denotes the ecart of the term ¢, i.e. the scalar product of
the exponent vector of ¢; (including the monomial weight of the module generator)
with the ecart vector of the current base ring.

As procedures there are selectors, dpoly arithmetic including the management of
the module component, procedures for reordering (and reevaluating) polynomials
wrt. new term order degrees, for extracting common base coefficient or monomial
factors, for transfer from/to prefix form and for homogenization and dehomoge-
nization (wrt. the current ecart vector).

Two advanced procedures use ideal theory ingredients:
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dp_pseudodivmod (g, f)

returns a dpoly list {g,r, z} such that z - ¢ = ¢ - f + r and z is a dpoly unit
(i.e. a scalar for Noetherian term orders). For non Noetherian term orders the
necessary modifications are described in [ ].

g, f and r belong to the same free module or ideal.

dpgcd (a, b)

computes the gcd of two dpolys a and b by the syzygy method: The syzygy
module of {a, b} is generated by a single element [—by ag] with a = gap, b =
gbg, where g is the gcd of a and b. Since it uses dpoly pseudodivision it may
work not properly with setrules.

Base Lists

Ideal bases are one of the main ingredients for dpmats. They are represented as
lists of base elements and contain together with each dpoly entry the following
information:

e a number (the row number of the polynomial vector in the corresponding
dpmat).
e the dpoly, its ecart (as the main sort criterion), and length.

e arepresentation part, that may contain a representation of the given dpoly in
terms of a certain fixed basis (default: empty).

The representation part is managed during normal form computations and other
row arithmetic of dpmats appropriately with the following procedures:

bas_setrelations b

sets the relation part of the base element ¢ in the base list b to e;.

bas_removerelations b

removes all relations, i.e. replaces them with the zero polynomial vector.

bas_getrelations b

gets the relation part of b as a separate base list.

Further there are procedures for selection and construction of base elements and for
the manipulation of lists of base elements as e.g. sorting, renumbering, reordering,
simplification, deleting zero base elements, transfer from/to prefix form, homoge-
nization and dehomogenization.
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Dpoly Matrices

Ideals and matrices, represented as dpmats, are the central data type of the CALI
package, as already explained above. Every dpmat m combines the following in-
formation:

e its size (dpmat_rows m,dpmat_cols m),
e its base list (dpmat_list m) and

e its column degrees as an assoc. list of monomials (dpmat_coldegs m). If this
list is empty, all degrees are assumed to be equal to z".

e New in v. 2.2 there is a gh-tag (dpmat_gbtag m), indicating that the given
base list is already a Grobner basis (under the given term order).

The module dpmat contains selectors, constructors, and the algorithms for the basic
management of this data structure as e.g. file transfer, transfer from/to algebraic
prefix forms, reordering, simplification, extracting row degrees and leading terms,
dpmat matrix arithmetic, homogenization and dehomogenization.

The modules matop and quot collect more advanced procedures for the algebraic
management of dpmats.

Extending the REDUCE Matrix Package

In v. 2.2 minors, Jacobian matrix, and Pfaffians are available for general REDUCE
matrices. They are collected in the module calimat and allow to define procedures
in more generality, especially allowing variable exponents in polynomial expres-
sions. Such a generalization is especially useful for the investigation of whole
classes of examples that may be obtained from a generic one by specialization. In
the following m is a matrix given in algebraic prefix form.

mat jac (m, 1)

returns the Jacobian matrix of the ideal m (given as an algebraic mode list)
with respect to the variable list /.

minors (m, k)

returns the matrix of k-minors of the matrix m.

ideal_of_minors (m, k)

returns the ideal of the k-minors of the matrix m.
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pfaffian m

returns the pfaffian of a skewsymmetric matrix m.

ideal_of_pfaffians (m, k)

returns the ideal of the 2k-pfaffians of the skewsymmetric matrix m.

random_linear_form(vars, bound)

returns a random linear form in algebraic prefix form in the supplied variables
vars with integer coefficients bounded by the supplied bound.

singular_locus!* (m,c)

returns the singular locus of m (as dpmat). m must be an ideal of codimension
c given as a list of polynomials in prefix form. Singular_locus computes
the ideal generated by the corresponding Jacobian and m itself.

16.9.4 About the Algorithms Implemented in CALI

Below we give a short explanation of the main algorithmic ideas of CALI and the
way they are implemented and may be accessed (symbolically).

Normal Form Algorithms

For v. 2.2 we completely revised the implementation of normal form algorithms
due to the insight obtained from our investigations of normal form procedures
for local term orders in [ ] and [ ]. It allows a common handling
of Noetherian and non Noetherian term orders already on this level thus making
superfluous the former duplication of reduction procedures in the modules red and
mora asin v. 2.1.

Normal form algorithms reduce polynomials (or polynomial vectors) with respect
to a given finite set of generators of an ideal or module. The result is not unique ex-
cept for a total normal form with respect to a Grobner basis. Furthermore different
reduction strategies may yield significant differences in computing time.

CALI reduces by first matching, usually keeping base lists sorted with respect to
the sort predicate red_better. In v. 2.2 we sort solely by the dpoly length, since
the introduction of red_TopRedBE, i.e. reduction with bounded ecart, guarantees
termination also for non Noetherian term orders. Overload red_better for other
reduction strategies.

Reduction procedures produce for a given ideal basis B C S and a polynomial
f € S a(pseudo) normal form i € S such that h = w - f mod B where u € S
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is a polynomial unit, i.e. a (polynomially represented) non zero domain element in
the Noetherian case (pseudodivision of f by B) or a polynomial with a scalar as
leading term in the non Noetherian case. Following up the reduction steps one can
even produce a presentation of A — u - f as a polynomial combination of the base
elements in B.

More general, given for f; € B and f representations f; = > rgex = R; - ET
and f = R - ET as polynomial combinations wrt. a fixed basis £ one can produce
such a presentation also for h. For this purpose the dpoly f and its representation
are collected into a base element and reduced simultaneously by the base list B,
that collects the base elements and their representations.

The main procedures of the newly designed reduction package are the following:

red_TopRedBE (bas, model)

Top reduction with bounded ecart of the base element model by the base list
bas, i.e. only reducing the top term and only with base elements with ecart
bounded by that of model.

red_TopRed (bas, model)

Top reduction of model, but without restrictions.

red_TailRed (bas,model)

Make tail reduction on model, i.e. top reduction on the tail terms. For conver-
gence this uses reduction with bounded ecart for non Noetherian term orders
and full reduction otherwise.

There is a common red_TailRedDriver that takes a top reduction func-
tion as parameter. It can be used for experiments with other top reduc-
tion procedure combinations.

red_TotalRed (bas, model)

A terminating total reduction, i.e. for Noetherian term orders the classical one
and for local term orders using tail reduction with bounded ecart.

red_Straight bas
Reduce (with red_TailRed) the tails of the polynomials in the base list bas.

red_TopInterreduce bas

Reduces the base list bas with red_TopRed until it has pairwise incompa-
rable leading terms, computes correct representation parts, but does no tail
reduction.
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red_Interreduce bas

Does top and, if on red_total, also tail interreduction on the base list bas.

Usually, e.g. for ideal generation problems, there is no need to care about the mul-
tiplier u. If nevertheless one needs its value, the base element f may be prepared
with red_prepare to collect this information in the 0-slot of its representation part.
Extract this information with red_extract.

red_redpol (bas, model)

combines this tool with a total reduction of the base element model and returns
a dotted pair
(< reduced model > . < dpoly unit multiplier >).

Advanced applications call the interfacing procedures

interreduce!* m

that returns an interreduced basis of the dpmat m.

mod! x (£, m)

that returns the dotted pair (h.u) where h is the pseudo normal form of the
dpoly f modulo the dpmat m and w the corresponding polynomial unit multi-
plier.

normalform!* (a, b)

that returns {a1, 7, 2} with a; = z * a — r * b where the rows of the dpmat a;
are the normalforms of the rows of the dpmat a with respect to the dpmat b.

For local standard bases the ideal generated by the basic polynomials may have
components not passing through the origin. Although they do not contribute to the
ideal in Loc(S) = Sm they usually heavily increase the necessary computational
effort. Hence for local term orders one should try to remove polynomial units
as soon as they are detected. To remove them from base elements in an early
stage of the computation one can either try the (cheap) test, whether f € S is of
the form (monomial) * (polynomial unit) or factor f completely and remove
polynomial unit factors. For base elements this may be done with bas_detectunits
or bas_factorunits.

Moreover there are two switches detectunits and factorunits, both off by default,
that force such automatic simplifications during more advanced computations.

The procedure deleteunits!* tries explicitely to factor the basis polynomials of a
dpmat and to remove polynomial units occuring as one of the factors.
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The Grobner and Standard Basis Algorithms

There is now a unique module groeb that contains the Grobner resp. standard basis
algorithms with syzygy computation facility and related topics. There are common
procedures (working for both Noetherian and non Noetherian term orders)

gbasis!x m

that returns a minimal Grobner or standard basis of the dpmat m,

syzygies!x m

that returns an interreduced basis of the first syzygy module of the dpmat m
and

syzygiesl!* m

that returns a (not yet interreduced) basis of the syzygy module of the dpmat
m.

These procedures start the outer Grobner engine (now also common for both
Noetherian and non Noetherian term orders)

groeb_stbasis (m,mgb, ch, syz)
that returns, applied to the dpmat m, three dpmats g, ¢, s with

g — the minimal reduced Grobner basis of m if mgb = t,
¢ — the transition matrix g = ¢- m if ch = t, and

s — the (not yet interreduced) syzygy matrix of m if syz = ¢.

The next layer manages the preparation of the representation parts of the base el-
ements to carry the syzygy information, calls the general internal driver, and ex-
tracts the relevant information from the result of that computation. The general
internal driver branches according to different reduction functions into several ver-
sions. Upto now there are three different strategies for the reduction procedures for
the S-polynomial reduction (different versions may be chosen via gbtestversion):

1. Total reduction with local simplifier lists. For local term orders this is (al-
most) Mora’s first version for the tangent cone (the default).

2. Total reduction with global simplifier list. For local term orders this is (al-
most) Mora’s SimpStBasis, see [ 1.

3. Total reduction with bounded ecart.
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The first two versions (almost) coincide for Noetherian term orders. The third
version reduces only with bounded ecart, thus forcing more pairs to be treated than
necessary, but usually less expensive to be reduced. It is not yet well understood,
whether this idea is of practical importance.

groeb_lazystbasis calls the lazy standard basis driver instead, that implements
Mora’s lazy algorithm, see [ ]. As groeb_homstbasis, the computation of
Grobner and standard bases via homogenization (Lazard’s approach), it is not fully
integrated into the algebraic interface. Use

homstbasis!* m

for the invocation of the homogenization approach to compute a standard basis
of the dpmat m and

lazystbasis!* m

for the lazy algorithm.

Experts commonly agree that the classical approach is better for “computable”
examples, but computations done by the author on large examples indicate, that
both approaches are in fact independent.

The pair list management uses the sugar strategy, see [ ], with respect to
the current ecart vector. If the input is homogeneous and the ecart vector reflects
this homogeneity then pairs are sorted by ascending degree. Hence no superfluous
base elements will be computed in this case. In general the sugar strategy performs
best if the ecart vector is chosen to make the input close to be homogeneous.

There is another global variable cali/=monset that may contain a list of vari-
able names (a subset of the variable names of the current base ring). During the
“pure” Grobner algorithm (without syzygy and representation computations) com-
mon monomial factors containing only these variables will be canceled out. This
shortcut is useful if some of the variables are known to be non zero divisors as e.g.
in most implicitation problems.

setmonset!* vars

initializes cali!=monset with a given list of variables vars.

The Grobner tools as e.g. pair criteria, pair list update, pair management and S-
polynomial construction are available.

groeb_mingb m

extracts a minimal Grobner basis from the dpmat m, removing base elements
with leading terms, divisible by other leading terms.
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groeb_minimize (bas, syz)

minimizes the dpmat pair (bas, syz) deleting superfluous base elements from
bas using syzygies from syz containing unit entries.

The Grobner Factorizer

If k is the algebraic closure of k, B := {f1,...,fm} C S a finite system of
polynomials, and C' := {g1, ..., gx} a set of side conditions define the relative set
of zeroes

Z(B,C):={a€k™:V f€B f(a) =0and Vg € C g(a) # 0}.
Its Zariski closure is the zero set of I(B) :< [[C >.

The Grobner factorizer solves the following problem:

Find a collection (B, Cy) of Grobner bases B,, and side conditions
C,, such that
Z(B,C) = Z(Ba, Ca).
«

The module groebf and the module triang contain algorithms related to that prob-
lem, triangular systems, and their generalizations as described in [ ] and
[ ]. V. 2.2 thus heavily extends the algorithmic possibilities that were imple-
mented in former releases of CALIL.

Note that, different to v. 2.1, we work with constraint /ists.

0 groebfactor! * (bas, con)

returns for the dpmat ideal bas and the constraint list con (of dpolys) a minimal
list of (dpmat, constraint list) pairs with the desired property.

During a preprocessing it splits the submitted basis bas by a recursive factorization
of polynomials and interreduction of bases into a (reduced) list of smaller subprob-
lems consisting of a partly computed Grobner basis, a constraint list, and a list
of pairs not yet processed. The main procedure forces the next subproblem to be
processed until another factorization is possible. Then the subproblem splits into
subsubproblems, and the subproblem list will be updated. Subproblems are kept
sorted with respect to their expected dimension easydim forcing this way a depth
first recursion. Returned and not yet interreduced Grobner bases are, after interre-
duction, subject to another call of the preprocessor since interreduced polynomials
may factor anew.

listgroebfactor!x 1

proceeds a whole list of dpmats (without constraints) at once and strips off
constraints at the end.
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Using the (ordinary) Grobner factorizer even components of different dimension
may keep gluing together. The extended Grobner factorizer involves a postpro-
cessing, that guarantees a decomposition into puredimensional components, given
by triangular systems instead of Grobner bases. Triangular systems in positive
dimension must not be Grobner bases of the underlying ideal. They should be
preferred, since they are more simple but contain all information about the (quasi)
prime component that they represent. The complete Grobner basis of the corre-
sponding component can be obtained by an easy stable quotient computation, see
[ ]. We refer to the same paper for the definition of triangular systems in
positive dimension, that is consistent with our approach.

extendedgroebfactor!x (bas, c) and extendedgroebfactorl!« (bas, c)

return a list of results {b;, c;,v;} in algebraic prefix form such that b; is a
triangular set wrt. the variables v; and c¢; is a list of constraints, such that
bi :< []¢; > is the (puredimensional) recontraction of the zerodimensional
ideal b; @), k(v;). For the first version the recontraction is not computed,
hence the output may be not minimal. The second version computes recon-
tractions to decide superfluous components already during the algorithm. Note
that the stable quotient computation involved for that purpose may drastically
slow down the whole attempt.

The postprocessing involves a change to dimension zero and invokes (zero dimen-
sional) triangular system computations from the module triang. In a first step
groebf _zeroprimesl incorporates the square free parts of certain univariate poly-
nomials into these systems and strips off the constraints (since relative sets of ze-
roes in dimension zero are Zariski closed), using a splitting approach analogous
to the Grobner factorizer. In a second step, according to the switch lexefgb, either
zerosolve!* or zerosolvel!* converts these intermediate results into lists of trian-
gular systems in prefix form. If lexefghb is of £ (the default), the zero dimensional
term order is degrevlex and zerosolvel!*, the “slow turn to lex” is involved, for
on lexefgb the pure lexicographic term order and zerosolve!*, Mollers original
approach, see [ ], are used. Note that for this term order we need only a single
Grobner basis computation at this level.

A third version, zerosolve2!*, mixes the first approach with the FGLM change of
term orders. It is not incorporated into the extended Grobner factorizer.

Basic Operations on Ideals and Modules

Grobner and local standard bases are the heart of several basic algorithms in ideal
theory, see e.g. [ , 6.2.]. CALI offers the following facilities:

submodulep! * (m, n)
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tests the dpmat m for being a submodule of the dpmat n reducing the basis
elements of m with respect to n. The result will be correct provided n is a
Grobner basis.

modequalp! * (m, n)

= submodulep!*(m,n) and submodulep!*(n,m).

eliminate! * (m,<variable list>)

computes the elimination ideal/module eliminating the variables in the given
variable list (a subset of the variables of the current base ring). Changes tem-
porarily the term order to degrevlex.

matintersect!s 112

computes the intersection of the dpmats in the dpmat list [ along [ ,
6.20].

CALI offers several quotient algorithms. They rest on the computation of quotients
by a single element of the following kind: Assume M C 5S¢ v € S¢ f € S. Then
there are

the module quotient M : (v) = {g € S| gv € M},
the ideal quotient M : (f) = {w € S¢| fw € M}, and
the stable quotient M : (f)*° ={w € S¢|3In : f"w e M}.

CALI uses the elimination approach [ ,4.4.] and [ , 6.38] for their
computation:

matquot!* (M, )
returns the module or ideal quotient M : (f) depending on f.

matgquot ! * (M, f)
returns the stable quotient M : (f)>.

matquot!* calls the pseudo division with remainder

dp_pseudodivmod (g, f)

that returns a dpoly list {¢, 7, z} such that z - ¢ = ¢ - f + r with a dpoly unit
z. (g, f and r must belong to the same free module). This is done uniformly
for noetherian and local term orders with an extended normal form algorithm
as described in [ ].

">This can be done for ideals and modules in an unique way. Hence idealintersect!* has been
removed in v. 2.1.
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In the same way one defines the quotient of a module by another module (both
embedded in a common free module S¢), the quotient of a module by an ideal,
and the stable quotient of a module by an ideal. Algorithms for their computation
can be obtained from the corresponding algorithms for a single element as divisor
either by the generic element method [ ] or as an intersection [ ,6.31].
CALI offers both approaches (X=1 or 2 below) at the symbolic level, but for true
quotients only the latter one is integrated into the algebraic mode interface.

idealquotientX!* (M, I)
returns the ideal quotient M : I of the dpmat M by the dpmat ideal I.

modulequotientX!* (M, N)
returns the module quotient M : N of the dpmat M by the dpmat V.

annihilatorX!* M

returns the annihilator of coker M, i.e. the module quotient S¢ : M, if M is a
submodule of S°.

matstabquot!x (M, I)

returns the stable quotient M : I°° (only by the general element method).

Monomial Ideals

Monomial ideals occur as ideals of leading terms of (ideal’s) Grobner bases and
also as components of leading term modules of submodules of free modules, see
[ ], and reflect some properties of the original ideal/module. Several parame-
ters of the original ideal or module may be read off from it as e.g. dimension and
Hilbert series.

The module moid contains the corresponding algorithms on monomial ideals.
Monomial ideals are lists of monomials, kept sorted by descending lexicographic
order as proposed in [ 1.

moid_primes u

returns the minimal primes (as a list of lists of variable names) of the mono-
mial ideal u using an adaption of the algorithm, proposed in [ ] for the
computation of the codimension.

indepvarsets!x m

returns (based on moid_primes) the list of strongly independent sets of m, see
[ ]and [ ] for definitions.
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dim!* m

returns the dimension of coker m as the size of the largest independent set.

codim!* m

returns the codimension of coker m.

easyindepset!* m

returns a maximal with respect to inclusion independent set of m.

easydim!x m

is a fast dimension algorithm (based on easyindepset), that will be correct if m
is (radically) unmixed. Since it is significantly faster than the general dimen-
sion algorithm'3, it should be used, if all maximal independent sets are known
to be of equal cardinality (as e.g. for prime or unmixed ideals, see [ D.

Hilbert Series

CALI v. 2.2 now offers also weighted Hilbert series, i.e. series that may reflect
multihomogeneity of ideals and modules. For this purpose a weighted Hilbert se-
ries has a list of (integer) degree vectors as second parameter, and the ideal(s) of
leading terms are evaluated wrt. these weights. For the output and polynomial
arithmetic, involved during the computation of the Hilbert series numerator, the
different weight levels are mapped onto the first variables of the current ring. If
w is such a weight vector list and I is a monomial ideal in the polynomial ring
S = klz, : v € V] we get (using multi exponent notation)

Q)
Meey (1 - 0)

for a certain polynomial Hilbert series numerator Q(t). H(R/I,t) is known to be
a rational function with pole order at t = 1 equal to dim R/I. Note that Weighted-
HilbertSeries returns a reduced rational function where the gecd of numerator and
denominator is canceled out.

H(S/1t) = 3 (2" €1 : w(a) = )| -1 =

(Non weighted) Hilbert series call the weighted Hilbert series procedure with a
single weight vector, the ecart vector of the current ring.

The Hilbert series numerator )(¢) is computed using (the obvious generalizations
to the weighted case of) the algorithms in [ ] and [ ]. Experiments
suggest that the former is better for few generators of high degree whereas the

3This algorithm is of linear time as opposed to the problem to determine the dimension of an
arbitrary monomial ideal, that is known to be NP-hard in the number of variables, see [ 1.
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latter has to be preferred for many generators of low degree. Choose the version
with hftestversion n, n = 1, 2. Bayer/Stillman’s approach (n = 1) is the default.
In the following m is a dpmat and Grdbner basis.

hf _whilb (m, w)

returns the weighted Hilbert series numerator ()(t) of m according to the ver-
sion chosen with hftestversion.

WeightedHilbertSeries!* (m, w)

returns the weighted Hilbert series reduced rational function of m as s.q.

HilbertSeries!* (m, w)

returns the Hilbert series reduced rational function of m wrt. the ecart vector
of the current ring as s.q.

hf_whilb3 (u,w) and hf whs_from resolution (u,w)

compute the weighted Hilbert series numerator and the corresponding reduced
rational function from (the column degrees of) a given resolution w.

degree!* m

returns the value of the numerator of the reduced Hilbert series of m at ¢t = 1.
i.e. the sum of its coefficients. For the standard ecart this is the degree of
coker m.

Resolutions

Resolutions of ideals and modules, represented as lists of dpmats, are computed
via repeated syzygy computation with minimization steps between them to get
minimal bases and generators of syzygy modules. Note that the algorithms apply
simultaneously to both Noetherian and non Noetherian term orders. For compati-
bility reasons with further releases v. 2.2 introduces a second parameter to bound
the number of syzygy modules to be computed, since Hilbert’s syzygy theorem
applies only to regular rings.

Resolve!* (m,d)

computes a minimal resolution of the dpmat m, ie. a list of dpmats
{s0, 51, 2, . . .}, Where s is the k-th syzygy module of m, upto part s,.
BettiNumbers!+ cand GradedBettiNumbers!* c

returns the Betti numbers resp. the graded Betti numbers of the resolution c, i.e.
the list of the lengths resp. the degree lists (according to the ecart) themselves
of the dpmats in c.
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Zero Dimensional Ideals and Modules

There are several algorithms that either force the reduction of a given problem to
dimension zero or work only for zero dimensional ideals or modules. The module
odim offers such algorithms. It contains, e.g.

dimzerop!* m

that tests a dpmat m for being zero dimensional.

getkbase!*x m

that returns a (monomial) k-vector space basis of Coker m provided m is a
Grobner basis.

odim_borderbasis m

that returns a border basis, see [ ], of the zero dimensional dpmat m
as a list of base elements.

odim_parameter m

that returns a parameter of the dpmat m, i.e. a variable € vars such that
k[x] () Ann S¢/m = (0), or nil if m is zero dimensional.

odim_up (a,m)

that returns an univariate polynomial (of smallest possible degree if m is a
gbasis) in the variable a, that belongs to the zero dimensional dpmat ideal m,
using Buchberger’s approach [ 1.

Primary Decomposition and Related Algorithms

The algorithms of the module prime implement the ideas of [ ] with modifi-
cations along [ ] and their natural generalizations to modules as e.g. explained
in [ ]. Version 2.2.1 fixes a serious bug detecting superfluous embedded pri-
mary components, see section 16.9.1, and contains now a second primary decom-
position algorithm, based on ideal separation, as standard. For a discussion about
embedded primes and the ideal separation approach, see [ ].

CALI contains also algorithms for the computation of the unmixed part of a given
module and the unmixed radical of a given ideal (along the same lines). We fol-
lowed the stepwise recursion decreasing dimension in each step by 1 as proposed
in (the final version of) [ ] rather than the “one step” method described in
[ ] since handling leading coefficients, i.e. standard forms, depending on
several variables is a quite hard job for REDUCE'“.

In the following procedures m must be a Grobner basis.

14 prime!=decompose2 implements this strategy in the symbolic mode layer.
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zeroradical!* m

returns the radical of the zero dimensional ideal m, using squarefree decom-
position of univariate polynomials.

zeroprimes!x m

computes as in [ ] the list of prime ideals of Ann F/M if m is zero
dimensional, using the (sparse) general position argument from [ 1.
zeroprimarydecomposition!x m

computes the primary components of the zero dimensional dpmat m using
prime splitting with the prime ideals of Ann F'/M. It returns a list of pairs
with first entry the primary component and second entry the corresponding
associated prime ideal.

isprime!* m

a (one step) primality test for ideals, extracted from [ ].

isolatedprimes!* m

computes (only) the isolated prime ideals of Ann F/M.

radical!* m

computes the radical of the dpmat ideal m, reducing as in [ ] to the zero
dimensional case.

easyprimarydecomposition!* m

computes the primary components of the dpmat m, if it has no embedded
components. The algorithm uses prime splitting with the isolated prime ideals
of Ann F/M. Tt returns a list of pairs as in zeroprimarydecomposition!*.
primarydecomposition!* m

computes the primary components of the dpmat m along the lines of [ 1.
It returns a list of two-element lists as in zeroprimarydecomposition! *.
unmixedradical!* m

returns the unmixed radical, i.e. the intersection of the isolated primes of top
dimension, associated to the dpmat ideal m.

eghull!x m

returns the equidimensional hull, i.e. the intersection of the top dimensional
primary components of the dpmat m.
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Advanced Algorithms

The module scripts just under further development offers some advanced topics of
the Grobner bases theory. It introduces the new data structure of a map between
base rings:

A ring map
¢ : R— S

for R = k[r;], S = k[s;] is represented in symbolic mode as a list
{preimage_ring R, image_ring S, subst_list},

where subst_1ist is a substitution list {r; = ¢1(s),r2 = ¢2(s),...} in alge-
braic prefix form, i.e. looks like (1ist (equal var image) ...).

The central tool for several applications is the computation of the preimage
¢~ 1(I) € R of an ideal I C S either under a polynomial map ¢ or its closure
in R under a rational map ¢, see [ ,7.69 and 7.71].

preimage!* (m, map)

computes the preimage of the ideal m in algebraic prefix form under the given
polynomial map and sets the current base ring to the preimage ring. Returns
the result also in algebraic prefix form.

ratpreimage! x (m, map)

computes the closure of the preimage of the ideal m in algebraic prefix form
under the given rational map and sets the current base ring to the preimage
ring. Returns the result also in algebraic prefix form.

Derived applications are

affine_monomial_curve!=x* (1, vars)

[ is a list of integers, vars a list of variable names of the same length as /. The
procedure sets the current base ring and returns the defining ideal of the affine
monomial curve with generic point (¢* : i € [) computing the corresponding
preimage.

analytic_spread!x M

Computes the analytic spread of M, i.e. the dimension of the exceptional fiber
R(M)/mR(M) of the blowup along M over the irrelevant ideal m of the
current base ring.
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assgrad!x (M, N, vars)

Computes the associated graded ring
grr(N) := (R/N & N/N*@...) = R(N)/NR(N)

over the ring R = S/M, where M and N are dpmat ideals defined over the cur-
rent base ring S. vars is a list of new variable names one for each generator
of N. They are used to create a second ring 7" with degree order corresponding
to the ecart of the row degrees of /N and a ring map

p: ST — S.

It returns a dpmat ideal .J such that (S @ T')/.J is a presentation of the desired
associated graded ring over the new current base ring S & 7.

blowup!* (M,N,vars)

Computes the blow up R(N) := R[N -t] of N over the ring R = S/M, where
M and N are dpmat ideals defined over the current base ring S. vars is a list
of new variable names one for each generator of N. They are used to create a
second ring 1" with degree order corresponding to the ecart of the row degrees
of NV and a ring map

p: ST — S.

It returns a dpmat ideal .J such that (S & T')/.J is a presentation of the desired
blowup ring over the new current base ring S ® 7.
proj_monomial_curve!x (1,vars)

[ is a list of integers, vars a list of variable names of the same length as [.
The procedure set the current base ring and returns the defining ideal of the
projective monomial curve with generic point (s~ -¢' : i € [) in R, where
d = max{z : x € l}, computing the corresponding preimage.

sym!* (M, vars)

Computes the symmetric algebra Sym (M) where M is a dpmat ideal defined
over the current base ring S. vars is a list of new variable names one for each
generator of M. They are used to create a second ring R with degree order
corresponding to the ecart of the row degrees of N and a ring map

¢p:SOPR—S.

It returns a dpmat ideal .J such that (S&@ R)/J is the desired symmetric algebra
over the new current base ring S & R.

There are several other applications:

minimal_ generators!* m
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returns a set of minimal generators of the dpmat m inspecting the first syzygy
module.

nzdp!x (f,m)

tests whether the dpoly f is a non zero divisor on coker m. m must be a
Grobner basis.

symbolic_power!* (m,d)

returns the dth symbolic power of the prime dpmat ideal m as the equidimen-
sional hull of the dth true power. (Hence applies also to unmixed ideals.)

varopt!x m

finds a heuristically optimal variable order by the approach in [ ] and
returns the corresponding list of variables.

Dual Bases

For the general ideas underlying the dual bases approach see e.g. [ ]. This
paper explains, that constructive problems from very different areas of commuta-
tive algebra can be formulated in a unified way as the computation of a basis for
the intersection of the kernels of a finite number of linear functionals generating
a dual S-module. Our implementation honours this point of view, presenting two
general drivers dualbases and dualhbases for the computation of such bases (even
as submodules of a free module M = S™) with affine resp. projective dimension
Zero.

Such a collection of N linear functionals
L:M=8"—kN

should be given through values {[e;, L(e;)], = 1,...,m} on the generators e; of
M and an evaluation functionevl1f ([p, L (p) ], x), that evaluates L(p-x) from
L(p) for p € M and the variable x € S.

dualbases starts with a list of such generator/value constructs generating M and
performs Gaussian reduction on expressions [p - z, L(p - z)], where p was already
processed, L(p) # 0, and x € S is a variable. These elements are processed in
ascending order wrt. the term order on M. This guarantees both termination and
that the resulting basis of ker L is a Grobner basis. The NV values of L are attached
to N variables, that are ordered linearly. Gaussian elimination is executed wrt. this
variable order.

To initialize the dual bases driver one has to supply the basic generator/value list
(through the parameter list; for ideals just the one element list containing the gen-
erator [1 € S, L(1)]), the evaluation function, and the linear algebra variable or-
der. The latter are supplied via the property list of cali as properties ev1f and
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varlessp. Different applications need more entries on the property list of cali
to manage the communication between the driver and the calling routine.

dualhbases realizes the same idea for (homogeneous) ideals and modules of (pro-
jective) dimension zero. It produces zerodimensional “slices” with ascending de-
gree until it reaches a supremum supplied by the user, see [ ] for details.

Applications concern affine and projective defining ideals of a finite number
of points'> and two versions (with and without precomputed border basis) of
term order changes for zerodimensional ideals and modules as first described in

[ I

affine_points!* m

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns the
defining ideal of the collection of points in affine space with coordinates given
by the rows of m. Note that m may contain parameters. In this case k is treated
as rational function field.

change_termorder! « (m, r) and change_termorderl!* (m, r)

m is a Grobner basis of a zero dimensional ideal wrt. the current base ring.
These procedures change the current ring to  and compute the Grobner basis
of m wrt. the new ring r. The former uses a precomputed border basis.

proj_points!* m

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns
the defining ideal of the collection of points in projective space with ho-
mogeneous coordinates given by the rows of m. Note that m may as for
affine_points contain parameters.

16.9.5 A Short Description of Procedures Available in Algebraic
Mode

Here we give a short description, ordered alphabetically, of algebraic procedures
offered by CALI in the algebraic mode interface'®.

If not stated explicitely procedures take (algebraic mode) polynomial matrices (¢ >
0) or polynomial lists (¢ = 0) m,m1,m2,... as input and return results of the

15This substitutes the “brute force” method computing the corresponding intersections directly as
it was implemented in v. 2.1. The new approach is significantly faster. The old stuff is available as
affine_points1!* and proj_pointsl!*.

15Tt does not contain switches, get... procedures, setting trace level and related stuff.
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same type. gb stands for a bounded identifier'’, gbr for one with precomputed
resolution. For the mechanism of bounded identifier see the section “Algebraic
Mode Interface”.

affine_monomial_curve (1, vars)

[ is a list of integers, vars a list of variable names of the same length as [. The
procedure sets the current base ring and returns the defining ideal of the affine
monomial curve with generic point (t* : i € 1).

affine_points m

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns the
defining ideal of the collection of points in affine space with coordinates given
by the rows of m. Note that m may contain parameters. In this case k is treated
as rational function field.

analytic_spread m

Computes the analytic spread of m.

annihilator m

returns the annihilator of the dpmat m C S¢, i.e. Ann S¢/M.

assgrad (M, N, vars)

Computes the associated graded ring grz(N) over R = S/M, where S is the
current base ring. vars is a list of new variable names, one for each generator
of N. They are used to create a second ring 7" to return an ideal J such that

(S@®T)/J is the desired associated graded ring over the new current base ring
SeT.

bettiNumbers gbr

extracts the list of Betti numbers from the resolution of gbr.

blowup (M, N, vars)

Computes the blow up R(N) of N over the ring R = S/M, where S is the
current base ring. vars is a list of new variable names, one for each generator
of N. They are used to create a second ring 7" to return an ideal J such that
(S @ T)/J is the desired blowup ring over the new current base ring S @ T'.

"Different to v. 2.1 a Grobner basis will be computed automatically, if necessary.
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change_termorder (m, r) and change_termorderl (m, r)

Change the current ring to  and compute the Grobner basis of m wrt. the
new ring r by the FGLM approach. The former uses internally a precomputed
border basis.

codim gb

returns the codimension of S¢/gb.

degree gb

returns the multiplicity of gb as the sum of the coefficients of the (classical)
Hilbert series numerator.

degsfromresolution gbr

returns the list of column degrees from the minimal resolution of gbr.

deleteunits m

factors each basis element of the dpmat ideal m and removes factors that are
polynomial units. Applies only to non Noetherian term orders.

dim gb

returns the dimension of S¢/gb.

dimzerop gb

tests whether S°/gb is zerodimensional.

directsum(ml, m2, ...)

returns the direct sum of the modules m1,m2, ..., embedded into the direct
sum of the corresponding free modules.

dpgcd (£, g)
returns the gcd of two polynomials f and g, computed by the syzygy method.

easydim mand easyindepset m

If the given ideal or module is unmixed (e.g. prime) then all maximal strongly
independent sets are of equal size and one can look for a maximal with respect
to inclusion rather than size strongly independent set. These procedures don’t
test the input for being a Grobner basis or unmixed, but construct a maximal
with respect to inclusion independent set of the basic leading terms resp. detect
from this (an approximation for) the dimension.
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easyprimarydecomposition m

a short primary decomposition using ideal separation of isolated primes of
m, that yields true results only for modules without embedded components.
Returns a list of {component, associated prime} pairs.

eliminate (m, <variable 1list>)

computes the elimination ideal/module eliminating the variables in the given
variable list (a subset of the variables of the current base ring). Changes tem-
porarily the term order to degrevlex.

eghull m

returns the equidimensional hull of the dpmat m.
extendedgroebfactor (m, ¢) and extendedgroebfactorl (m, c)

return for a polynomial ideal m and a list of (polynomial) constraints c a list of
results {b;, ¢;, v; }, where b; is a triangular set wrt. the variables v; and ¢; is a list
of constraints, such that Z(m, ¢) = |J Z(b;, ¢;). For the first version the output
may be not minimal. The second version decides superfluous components
already during the algorithm.

gbasis gb

returns the Grobner resp. local standard basis of gb.

getkbase gb

returns a k-vector space basis of S¢/gb, consisting of module terms, provided
gb is zerodimensional.

getleadterms gb

returns the dpmat of leading terms of a Grobner resp. local standard basis of
gb.

GradedBettinumbers gbr

extracts the list of degree lists of the free summands in a minimal resolution of
gbr.

groebfactor (m[,c])

returns for the dpmat ideal m and an optional constraint list ¢ a (reduced) list
of dpmats such that the union of their zeroes is exactly Z(m, c). Factors all
polynomials involved in the Grobner algorithms of the partial results.
HilbertSeries gb

returns the Hilbert series of gb with respect to the current ecart vector.
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homstbasis m

computes the standard basis of m by Lazard’s homogenization approach.

ideal2mat m

converts the ideal (=list of polynomials) m into a column vector.

ideal_of_minors (mat, k)

computes the generators for the ideal of k-minors of the matrix mat.

ideal_of_pfaffians (mat, k)

computes the generators for the ideal of the 2k-pfaffians of the skewsymmetric
matrix mat.

idealpower (m, n)

returns the interreduced basis of the ideal power m™ with respect to the integer
n > 0.

idealprod(ml,m2,...)

returns the interreduced basis of the ideal product m1 - m2 - ... of the ideals
ml,m2,....

idealquotient (ml,m2)

returns the ideal quotient m1 : m2 of the module m1 C S by the ideal m2.

idealsum(ml, m2, ...)

returns the interreduced basis of the ideal sum m1 +m2 + .. ..

indepvarsets gb

returns the list of strongly independent sets of gb with respect to the current
term order, see [ ] for a definition in the case of ideals and [ ] for
submodules of free modules.

initmat (m,<file name>

initializes the dpmat m together with its base ring, term order and column
degrees from a file.

interreduce m

returns the interreduced module basis given by the rows of m, i.e. a basis with
pairwise indivisible leading terms.
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isolatedprimes m

returns the list of isolated primes of the dpmat m, i.e. the isolated primes of
Ann S¢/M.

isprime gb

tests the ideal gb to be prime.

iszeroradical gb

tests the zerodimensional ideal gb to be radical.

lazystbasis m

computes the standard basis of m by the lazy algorithm, see e.g. [ 1.

listgroebfactor in
computes for the list ¢n of ideal bases a list out of Grobner bases by the Grob-
ner factorization method, such that | J,,,;,, Z(m) = Z(m).

meout

mat2list m

converts the matrix m into a list of its entries.

matappend (ml,m2, ...)

collects the rows of the dpmats m1,m2, ... to a common matrix. m1l,m2,...
must be submodules of the same free module, i.e. have equal column degrees
(and size).

mathomogenize (m, var) 18

returns the result obtained by homogenization of the rows of m with respect to
the variable var and the current ecart vector.

matintersect (ml,m2, ...)

returns the interreduced basis of the intersection m1(\m2()....

mat jac (m, <variable list>)

returns the Jacobian matrix of the ideal m with respect to the supplied variable
list

matqgquot (m, £)

returns the stable quotient m : (f)°° of the dpmat m by the polynomial f € S.

8Dehomogenize with sub (z=1,m) if z is the homogenizing variable.
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matquot (m, £)
returns the quotient m : (f) of the dpmat m by the polynomial f € S.

matstabquot (ml, id)
returns the stable quotient m1 : ¢d®° of the dpmat m1 by the ideal id.

matsum(ml, m2, ...)

returns the interreduced basis of the module sum m1 + m2 + ... in a common
free module.

minimal_generators m

returns a set of minimal generators of the dpmat m.

minors (m, b)

returns the matrix of minors of size b x b of the matrix m.

a mod m

computes the (true) normal form(s), i.e. a standard quotient representation, of
a modulo the dpmat m. a may be either a polynomial or a polynomial list
(¢ = 0) or a matrix (¢ > 0) of the correct number of columns.
modequalp (gbl, gb2)

tests, whether gbl and gb2 are equal (returns YES or NO).

modulequotient (ml,m2)

returns the module quotient m1 : m2 of two dpmats m1, m2 in a common free
module.

normalform(ml, m2)

returns a list of three dpmats {m3, r, z}, where m3 is the normalform of m1
modulo m2, z a scalar matrix of polynomial units (i.e. polynomials of degree
0 in the noetherian case and polynomials with leading term of degree O in the
tangent cone case), and r the relation matrix, such that

m3=z*ml-+r*xm2.

nzdp (£, m)

tests whether the dpoly f is a non zero divisor on coker m.
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pfaffian mat

returns the pfaffian of a skewsymmetric matrix mat.

preimage (m, map)

computes the preimage of the ideal m under the given polynomial map and
sets the current base ring to the preimage ring.

primarydecomposition m

returns the primary decomposition of the dpmat m as a list of
{component, associated prime} pairs.

proj_monomial_curve (l,vars)

l is a list of integers, vars a list of variable names of the same length as [.
The procedure sets the current base ring and returns the defining ideal of the
projective monomial curve with generic point (s?~%-¢' : i € 1) in R where
d =maz{z : z €l}.

proj_points m

m is a matrix of domain elements (in algebraic prefix form) with as many
columns as the current base ring has ring variables. This procedure returns
the defining ideal of the collection of points in projective space with ho-
mogeneous coordinates given by the rows of m. Note that m may as for
affine_points contain parameters.

radical m

returns the radical of the dpmat ideal m.

random_linear_form(vars, bound)

returns a random linear form in the variables vars with integer coefficients
less than the supplied bound.

ratpreimage (m, map)

computes the closure of the preimage of the ideal m under the given rational
map and sets the current base ring to the preimage ring.

resolve (m[,d])

returns the first d members of the minimal resolution of the bounded identifier
m as a list of matrices. If the resolution has less than d non zero members,
only those are collected. (Default: d = 100)

savemat (m, <file name>)

save the dpmat m together with the settings of it base ring, term order and
column degrees to a file.
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setgbasis m

declares the rows of the bounded identifier m to be already a Grobner resp. lo-
cal standard basis thus avoiding a possibly time consuming Grobner or stand-
ard basis computation.

sieve (m, <variable list>)

sieves out all base elements with leading terms having a factor contained in
the specified variable list (a subset of the variables of the current base ring).
Useful for elimination problems solved “by hand”.

singular_locus (M, c)

returns the defining ideal of the singular locus of Spec S/M where M is an
ideal of codimension ¢, adding to M the generators of the ideal of the c-minors
of the Jacobian of M.

submodulep (m, gb)
tests, whether m is a submodule of gb (returns YES or NO).

sym (M, vars)

Computes the symmetric algebra Sym(M ) where M is an ideal defined over
the current base ring S. vars is a list of new variable names, one for each
generator of M. They are used to create a second ring R to return an ideal
J such that (S @ R)//J is the desired symmetric algebra over the new current
base ring S & R.

symbolic_power (m, d)

returns the dth symbolic power of the prime dpmat ideal m.

syzygies m

returns the first syzygy module of the bounded identifier m.

tangentcone gb

returns the tangent cone part, i.e. the homogeneous part of highest degree with
respect to the first degree vector of the term order from the Grobner basis
elements of the dpmat gb. The term order must be a degree order.

unmixedradical m

returns the unmixed radical of the dpmat ideal m.
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varopt m

finds a heuristically optimal variable order, see [ ].
vars := varopt m; setring(vars,{},1lex); setideal(m,m);

changes to the lexicographic term order with heuristically best performance
for a lexicographic Grobner basis computation.
WeightedHilbertSeries (m, w)

returns the weighted Hilbert series of the dpmat m. Note that m is not a
bounded identifier and hence not checked to be a Grobner basis. w is a list
of integer weight vectors.

zeroprimarydecomposition m

returns the primary decomposition of the zerodimensional dpmat m as a list of
{component, associated prime} pairs.

zeroprimes m

returns the list of primes of the zerodimensional dpmat m.

zeroradical gb

returns the radical of the zerodimensional ideal gb.

zerosolve m, zerosolvel mand zerosolve2 m

Returns for a zerodimensional ideal a list of triangular systems that cover
Z(m). Zerosolve needs a pure lex. term order for the “fast” turn to lex.
as described in [ ], Zerosolvel is the “slow” turn to lex. as described in
[ ], and Zerosolve?2 incorporated the FGLM term order change into
Zerosolvel.
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name subject data type representation
cali Header module, contains | — —
global variables, switches etc.
besf Base coefficient arithmetic base coeff. standard forms
ring Base ring setting, definition of the | base ring special type RING
term order
mo monomial arithmetic monomials (exp. list . degree list)
dpoly Polynomial and vector arithmetic dpolys list of terms
bas Operations on base lists base list list of base elements
dpmat Operations on polynomial matrices, | dpmat special type DPMAT
the central data type of CALI
red Normal form algorithms — —
groeb Grobner basis algorithm and related | — —
ones
groebf the Grobner factorizer and its exten- | — —
sions
matop Operations on (lists of) | — —
dpmats  that correspond to
ideal/module operations
quot Different quotient algorithms — —
moid Monomial ideal algorithms monomial list of monomials
ideal
hf weighted Hilbert series - -
res Resolutions of dpmats resolution list of dpmats
intf Interface to algebraic mode — —
odim Algorithms for zerodimensional | — —
ideals and modules
prime Primary decomposition and related | — —
questions
scripts Advanced applications — —
calimat Extension of the matrix package — —
If The dual bases approach — —
triang (Zero dimensional) triangular sys- | — —

tems
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16.10 CAMAL: Calculations in celestial mechanics

This packages implements in REDUCE the Fourier transform procedures of the
CAMAL package for celestial mechanics.

Author: John P. Fitch.

It is generally accepted that special purpose algebraic systems are more efficient
than general purpose ones, but as machines get faster this does not matter. An
experiment has been performed to see if using the ideas of the special purpose
algebra system CAMAL(F) it is possible to make the general purpose system RE-
DUCE perform calculations in celestial mechanics as efficiently as CAMAL did
twenty years ago. To this end a prototype Fourier module is created for REDUCE,
and it is tested on some small and medium-sized problems taken from the CAMAL
test suite. The largest calculation is the determination of the Lunar Disturbing
Function to the sixth order. An assessment is made as to the progress, or lack of
it, which computer algebra has made, and how efficiently we are using modern
hardware.

16.10.1 Introduction

A number of years ago there emerged the divide between general-purpose algebra
systems and special purpose one. Here we investigate how far the improvements
in software and more predominantly hardware have enabled the general systems
to perform as well as the earlier special ones. It is similar in some respects to
the Possion program for MACSYMA [ ] which was written in response to a
similar challenge.

The particular subject for investigation is the Fourier series manipulator which had
its origins in the Cambridge University Institute for Theoretical Astronomy, and

later became the F subsystem of CAMAL [ , ]. In the late 1960s this
system was used for both the Delaunay Lunar Theory [ , ] and the Hill
Lunar Theory [ ], as well as other related calculations. Its particular area of

application had a number of peculiar operations on which the general speed de-
pended. These are outlined below in the section describing how CAMAL worked.
There have been a number of subsequent special systems for celestial mechanics,
but these tend to be restricted to the group of the originator.

The main body of the paper describes an experiment to create within the REDUCE
system a sub-system for the efficient manipulation of Fourier series. This prototype
program is then assessed against both the normal (general) REDUCE and the extant
CAMAL results. The tests are run on a number of small problems typical of those
for which CAMAL was used, and one medium-sized problem, the calculation of
the Lunar Disturbing Function. The mathematical background to this problem is
also presented for completeness. It is important as a problem as it is the first stage
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in the development of a Delaunay Lunar Theory.

The paper ends with an assessment of how close the performance of a modern
REDUCE on modern equipment is to the (almost) defunct CAMAL of eighteen
years ago.

16.10.2 How CAMAL Worked

The Cambridge Algebra System was initially written in assembler for the Titan
computer, but later was rewritten a number of times, and matured in BCPL, a ver-
sion which was ported to IBM mainframes and a number of microcomputers. In
this section a brief review of the main data structures and special algorithms is
presented.

CAMAL Data Structures

CAMAL is a hierarchical system, with the representation of polynomials being
completely independent of the representations of the angular parts.

The angular part had to represent a polynomial coefficient, either a sine or cosine
function and a linear sum of angles. In the problems for which CAMAL was
designed there are 6 angles only, and so the design restricted the number, initially
to six on the 24 bit-halfword TITAN, and later to eight angles on the 32-bit IBM
370, each with fixed names (usually u through z). All that is needed is to remember
the coefficients of the linear sum. As typical problems are perturbations, it was
reasonable to restrict the coefficients to small integers, as could be represented in a
byte with a guard bit. This allowed the representation to pack everything into four
words.

[ NextTerm, Coefficient, Angles0-3, Anglesd-7 ]

The function was coded by a single bit in the Coefficient field. This gives a
particularly compact representation. For example the Fourier term sin(u — 2v +
w — 3x) would be represented as

[ NULL, "1"|0x1, 0x017e017d, 0x00000000 ]
or
[ NULL, "1"|Ox1, 1:-2:1:-3, 0:0:0:0 ]

where "1" is a pointer to the representation of the polynomial 1. In all this rep-
resentation of the term took 48 bytes. As the complexity of a term increased the
store requirements to no grow much; the expression (7/4)ae? £ cos(u —2v +3w —
4x + 5y + 62z) also takes 48 bytes. There is a canonicalisation operation to ensure
that the leading angle is positive, and sin(0) gets removed. It should be noted that
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cos(0) is a valid and necessary representation.

The polynomial part was similarly represented, as a chain of terms with packed
exponents for a fixed number of variables. There is no particular significance in this
except that the terms were held in increasing total order, rather than the decreasing
order which is normal in general purpose systems. This had a number of important
effects on the efficiency of polynomial multiplication in the presence of a truncation
to a certain order. We will return to this point later. Full details of the representation
can be found in [ ].

The space administration system was based on explicit return rather than garbage
collection. This meant that the system was sometimes harder to write, but it did
mean that much attention was focussed on efficient reuse of space. It was possible
for the user to assist in this by marking when an expression was needed no longer,
and the compiler then arranged to recycle the space as part of the actual opera-
tion. This degree of control was another assistance in running of large problems on
relatively small machines.

Automatic Linearisation

In order to maintain Fourier series in a canonical form it is necessary to apply the
transformations for linearising products of sine and cosines. These will be familiar
to readers of the REDUCE test program as

cosfcosp = (cos(d+ ¢) + cos(d — ¢))/2, (16.35)
cosfsing = (sin(d + ¢) —sin(6 — ¢))/2, (16.36)
sinfsing = (cos(6 — ¢) — cos(0 + ¢))/2, (16.37)
cos’6 = (14 cos(260))/2, (16.38)
sin?@ = (1 —cos(26))/2. (16.39)

In CAMAL these transformations are coded directly into the multiplication rou-
tines, and no action is necessary on the part of the user to invoke them. Of course
they cannot be turned off either.

Differentiation and Integration

The differentiation of a Fourier series with respect to an angle is particularly sim-
ple. The integration of a Fourier series is a little more interesting. The terms like
cos(nu + ...) are easily integrated with respect to u, but the treatment of terms
independent of the angle would normally introduce a secular term. By convention
in Fourier series these secular terms are ignored, and the constant of integration is
taken as just the terms independent of the angle in the integrand. This is equivalent
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to the substitution rules

sin(nd) = —(1/n)cos(nb)
cos(nd) = (1/n)sin(nh)

In CAMAL these operations were coded directly, and independently of the differ-
entiation and integration of the polynomial coefficients.

Harmonic Substitution

An operation which is of great importance in Fourier operations is the harmonic
substitution. This is the substitution of the sum of some angles and a general ex-
pression for an angle. In order to preserve the format, the mechanism uses the
translations

sin(0 + A) = sin(0) cos(A) + cos(f) sin(A)
cos(f+A) = cos(f)cos(A) — sin(f) sin(A)

and then assuming that the value A is small it can be replaced by its expansion:

sin(@ + A) = sin(0){1 — A%/2! + At/41. .} +
cos(9){A — A3/31 + A%/5!. .}

cos(f+A) = cos(9){1— A%/21 + AY/4.. ) —
sin(0){A — A3/31 + A5/51..}

If a truncation is set for large powers of the polynomial variables then the series
will terminate. In CAMAL the HSUB operation took five arguments; the original
expression, the angle for which there is a substitution, the new angular part, the
expression part (A in the above), and the number of terms required.

The actual coding of the operation was not as expressed above, but by the use of
Taylor’s theorem. As has been noted above the differentiation of a harmonic series
is particularly easy.

Truncation of Series

The main use of Fourier series systems is in generating perturbation expansions,
and this implies that the calculations are performed to some degree of the small
quantities. In the original CAMAL all variables were assumed to be equally small
(arestriction removed in later versions). By maintaining polynomials in increasing
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maximum order it is possible to truncate the multiplication of two polynomials.
Assume that we are multiplying the two polynomials

A:a0+a1+a2+...
B=by+b;+by+...

If we are generating the partial answer
ai(b0+b1+b2—|—...)

then if for some j the product a;b; vanishes, then so will all products a;by for
k > j. This means that the later terms need not be generated. In the product of
l+ax+22+224+ ... +2%and 1 +y+4y?+ 4>+ ...+ 4 to atotal order of 10
instead of generating 100 term products only 55 are needed. The ordering can also
make the merging of the new terms into the answer easier.

16.10.3 Towards a CAMAL Module

For the purposes of this work it was necessary to reproduce as many of the ideas
of CAMAL as feasible within the REDUCE framework and philosophy. It was not
intended at this stage to produce a complete product, and so for simplicity a number
of compromises were made with the “no restrictions” principle in REDUCE and
the space and time efficiency of CAMAL. This section describes the basic design
decisions.

Data Structures

In a fashion similar to CAMAL a two level data representation is used. The coef-
ficients are the standard quotients of REDUCE, and their representation need not
concern us further. The angular part is similar to that of CAMAL, but the ability to
pack angle multipliers and use a single bit for the function are not readily available
in Standard LISP, so instead a longer vector is used. Two versions were written.
One used a balanced tree rather than a linear list for the Fourier terms, this being a
feature of CAMAL which was considered but never coded. The other uses a simple
linear representation for sums. The angle multipliers are held in a separate vector
in order to allow for future flexibility. This leads to a representation as a vector of
length 6 or 4;

Versionl: [ BalanceBits, Coeff, Function, Angles, LeftTree, RightTre
Version2: [ Coeff, Function, Angles, Next ]

where the Angles field is a vector of length 8, for the multipliers. It was decided
to forego packing as for portability we do not know how many to pack into a small
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integer. The tree system used is AVL, which needs 2 bits to maintain balance infor-
mation, but these are coded as a complete integer field in the vector. We can expect
the improvements implicit in a binary tree to be advantageous for large expressions,
but the additional overhead may reduce its utility for smaller expressions.

A separate vector is kept relating the position of an angle to its print name, and
on the property list of each angle the allocation of its position is kept. So long as
the user declares which variables are to be treated as angles this mechanism gives
flexibility which was lacking in CAMAL.

Linearisation

As in the CAMAL system the linearisation of products of sines and cosines is done
not by pattern matching but by direct calculation at the heart of the product func-
tion, where the transformations (1) through (3) are made in the product of terms
function. A side effect of this is that there are no simple relations which can be used
from within the Fourier multiplication, and so a full addition of partial products is
required. There is no need to apply linearisations elsewhere as a special case. Ad-
dition, differentiation and integration cannot generate such products, and where
they can occur in substitution the natural algorithm uses the internal multiplication
function anyway.

Substitution

Substitution is the main operation of Fourier series. It is useful to consider three
different cases of substitutions.

1. Angle Expression for Angle:
2. Angle Expression + Fourier Expression for Angle:

3. Fourier Expression for Polynomial Variable.

The first of these is straightforward, and does not require any further comment.
The second substitution requires a little more care, but is not significantly difficult
to implement. The method follows the algorithm used in CAMAL, using TAYLOR
series. Indeed this is the main special case for substitution.

The problem is the last case. Typically many variables used in a Fourier series
program have had a WEIGHT assigned to them. This means that substitution must
take account of any possible WEIGHTS for variables. The standard code in RE-
DUCE does this in effect by translating the expression to prefix form, and recal-
culating the value. A Fourier series has a large number of coefficients, and so this
operations are repeated rather too often. At present this is the largest problem area
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with the internal code, as will be seen in the discussion of the Disturbing Function
calculation.

16.10.4 Integration with REDUCE

The Fourier module needs to be seen as part of REDUCE rather than as a separate
language. This can be seen as having internal and external parts.

Internal Interface

The Fourier expressions need to co-exist with the normal REDUCE syntax and
semantics. The prototype version does this by (ab)using the module method, based
in part on the TPS code [ ]. Of course Fourier series are not constant, and so
are not really domain elements. However by asserting that Fourier series form a
ring of constants REDUCE can arrange to direct basic operations to the Fourier
code for addition, subtraction, multiplication and the like.

The main interface which needs to be provided is a simplification function for
Fourier expressions. This needs to provide compilation for linear sums of angles,
as well as constructing sine and cosine functions, and creating canonical forms.

User Interface

The creation of HDIFF and HINT functions for differentiation disguises this. An
unsatisfactory aspect of the interface is that the tokens SIN and COS are already in
use. The prototype uses the operator form

fourier sin (u)

to introduce harmonically represented sine functions. An alternative of using the
tokens F_SIN and F__COS is also available.

It is necessary to declare the names of the angles, which is achieved with the dec-
laration

harmonic theta, phi;

At present there is no protection against using a variable as both an angle and a
polynomial varaible. This will nooed to be done in a user-oriented version.
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16.10.5 The Simple Experiments

The REDUCE test file contains a simple example of a Fourier calculation, deter-
mining the value of (a; cos(wt) + ag cos(3wt) + by sin(wt) + bz sin(3wt))3. For
the purposes of this system this is too trivial to do more than confirm the correct
answers.

The simplest non-trivial calculation for a Fourier series manipulator is to solve
Kepler’s equation for the eccentric anomoly E in terms of the mean anomoly u,
and the eccentricity of an orbit e, considered as a small quantity

EF=u+esinFk

The solution procedes by repeated approximation. Clearly the initial approxima-
tion is Fy = u. The n'" approximation can be written as v + A,,, and so A,, can
be calculated by

Ap =esin(u+ Ag_1)

This is of course precisely the case for which the HSUB operation is designed, and
so in order to calculate F,, — u all one requires is the code

bige := fourier 0;
for k:=1:n do <<
wtlevel k;
bige:=fourier e x hsub(fourier(sin u), u, u,
>>;
write "Kepler Egn solution:", bige$

It is possible to create a regular REDUCE program to simulate this (as is done for
example in Barton and Fitch[ ], page 254). Comparing these two programs
indicates substantial advantages to the Fourier module, as could be expected.

k);



336 CHAPTER 16. USER CONTRIBUTED PACKAGES

Solving Kepler’s Equation
Order | REDUCE Fourier Module

5 9.16 248
6 17.40 4.56
7 33.48 8.06
8 62.76 13.54

9 116.06 21.84
10 | 212.12 34.54
11 381.78 53.94
12| 692.56 82.96
13 1247.54 125.86
14 | 2298.08 187.20
15 | 4176.04 275.60
16 | 7504.80 398.62
17 13459.80  569.26

18 oAk 800.00
19 o 1116.92
20 | HE 1536.40

These results were with the linear representation of Fourier series. The tree rep-
resentation was slightly slower. The ten-fold speed-up for the 13th order is most
satisfactory.

16.10.6 A Medium-Sized Problem

Fourier series manipulators are primarily designed for large-scale calculations, but
for the demonstration purposes of this project a medium problem is considered.
The first stage in calculating the orbit of the Moon using the Delaunay theory (of
perturbed elliptic motion for the restricted 3-body problem) is to calculate the en-
ergy of the Moon’s motion about the Earth — the Hamiltonian of the system. This
is the calculation we use for comparisons.

Mathematical Background

The full calculation is described in detail in [ ], but a brief description is given
here for completeness, and to grasp the extent of the calculation.
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Referring to the figure 1 which gives the cordinate system, the basic equations are

S = (1=)cos(f+g+h—f —g —W)+~cos(f +g—h+ [ + {16.40)

r = a(l —ecosE) (16.41)
[l = FE—esinkE (16.42)
rdFE
= 16.43
a a ( )
2d
rdlf — Q21— ) (16.44)

/

R = m’;iff: {(2)2 <;":>2P2(S) + (%) (2)3 <Z>3P3(S) +} (16.45)

There are similar equations to (7) to (10) for the quantities 7/, @/, €/, I’, E' and f’
which refer to the position of the Sun rather than the Moon. The problem is to
calculate the expression R as an expansion in terms of the quantities e, €/, v, a/d’,
l,g,h,U', g and h'. The first three quantities are small quantities of the first order,
and a/d’ is of second order.

The steps required are

1. Solve the Kepler equation (8)

2. Substiture into (7) to give 7 /a in terms of e and .
3. Calculate a/r from (9) and f from (10)

4. Substitute for f and f’ into S using (6)

5. Calculate R from S, o’ /r" and /a

The program is given in the Appendix.

Results

The Lunar Disturbing function was calculated by a direct coding of the previous
sections’ mathematics. The program was taken from Barton and Fitch [ ] with
just small changes to generalise it for any order, and to make it acceptable for
Reduce3.4. The Fourier program followed the same pattern, but obviously used
the HSUB operation as appropriate and the harmonic integration. It is very similar
to the CAMAL program in [ ].

The disturbing function was calculated to orders 2, 4 and 6 using Cambridge LISP
on an HLH Orion 1/05 (Intergraph Clipper), with the three programs «) Reduce3.4,
B) Reduce3.4 + Camal Linear Module and ) Reduce3.4 + Camal AVL Module.
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The timings for CPU seconds (excluding garbage collection time) are summarised
the following table:

Order of DDF || Reduce | Camal Linear | Camal Tree
2 23.68 11.22 12.9
4 42944 | 213.56 260.64
6 >7500 | 3084.62 3445.54

If these numbers are normalised so REDUCE calculating the DDF is 100 units for
each order the table becomes

Order of DDF || Reduce | Camal Linear | Camal Tree
2 100 47.38 54.48
4 100 49.73 60.69
6 100 <41.13 <45.94

From this we conclude that a doubling of speed is about correct, and although the
balanced tree system is slower as the problem size increases the gap between it and
the simpler linear system is narrowing.

It is disappointing that the ratio is not better, nor the absolute time less. It is worth
noting in this context that Jefferys claimed that the sixth order DDF took 30s on
a CDC6600 with TRIGMAN in 1970 [ ], and Barton and Fitch took about
1s for the second order DDF on TITAN with CAMAL [ ]. A closer look at
the relative times for individual sections of the program shows that the substitution
case of replacing a polynomial variable by a Fourier series is only marginally faster
than the simple REDUCE program. In the DDF program this operation is only used
once in a major form, substituting into the Legendre polynomials, which have been
previously calculated by Rodrigues formula. This suggests that we replace this
with the recurrence relationship.

Making this change actually slows down the normal REDUCE by a small amount
but makes a significant change to the Fourier module; it reduces the run time for
the 6th order DDF from 3084.62s to 2002.02s. This gives some indication of the
problems with benchmarks. What is clear is that the current implementation of
substitution of a Fourier series for a polynomial variable is inadequate.

16.10.7 Conclusion

The Fourier module is far from complete. The operations necessary for the solution
of Duffing’s and Hill’s equations are not yet written, although they should not
cause much problem. The main defficiency is the treatment of series truncation;
at present it relies on the REDUCE WTLEVEL mechanism, and this seems too
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coarse for efficient truncation. It would be possible to re-write the polynomial
manipulator as well, while retaining the REDUCE syntax, but that seems rather
more than one would hope.

The real failure so far is the large time lag between the REDUCE-based system on a
modern workstation against a mainframe of 25 years ago running a special system.
The CAMAL Disturbing function program could calculate the tenth order with a
maximum of 32K words (about 192Kbytes) whereas this system failed to calculate
the eigth order in 4Mbytes (taking 2000s before failing). I have in my archives
the output from the standard CAMAL test suite, which includes a sixth order DDF
on an IBM 370/165 run on 2 June 1978, taking 22.50s and using a maximum of
15459 words of memory for heap — or about 62Kbytes. A rough estimate is that
the Orion 1/05 is comparable in speed to the 360/165, but with more real memory
and virtual memory.

However, a simple Fourier manipulator has been created for REDUCE which per-
forms between twice and three times the speed of REDUCE using pattern match-
ing. It has been shown that this system is capable of performing the calculations of
celestial mechanics, but it still seriously lags behind the efficiency of the specialist
systems of twenty years before. It is perhaps fortunate that it was not been possible
to compare it with a modern specialist system.

There is still work to do to provide a convenient user interface, but it is intended to
develop the system in this direction. It would be pleasant to have again a system of
the efficiency of CAMAL(F).

I would like to thank Codemist Ltd for the provision of computing resources for
this project, and David Barton who taught be so much about Fourier series and
celstial mechanics. Thank are also due to the National Health Service, without
whom this work and paper could not have been produced.

Appendix: The DDF Function

array p(n/2+2);
harmonic u,v,w,x,V, Z;
weight e=1, b=1, d=1, a=1;

%% Generate Legendre Polynomials to sufficient order
for i:=2:n/2+2 do <<

p(i):=(h*xh-1)"1i;

for j:=1:1 do p(i):=df(p(i),h)/(27)

3%%%%%5%5%%%%%%%%% Stepl: Solve Kepler equation
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for k:=1:n do <<

wtlevel k;

bige:=fourier e *x hsub (fourier(sin u), u, u, bige, k);
>>;

%% Ensure we do not calculate things of too high an order
wtlevel nj;

$%%5%%%%%%%%%%%%% Step 2: Calculate r/a in terms of e and 1
dd:=-e*e; hh:=3/2; j:=1; cc := 1;

j:=1%7J; hh:=hh-1; cc:=cc+hh* (dd"i)/j
>>;
bb:=hsub (fourier(l-excos u), u, u, bige, n);
aa:=fourier 1l+hdiff (bige,u); ff:=hint (aaxaaxfourier cc,u);

$%%%%%%%%%%%%%%% Step 3: a/r and £

(bb,u,v); uu:=hsub(uu,e,b);
(aa,u,v); vv:=hsub(vv,e,b);
(ff,u,v); ww:=hsub (ww,e,b);

$%%5%%5%%5%%%%%%%%% Step 4: Substitute f and f’ into S

yy:=ff-ww; zz:=ff+ww;

xx:=hsub (fourier ( (1-dxd) *cos (u)),u, u-v+w—-x-y+z,yy,n) +
hsub (fourier (dxd*cos (v)),Vv,utvtwtx+y-z,zz,n);

$%5%5%5%5%5%5%5%5%5%5%%%%% Step 5: Calculate R

on fourier;
for i := 2:n/2+2 do <<
wtlevel n+4-2i; p(i) := hsub(p(i), h, xx) >>;

wtlevel nj;
for i:=n/2+2 step -1 until 3 do

p(n/2+2) :=fourier (a*a) *zz*xp(n/2+2)+p(i-1);
yy*p (n/2+2);
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16.11 CANTENS: A Package for Manipulations and Sim-
plifications of Indexed Objects

This package creates an environment which allows the user to manipulate and sim-
plify expressions containing various indexed objects like tensors, spinors, fields
and quantum fields.

Author: Hubert Caprasse.

16.11.1 Introduction

CANTENS is a package that creates an environment inside REDUCE which allows
the user to manipulate and simplify expressions containing various indexed objects
like tensors, spinors, fields and quantum fields. Briefly said, it allows him

- to define generic indexed quantities which can eventually depend implicitly
or explicitly on any number of variables;

- to define one or several affine or metric (sub-)spaces, and to work within
them without difficulty;

- to handle dummy indices and simplify adequatly expressions which contain
them.

Beside the above features, it offers the user:

1. Several invariant elementary tensors which are always used in the applica-
tions involving the use of indexed objects like delta, epsilon, eta
and the generalized delta function.

2. The possibility to define any metric and to make it bloc-diagonal if he wishes
to.

3. The capability to symmetrize or antisymmetrize any expression.

4. The possibility to introduce any kind of symmetry (even partial symmetries)
for the indexed objects.

5. The choice to work with commutative, non-commutative or anticommutative
indexed objects.

In this package, one cannot find algorithms or even specific objects (i.e. like the
covariant derivative or the SU(3) group structure constants) which are of used either
in nuclear and particle physics. The objective of the package is simply to allow the
user to easily formulate his