
SeisComP3/ArcLink Release Notes

GFZ Potsdam

June 22, 2010

Contents

1 Important ArcLink changes since last release (2009.145) 3

2 Installation and Configuration 4
2.1 Requirements 4
2.2 Compiling the package from source 4
2.3 Quick Installation Procedure 5
2.4 Theseiscomp Utility . 5

2.4.1 Initializing Global Parameters 6
2.4.2 Defining ArcLink Profile 9

3 ArcLink Utilities 10
3.1 arclinktool . 10
3.2 arclink fetch . 11
3.3 dump db andfill db . 13
3.4 sync db . 13
3.5 sync dlsv . 13
3.6 sync nettab . 13

4 Quality Control Tool 15
4.1 Synopsis 15
4.2 Description 15
4.3 Configuration 16

4.3.1 Command Line Options .. . 16
4.3.2 Configuration File 17

4.4 Examples .. . 19
4.4.1 realtime mode .. . 19
4.4.2 archive mode .. 19

5 Technical description of ArcLink 20
5.1 Request Format 20

5.1.1 WAVEFORM request .. 20
5.1.2 RESPONSE request .. 21
5.1.3 INVENTORY request .. 21
5.1.4 ROUTING request .. 22
5.1.5 QC request .22

5.2 Client Protocol 22
5.3 Request Handler Protocol 23
5.4 ArcLink Configuration File 24
5.5 SDS definition 25

2

1 Important ArcLink changes since last release (2009.145)

• New XML and database schema:

– QuakeML-style attribute names (eg., decimationFactor instead of decifac);

– supporting full response (incl. polynomial) of non-seismic sensors;

– independent response (eg., poles and zeros) of each component;

– independent coordinates of each sensor (supporting arrayswith multiple location codes);

– allowing ownership of individual stations instead of wholenetworks (eg., station.archive=”GFZ”);

– ’private’ stations (station.shared=”false”);

– extended routing (down to data streams).

• Software improvements:

– allowing multiple datacenters (routing entries) per station;

– re-routing individual time windows in case of NODATA (supported by arclinkfetch);

– logging into database (replacement of reqtrack directory structure);

3

2 Installation and Configuration

2.1 Requirements

SeisComP 3.0 binary packages are provided for some common Linux distributions. It is strongly
recommended to perform online update of the operating system before starting with SeisComP
installation.

SeisComP 3.0 requires several common Linux software packages for its operation. Using 32-bit
openSUSE 10.3 as an example, these packages can be installedas follows:

• Log in as root.

• Add repositories:

zypper ar ftp://ftp.gwdg.de/pub/opensuse/distribution /10.3/repo/oss oss

zypper ar ftp://ftp.gwdg.de/pub/opensuse/distribution /10.3/repo/non-oss

non-oss

• Install required packages:

zypper install boost festival fftw3 libmysqlclient15 libq t4 libqt4-x11

libxml2 mysql mysql-client ncurses postgresql-libs pytho n python-numeric

python-xml rlog SDL_mixer apache2 apache2-mod_python

• For better performance, add the following lines to /etc/my.cnf:

innodb_buffer_pool_size = 64M

innodb_flush_log_at_trx_commit = 2

• Start MySQL:

rcmysql start

insserv mysql

• Optionally, set MySQL root password:

mysqladmin -u root password <YOUR PASSWORD>

2.2 Compiling the package from source

• Install C/C++ and Python development selections and the above packages with ”-devel” suffix if
available.

• Install cmake.

• Type ”make -f Makefile.cmake” in the source directory.

• Type ”c” (configure) several time until ”g” (generate) appears. Change options if needed.

• Type ”g” (generate).

• Go to ”build” subdirectory and type ”make install”

4

2.3 Quick Installation Procedure

• SeisComP3/ArcLink binary package is distributed in form ofa tar file, which must be unpacked in
the home directory of the user that is running SeisComp:

cd

tar xvzf seiscomp3-arclink-suse10.3-32-2008.330.tar.g z

• Change to theseiscomp3 directory and call./setup . This adds some scripts to the user’s˜/bin

directory and optionally creates the database.

• Import your dataless volume (warning “cannot find sensor1” can be ignored):

import_dlsv -p ’arclink:default’ dataless_file

• Call seiscomp config and initialize global parameters as explained in 2.4.1.

• Define arclink profile as explained in section 2.4.2.

• Choose ”write configuration”. This creates configurations files for various modules and writes
metadata into the database (warning “missing orientation”can be ignored).

• “Synchronize” your dataless volumes. This adds full responses into the database:

sync_dlsv II.dataless

• Call seiscomp start to start SeisComP.

• Install crontab using

seiscomp print_crontab | crontab -

2.4 Theseiscomp Utility

When called without arguments,seiscomp prints a short usage message and exits. In addition, the
following forms of the command are recognized:

seiscomp start starts all packages. It is harmless to use the “start” optionwhen SeisComP is
already running. Lockfiles are used to ensure that superfluous program instances are not started.

seiscomp stop stops all packages.

seiscomp check re-starts packages, which have been started byseiscomp start , but are not
running (eg., crashed). When called from crontab, it provides a “watchdog” function.

seiscomp print crontab shows recommended crontab. This crontab should be installed with the
crontab utility.

seiscomp config starts configuration dialog.

start , stop , check andprint crontab can be optionally followed by the list of packages.
In this case, the command applies only to given packages. Most of the work behind these commands is
done by scripts that are located inpkg directory.

5

2.4.1 Initializing Global Parameters

When seiscomp config is called the first time, the global parameters of all installed packages
are initialized; after that the main menu shown on figure 1 is displayed. During subsequent calls of
seiscomp config , the main menu is displayed immediately and global parameters can be changed
with option “G”.

G) Edit global parameters

A) Add/Edit network

R) Remove network

P) Add/Edit configuration profile

W) Write configuration and quit

Q) Quit without writing configuration

Command? [A]:

Figure 1: Main Menu

During configuration dialogs, the current value is shown in square brackets:

Location code [00]:

Typing Enter will select the default value. Underscore can be used to enter an empty string, eg.:

Location code [00]:_ Enter

The following global parameters are applicable to all packages:

Name of Data Center:

This will be used in full SEED volumes, shown by SeedLink HELLO request (slinktool -P

server:18000), etc. Arbitrary ASCII string.

Path to waveform archive:

Directory where real-time data can be found (normally written by slarchive).

Use syslog when supported [no]:

Some packages can send log messages to syslog. If you select “yes”, log messages from these
packages will appear in/var/log/messages instead of the package log directory. In this case,
the operating system will take care of removing old messagesto keep the log file from growing
infinitely. Using a separate log file, such as/var/log/seiscomp is also possible.

The following global parameters are applicable totrunk.

Agency ID:

Unique agency ID (short string without spaces) to identify the source of earthquake detections and
other metadata objects (eg., picks).

Datacenter ID:

Unique datacenter ID (short string without spaces) to identify the authority of station metadata. Any
stations added locally (eg, using importdlsv and syncdlsv) are labeled with this ID.

6

Prefix of event ID:

Prefix of event ID eg., “gfz” in “gfz2008fght”.

Client list [scevent scmag scamp scautopick scautoloc scqc]:

List of processing modules (clients) to start.

Log level [2]:

Log level of processing modules.

Enable local master [yes]:

Start local master client. Required, unless master is running on a remote machine (distributed
SeisComP3 installation).

Address of master [localhost:4805]:

The current version is using port 4805 by default, so it can run in parallel to the previous version
(using port 4803).

Database type [mysql]:

Type of DB used for storing station metadata and event information. Plugins for MySQL,
PostgreSQL and possibly other database types are available.

Database read connection [sysop:sysop@localhost/seisco mp3n]:

Read connection to database in form of user:password@host/databasename. In case remote modules
connect to the DB, using full host name is recommended. The current version is using ’seiscomp3n’
as the database name, so it can run in parallel to the previousversion (using database ’seiscomp3’).

Database write connection (only applicable to local master)

[sysop:sysop@localhost/seiscomp3n]:

Write connection to database.

Recordstream service [slink]:

Type of recordstream used by the processing modules to get realtime data. Can be ’slink’ for
SeedLink, ’arclink’ for ArcLink or ’combined’ for SeedLink/ArcLink combined. (Other types of
recordstreams like ’sdsarchive’ are supported for offline data; those should not be used here.)

Recordstream source [localhost:18000]:

Source of the above recordstream.

Update inventory (set to ’no’ if using sync dlsv) [no]:

Set to ’no’ if you use dataless SEED as inventory source rather than keyfiles.

Run scqc as a daily cronjob [no]:

Set to ’yes’ if you want to let scqc to process you data files once per day as a cron job rather than
running scqc as a realtime SC3 client.

The following global parameters are applicable toacquisition.

7

Enable local SeedLink [no]:

Set to “yes” if acquiring data in real-time.

Enable slarchive [yes]:

If you answer “yes”, then data will be saved toarchive directory underacquisition , structured
according toSeisComP data structure(SDS). Unless you want to configure a hub or processing
system that does not save data locally, answer “yes”. Note, however, that archiving a large number
of stations requires good harddisk performance.

Enable real-time simulation [no]:

If you set this to “yes”, then the local SeedLink will not connect to a real data source, but rather waits
for pre-recorded data from the playback utility. This mode is used for demo playbacks and testing.

The following global parameters are applicable toarclink.

Enable local ArcLink [yes]:

Whether ArcLink should be enabled.

Master ArcLink node for DB synchronization [webdc.eu:1800 1]:

If you want to enable ArcLink database syncronization, enter an address of a node contaning
complete database. A cron job will be installed to retrieve database updates daily. This feature
can be disabled by entering an empty value using.

Time of DB synchronization [04:33]:

Time when daily DB synchronization runs. The default value is randomly generated.

Maximum size of data product (MB) [500]:

Maximum size of ArcLink data product. Set this to prevent users filling up your disk space by
accidentally requesting too much data.

ArcLink admin password:

The special ArcLink user ’admin’ can check status of all requests. In this case a password is required.

The following global parameters are applicable todiskmon.

Disk usage treshold in per cent [95]:

Each time when disk usage exceeds this level, the users are alerted via e-mail once. Note that disk
usage is only checked when SeisComP cron job is installed orseiscomp check is called regularly
by other means.

List of e-mail addresses to notify:

Space-separated list of e-mail addresses to notify when disk usage treshold is exceeded.

8

2.4.2 Defining ArcLink Profile

Profile is a set of station parameters, which is shared by one or more stations. In order to create a profile,
choose “P” from the main menu. Now select a package for which you want to create a profile. Thereafter
select the name of profile. You can edit an existing profile or create a new one.

Parameters of various packages are described in SeisComp 3.0 documentation. Unless you are
running local acquisition or processing, onlyarclink profile is mandatory.

The following parameters can be set inarclink profile:

Public SeedLink servers (comma separated, decreasing prio rity)

[geofon.gfz-potsdam.de:18000]:

Public SeedLink servers for routing database. More than oneserver can be entered.

Public ArcLink servers (comma separated, decreasing prior ity)

[webdc.eu:18002]:

Public ArcLink servers for routing database. Addyour server first (this entry is only applicable to
locally added stations), followed by any backup servers that archiveyour data, for example:
eida.rm.ingv.it:18002,webdc.eu:18002,bhlsa03.knmi.n l:18002

If an address is valid only for a specific network, station, stream or location then those can be added
in parentheses (not recommended unless necessary), for example:
eida.rm.ingv.it:18002,webdc.eu:18002(MN),bhlsa03.kn mi.nl:18002(* ,,BH * ,)

Note: when using “*”, multiple routing entries are generated, eg., (* ,,BH * ,) , generates BH*
routing entries for each locally added network, while(,,BH * ,) generates default BH* entries that
matchany network. addr:port is equivalent toaddr:port(*) (eg., single routing entry for
each locally added network).

Users allowed to access the data via ArcLink (leave empty if n o

restrictions):

If the given profile is associated with restricted stations,enter the ArcLink usernames (e-mail
addresses) of the authorized users here.

9

3 ArcLink Utilities

3.1 arclinktool

arclinktool is a simple client for testing ArcLink servers. It is possible to send all types of requests
directly to a specified server. Routing is not supported.

Samplearclinktool usage is shown below.

• Check ifarclinktool works.

> arclinktool -h

Usage: arclinktool.py -u user [-i institution] [-o file] {- r|-s|-d|-p} host:port

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

-u USER, --user=USER user’s e-mail address

-i INST, --institution=INST

user’s institution

-o OUTF, --output-file=OUTF

file where downloaded data is written

-c DECOMP, --decompress=DECOMP

compression type for decompression

-r REQUEST_FILE, --submit=REQUEST_FILE

submit request

-s STATUS_ID, --status=STATUS_ID

check status

-d DOWNLOAD_ID, --download=DOWNLOAD_ID

download product

-p PURGE_ID, --purge=PURGE_ID

delete product from the server

• Now write a request file containing, eg.

REQUEST WAVEFORM format=MSEED

2008,06,04,06,00,00 2008,06,04,06,10,00 GE CART BHZ .

2008,06,04,06,00,00 2008,06,04,06,10,00 GE MAHO BHZ .

END

• Submit the request to the ArcLink server.

> arclinktool -u andres -r req.txt localhost:18001

Connected to ArcLink v0.4 (2006.276) at GITEWS

Request successfully submitted

Request ID: 91

• Check the status.

10

> arclinktool -u andres -s 91 localhost:18001

Connected to ArcLink v0.4 (2006.276) at GITEWS

Request ID: 91, Type: WAVEFORM, Args: format=MSEED

Status: READY, Size: 37376, Info:

Volume ID: local, Status: OK, Size: 37376, Info:

Request: 2008,06,04,06,00,00 2008,06,04,06,10,00 GE CAR T BHZ .

Status: OK, Size: 18432, Info:

Request: 2008,06,04,06,00,00 2008,06,04,06,10,00 GE MAH O BHZ .

Status: OK, Size: 18944, Info:

• Download data.

> arclinktool -u andres -d 91 -o data.mseed localhost:18001

Connected to ArcLink v0.4 (2006.276) at GITEWS

Download successful

• Delete request from server.

> arclinktool -u andres -p 91 localhost:18001

Connected to ArcLink v0.4 (2006.276) at GITEWS

Product successfully deleted

3.2 arclink fetch

arclink fetch is a more sophisticated client that can be used to get data with a single command. It
performs routing automatically.

Samplearclink fetch usage is shown below.

> arclink_fetch -h

Usage: arclink_fetch.py [-a host:port] [-f format] [-k kin d] [-g] [-v] [-q] -u user

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

-a ADDRESS, --address=ADDRESS

address of primary ArcLink node (default

webdc.eu:18001)

-f REQUEST_FORMAT, --request-format=REQUEST_FORMAT

request format: breqfast, native (default native)

-k DATA_FORMAT, --data-format=DATA_FORMAT

data format: mseed, mseed4k, fseed, dseed,

inv[entory]

(default mseed)

-g, --rebuild-volume rebuild SEED volume (default False)

-v increase verbosity level

-q decrease verbosity level

-u USER, --user=USER user’s e-mail address

11

-o OUTPUT_FILE, --output-file=OUTPUT_FILE

file where downloaded data is written

> cat req.txt

2010,02,18,12,00,00 2010,02,18,12,10,00 GE WLF BH *
2010,02,18,12,00,00 2010,02,18,12,10,00 GE VSU BH *

> arclink_fetch -a st55:18002 -k fseed -g -u andres@gfz-pot sdam.de \

-o req.mseed -v req.txt

requesting inventory from st55:18002

requesting routing from st55:18002

launching request thread (st55:18002)

st55:18002: request 41 ready

launching request thread (st14:18002)

st14:18002: request 39 ready

the following data requests were sent:

GFTEST55

Request ID: 41, Label: , Type: WAVEFORM, Args: compression= bzip2

format=MSEED

Status: READY, Size: 37137, Info:

Volume ID: GFTEST, Status: OK, Size: 37137, Info:

Request: 2010,2,18,12,0,0 2010,2,18,12,10,0 GE WLF BHN .

Status: OK, Size: 15360, Info:

Request: 2010,2,18,12,0,0 2010,2,18,12,10,0 GE WLF BHE .

Status: OK, Size: 15360, Info:

Request: 2010,2,18,12,0,0 2010,2,18,12,10,0 GE WLF BHZ .

Status: OK, Size: 15872, Info:

Request: 2010,2,18,12,0,0 2010,2,18,12,10,0 GE VSU BHN .

Status: NODATA, Size: 0, Info:

Request: 2010,2,18,12,0,0 2010,2,18,12,10,0 GE VSU BHZ .

Status: NODATA, Size: 0, Info:

Request: 2010,2,18,12,0,0 2010,2,18,12,10,0 GE VSU BHE .

Status: NODATA, Size: 0, Info:

GFTEST

Request ID: 39, Label: , Type: WAVEFORM, Args: compression= bzip2

format=MSEED

Status: READY, Size: 46269, Info:

Volume ID: GFTEST, Status: OK, Size: 46269, Info:

Request: 2010,2,18,12,0,0 2010,2,18,12,10,0 GE VSU BHN .

Status: OK, Size: 17408, Info:

Request: 2010,2,18,12,0,0 2010,2,18,12,10,0 GE VSU BHZ .

Status: OK, Size: 16896, Info:

Request: 2010,2,18,12,0,0 2010,2,18,12,10,0 GE VSU BHE .

Status: OK, Size: 17408, Info:

12

rebuilding SEED volume

Note that part of the request was routed to secondary server after the primary server returned
NODATA.

3.3 dump db and fill db

dump db andfill db can be used to dump the inventory database in XML format and load an XML
file into the database. Standard SeisComP3 configuration files are used, therefore not many command-
line parameters are needed. Here is example usage:

dump_db inventory.xml

fill_db inventory.xml

It is recommended to usesync dlsv or sync nettab instead offill db .
The tools support all standard SeisComp3 command-line options, as illustrated by figure 2.

3.4 sync db

sync db is similar tofill db , except it requests data from a remote ArcLink server instead of reading
an XML file. sync db also transfers routing information and it can optionally work in incremental
mode, transferring only changes (using lastmodified) rather complete database.

When doing full sync, objects that no longer exist in source database will be removed also from the
target DB. This is not possible in incremental mode.

3.5 sync dlsv

sync dlsv imports metadata from a SEED dataless volume into the database. Example:

sync_dlsv -v II.dataless

3.6 sync nettab

sync nettab is similar tosync dlsv , but uses the “nettab” format.

13

> fill_db -h

Generic:

-h [--help] produce help message

-V [--version] show version information

--crash-handler arg path to crash handler script

-D [--daemon] run as daemon

Verbose:

--verbosity arg verbosity level [0..4]

-v [--v] increase verbosity level (may be repeated, eg. -vv)

-q [--quiet] quiet mode: no logging output

--component arg limits the logging to a certain component. t his option

can be given more than once

-s [--syslog] use syslog

-l [--lockfile] arg path to lock file

--console arg (=1) send log output to stdout

--debug debug mode: --verbosity=4 --console

Messaging:

-u [--user] arg (=fill_db) client name used when connecting

to the messaging

-H [--host] arg (=localhost) messaging host (host[:port])

-t [--timeout] arg (=3) connection timeout in seconds

-g [--primary-group] arg (=LISTENER_GROUP) the primary me ssage group of the

client

-S [--subscribe-group] arg a group to subscribe to. this

option can be given more than

once

--encoding arg (=binary) sets the message encoding

(binary or xml)

Database:

--db-driver-list list all supported database drivers

-d [--database] arg the database connection string, format :

service://user:pwd@host/database

--config-module arg (=trunk) the configmodule to use

ArcLink:

--use-sc3db arg (=1) use SC3 messaging/database

--db-url arg database URL (sqlobject only)

--arclink arg public arclink address for routing

--seedlink arg public seedlink address for routing

Figure 2:fill db help message

14

4 Quality Control Tool

4.1 Synopsis

scqc -[hVDvqs] [--help] [--version] [--crash-handler arg]

[--daemon] [--verbosity arg] [--v] [--quiet]
[--component arg] [--syslog] [-l | --lockfile arg]

[--console arg] [--debug] [-u | --user arg]

[-H |--host arg] [-t | --timeout arg]
[-g | --primary-group arg] [-S |--subscribe-group arg]

[--encoding arg] [--db-driver-list]
[-d | --database arg] [--config-module arg]

[--record-driver-list] [-I | --record-url arg]

[--record-file arg] [--record-type arg] [--archive]
[--auto-time | --begin-time arg] [--end-time arg]

[--stream-mask arg]

4.2 Description

scqc determines quality control parameters of seismic data, which may be stored in the database
and/or displayed by an application. The program receives input (through the seiscomp3 API) either
from realtime data streams or from archived data files. The output parameters are time averaged quality
control (QC) parameters in terms of waveform quality messages. In regular intervals this messages are
sent containing the short term average representation of the specific QC parameter for a given time span.
When defined, alert messages are generated if the short term average (e.g. 90s) of a QC parameter differs
from the long term average (e.g. 3600s) more than a defined threshold. To avoid peak load, QC messages
are send time distributed.

scqc currently can be set up to derive the following parameters from seismic data:

• Delay [s]: Time difference between arrival time and last record end time plus half record length. This
parameter represents the meandata latency, valid for all samples in a record. [realtime mode only]

• Latency [s]: Time difference between current time and record arrival time(feed latency). [realtime
mode only]

• Offset [counts]: Averaged value of all samples of a record.

• RMS [counts]: Offset corrected root mean square (RMS) valueof a record.

• Spike (interval [s], amplitude [counts]): In case of the occurrence of a spike in a record this parameter
delivers the interval time between adjacent spikes and the mean amplitude of the spike. Note: the
spike finder algorithm is still preliminary.

• Gap (interval [s], length [s]): In case of a data gap between two consecutive records this parameter
delivers the gap interval time and the mean length of the gap.

• Timing [%]: miniseed record timing quality (0 - 100 %)

QC parameters are determined record by record and then the averaged over the configured time span.

15

4.3 Configuration

There are two modes of operation:

realtime mode: Receive seismic realtime data through seiscomp3 recordstream interface. Supported
recordstream: slink (connect to seedlink server)
In this mode,scqc is running as a daemon proccess, constantly processing incoming realtime data,
until stopped by user interaction.

archive mode: Process a timewindow of archived seismic data through seiscomp3 recordstream
interface. Supported recordstreams: slink, arclink, file,sdsarchive, isoarchive
In this modescqc terminates after completing the given timewindow. The program could be started
periodically by crontab, e.g. .

scqc supports commandline options as well as configuration files (scqc.cfg). Commandline
options are the default application options plus some archive processing specific additions. The users
configuration file has to be placed under$HOME/.seiscomp3/ .

4.3.1 Command Line Options

Generic:

-h [--help] produce help message
-V [--version] show version information

--crash-handler arg path to crash handler script
-D [--daemon] run as daemon

Verbose:
--verbosity arg verbosity level [0..4]

-v [--v] increase verbosity level (may be repeated, eg. -vv)
-q [--quiet] quiet mode: no logging output

--component arg limits the logging to a certain component.
This option can be given more than once

-s [--syslog] use syslog

-l [--lockfile] arg path to lock file
--console arg (=0) send log output to stdout

--debug debug mode: --verbosity=4 --console

Messaging:

-u [--user] arg (=scqc) client name used when connecting
to the messaging

-H [--host] arg (=localhost) messaging host (host[:port])
(default port = 4803)

-t [--timeout] arg (=3) connection timeout in seconds

-g [--primary-group] arg (=QC) the primary message group of the client
-S [--subscribe-group] arg a group to subscribe to. This

option can be given more than once
--encoding arg (=binary) sets the message encoding (binary or xml)

Database:
--db-driver-list list all supported database drivers

-d [--database] arg (=mysql://sysop:sysop@localhost/se iscomp3)
the database connection string,

16

format: service://user:pwd@host/database

--config-module arg (=trunk) the config module to use

Records:

--record-driver-list list all supported record stream dri vers
-I [--record-url] arg (=slink://localhost:18000)

the recordstream source URL, format:
[service://]location[#type]

[slink://server:18000]

[arclink://server:18001]
[combined://server:18000;server:18001]

--record-file arg specify a file as recordsource
--record-type arg specify a type for the records being read

Archive-Processing:
--archive Processing of archived data.

--auto-time Automatic determination of start time for each stream
from last db entries.

end-time is set to future.

--begin-time arg Begin time of record acquisition.
[e.g.: "2008-11-11 10:33:50"]

--end-time arg End time of record acquisition. If unset, cur rent Time
is used.

--stream-mask arg Use this regexp for stream selection.
[e.g. "ˆGE. * BHZ$"]

4.3.2 Configuration File

Example of ascqc.cfg file that must be placed in$HOME/.seiscomp3/ for beeing recognized:

Send to the QC group
connection.primarygroup = QC

Receive objects from CONFIG group
connection.subscriptions = CONFIG

ID of the creator

CreatorId="smi://de.gfz-potsdam/QcTool_0.2.2"

use only configured streams (z-component) (True/False)

(trunk/keyfiles)
useConfiguredStreams = True

if useConfiguredStreams == False then
load only those streams, matching the streamMask

RegEx e.g. "ˆ(NET1|NET2)\.(STA1|STA2|STA3)\.(LOC)\.((BH)|(LH)|(HH))Z\$"
RegEx e.g. "ˆ(.+)\.(.+)\.(. *)\.(.+)Z\$"

streamMask = "ˆ(.+)\.(.+)\.(. *)\.(BHZ)\$"

Qc parameter are sent as notifier or data messages.

Notifier messages will fill up the database. Use with cauti on!!!
(True/False)

17

useNotifier = True

Database look up for past entries not older than x days
[days]

dbLookBack = 7

currently implemented QcPlugins:
QcDelay, QcLatency, QcTiming, QcRms, QcOffset, QcGap, Qc Spike

#

Load this plugins for calculating Qc Parameters
plugins = qcplugin_delay, \

qcplugin_latency, \
qcplugin_timing, \

qcplugin_rms, \

qcplugin_offset, \
qcplugin_gap, \

qcplugin_spike
QcPlugin default configuration

#

Use this plugin only for realtime processing[True].
Default [False] means, plugin is able to

process archives AND realtime streams.
plugins.default.realTimeOnly = False

#
Interval for sending report messages [s]

plugins.default.reportInterval = 3600

#
Interval for checking alert thresholds [s]

(only in realtime processing mode)
plugins.default.alertInterval = 60

#

Short Term Average Buffer length [s]
plugins.default.staBufferLength = 3600

#
Long Term Buffer Length [s]

(only in realtime processing mode)

plugins.default.ltaBufferLength = 3600
#

Report messages are generated in case of no data
is received since timeout seconds [s]

(only in realtime processing mode)
plugins.default.timeout = 0

#

Alert threshold in percent, single value.
[list: 25,50,75 ... not yet implemented]

(only in realtime processing mode)
plugins.default.thresholds = 120

QcPlugin specific configuration
plugins.QcLatency.timeout = 60

plugins.QcLatency.realTimeOnly = True

18

plugins.QcDelay.realTimeOnly = True

4.4 Examples

The following examples assume, that your installedscqc use the config filescqc.cfg shown above.
A proper installed and running seiscomp3 system is a prerequisite!

4.4.1 realtime mode

Run scqc in realtime mode to let it calculate QC parameters for all streams that are configured for
automatic processing. QC parameters Latency and Delay are determined and stored into the database.

scqc --debug -H localhost -u scqc \
-d sysop:sysop@localhost/seiscomp3 \

-I slink://localhost:18000

4.4.2 archive mode

Runscqc in archive mode to let it calculate QC parameters for one month for all streams that match the
given regular expressions pattern. Using the specified timewindow and data from SDS-archive.

scqc --debug --stream-mask "ˆGE. * BHZ$" \

-I sdsarchive:///pathToSDSarchive \
-d sysop:sysop@localhost/seiscomp3 -H localhost \

-u myscqc --archive --begin-time "2008-01-01 00:00:00" \
--end-time "2008-01-31 23:59:59"

19

5 Technical description of ArcLink

ArcLink complements SeedLink by providing access to archive data and station database. The ArcLink
protocol is similar to SeedLink: it is based on TCP and uses simple commands in ASCII coding.
However, rather than “subscribing” to real-time streams, the client requests data based on time windows.
Unlike SeedLink, the data will not be sent immediately, but possibly minutes or even hours later, when
the request has been processed. An ArcLink request is associated with a request ID that can be used by
the client to get status of the request, download data, and delete the request.

The ArcLink server does not access the data archive directly, but rather delegates this job to “request
randler”. Thus, using different request handlers, it is possible to use ArcLink as a uniform method for
accessing different data archives—just like SeedLink is used as a uniform method for getting real-time
data. The request handler is analoguous to SeedLink plugin,however, while SeedLink starts exactly one
instance of each defined plugin at startup, ArcLink uses a single request handler and starts one instance
of request handler per request.

In addition to waveforms and metadata, it is also possible torequest routing information from an
ArcLink server, telling which ArcLink server provides dataof any given station. The routing database
itself is supposed to be synchronized between all ArcLink servers–this way a client can connect to any
public ArcLink server, request routing information and split request accordingly.

5.1 Request Format

The generic request format is following:

REQUESTrequesttype optionalattributes
start time endtime net station stream locid optional constraints
[more request lines...]
END

Allowed request types are currently WAVEFORM, RESPONSE, INVENTORY, ROUTING and QC.
Data format of WAVEFORM and RESPONSE requests is SEED (Mini-SEED, dataless SEED, full
SEED). Data format of INVENTORY, ROUTING and QC requests is XML. Data can be optionally
compressed by bzip2.

5.1.1 WAVEFORM request

If requesttype==WAVEFORM, attributes “format” and “compression” are defined. The value of “format”
can be “MSEED” for Mini-SEED or “FSEED” (default) for full SEED; “compression” can be “bzip2”
or “none” (default). Wildcards are allowed only instreamandloc id. Constraints are not allowed.loc id
is optional. If loc id is missing or “.”, only streams with empty location ID are requested. Sample
waveform request:

REQUEST WAVEFORM format=MSEED

2005,09,01,00,05,00 2005,09,01,00,10,00 IA PPI BHZ .

END

20

5.1.2 RESPONSE request

If requesttype==RESPONSE, attribute “compression” is defined, which can be “bzip2” or“none”
(default). Constraints are not allowed. Wildcard “*” is allowed instation streamand loc id, so it is
possible to request a dataless volume of a whole network. Ifloc id is missing or “.”, only streams with
empty location ID are included in the dataless volume. The word “RESPONSE” is ambiguous; possibly
we should find a better one.

5.1.3 INVENTORY request

If requesttype==INVENTORY, attributes “instruments”, “compression” and ”modifiedafter” are de-
fined. The value of “instruments” can be “true” or ”false”, “compression” can be “bzip2” or “none”
(default), and ”modifiedafter”, if present, must contain an ISO time string.

instruments [false] whether instrument data is added to XML

compression [none]compress XML data

modified after if set, only entries modified after given time will be returned. Can be used for DB
synchronization.

Wildcard “*” is allowed in all fields, exceptstart timeandend time. station, streamand loc id are
optional. If stationor streamis not specified, the respective elements are not added to theXML tree; if
loc id is missing or “.”, only streams with empty location ID are included. For example, to request a just
a list of GEOFON stations (but not stream information), one would use:

REQUEST INVENTORY

1990,1,1,0,0,0 2030,12,31,0,0,0 GE *
END

Following constraints are defined:

sensortype limit streams to those using specific sensor types: “VBB”, “BB”, “SM”, “OBS”, etc. Can
be also a combination like “VBB+BB+SM”.

latmin minimum latitude

latmax maximum latitude

lonmin minimum longitude

lonmax maximum longitude

permanent true or false, requesting only permanent or temporary networks respectively

restricted true or false, requesting only networks/stations/streams that have restricted or open data
respectively.

If any of station, streamor loc id is missing, one or more dots should be used before constraints. For
example, to request the list of networks with open data, one would use:

REQUEST INVENTORY

1990,1,1,0,0,0 2030,12,31,0,0,0 * . restricted=false

END

21

5.1.4 ROUTING request

If requesttype==ROUTING, attributes “compression” and “modifiedafter” are defined. The value of
“compression” can be “bzip2” or “none” (default); ”modifiedafter”, if present, must contain an ISO
time string.

compression [none]compress XML data

modified after if set, only entries modified after given time will be returned. Can be used for DB
synchronization.

Wildcard “*” is allowed in all fields, exceptstart time andend time. Constraints are not allowed.
All fields exceptstart time, end timeandnetare optional; missingstationstands for “default route” of a
given network.streamandloc id are ignored.

5.1.5 QC request

If requesttype==QC, attributes “compression”, ”outages”, ”logs” and ”parameters” are defined. The
value of “compression” can be “bzip2” or “none” (default).

compression [none]compress XML data

outages include list of outages (“true” or “false”).

logs include log messages (“true” or “false”).

parameters comma-separated list of QC parameters.

Wildcard “*” is allowed in all fields, exceptstart time and end time. All fields must be present.
Constraints are not allowed.

The following QC parameters are implemented in the present version: availability, delay, gapscount,
gapsinterval, gapslength, latency, offset, overlapscount, overlapsinterval, overlapslength, rms,
spikesamplitude, spikescount, spikesinterval, timingquality. These parameters are documented in
section 4.2.

5.2 Client Protocol

ArcLink commands consist of an ASCII string followed by zeroor more arguments separated by
spaces and terminated with carriage return (<cr>, ASCII code 13) followed by an optional line feed
(<lf>, ASCII code 10). Except STATUS, the command response is one or more lines terminated with
<cr><lf>. Unless noted otherwise, the response is OK<cr><lf>or ERROR<cr><lf>, depending if
the command was successful or not. After getting the ERROR response, it is possible to retrieve the error
message with SHOWERR.

The following ArcLink commands are defined:

HELLO

returns 2<cr><lf>-terminated lines: software version and data centre name.

BYE

closes connection (useful for testing the server with telnet, otherwise it is enough to close the client-
side socket).

22

USER username password

authenticates user, required before any of the following commands.

INSTITUTION any string

optionally specifies institution name.

LABEL label

optional label of request.

SHOWERR

returns 1<cr><lf>-terminated line, containing the error message (to be used after getting the
ERROR response).

REQUESTrequesttype optionalattributes

start of request

END

end of request; if successful, returns request ID, otherwise ERROR<cr><lf>

STATUS req id

send status of requestreq id. if req id==ALL, sends status of all requests of the user. Response is
either ERROR<cr><lf>or an XML document, followed by END<cr><lf>.

DOWNLOADreq id[. vol id] [pos]

download the result of request. Response is ERROR<cr><lf>or size, followed by the data and
END<cr><lf>. Optional argumentposmakes possible to resume broken download.

BDOWNLOADreq id[. vol id] [pos]

like DOWNLOAD, but will block until the request is finished.

PURGEreq id

delete the result of a request from the server.

5.3 Request Handler Protocol

The ArcLink server sends a request to request handler in the following format:

USER username password
[INSTITUTION any˙string]
[LABEL label]
REQUESTrequesttypei reqid optional attributes
[one or more request lines...]
END

After receiving the request, the requesthandler can send responses to the server. Following responses
are defined:

23

STATUS LINE n PROCESSINGvol id

add request line numbern (0-based) to volumevol id. The volume is created if it already does not
exist.

STATUS ref status

set line or volume status, whereref is “LINE n” or ” VOLUMEvol id” and status is one of the
following:

OK request sucessfully processed, data available

NODATAno processing errors, but data not available

WARNprocessing errors, some downloadable data available

ERRORprocessing errors, no downloadable data available

RETRY temporarily no data available

DENIED access to data denied for the user

CANCELprocessing cancelled (eg., by operator)

MESSAGEany string error message in case of WARN or ERROR, but can be used regardless of
status (the last message is shown in STATUS response)

SIZE n data size; in case of volume, it must be the exact size of downloadable product.

MESSAGEany string

send general processing (error) message. The last message is shown in STATUS response.

ERROR

request handler could not process the request due to error (eg., got an unhandled Python exception).
This ends the request and normally the request handler quits. If not, it should be ready to handle the
next request. Note that if request handler quits (crashes) without sending ERROR, then the request
will be repeated (sent to another request handler instance)by the server. This behaviour might be
changed in future server versions to avoid loops, eg., if request handler quits, ERROR would be
implied.

END

request processing finished normally. The request handler is ready for the next request.

5.4 ArcLink Configuration File

arclink.ini has the same syntax asseedlink.ini . It may contain several sections, but only one
having the same name as the executable being used. A section in arclink.ini has the following
structure (default values are shown in square brackets, butrelying on them is not recommended):

parameter “organization” organization ID, same as in SeedLink. (Arbitrary string.)

parameter “request dir” path to directory where (temporary) request files are stored.

parameter “connections” [0] maximum number of parallel TCP connections (0—no limit).

parameter “request queue” [0] maximum number of requests waiting to be processed. When request
queue is full, no more requests are accepted (0—no limit.

24

parameter “request size” [100] maximum request size in lines.

parameter “handlers soft” [10] number of request handler instances to keep running even if they are
idle.

parameter “handlers hard” [100] maximum numbers of request handler instances, eg., maximum
number of requests that are processed in parallel.

parameter “handler timeout” [600] if a request handler blocks input for more than the given time
period in seconds, then ArcLink server shuts down the request handler (0—no timeout check).

parameter “handler start retry” [60] restart terminated request handlers after this time periodin
seconds (0—never re-start terminated request handlers). Arequest handler may terminate itself
because of some internal error or it can be shut down by ArcLink if timeout occurs or invalid response
is received.

parameter “handler shutdown wait” [10] wait this time period in seconds for a request handler to
terminate after sending the TERM signal (0—wait forever). If a request handler does not terminate
on it’s own within this time period, the KILL signal will be sent.

parameter “port” [18001] TCP port used by the server.

parameter “lockfile” path to the lock file; used by theseiscomp utility to check if ArcLink is running.

parameter “statefile” the state of requests is dumped into this file when ArcLink exits. If this parameter
is defined, but the file does not exist (eg., because ArcLink crashed), then ArcLink reads *.desc files
in the request directory to restore state. If “statefile” is not defined, then ArcLink does not restore
state after restart.

parameter “handlers reserved *” [0] number of extra request handler instances for each type of
request. These are used when “handlershard” is reached.

parameter “swapout time” [0] delete finished requests from RAM when not used (STATUS, DOWN-
LOAD or BDOWNLOAD commands) within given amount of seconds (0—never delete requests).

parameter “purge time” [0] delete finished requests and data products also from the request directory
when not used (STATUS, DOWNLOAD or BDOWNLOAD commands) within given amount of
seconds (0—never delete requests).

5.5 SDS definition

The basic directory and file layout is defined as:

<SDSdir>/Year/NET/STA/CHAN.TYPE/NET.STA.LOC.CHAN.TY PE.YEAR.DAY

Definitions of fields:

SDSdir

arbitrary base directory

YEAR

4 digit YEAR

25

NET

Network code/identifier, 1-8 characters, no spaces

STA

Station code/identifier, 1-8 characters, no spaces

CHAN

Channel code/identifier, 1-8 characters, no spaces

TYPE

1 character, indicating the data type, provided types are: D- Waveform data E - Detection data L -
Log data T - Timing data C - Calibration data O - Opaque data

LOC

Location identifier, 1-8 characters, no spaces

DAY

3 digit day of year, padded with zeros

The dots . in the file names must always be present regardless if neighboring fields are empty.
Additional data type flags may be used for extended structuredefinition.

26

