Nanometrics
Data Formats

Reference Guide

Nanometrics
Data Formats

Reference Guide

© 1996-2003 Nanometrics Inc. All Rights Reserved.
Nanometrics Data Formats Reference Guide

Theinformation in this document has been carefully reviewed and is believed to be reliable. Nanometrics,
Inc. reservesthe right to make changes at any time without notice to improve the reliability and function of
the product.

No part of this publication may be reproduced, stored in aretrieval system or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permis-
sion of Nanometrics Inc.

Nanometrics, Inc.

250 Herzberg Road

Kanata, Ontario, Canada K2K 2A1
Tel (613)592-6776

Fax (613)592-5929

Email info@nanometrics.ca

Part number 14602R4
Release date 2003-11-07

Contents

NMXP Data Format 1
OVEIVIBW e 1
Overview of Protocol 1
Transport-specific wrapping e 2
Description of inbound packets 2
Inbound packet types 3
Packet header. 4
Compressed data packet 5
Compressed data packetheader 5
Extended seismicdataheader 5
Databundle. 6
Nullbundle. 6
State-of-Health packets 6
Status packet headerbundle. 6
VCXO calibrationbundle 7
Nullbundle. 7
Min-Max1 bundle (Orion only) 7
Min-Max2 bundle (Orion only) e 7
Instrument Log bundle (Orion/HRD only) i 8
GPS Locationbundle. e 8
GPS Satellite Status/Reference Time Error bundle (Rockwell GPS-specific). 8
D1 (Early) Threshold Trigger bundle (Oriononly) 9
D2 (Late) Threshold Trigger bundle (Oriononly). 9
D1 (Early) STA/LTA Trigger bundle (Oriononly). 9
D2 (Late) STA/LTA Trigger bundle (Oriononly) 10
Eventbundle (Oriononly) 10
RM-3 SOH bundle (RM-30nly) e 10
RM-3 Rx Status bundle (RM-3only) 10
Fast External State-Of-Healthbundle 11
Slow External State-Of-Healthbundle. 11
Instrument SOH bundle. 11
Orion Internal Temperature Slow SOH bundle (Oriononly) 11
Orion Source Voltages Slow SOH bundle (Oriononly). 11
Orion Powering Status Slow SOH bundle (Oriononly) 12
GPS Time Quality bundle 12
GPS Satellite Informationbundle 12
Serial Port Map bundle e 13
Telemetry Packet Reader Errorsbundle 13
Serial Port Errors bundle 13
Receiver Slot State bundle 14
Transmitter Slot Errorbundle 14
Receiver Slot Errorbundle 14
Libra Instrument SOH bundle 14
Libra Environment SOH bundle. 14

Contents

Transmitter bundle. e 15
Receiverbundle. e 15
Burstbundle 15
Epochbundle. 15
Libra GPS Time Qualitybundle. 15
Libra System Time Qualitybundle. 16
Libra Operation State bundle. 16
Serial DataBytes bundle. 16
Telemetry Packet Sender Sohbundle. 16
Authentication Sohbundle. 17
TimeServer Instrument Soh bundle. 17
TimeServer Time PLL Sohbundle 17
TimeServer M12 GPS Sohbundle 18
NMXbus Master Sohbundle 19
NMXbus Request Sohbundle. 19
NMXbus Rx Sohbundle e 19
NMXbus Tx Sohbundle. 20
NMXbus Device List Sohbundle. 20
Trident PLL Status Sohbundle 20
Logmessage packet. 20
Log message packetformat 20
Transparent serial packet 21
Transparent serial packetformat. 21
Authentication information. 21
NMX Alert Format e 23
OV BIVIBW . .« o ot 23
Alert frame format. e 23
Argument substitution 24
Definition of Alert Messagesttt 24
Alert Messages Generated by AlertMailer., 24
AlertSystemUp e 24
AlertSystemDowWn e 25
ComponentOffline. e 25
ComponentOnline. 25
Mail T, . . 25
Alert Messages Generated by NagsServer. 26
NagSAlIVE . . . 26
NagsStatus 26
NagsRepor. 26
RbfOpenFail 27
RbfWriteFail 27
ROAWHtEOK 27
InstrumentOffline. 27
InstrumentOnline. 28
NagsEVeNt 28
Alert Messages Generated by each Carina Instrument (CARxxx) 29
VSatShutdown 29
VSatResUME. 29
VSatTXOutage e 29
VSt TXOK . . . 29
VSatSelfRxOutage e 29
VSatSelfRXOK. . . . 30

Contents

VSatRXOUtageo 30
VSatRXOK . . . 30
Alert messages generated by each Cygnus, Janus,orEuropa 30
PowerVarn 30
POWEIOK . . .o 30
SONWV AN . . .o 31
SONOK. . 31
Private Data Streams. 33
Data stream types. 33
Subscription protocol e 34
Message formats 34
CleNt MESSAgES oo 35
CONNECE. . . .o 35
Request Pending 35
Terminate Subscription. 35
AddChannels MeSSagesottt 36
AddTime-SeriesChannels. 36
AddSohChannels 37
AddSerialChannels 37
AddTriggerChannels. 38
AddEVENtS. . . . e 38
Remove Channels messagest e 39
RemoveTimeSeriesChannels i 39
RemoveSohChannels. 39
RemoveSerialChannels e 39
RemoveTriggerChannels e 40
RemoOVEeEVENtS 40
SOIVEI MESSAQES. . . vttt et et ettt e e 40
Channel List 40

e o 41
DatamesSSageso oo 41
Compressed Data, Soh or Transparent Serial Packets 41
Decompressed DataPackets 42
Trigger Packet. 42
Event Packet. 43
Data Access Protocol. 45
Data fypes. . .. 45
Subscription protocol 46
Client message and requesttypes 47
Message formats e 47
Request messages 48
ConnectRequest 48
RequestPending 48
CancelRequest 48
TerminateMessage 48
ChannelListRequest 49
PrecisListRequest. e 49
ChannellnfoRequest 49
DataSizeRequest 50
DataRequest. e 50

Contents

TriggerRequest 50
EventRequest e 51

RESPONSE MESSAgES o oot 51
ReadyMessage. 51
Channellist. 51

PrecisList e 52
ChannelHeader. e 53

DataSize 53

NagsEVeNt 53
NagSTgOer . . o oo e 54
CompressedData 54

Tagged File Format 55
OV BIVIBW . .« o ot 55

Data tyPeS. . o 55
Tagformat. 56

Tag tYPES . ottt e 57

Y-File Format 59
File format. e 59

Field descriptions 59
TAG_STATION _INFO. . .. e e e e e e 59

Station ID 60
TAG_STATION_LOCATION . . .o e e e e 60
TAG_STATION_PARAMETERS. e 61
TAG_SERIES_DATABASE, TAG_STATION_DATABASE. 61
TAG_SERIES INFO e e e e 61
TAG_STATION_RESPONSE e e 62

Data Stream Client. 63
Serial Packet CRC 77

NMXP Data Format

Data received on the serial port of the instrument are packetized in NMXP format and
then these packets are embedded in standard UDP packets prior to transmission. This
chapter definesthe NMXP format for inbound data. It includes an overview of packet
structure, alist of packet types, and descriptions of packets and bundles.

1.1 Overview

NM XP data transmission format facilitates the transfer of data along with awide vari-
ety of status information from an instrument to a central site. The dataformat requires
that the instrument have an accurate time source (i.e. GPS) for time tagging the data
prior to transmission.

NMXP data format:

» Supports error free transmission of data using retransmission requests of bad pack-
ets.

* Issimpleto implement, even on small microprocessors

» Isexpandable: As new status information messages are created, they can be added
to the data format without affecting the existing information.

» Supports programmable frequency for status information: Most of the status mes-
sages can be transmitted at a user defined frequency. This allows the user to tailor
theratio of datato status information. Thisisimportant on limited bandwidth or
noisy transmission media

» Provides efficient bandwidth usage

1.1.1 Overview of Protocol

Communication between the equipment and the Nagsreceiver is completely statel ess -
there redlly is no protocol. When you turn on an instrument, it sends unsolicited data.
Each packet islabelled with a channel-specific sequence number and al so providesthe
sequence number of the ol dest packet availablefor that channel. The receiver may send
retransmission requests to request retransmission of certain packets (by sequence
number). The instrument marks the requested packets for retransmission and sends
them as bandwidth permits.

14602R4
2003-11-07

Nanometrics Data Formats 1
Reference Guide

Chapter 1: NMXP Data Format

The order in which retransmitted packets are sent is not specified. HRDs and Europas
send oldest retx first. Theretx order isconfigurable in Janus and Europa-T instruments
running firmware 5.60 and above.

The sequence number is an unsigned 4-byte integer which rolls over to 0 at 2/32. The
protocol does not specify how the receiver should handle rollover.

1.1.2 Transport-specific wrapping

The packets described in this chapter are augmented with header bytes to facilitate
transport over specific lower-level protocols.

Packets carried via serial communications are preceded by a synchronization word and
followed by a 2-byte CRC, asfollows:

2 bytes synchronization word = OXAABB
N bytes packet payload
2 bytes 16-bit CRC

wherethe CRC is computed using the algorithm provided in Appendix B. The synchro-
nization word and the CRC are sent in little-endian byte order.

Packets carried via UDP or TCP are preceded by a 12-byte header containing the fol-
lowing information:

4 bytes synchronization word = 0x7TABCDEOF

4 bytes message type = 1 for all inbound NM XP packets

4 bytes message content length (packet length)

Note that these parameters are encoded in big-endian byte order.

1.1.3 Description of inbound packets

Data are gathered into sequenced and time stamped packets consisting of 17 byte " bun-
dles’. Each bundle is an independent collection of data. Each packet contains aword
indicating the ol dest packet available, and atime stamp bundle followed by n data bun-
dles.

The number of bundles in a packet is a programmable parameter. The number of bun-
dlesis odd and has arange of 1-255. This allows the packet size to be tailored to the
datalink. Short packets should be used on noisy error prone datalinks. Packets may be
the same size for the entire network, or different on each branch (a branch is connected
to one RM-4 port) of the network. All instruments on a given branch must use the same
packet size. Short messages must be padded out to the packet size.

Definitions:

* Inbound data: data that is being transmitted from the field stations to the central
recording site

» Channel: achannel is aunique stream of information (e.g., serial port 1)
e aninstrument may transmit 1 or more channels of information

» Packet: apacket isauniquely identifiable collection of information that is trans-
mitted, composed of data bundles

2 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 1: NMXP Data Format

» apacket contains information from only one channel
* inbound packets contain data, status, or configuration information

* Bundle: each bundleis an independent collection of data, for example time stamp
information, status information, or data.

» Dataisrepresented in the little endian format (Intel format) unless otherwise indi-
cated

1.2 Inbound packet types

Inbound Packets (size = 4 + 17 +17 x (number of bundles)), where
4 bytes Oldest packet available for a data stream
17 bytes Packet header
17*nbytes nbundleswherenisodd

Compressed Data Packet 1
DataBundle n/a
Extended Header Bundle

0
Null Bundle 9
State-of-Health Packet 2
Fast State-of-Health - Obsolete 3
Slow State of Health - Obsolete 4
VCXO Calibration 7
DSP Status Factory Test - Obsolete 8
Null (indicates no more valid bundlesin packet) 9

Min-Max1 10
Min-Max2 11
Instrument Log (HRD / Orion) 12
GPS Location 13
GPS Error Bundle - Obsolete 14
GPS Satellite Status/Reference Time Error 15
D1 (Early) Threshold Trigger 20
D2 (Late) Threshold Trigger 21
D1 (Early) STA/LTA Trigger 22
D2 (Late) STA/LTA Trigger 23
Event 24
RM-3 SOH 27
RM-3 Rx Status 29
Fast External State-Of-Health 32
Slow External State-Of-Health 33
Instrument SOH (generic) 34
Orion Internal Temperature Slow SOH 35
Orion Source Voltages Slow SOH 36
Orion Powering Status Slow SOH 37
14602R4 Nanometrics Data Formats 3

2003-11-07 Reference Guide

Chapter 1: NMXP Data Format

GPS Time Quality

GPS Satellite Information

Seria Port Map

Telemetry Packet Reader Errors
Seria Port Errors

Receiver Slot State

Transmitter Slot Error

Receiver Slot Error

Libra Instrument SOH

Libra Environmental SOH
Transmitter Address and Frequency
Receiver Address and Frequency
Burst Bundle

Epoch Bundle

Libra GPS Time Quality

Libra System Time Quality
Libra Operation State

Serial Data Bytes

Telemetry Packet Sender SOH
Authentication SOH

39
40
41
42
43
a4
45
47
48
49
50
51
52
53
54
55
56
57
58
59

spare bundle numbers: 0, 1, 2, 5, 6, 16, 17, 18, 19,25, 26, 28, 30, 31, 38, 46,

69-255

Log Message Packet
Transparent Serial Packet

1.3 Packet header

1 byte

4 bytes
2 bytes
2 bytes
4 bytes
4 bytes

Packet type
Long seconds in seconds since 1970
packet specific

Instrument ID [bits 0-10 serial number, bits 11-15 model type]

Sequence Number
packet specific

Theinstrument ID defines the instrument type transmitting the channel of data:

0

00 ~N O o WDN P

HRD
ORION
RM-3
RM-4
LYNX
CYGNUS
EUROPA
CARINA
TimeServer

4

Nanometrics Data Formats

Reference Guide

14602R4
2003-11-07

Chapter 1: NMXP Data Format

9
10
11-31

Trident
Janus
Reserved for future use

1.4 Compressed data packet

A datapacket aways consistsof atimestamp header followed by n databundles (where
nisuser defined). A timestamp bundle contains asequence number, thetime of thefirst
sample, instrument ID (model and serial number), sample rate of packet and channel
number, and the first sample.

1.4.1 Compressed data packet header

1 byte Packet type = 1 (bit 5 = 1 indicates the packet is being retransmitted)
4bytes Long seconds

2bytes Sub-secondsin 10,000th of a second

2bytes Instrument ID [bits 0-10 serial number, bits 11-15 model type]

4bytes Sequence Number

1 byte Sample Rate, Channel # [bits 0-2 channel number, bits 3-7 sample rate]
3bytes XO (first sample) as a 24-bit signed integer (LSB first)

Theinstrument 1D defines the instrument type transmitting the channel of data. Sup-
ported types are defined in section 1.3.

The samplerate is an enumerated value:

0 reserved 10 125¢9/s
1 1ls/s 11 200 s/s
2 2sls 12 250 s/s
3 59s 13 500 s/s
4 10s/s 14 1000 s/s
5 20¢9/s 15 2549/s
6 40 §/s 16 120 g/s
7 50 9/s 17 240 /s
8 80 ¢/s 18 480 /s
9 100 s/s 19-31 Reserved for future use
1.4.1.1 Extended seismic data header
If the first data bundle has 0 in the compression byte, indicating that all four com-
pressed data fields are not used, the bundle is an extended seismic data header.
1 byte extended header =0
4bytes XO (first sample, 32 bit version of the same field in main header)
1 byte status
bit0 channel 1 calibration in progress
bitl channel 2 calibration in progress
bit2 channel 3 calibration in progress
14602R4

2003-11-07

Nanometrics Data Formats 5
Reference Guide

Chapter 1: NMXP Data Format

bit 3-7 unused
11 bytes unused

1.4.2 Data bundle

A data bundle contains between 4 and 16 compressed samples of data. The samplesare
compressed using afirst difference algorithm. The datais compressed as byte, word, or
long differences. Each set of four bytes contains either 4 byte differences, 2 word dif-
ferences, or 1 long difference. The compression bits indicate how each set of 4 bytesis
packed. For each 4 byte set there are 2 compression bits. The compression bits are
packed into a byte as follows:

byte: ww xx yy zz where the compression bits indicate:
ww- data set 1 00 not used
XX- data set 2 01 byte difference
yy- dataset 3 10 word difference
zz- data set 4 11 long difference

The format of the data bundleis asfollows:
1 byte Compression bits

4bytes Compressed dataset 1

4bytes Compressed data set 2

4bytes Compressed dataset 3

4bytes Compressed data set 4

1.4.3 Null bundle

This bundle is provided to pad out packets. The first occurrence of a Null bundle indi-
catesthat thereisno further datain the packet. The null bundle containsno useful infor-
mation. The receiver should disregard this bundle and all remaining bundles, and skip
to the next packet.

1 byte Bundle Type=9
16 bytes Filler

1.5 State-of-Health packets

A state-of-health packet consists of a status time stamp bundle followed by n status
bundles. A status time stamp consists of a sequence number, the time (nominal time
when the packet was created), instrument ID (model and serial number).

Status bundles have a general format that is outlined below:
1 byte bundle type = xx
4bytes Long seconds
12 bytes Defined by the specific bundle type

1.5.1 Status packet header bundie
1 byte Packet type = 2 (bit 5= 1 isfor retransmit)
4bytes Long seconds

6 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 1: NMXP Data Format

2bytes Sub-secondsin 10,000th of a second, this value always 0
2bytes Instrument ID [bits 0-10 serial number, bits 11-15 model type]
4bytes Seqguence Number

1 byte indicates test packet if (byte & 0x01!=0)

3bytes Reserved for future use

1.5.2 VCXO calibration bundle
1 byte Bundletype=7
4bytes Long seconds
2bytes VCXO value (counts)
2bytes Timedifference at Lock (counts, 3.84 counts = 1 microsecond)
2bytes Time Error (counts, 3.84 counts = 1 microsecond)
2bytes Frequency Error (in counts/sec (coarse lock) or counts/16 secs (fine lock))
2bytes Crystal temperature (counts)

1 byte PLL Status? (1=fine locked, 2=coarse locking, 3 =temp. ref, gps off, 4=temp
ref, gps on)

1 byte GPS Status(0=3D, 1=2D, 2=1 sat, 3=search, 4= gps off, 5-6=gps error)

1.5.3 Null bundle

This bundle is provided to pad out packets. The first occurrence of a Null bundle indi-
catesthat thereisno further datain the packet. The null bundle contains no useful infor-
mation. The receiver should disregard this bundle and skip to the next packet.

1 byte Bundle Type=9

16 bytes Filler

1.5.4 Min-Max1 bundle (Orion only)

The activity indicator providesa 1 Hz or slower filtered summary of a seismic data
channel. Thiswould be used to provide the end user with a summary of the collected
data. Thisallowsthe user to quickly browselarge quantities of datafor events. Thedata
may be filtered using a 5th order filter. The filter may be low pass, high pass, or band
pass. In order not to lose the higher frequency information, the minimum and maximum
over theinterval of the filtered signal is stored. The interval is a programmable value
of 1sor greater.

1 byte Bundle type= 10

4bytes Long seconds

3bytes Filtered min. over 1st interval

3bytes Filtered max. over 1st interval

3bytes Filtered min. over 2nd interval

3bytes Filtered max. over 2nd interval

1.5.5 Min-Max2 bundle (Orion only)

The activity indicator provides a1 Hz or slower filtered summary of a seismic data
channel. Thiswould be used to provide the end user with a summary of the collected

14602R4 Nanometrics Data Formats 7
2003-11-07 Reference Guide

Chapter 1: NMXP Data Format

data. Thisallowsthe user to quickly browselarge quantities of datafor events. Thedata
may be filtered using a 5th order filter. The filter may be low pass, high pass, or band
pass. In order not to losethe higher frequency information, the minimum and maximum
over theinterval of the filtered signal is stored. The interval is a programmable value

of 1sor greater.

1 byte Bundletype=11

4bytes Long seconds

3bytes Filtered min. over 1st interval

3bytes Filtered max. over 1st interval
3bytes Filtered min. over 2nd interval
3bytes Filtered max. over 2nd interval

1.5.6 Instrument Log bundle (Orion/HRD only)

Any errorsor warnings generated by theinstrument are stored in thisbundle. Sometyp-
ical errorsor warnings are GPS locked/unlocked, low battery, clock adjustments, exter-
nal events, self test errors, status of disk space, duty cycle, etc.

1 byte Bundle type=12
4bytes Long seconds
2bytes Error code, where bits 0-11= error code, bits 12-15 = data format
2bytes Error Level
ErrorLevel isabit mapped value which is broken down as follows:
bits 0-7 Area (each bit identifies a separate area) - currently unused
bits8-10 Processor (TCP, Aux, DSP)
bits11-15 Error Level (Fatal, error, warning, info, debug)
8bytes Error Parameters

1.5.7 GPS Location bundle

This bundle contains the latitude and longitude of the instrument GPS antenna. This
bundl e has a programmabl e measurement frequency. The latitude and longitude is
stored in |EEE floating point format.

1 byte Bundle type =13

4bytes Long seconds

4bytes Latitude

4bytes Longitude

4bytes Elevation

1.5.8 GPS Satellite Status/Reference Time Error bundle (Rockwell GPS-
specific)

This bundle contains the status of the GPS engine's satellite tracking channels. It
recordsthe signal to noiseratio, activity, and satellite number for thefive satellite track-
ing channels. The activity indicates whether the GPS channel isidle, searching or
locked to asatellite signal. Thisinformation isvery useful in diagnosing a GPS engine
that is not locking.

8 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 1: NMXP Data Format

1 byte

4 bytes
2 bytes
10 bytes

Bundletype=15
Long seconds
Status bits (see Rockwell manual, contains operating mode, figure of merit)
GPS Satellite Channel - 2bytes per channel
where the 2 bytes are defined:
bits0-4 Satellite PRN code (0-31)
bits5-7 Unused
bits8-13 Signal to Noise Ratio (0-63)
bits 14-15 Activity O=idle, 1 searching, 3=tracking

1.5.9 D1 (Early) Threshold Trigger bundle (Orion only)

The D1 threshold trigger bundle reports the start of athreshold trigger event. It is sent
at aprogrammabletime after the start of atrigger. It reportsthe start time of thetrigger,
along with some statistics about the trigger. The D1 trigger bundleisfollowed by aD2
trigger which reports the end of atrigger. The D1 bundle contains the peak amplitude,
the half period of the amplitude, and the samples after trigger of the peak amplitude.

1 byte

4 bytes
2 bytes
2 bytes
2 bytes
2 bytes
1 byte

3 bytes

Bundletype =20

Long seconds

Sub-seconds in 10,000th of a second

LTA vaue (low word of LTA whichisalong, hi word in D2)
Half period of peak amplitude

Samples after trigger of peak amplitude

Channel# (3 bits) | trigger # (5 bits)

Peak amplitude

1.5.10 D2 (Late) Threshold Trigger bundle (Orion only)

The D2 threshold trigger bundle reports the end of athreshold trigger event. It is sent
at aprogrammabl e time after atrigger isfinished. It reports the end time of the trigger,
along with some statistics about the trigger. The D2 bundle contains the peak ampli-
tude, the half period of the amplitude, and the samples after trigger of the peak ampli-
tude for the entire trigger event.

1 byte

4 bytes
2 bytes
2 bytes
2 bytes
2 bytes
1 byte

3 bytes

Bundletype=21

Long seconds

Sub-seconds in 10,000th of a second

LTA vaue (hi word of LTA whichisalong, low wordin D1)
Half period of peak amplitude

Samples after trigger of peak amplitude

Channel# (3 bits) | trigger # (5 bits)

Peak amplitude

1.5.11 D1 (Early) STA/LTA Trigger bundle (Orion only)

TheD1 STA/LTA trigger bundlereportsthe start of aSTA/LTA trigger event. Itissent
at aprogrammabletime after the start of atrigger. It reportsthe start time of thetrigger,

14602R4
2003-11-07

Nanometrics Data Formats 9
Reference Guide

Chapter 1: NMXP Data Format

along with some statistics about the trigger. The D1 trigger bundleisfollowed by aD2
trigger which reports the end of atrigger. The D1 bundle contains the peak amplitude,
the half period of the amplitude, and the samples after trigger of the peak amplitude.

1 byte

4 bytes
2 bytes
2 bytes
2 bytes
2 bytes
1 byte

3 bytes

Bundletype =22

Long seconds

Sub-seconds in 10,000th of a second

LTA vaue (low word of LTA whichisalong, hi word in D2)
Half period of peak amplitude

Samples after trigger of peak amplitude

Channel# (3 bits) | trigger # (5 bits)

Peak amplitude

1.5.12 D2 (Late) STA/LTA Trigger bundle (Orion only)

The D2 STA/LTA trigger bundle reportsthe end of aSTA/LTA trigger event. It issent
at aprogrammable time after atrigger isfinished. It reports the end time of the trigger,
along with some statistics about the trigger. The D2 bundle contains the peak ampli-
tude, the half period of the amplitude, and the samples after trigger of the peak ampli-
tude for the entire trigger event.

1 byte

4 bytes
2 bytes
2 bytes
2 bytes
2 bytes
1 byte

3 bytes

Bundle type =23

Long seconds

Sub-seconds in 10,000th of a second

LTA vaue (hi word of LTA whichisalong, low wordin D1)
Half period of peak amplitude

Samples after trigger of peak amplitude

Channel# (3 bits) | trigger # (5 bits)

Peak amplitude

1.5.13 Event bundle (Orion only)

1 byte
4 bytes
4 bytes
1 byte
1 byte
6 byte

Bundletype=24

Long Seconds

End Timein Long seconds

Cause (1=external, 2=internal, 4=manual (calibration))
Trigger Flags (1 bit per trigger, LSB = trigger 0)

spare

1.5.14 RM-3 SOH bundle (RM-3 only)

1 byte

4 bytes
4 bytes
4 bytes
4 bytes

Bundle type = 27
Long seconds

Battery voltage (float)
External SOH (float)
Temperature (float)

10

Nanometrics Data Formats
Reference Guide

14602R4
2003-11-07

Chapter 1: NMXP Data Format

1.5.15 RM-3 Rx Status bundle (RM-3 only)
1 byte us-int8 Bundle type=29
4bytes usint32 Long seconds
1 byte us-int8 Rx Channel =0, 1,2, 3
1 byte us-int8 Rx g/n ratio (average over the interval)
2bytes usintl6 number of valid data packets received during interval
2bytes usintl6 number of valid filler packets received during interval
2bytes usintl6 number of bad packets (CRC error) received during interval
2bytes usintl6 number of packets discarded (buffer overrun) during interval
2bytes usintl6 spare

1.5.16 Fast External State-Of-Health bundle
1 byte bundle type = 32
4bytes long seconds
4bytes float of calibrated fast SOH1 in volts or units
4bytes float of calibrated fast SOH2 in volts or units
4bytes float of calibrated fast SOH3 in volts or units

1.5.17 Slow External State-Of-Health bundle
1 byte bundle type = 33
4bytes long seconds
4bytes float of calibrated slow SOH1 in volts or units
4bytes float of calibrated slow SOH2 in volts or units
4bytes float of calibrated slow SOH3 in volts or units

1.5.18 Instrument SOH bundle
1 byte bundle type= 34
4bytes long seconds
4bytes float of battery voltage measured at PSU in volts
4bytes float of temperature in degrees Celsius (VCXO temp on HRD)
4bytes (unused; or float of radio SNR in xxxx on HRD)

1.5.19 Orion Internal Temperature Slow SOH bundle (Orion only)
1 byte bundle type =35
4bytes long seconds
4bytes float of the Aux interface temperature in degrees Celsius
4bytes float of VCXO temperature in degrees Celsius
4bytes float of Disk Temperaturein degrees Celsius

1.5.20 Orion Source Voltages Slow SOH bundle (Orion only)
1 byte bundle type = 36
4bytes long seconds

14602R4 Nanometrics Data Formats 1 1
2003-11-07 Reference Guide

Chapter 1: NMXP Data Format

4 bytes
4 bytes
4 bytes

float external battery voltage in volts
float internal battery voltage in volts
float mains voltage in volts

1.5.21 Orion Powering Status Slow SOH bundle (Orion only)

1 byte
4 bytes
4 bytes
4 bytes
1 byte
1 byte
1 byte
1 byte

bundle type = 37
long seconds
float charge current in Amps
float HRD PSU voltage in volts
byte of external battery status
byte of internal battery status
byte of mains supply status
switch status:
0 mains supply switch
1 internal battery switch
2 external battery switch
3 aux power switch
4 heater power switch
5 charger enable switch
6 charger high/low setting

1.5.22 GPS Time Quality bundle
This contains information about duty cycling and is produced only if the GPS is duty

cycled.
1 byte
4 bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
1 byte

1 byte

bundle type = 39
long seconds
GPS on time (in seconds)
GPS off time during the last cycle (in seconds)
GPS timeto lock in seconds
Time difference at lock in counts (divide by 3.84 to get microseconds)
VCXO offset (div. by 16 to get the DAC offset)
Reason GPS turned off:
0 -PLL finished correcting time error
1 -GPSon time expired
Final GPS mode:
0 -3D navigation
1 -2D navigation
2 -tracking 1 sat or more
3 -searching for satellites

1.5.23 GPS Satellite Information bundle

1 byte

bundle type = 40

1 2 Nanometrics Data Formats

Reference Guide

14602R4
2003-11-07

Chapter 1: NMXP Data Format

4bytes long seconds
1 byte MillisecFlag | Channel #
bits 0-3 Channel # (0-15)
bits 4-7 Millisec Flag
1 msec from sub_frame data collection
2 verified by abit crossing time
3 verified by successful position fix
4 suspected msec error
1 byte Acquisition Flag | PRN
bits 0-4 PRN
bits 5-7 Acquisition Flag:
0 = unlocked
1 =search
2 =track
1 byte Elevation (0-255): el= value/255x90
1 byte Azimuth (0-255: az = value/255x360
2bytes Signal Level
6 bytes repeat for another channel - see the 6 bytes above

1.5.24 Serial Port Map bundle

1 byte int8 bundle type = 41

4bytes long long seconds

1bytes int8 index

1lbytes int8 seria port number

2bytes intl6 number of minutes since last packet arrived
2bytes intl6 HRD instrument 1D (see data packets)

6 bytes - spare

1.5.25 Telemetry Packet Reader Errors bundle

1 byte int8 bundle type = 42
4bytes long long seconds
1lbytes int8 seria port number

3bytes int24 Bad Packets since startup or start of the day

3bytes int24 Good Packets since startup or start of the day

3bytes int24 Lost Packets since startup or start of the day

2bytes intl6 Tx Packets sent by Nags since startup or start of the day

1.5.26 Serial Port Errors bundle

1 byte int8 bundle type = 43

4bytes long long seconds

lbytes int8 serial port number

4bytes long seria port overrun errors since startup or last reboot (continuously

increases, then wraps, it is never zeroed)

14602R4 Nanometrics Data Formats 1 3
2003-11-07 Reference Guide

Chapter 1: NMXP Data Format

4bytes long serial port frame errors since startup or last reboot (continuously
increases, then wraps, it is never zeroed)
3bytes - spare

1.5.27 Receiver Slot State bundle
1 byte int8 bundle type = 44
4bytes long long seconds
4bytes int32 receiver |P address
2bytes intl6 DQT_AGC - AGC levd for quadrature tuner in units of 0.1 dB
2bytes intl16 carrier offset in units of 10 Hz
2bytes intl6 symbol offset in Hz
1 byte int8 DCL_AGC - AGC level for Costasloop in units of 0.1 dB
1 byte - spare

1.5.28 Transmitter Slot Error bundle
1 byte int8 bundle type = 45
4bytes long long seconds
4bytes int32 transmitter |P address
4bytes int32 no. of bad packets since the start of this TDMA configuration
4bytes int32 no. of good packets since the start of this TDMA configuration

1.5.29 Receiver Slot Error bundle
1 byte int8 bundle type = 47
4bytes long long seconds
4bytes int32 receiver |P address
4bytes int32 no. of bad packets since the start of this TDMA configuration
4bytes int32 no. of good packets since the start of this TDMA configuration

1.5.30 Libra Instrument SOH bundle
1 byte int8 bundle type = 48
4bytes long long seconds
2bytes intl6 ten MHz freguency error
2bytes floatl6 SSPB temperature
2bytes floatlé WW temperature
2bytes floatlé TX temperature
2bytes floatl6 battery temperature
2bytes — spare

1.5.31 Libra Environment SOH bundle
1 byte int8 bundle type = 49
4bytes long long seconds
4bytes float external SOH channel 1 (scaled)
4bytes float external SOH channel 2

1 4 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 1: NMXP Data Format

4bytes float external SOH channel 3

1.5.32 Transmitter bundle
1 byte int8 bundle type = 50
4bytes long long seconds
4bytes int32 transmitter |P address
4bytes int32 transmitter frequency in hHz
4bytes int32 transmitter level

1.5.33 Receiver bundle
1 byte int8 bundle type = 51
4bytes long long seconds
4bytes int32 receiver |P address
4bytes int32 receiver frequency in hHz
4bytes — spare

1.5.34 Burst bundle

1 byte int8 bundle type = 52
4bytes long long seconds

4bytes int32 transmitter |P address
1 byte int8 bits 0-1: dot state

0 = find (sweeping for carrier)

1 = verify (has carrier, looking for data)

2 =track (receiving data)

bits 2-3: burst state for most recent burst

0 = not found

1 =found CW

2 =found UW

3 =found data
3bytes int24 no. of good burst since the start of this TDMA configuration
3bytes int24 no. of bad burst since the start of this TDMA configuration
1 byte — spare

1.5.35 Epoch bundle

1 byte int8 bundle type = 53

4bytes long long seconds

4bytes int32 next epoch start time (seconds since 1970)
8bytes — spare

1.5.36 Libra GPS Time Quality bundle
1 byte int8 bundle type = 54
4bytes long long seconds

14602R4 Nanometrics Data Formats
2003-11-07 Reference Guide

15

Chapter 1: NMXP Data Format

2 byte

2 bytes
4 bytes
4 bytes

short

short
float
float

GPS status

0: computing position fixes (navigating)

1: no_time

2: needsinitializing

3: pdop_too_high (no solution)

8to 11: acquiring (8 + #satellites tracked))
number of usable satellites

PDOP value

TDOP value

1.5.37 Libra System Time Quality bundle

1 byte
4 bytes
4 bytes

2 bytes

2 bytes
2 bytes
2 bytes

int8
long
int32

int16

int16
intl6
float16

bundle type = 55
long seconds
system time quality:
-10: time_unknown
-1: time_not_good

n >= 0: worst prediction of time error in nsec

PLL mode:

1: fine lock
2: coarse _lock
3: no_lock

time displacement (system time - GPS time in nanoseconds)

time velocity
current compensation

1.5.38 Libra Operation State bundle

1 byte
4 bytes
4 bytes

8 bytes

int8
long
int32

bundle type = 56
long seconds
bitfield indicating operating state:

bit O (LSB): network transmission state: on = 1, off =0

bits 1-31: reserved for future use
spare

1.5.39 Serial Data Bytes bundle

1 byte
4 bytes
1 byte
4 bytes
4 bytes
3 bytes

int8
long
int8
int32
int32

bundle type = 57
long seconds
port number

bytes read since the startup or the start of the day
bytes written since the startup or the start of the day

spare

1.5.40 Telemetry Packet Sender Soh bundle

1 byte

int8

bundle type = 58

1 6 Nanometrics Data Formats

Reference Guide

14602R4
2003-11-07

Chapter 1: NMXP Data Format

4 bytes
1 byte

3 bytes
3 bytes
3 bytes
2 bytes

long
int8
int24
int24
int24
int16

long seconds

port number

Bad command packets received since startup (mod 10 million)
Good command packets received since startup (mod 10 million)
Packets transmitted since startup (mod 10 million)

L ost packets on receive since startup (mod 10 thousand)

1.5.41 Authentication Soh bundle

1 byte

4 bytes
4 bytes
2 bytes

2 bytes
2 bytes

2 bytes

int8
long
int32
int16

int16

int16

bundle type = 59
long seconds
number of CD1 subframes built since startup (mod 1 billion)

number of subframes with invalid signature since startup (mod 10
thousand)

number of subframes with missing status since startup (mod 10
thousand)

number of subframes with missing data samples since startup (mod
10 thousand)

spare

1.5.42 TimeServer Instrument Soh bundle

1 byte

4 bytes
2 bytes
2 bytes
2 bytes
2 bytes
1 byte

3 bytes

int8
long
float16
float16
float16
float16
int8

uint24

bundle type = 60

long seconds

measured temperature of SOH circuit
measured supply voltage of SOH circuit
measured bus voltage of NM Xbus
measured external analog voltage

bits O: bus termination indicator

0 = disabled

1 =enabled

bits 1-7; reserved

uptime (minutes); time since last reboot in minutes (mod 10 million)

1.5.43 TimeServer Time PLL Soh bundle

1 byte
4 bytes
3 bytes
1 byte

int8
long
uint24
int8

bundle type = 61
long seconds
subsecond time in fast counts; multiply by 104.17 to get ns.
bits 0-3: status
O =initializing
1=notime
2 =raw time
3 = approximate time
4 = measuring frequency
5-6 reserved

14602R4
2003-11-07

Nanometrics Data Formats 1 7
Reference Guide

Chapter 1: NMXP Data Format

7 =no lock
8 = coarse lock
9 =finelock
10 = superfine lock
11-15 reserved
bits 4-7: time quality
0=<100ns
1=<200ns
2=<500ns
3=<1micros
4=<2micros
5=<5micros
6 =<10micros
7=<20micros
8=<50micros
9=<100micros
10=<1ms
11=<10ms
12=<100 ms
13=<1s
14=<10s
15=>10s

4bytes long measured time error (fast counts); multiply by 104.17 to get ns; rails

if actual measurement is larger.

1 byte int8 measured frequency error (0.1 ppm); multiply by 0.96 to get Hz;

railsif actual measurement islarger.

3bytes uint24 timesince GPSlock loss; time spent in current state of GPSlock loss

when applicable (mod 10 million).

1.5.44 TimeServer M12 GPS Soh bundle

1 byte int8 bundle type = 62
4bytes long long seconds
1 byte int8 bits 7-5: tracking mode indicator

2 = Bad Geometry
3 = Acquiring Satellites
4 = Position Hold
5 = Propagate Mode
6 = 2D Fix
7=3D Fix

bit 4. autosurvey mode
0=fase
1=true

bit 3: insufficient visible satellites
0=fase

1 8 Nanometrics Data Formats
Reference Guide

14602R4
2003-11-07

Chapter 1: NMXP Data Format

1 byte
1 byte
1 byte
2 bytes
2 bytes
2 bytes
2 bytes

int8
int8
int8
short
ushort
float16
float16

1=true
bits 2-1: antenna status
0=o0k
1 = overcurrent
2 = not connected
3=n/a
bit 0: engine powered
0 = not powered
1 = powered
number of visible satellites
number of tracked satellites
UTC offset (s); difference between UTC and GPS time frame
clock bias (ns) of GPS engine
frequency bias (Hz) of GPS engine
receiver temperature (deg C) on GPS engine
measured antenna voltage (V)

1.5.45 NMXbus Master Soh bundle

1 byte

4 bytes
2 bytes
3 bytes
3 bytes
3 bytes
1 byte

int8
long
ushort
uint24
uint24
uint24

bundle type = 63

long seconds

instrument id

number of slot requests received; (mod 10 million)
number of slot permitsissued; (mod 10 million)
number of slot denials issued; (mod 10 million)

spare

1.5.46 NMXbus Request Soh bundle

1.5.47 NMXbus Rx Soh bundle

1 byte

4 bytes
2 bytes
3 bytes
3 bytes
3 bytes
1 byte

1 byte
4 bytes
4 bytes

4 bytes
2 bytes

int8
long
ushort
uint24
uint24
uint24

int8
long
long

long
short

bundle type = 64

long seconds

instrument id

number of slot requests sent; (mod 10 million)
number of slot permits received; (mod 10 million)
number of slot denials received; (mod 10 million)

spare

bundle type = 65
long seconds

Rx good packets; number of good bus messages received (mod 1 bil-
lion)

Rx bytes; number of bytes received (mod 1 billion)
Rx buffer overrun; number of Rx FIFO overruns (mod 10,000)

14602R4
2003-11-07

Nanometrics Data Formats 1 9
Reference Guide

Chapter 1: NMXP Data Format

2bytes short HDLC errors; number of HDLC errors; CRC, abort or other (mod
10,000)

1.5.48 NMXbus Tx Soh bundle

1 byte int8 bundle type = 66

4bytes long long seconds

4bytes long Tx good packets; number of good bus messages sent (mod 1 billion)
4bytes long Tx bytes; number of bytes transmitted (mod 1 billion)

2bytes short Tx buffer underrun; number of Tx FIFO underruns (mod 10,000)
2bytes short discarded packets; e.g. Due to collisions or defers (mod 10,000)

1.5.49 NMXbus Device List Soh bundle

1 byte int8 bundle type = 67

4bytes long long seconds

2bytes ushort instrument 1D of device 1
2bytes ushort instrument 1D of device 2
2bytes ushort instrument 1D of device 3
2bytes ushort instrument 1D of device 4
2bytes ushort instrument 1D of device 5
2bytes ushort instrument 1D of device 6

1.5.50 Trident PLL Status Soh bundle
1 byte int8 bundle type = 68
4bytes long long seconds
2bytes ushort current state
O =INIT (not digitizing)
1 =TIME (correcting time error)
2=ACQO0
3=TRK1
4=TRK2
5=TRK3
6 =TRK4

2bytes ushort DAC counts; value to DAC to control VCXO (ranges from 0 to
4096)

4bytes float time error (micro s); relative to TimeServer (+ve indicates Trident
ahead)

4bytes float temperature (deg C)

1.6 Log message packet

This packet contains log messages from a Nanometrics instrument. It consists of a
timestamp header and up to 119 bytes (7 bundles) of formatted log message. Note that
HRDs send log bundles (see section 1.5.6 on page 8) rather than log message packets.

20 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 1: NMXP Data Format

1.6.1 Log message packet format

1 byte us-int8 Packet type =5 (bit 5= 1 isfor retransmit)
4bytes usint32 Long seconds
2bytes usintl6 spare
2bytes usintl6 Instrument ID [bits 0-10 serial number, bits 11-15 model type]
4bytes usint32 Sequence Number
2bytes usintl6 Error Number
1 byte char Error Severity (D, V, I, W, E, F) which means:
debug, verbose, information, warning, error, fatal
1 byte spare
119 bytes char Error message (text message)

1.7 Transparent serial packet

A transparent serial packet contains atime stamp header followed by N data bytes
(where N isuser defined subject to N = 17 * k, wherek isan integer, 1 <= k <= 28). k
istypicaly 15, which gives N = 255. The time stamp bundle contains a sequence
number, the time of the first sample, instrument ID, channel number, and the number
of valid payload bytes, M.

Transparent serial packets are normally sent when the packetisfull (M =N). However,
the packet sender may be configured to send partial packets after atime out (i.e,, if a
specified time has passed since the first byte of the packet was received). In this case,
M <N, and thelast N - M bytes should be discarded. Partial packets are always padded
out to full length.

1.7.1 Transparent serial packet format

1 byte Packet type = 6 (bit 5= 1 isfor retransmit)

4bytes Long seconds

2bytes Sub-secondsin 10,000th of a second

2bytes Instrument ID [bits 0-10 serial number, bits 11-15 model type]
4bytes Sequence Number

2bytes Number of bytes of payload data

1 byte Channel number (port number)

1 byte spare

N bytes binary serial data

1.7.2 Authentication information

Authentication information is carried in generic Transparent Serial Packets, with the
following format. Whereas Transparent Serial Packet header isin least significant byte
(LSB)-first order, for compatibility with NMXP protocol, the payloads are in most sig-
nificant byte (M SB)-first order.

1 byte packet type = 6
4 bytes nominal frame time (seconds since 1970)
2bytes frametime subseconds =0

14602R4
2003-11-07

Nanometrics Data Formats 21
Reference Guide

Chapter 1: NMXP Data Format

2bytes instrument ID

4bytes packet sequence number

2bytes N = number of bytes of payload data

1 byte channel number = seismic_channel + 16
1 byte spare

N bytes payload

For CD1.0, N =60, in MSB-first order
The 60 byte payload contains a 4-byte internal header:
1 byte version number =0
2bytes number of actual samples signed
1 byte header length = 56
plus 56 bytes of subframe information, as defined in IDC-3.4.2 Rev. 0.1, Table 6:
40 bytes DSA signature
8bytes time of first sample (IEEE 8-byte float)
4bytes number of samplesin subframe
4bytes status bytes

For CD1.1, N = 148, in MSB-first order
The 148 byte payload contains a 4-byte internal header:
1 byte version number =1
2bytes number of actual samples signed
1 byte header length = 144
plus 144 bytes of subframe information, as defined in IDC-3.4.3 Rev. 0.2, Table 10:
24 bytes channel description
20 bytes time of first sample
4bytes subframetime length
4bytes number of samplesin subframe
4bytes channel status size
32 bytes channel status data, as defined in IDC-3.4.3 Rev. 0.2, Table 22
4bytes datasize=4* number of samples
4bytes subframe count =0
4bytes authentication key 1D
4bytes authentication size = 40
40 bytes authentication value (DSA signature)

22 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

NMX Alert Format

Nanometrics Janus, Europa, and Librafamily instruments can be enabled to send Alert
frames to notify users of certain important state changes. These frames are send via
either unicast or multicast UDP to an alert handler which forwards appropriate mes-
sagesto alist of subscribers viaemail or other transport. Currently, the only alert han-
dler which has been implemented by Nanometricsis AlertMailer, which forwards alert
messages viaemail. For further information, see the AlertMailer reference manual.

2.1 Overview

Each Alert frame isissued in response to an important state change on the instrument,
such asloss of contact with aV Sat remote instrument, or supply voltage leaving the
acceptable range. A corresponding message isissued when the condition is corrected.

Alert frames are sent via UDP to the aert destination address and port defined in the
internet section of the instrument configuration. These packets are not acknowledged
by the alert receiver, and there is no mechanism for requesting retransmission of an
Alert frame.

2.2 Alert frame format

Each message contains information identifying the message source, error class and
severity, and time of occurrence. It also contains aformat string and a string of argu-
ments describing the error condition in detail. The argumentsand format string are sent
separately to allow reformatting of the message by the aert forwarding software.
Details of this argument replacement method are provided below.

The frame format is as follows:
4byteint packet identifier = OX7TABCDEOF
4byteint message type = 320
4byteint message content length = 20 + sum of string lengths

4byteint Message severity

8byteint Messagetime (UT, milliseconds)

String sourcel D = name of the module which generated the alert
String classID = type name of the alert message

14602R4
2003-11-07

Nanometrics Data Formats 23
Reference Guide

Chapter 2: NMX Alert Format

String format string - default format string for the message
String arguments (first character is delimiter)

All integers are sent in big-endian byte order.

Each string isencoded as a 2-byteint (string length) followed by an array of ascii bytes
(not zero-terminated).

2.2.1 Argument substitution

Each aert message type may contain a number of instance-specific arguments indicat-
ing, for example, astation name, earthquake magnitude, or other information. Alert for-
mat strings follow a simple but powerful convention which allows these arguments to
be included anywhere, in any order, in the reformatted message. Arguments are indi-
cated by special character sequences beginning with %, with defined tags as described
in Table 2-1.

Thismethodisvery flexible, sinceit allows each argument to be referenced an arbitrary
number of timesin any order. This allows constructing of both complete and abbrevi-
ated messages, and accommodating different grammatical conventions which may be
associated with different languages.

Table 2-1 Argument tags

*

Tag Description

%1, %2, ...%9 These represent the corresponding element from the argument list

Y%s The sourcelD of the module which generated the message

Y%m The message type, or classID

%p The message priority or severity

Y%a The entire argument string, concatenated together, separated by a
delimiting character (usually /)

Yot The time at which the message was generated

Yor A carriage return

%% The % sign

* Unrecognized or invalid tags will be displayed in the formatted message as “*".

2.3 Definition of Alert Messages

2.3.1 Alert Messages Generated by AlertMailer

2.3.1.1 AlertSystemUp

This message indicates that the AlertMailer system has started.
sourcel D AlertMailer
classiID AlertSystemUp
format string Nmx Alert system is now running%or\

2 4 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 2: NMX Alert Format

Components online: %1%r\
Components offline: %2%r
arguments largl/arg2

where argl = sourcelds of components which are online, and
arg2 = sourcelds of components which are offline

2.3.1.2 AlertSystemDown

This message indicates that the AlertMailer system is shutting down.
sourcelD AlertMailer
classID AlertSystemDown
format string Nmx Alert system is shutting down
arguments none

2.3.1.3 ComponentOffline

Thismessageindicatesthat AlertMailer is not receiving from the specified component.
sourcel D AlertMailer
classiD ComponentOffline
format string No message received from %1 for %p minutes
arguments largl

where argl = sourceld of component which is being reported offline

2.3.1.4 ComponentOnline

This message indicates that AlertMailer has started receiving from a component that
was previoudly offline.

sourcelD AlertMailer

classID ComponentOnline

format string Started receiving from %1 after outage of more than %p minutes
arguments largl

where argl = sourceld of component which just came online

2.3.1.5 MailErr

This message indicates that AlertMailer was unable to send a mail message.
sourcel D AlertMailer
classID MailErr
format string Failureto forward alert type: %1%rError message: %2
arguments largl/arg2

where argl = classld of message for which send failed, and
arg2 = error string from system

14602R4

Nanometrics Data Formats 2 5
2003-11-07

Reference Guide

Chapter 2: NMX Alert Format

2.3.2 Alert Messages Generated by NaqgsServer

2.3.2.1 NagsAlive

This message indicates that NagsServer has just started.
sourcelD NagsServer (or configured 1D)
classiD NagsAlive
format string NagsServer is now running.%or\
Currently receiving from %1 / %2 instruments %r\
The following instruments are online: %3 %or\
The following instruments are offline: %4 %r
arguments largl/arg2/arg3/argd
where argl = number of instruments which are currently online
arg2 = total number of instruments in NagsServer configuration

arg3 = list of stations which are currently online
arg4 = list of stations which are currently offline

2.3.2.2 NagsStatus

This message is issued once per hour, giving current status.
sourcelD NagsServer (or configured 1D)
classiD NagsStatus
format string NagsServer hourly status report.%or\
Currently receiving from %1 / %2 instruments %r\
The following instruments are online: %3 %or\
The following instruments are offline: %4 %r
arguments largl/arg2/arg3/argd
where argl = number of instruments which are currently online
arg2 = total number of instrumentsin NagsServer configuration

arg3 = list of stations which are currently online
arg4 = list of stations which are currently offline

2.3.2.3 NagsReport

This message is issued once per day, giving uptime summary status for past 24 hours.
sourcelD NagsServer (or configured 1D)
classID NagsReport
format string NagsServer daily status report.%or\
Uptime: %1 %r\
Packets received today: %2 (retx %3 %%) %or\
Received data from %4 / %5 instruments. %r\
Received data from the following instruments: %6 %or\
The following instruments remained offline: %7
arguments largl/arg2/arg3/argd/arg5/arg6l/arg?

26 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 2: NMX Alert Format

where argl = elapsed time since NagsServer was last started
arg2 = number of packets received in past 24 hours (or since startup)
arg3 = percentage of packets received which were retransmitted packets
arg4 = number of instruments from which packetswerereceived in past 24 hours
arg5 = total number of instrumentsin NagsServer configuration
arg6 = list of stations from which packets were received in the past 24 hours
arg7 = list of stations from which NO packets were received in the past 24 hours

2.3.2.4 RbfOpenFail

This message isissued if one or more ringbuffers cannot be opened properly when

NagsServer starts up.
sourcelD NagsServer (or configured 1D)
classiD RbfOpenFail

format string File open failed on %1 / %2 ringbuffers. See Nagslog.
arguments largl/arg2

where argl = number of ringbuffers which could not be opened
arg2 = number of ringbuffers which NagsServer attempted to open

2.3.2.5 RbfWriteFail

This message isissued when there is an error writing to a ringbuffer.
sourcelD NagsServer (or configured 1D)

classiD RbfWriteFail
format string Ringbuffer write failure on %1, rc = %2, count = %p.
arguments fargl/arg2

where argl = name of channel for which write failed
arg2 = integer error code from program

2.3.2.6 RbfWriteOk

This message is issued when a ringbuffer write succeeds after previously being failed.
sourcelD NagsServer (or configured ID)
classiID RbfWriteOk
format string Ringuffer write succeeded on %1 after %p failures.
arguments largl
where argl = name of channel

2.3.2.7 InstrumentOffline

This message is issued when Nags has not received any datafor 10 minutes from one
or more instruments that were previously online.

sourcelD NagsServer (or configured 1D)

classiID InstrumentOffline

format string NagsServer has stopped receiving from %1%r\
Currently receiving from %2 / %3 instruments %r\

14602R4 Nanometrics Data Formats 27
2003-11-07 Reference Guide

Chapter 2: NMX Alert Format

The following instruments are online: %4 %or\
The following instruments are offline: %5 %r
arguments largl/arg2/arg3/arga/args
where argl = list of stations which have just gone offline
arg2 = number of instruments which are currently online
arg3 = total number of instruments in NagsServer configuration

arg4 = list of stations which are currently online
arg5 = list of stations which are currently offline

2.3.2.8 InstrumentOnline

This message isissued when Nags starts receiving from one or more instruments that
were previoudly offline.
sourcelD NagsServer (or configured 1D)
classiID InstrumentOnline
format string NagsServer has started receiving from %1%r\
Currently receiving from %2 / %3 instruments %r\
The following instruments are online: %4 %or\
The following instruments are offline: %5 %r
arguments larglarg2/arg3/argd/args
where argl = list of stations which have just gone offline
arg2 = number of instruments which are currently online
arg3 = total number of instrumentsin NagsServer configuration

arg4 = list of stations which are currently online
arg5 = list of stations which are currently offline

2.3.2.9 NagsEvent

This message is issued when the event-detection modul e detects a seismic event.
sourcelD NagsServer (or configured 1D)
classiD NagsEvent
format string Nags detected seismic event \
%r Start time: %1\
%r Duration (seconds): %2\
%r Trigger type: %3\
%r Number of triggers: %4\
%r Peak Stall.ta: %p \
%r Stations. %5 %r
arguments /argl/arg2/arg3/argd/arg5
where argl = time of the earliest trigger in the event (UT)
arg2 = duration of the event in seconds (until last de-trigger)
arg3 = trigger type from Nags.stn file

arg4 = number of triggersin this event
arg5 = list of stations or channels which triggered for this event

2 8 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 2: NMX Alert Format

2.3.3 Alert Messages Generated by each Carina Instrument (CARxxx)

2.3.3.1 VSatShutdown

This message is issued when Carinais shutdown manually (via shutdown command,
entering TEST mode, etc.).

sourcel D Instrument ID (CARXXX)

classiID V SatShutdown

format string Carina %s transmission shutdown (%1)

arguments largl
where argl = list of reasons of shutdown

2.3.3.2 VSatResume

This message is issued when Carina transmission resumes.
sourcelD Instrument ID (CARXXX)
classiD V SatResume
format string Carina %s transmission resumed
arguments none

2.3.3.3 VSatTxOutage

Thismessage isissued when Carinahas NOT transmitted for N minutes, where N = 2,

5 and 20.
sourcel D Instrument ID (CARXXX)
classiD V SatTxOutage

format string Carina %s has NOT transmitted for past %p minutes(%1)
arguments /argl
where argl = list of reasons of shutdown

2.3.3.4 VSatTxOk

This message is issued when Carina transmission resumes.
sourcel D Instrument ID (CARXXX)
classiID V SatTxOk
format string Carina %s transmission resumed after %1 minutes
arguments largl

where argl = number of minutes of outage

2.3.3.5 VSatSelfRxOutage

Thismessageisissued when Carinahas NOT received its own transmission for N min-
utes, where N = 2, 5 and 20.

sourcel D Instrument ID (CARXXX)

classiD V SatSelfRxOutage

format string Carina %s has NOT received its own transmission for past %p minutes

14602R4 Nanometrics Data Formats 29
2003-11-07 Reference Guide

Chapter 2: NMX Alert Format

arguments none

2.3.3.6 VSatSelfRxOk

This message isissued when Carina self-reception resumes.
sourcelD Instrument ID (CARXXX)
classiD V SatSelfRxOk
format string Carina %s now receiving from itself
arguments none

2.3.3.7 VSatRxOutage

This message isissued when Carinahas NOT received from V Sat xx for N minutes,
whereN =2, 5 and 20.

sourcelD Instrument ID (CARXXX)

classiD V SatRxOutage

format string No packets received from %1 for %p minutes

arguments fargl
where argl = sourceld of remote which is not being received

2.3.3.8 VSatRxOk

This message is issued when Carina starts receiving data from aV Sat after an outage.
sourcel D Instrument ID (CARXXX)
classiID V SatRxOk
format string Now receiving from %1 after outage of %2 minutes
arguments largl/arg2

where argl = sourceld of remote which was offline
arg2 = number of minutes of outage

2.3.4 Alert messages generated by each Cygnus, Janus, or Europa

2.3.4.1 PowerWarn
This message is issued when supply voltage enters RED zone (using thresholds from

user interface).
sourcelD Instrument ID (e.g. EUR123)
classiID PowerWarn

format string Battery voltage %1 Volts
arguments largl
where argl = value of voltage

2.3.4.2 PowerOk

This message is issued when supply voltage enters GREEN zone.
sourcel D Instrument ID

30 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 2: NMX Alert Format

classiID PowerOk
format string Battery voltage %1 Volts
arguments largl

where argl = value of voltage

2.3.4.3 SohWarn

This message isissued when an SOH reading enters the RED zone.

sourcel D Instrument ID

classiD SohWarn

format string SOH %1 reading out of range(%2)
arguments largl/arg2

where argl = name of SOH channel
arg2 = value of SOH reading

2.3.4.4 SohOk
This message is issued when SOH enters GREEN zone.
sourcelD Instrument ID
classiD SohOk

format string SOH %1 reading OK (%2)
arguments largl/arg2

where argl = name of SOH channel
arg2 = value of SOH reading

14602R4
2003-11-07

Nanometrics Data Formats

Reference Guide

31

Chapter 2: NMX Alert Format

32 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Private Data Streams

NagsServer provides online access to time-series, seria data, triggers, and state-of -
health data via TCP subscription. The Stream Manager subsystem of NagsServer acts
as adataserver; it accepts connections and data requests from client programs and for-
wardsthe requested datato each client program in near-realtime. This chapter describes
version 1.4 of the protocol and data formats required for a client program to request,
receive and interpret online data. C-language source code for a sample datastream cli-
ent program is provided with NagsClient as dsClient.cpp (also in Appendix A, “Data
Stream Client”). See also the NagsServer acquisition software manual pages.

3.1 Data stream types

The following data stream types are currently supported:
* Timeseries data

» State-of-health data

» Transparent serial data

o Triggers

* Events

Time-series data may be requested in compressed or uncompressed format. Com-
pressed data are in the original packet format received from the digitizer; uncom-
pressed data are transmitted as 32-bit integer values. State-of-health data and
transparent serial data are always transmitted in compressed format.

Compressed data may be requested as either raw or buffered streams:

» Raw stream: All packets (both original and retransmitted) are forwarded in the
same order that they are received from the instrument by NagsServer. Packets may
be missing, duplicated, or out of order, but are received with minimal delay.

» Buffered stream: Short-term-complete data stream. Packets for each channel are
guaranteed to be in chronological order, with short gaps filled by retransmitted
packets.

NagsServer maintains buffers of recent time-series, serial and state-of-health packets.
Optionaly, these buffered packets may be included at the beginning of arequested
stream, before NagsServer begins to send real-time data. Effectively, this enables the
client program to request a stream which begins several packetsin the past.

14602R4
2003-11-07

Nanometrics Data Formats 33
Reference Guide

Chapter 3: Private Data Streams

Triggers are detected using short-term-compl ete data; therefore trigger messages are
aways sent immediately when the trigger is detected. Similarly, events packets are
aways sent as soon as they are created.

In the current version, each client program (i.e. each socket connection) may subscribe
to one or more datatype. Client programs may subscribeto all datachannels of agiven
type, or to any subset of the available channels. Each packet contains datafor asingle
channel, and contains akey or name to identify the channel.

3.2 Subscription protocol

Every client program must implement the communication protocol summarized by the
following steps. Italics indicate specific message types. Message formats are given in
section 3.3.

1

Open a socket to the Stream Manager, using the stream manager port specified in
the NagsServer configuration. The default port is 28000.

Send a Connect message to Stream Manager.

Receive the Channel List from the Stream Manager. Thisisalist of the time-series
and state-of-health channels available from the server.

(optional) Send a Request Pending message every few seconds until the request is
ready. Once a connection is made, the client has 30 seconds to send a Request
message before Stream Manager times out the connection. If the client application
needs time to organize a packet request (for instance, if the client application must
wait for user input), the client can send a Request Pending message to ensure the
connection stays open. Each time Stream Manager receives a Request Pending
message, it restarts its 30 seconds count down.

Send an AddChannels message to Stream Manager. Theinitial receipt of a Add-
Channels by Stream Manager stops the 30 second count down, and creates a new
subscription for the channels indicated. Any subsequent AddChannels messages
received by Stream Manager are treated as edits to the subscription.

Repeat until finished: receive and handle packets from Stream Manager, and
(optionally) send a new AddChannels message (step 5) or a new RemoveChannels
message whenever desired to change the subscription. The client should be pre-
pared to process both Error messages and messages of the subscribed data type(s).

Send a Terminate Subscription message to Stream Manager to cancel the subscrip-
tion when finished.

Close the socket.

3.3 Message formats

Each message consists of a 12-byte header and avariable length data content field. The
header provides the type and length of the content. The client application should read
the header first, then read the content after determining its type and length.

34 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 3: Private Data Streams

3.3.1 Client messages

Client messages are subscription protocol messages sent by the client to Stream Man-
ager.

3.3.1.1 Connect

The purpose of the Connect message is to prove to Stream Manager that avalid client
is requesting a connection. It has no content.

Header:
4 byteint Signature = 0x7ABCDEOF
4 byteint message type = 100
4 byteint message content length = 0

3.3.1.2 Request Pending

The Request Pending messageis sent to reassure Stream Manager that the client is till
alive and intends to make arequest eventually. It has no content.

Header:
4 byteint Signature = 0x7ABCDEOF
4 byteint message type = 110
4 byteint message content length = 0

3.3.1.3 Terminate Subscription

A Terminate Subscription message istypically sent to Stream Manager by the client to
indicate the end of the request. However, Stream Manager may also end the connection
if an error occurs. There are currently 3 Terminate Subscription message types defined:

» Normal Shutdown: sent by the client to indicate the end of a subscription
» Error Shutdown: sent by Stream Manager to indicate that afatal error has occurred

» Timeout Shutdown: sent by Stream Manager to indicate that client has not sent a
subscription in the allotted time.

The string message portion of a Terminate Subscription message is used by Stream
Manager to provide amore detail ed description of why the connection was terminated.
Itisnot necessary for aclient to include astring messagein any Terminate Subscription
messages that it sends.

Header:
4 byteint Signature = 0X7ABCDEOF
4 byteint message type = 200
4 byteint message content length=4 + N
Content:
4 byteint Reason for termination
1= Normal shutdown
2 = Error shutdown
3 = Timeout shutdown
N byte string String message (none if N = 0)
14602R4 Nanometrics Data Formats 3 5

2003-11-07 Reference Guide

Chapter 3: Private Data Streams

3.3.2 AddChannels messages

Clients send an AddChannels message to subscribe to certain data streams. An Add-
Channels message contains the following information:

1. Datatype requested (time-series, state-of-health, or triggers).
Channels requested (given by an array of channel indices, or keys).
Delay for the short-term completion buffer (buffered streams only).

Parameters for the decimation filter (time-series only).

o b~ w DN

Parameters for buffered packet request (time-series, serial and state of health data
only)

An AddChannels message can be used in two ways: to add channels to a subscription,
or to edit the parametersfor acurrently subscribed channel. If Stream Manager receives
an AddChannels message which includes a channel aready in the subscription, it
checksif parametersin the AddChannel s message (the short-term completion and dec-
imation parameters if they apply) are different from the current parameters for the
channel. If the parameters are different, the old values are discarded for the channel,
and packets from that channel are processed using the new instructions.

Thecurrent version of Stream Manager recognizesthefivetypesof Add Channelsmes-
sages described below.

3.3.2.1 AddTime-SeriesChannels

The Add Time-SeriesChannels message is used to request time-series packets. Time
series streams can be buffered to ensure that packets for each channel are output in
chronological order. When packets are missed, Stream Manager will wait a specified
period of timefor the gap to befilled by retransmitted packets. Specifying acompletion
time of O will guarantee that packets are in chronological order, without waiting for
missed data.

Time series streams can be requested in three different output formats: compressed data
at the original sample rate, uncompressed data at the original sample rate, or uncom-
pressed data decimated using Stream Manager's built in decimating FIR filters.
Uncompressed time-series datais typically sent in packets of fixed length (one second
duration). However, missing incoming data may cause Stream Manager to output a
shorter packet.

An AddDataChannel s message can a so include a request to receive packets from the
Nags buffer of recent packets, before receiving the stream of new packets. This, effec-
tively, moves the start of the stream several packets into the past.

Header:
4 byteint Signature = Ox7ABCDEOF
4 byteint message type = 120
4 byteint message content length =16 + 4 * N, where N = number of channels
Content:
4 byteint number of channels requested = N (use O to request all channels)
36 Nanometrics Data Formats 14602R4

Reference Guide 2003-11-07

Chapter 3: Private Data Streams

N * 4 byteint Channel key for each requested channel
(same asin Channel List message)

4 byteint Short-term-completion time=s, -1 <= s <= 300 seconds
(-1 indicates no short-term completion)

4 byteint Output format

-1 = compressed packets
0 = uncompressed packets, original sample rate
0 <r = requested output sample rate

4 byteint Buffer flag
0 = do not send buffered packets for these channels

1 = send buffered packets for these channels

3.3.2.2 AddSohChannels

The Add SohChannels message is used to request state-of-health packets. Like time-
series streams, state-of-health streams can be buffered to ensure that packets for each
channel are output in chronological order. When packets are missed, Stream Manager
will wait a specified period of time for the gap to be filled by retransmitted packets.
Specifying a completion time of 0 will guarantee that packets are in chronological
order, without waiting for missed data. A completion time of -1 instructs Stream Man-
ager to make no attempt to output packets in chronological order.

Like time series streams, state-of-health streams can a so be requested to include a
buffer of recent packets at the beginning of the stream, thereby moving the start of the
stream several packetsinto the past.

Header:
4 byteint Signature = 0x7ABCDEOF
4 byteint message type = 121
4 byteint message content length =12 + 4 * N, where N = number of channels
Content:
4 byteint number of channels requested = N (use 0 to request all channels)
N * 4 byteint Channel key for each requested channel
(same asin Channel List message)
4 byteint Short-term-completiontime = s, -1 <= s <= 300 seconds
(-1 indicates no short-term completion)
4 byteint Buffer flag

0 = do not send buffered packets for these channels
1 = send buffered packets for these channels

3.3.2.3 AddSerialChannels

The Add Serial Channels message is used to request transparent serial data packets.
Liketime-series streams, transparent serial streams can be buffered to ensure that pack-
ets for each channel are output in chronological order. When packets are missed,
Stream Manager will wait a specified period of time for the gap to befilled by retrans-
mitted packets. Specifying a completion time of 0 will guarantee that packets arein

14602R4
2003-11-07

Nanometrics Data Formats 37
Reference Guide

Chapter 3: Private Data Streams

chronological order, without waiting for missed data. A completion timeof -1 instructs
Stream Manager to make no attempt to output packets in chronological order.

Like time series streams, transparent serial streams can also be requested to include a
buffer of recent packets at the beginning of the stream, thereby moving the start of the
stream several packets into the past.

Header:
4 byteint Signature = OXx7TABCDEOF
4 byteint message type = 124
4 byteint message content length=12 + 4 * N, where N = number of channels
Content:
4 byteint number of channels requested = N (use O to request all channels)
N * 4 byteint Channel key for each requested channel
(same asin Channel List message)
4 byteint Short-term-completion time =s, -1 <= s <= 300 seconds
(-1 indicates no short-term completion)
4 byteint Buffer flag

3.3.2.4 AddTriggerChannels

0 = do not send buffered packets for these channels
1 = send buffered packets for these channels

The AddTrigger Channels message is used to request trigger packets. Currently Stream
Manager ignores any channel keys indicated in the AddTrigger Channels message,
responding instead by sending trigger packets for all channelsin the network. Conse-
guently, any attempt to edit the channels in an existing subscription by sending an
AddTrigger Channels message with adifferent list of channel keyswill provoke awarn-

ing message from Stream Manager.
Header:

4 byteint Signature = 0Xx7ABCDEOF

4 byteint message type = 122

4 byteint message content length =4 + 4 * N, where N = number of channels
Content:

4 byteint number of channels requested = N (use O to request all channels)

N * 4 byteint Channel key for each requested channel

(same asin Channel List message)

3.3.2.5 AddEvents

Thismessageisused to request event packets. There are no parametersto an AddEvents
message; Stream Manager sends event packets for every event that it identifies. Con-

sequently, editing of an event subscription isnot alowed, and any AddEvents message
sent after theinitial request will provoke an error.

Header:
4 byteint Signature = Ox7ABCDEOF
4 byteint message type = 123
38 Nanometrics Data Formats 14602R4

Reference Guide 2003-11-07

Chapter 3: Private Data Streams

4 byteint 0

3.3.3 Remove Channels messages

A client sends a RemoveChannels message to remove someor all channelsfromitssub-
scription. A RemoveChannels message contains the following information:

1. Datatype of the channels to remove (time-series, state-of-health, or triggers).

2. Channelsto be removed (given by an array of channel indices, or keys).

If some of the channel sindicated in the RemoveChannel s message are not in the current
subscription, or do not correspond to the data type indicated in the message, Stream
Manager will respond with an error message stating that there were some channels it
was unable to remove.

3.3.3.1 RemoveTimeSeriesChannels

The RemoveTimeSeriesChannels message is used to remove time-series channel sfrom
the client’ s subscription.

Header:
4 byteint Signature = 0x7ABCDEOF
4 byteint message type =130
4 byteint message content length = 4 + 4 * N, where N = number of channels
Content:
4 byteint number of channelsto remove = N (use 0 to remove al channels)
N * 4 byteint Channel key for each requested channel

(same asin Channel List message)

3.3.3.2 RemoveSohChannels

The RemoveSohChannels message is used to remove state-of -health channels from the
client’s subscription.

Header:
4 byteint Signature = OXx7TABCDEOF
4 byteint message type =131
4 byteint message content length =4 + 4 * N, where N = number of channels
Content:
4 byteint number of channelsto remove = N (use O to remove al channels)
N * 4 byteint Channel key for each requested channel

(same asin Channel List message)

3.3.3.3 RemoveSerialChannels

The RemoveSerial Channels message is used to remove transparent serial channels
from the client’ s subscription.

Header:
4 byteint Signature = 0X7ABCDEOF

14602R4 Nanometrics Data Formats 39
2003-11-07 Reference Guide

Chapter 3: Private Data Streams

4 byteint message type =134

4 byteint message content length =4 + 4 * N, where N = number of channels
Content:

4 byteint number of channelsto remove = N (use 0 to remove al channels)

N * 4 byteint Channel key for each requested channel

(same asin Channel List message)

3.3.3.4 RemoveTriggerChannels

The RemoveTrigger Channels message is used to remove trigger channels from the cli-
ent’ s subscription. Currently, Stream Manager maintains an all-or-nothing policy
toward trigger subscriptions. A remove-all RemoveTrigger Channel s message (number
of channels = 0) will cause Stream Manager to delete al trigger channels from the sub-
scription. Any RemoveTrigger Channel s message with anon-empty list of channel keys
will provoke an Error message from Stream Manager.

Header:
4 byteint Signature = 0x7ABCDEOF
4 byteint message type =132
4 byteint message content length =4 + 4 * N, where N = number of channels
Content:
4 byteint number of channelsto remove = N (use 0 to remove all channels)
N * 4 byteint Channel key for each requested channel

(same asin Channel List message)

3.3.3.5 RemoveEvents

The RemoveEvents message is used to unsubscribe from the event packet stream.

Header:
4 byteint Signature = 0x7ABCDEOF
4 byteint message type =133
4 byteint 0

3.3.4 Server messages

These are subscription protocol messages sent by Stream Manager to the client.

3.3.4.1 Channel List
A Channel List message contains alist of the data streams available. Each stream is
identified by an unique integer key (which encodes digitizer/channel information) and
an 11-character ASCI|I string which encodes the station and channel name. The channel
list contains time-series, seria and state-of-health channels. The datatype for agiven
channel can be determined from the channel key using the following formula: type =
((key >> 8) & Oxff).
Header:

4 byteint Signature = 0X7ABCDEOF
40 Nanometrics Data Formats 14602R4

Reference Guide 2003-11-07

Chapter 3: Private Data Streams

4 byteint message type = 150
4 byteint message content length=4+ N * 16
Content:
4 byteint number of channelsavailable=N
N 16-byte channel info bundles of the form:
{
4 byteint Channel key = ((ID << 16) | (type << 8) | channdl)
where ID isthe full instrument serial number

type isthedatasubtype:
1=timeseries
2 = state of health
6 = transparent serial
channel isthe data channel number (O to 5)
12 bytes zero-terminated channel name string (e.g. STNO1.BHZ).

3.3.4.2 Error

Error messages are sent to the client by Stream Manager to indicate some error condi-
tion - usually in response to an invalid request from the client.

Header:
4 byteint Signature = OXx7TABCDEOF
4 byteint message type = 190
4 byteint message content length=N
Content:
N byte string Error message

3.3.5 Data messages

3.3.5.1 Compressed Data, Soh or Transparent Serial Packets

This message contains datain the original compressed format generated by the Nano-
metricsinstrument. Details of the packet contents are givenin Chapter 1, “NMXP Data

Format”.
Header:
4 byteint Signature = 0X7ABCDEOF
4 byteint Datatype=1
4 byteint Data content length = variable
Content:
4 byteint Oldest sequence number
N bytes N byte compressed data packet
14602R4 Nanometrics Data Formats 41
2003-11-07 Reference Guide

Chapter 3: Private Data

Streams

3.3.5.2 Decompressed Data Packets

This message contains decompressed time-series data in fixed-length blocks (usually

one

second).

Header:

4 byteint
4 byteint
4 byteint

Content:

3.3.5.3 Trigger

4 byteint
8 byte double
4 byteint
4 byteint
N * 4 byteint

Packet

Signature = 0x7TABCDEOF
Datatype=4
Datalength =20 + 4 * N, where N = number of samples

Channel key (same asin Channel List message)
Time of first sample (seconds since January 1, 1970)
Number of samplesin this packet = N.

Sampl e rate (samples per second).

Samples as 32-hit integers

Trigger messages contain information on triggers detected by the Nagsinternal Sta/l_ta
trigger-detection system.

Header:

4 byteint
4 byteint
4 byteint

Content:

12 bytes
4 byteint
8 byte double

4 byte float
4 byte float
4 byte float
4 byte float
4 byte float
4 byte float

4 byte float

4 byteint

Signature = Ox7ABCDEOF
Datatype=5
Datalength = 56

Station-channel name as zero-terminated string.
Thetrigger Typel D from the nags.stn file

The trigger-on time, that is, the time at which the trigger criterion
was met (seconds since Jan 1, 1970).

The duration of the trigger in seconds.

The LTA (long-term average) value at the trigger-on time.

The LTA (long-term average) value at the trigger-off time.

The peak STA (short-term average) value during thistrigger.
The maximum peak-to-peak signal during thistrigger in counts.

The time in seconds from trigger-on to the beginning of the maxi-
mum peak-to-peak signal.
The half period of the maximum peak-to-peak signal in seconds
(time between reversals).
The trigger phase:

0 message generated at trigger-on

1 early-report message generated typically 1 second after

trigger-on
2 complete-report message generated at trigger-off

42 Nanometrics Data Formats

Reference Guide

14602R4
2003-11-07

Chapter 3: Private Data Streams

3.3.5.4 Event Packet

Event messages contain information on events detected by the Nags internal Event
Associator subsystem.

Header:
4 byteint Signature = 0x7ABCDEOF
4 byteint Datatype=6
4 byteint Datalength = 28 + N*12
Content:
4 byteint The event phase:
0 eventon, sent when the event isfirst detected
1 eventon, sent at the end of the user-defined coincidence
window
(see the Event Associator section in the nags.ini file).
2 event off, sent when all channels have stopped triggering,
or when the event has expired
4 byteint Thetypeof triggersincluded inthe event. Thetrigger typeisdefined
by the DetectorType Typel D parameter in the nags.stn file.
8 byte double The start time of the event, in seconds since January 1, 1970.
8 byte double The event duration, in seconds.
4 byteint N = The number of data channelsincluded in this event.
N*12 bytes zero-terminated station-channel name for each of the channels
included in the event.
14602R4 Nanometrics Data Formats 43

2003-11-07 Reference Guide

Chapter 3: Private Data Streams

4 4 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Data Access Protocol

The Nanometrics DataServer provideslocal and remote accessto Nanometrics seismic,
serial, and state-of-health data via TCP/IP. This chapter defines version 1.0 of the pro-
tocol and data formats required for a client program to request, receive and interpret
Nanometrics data. See also the NagsServer acquisition software manual pages.

4.1 Data types

The following data types are currently supported:
» Timeseriesdata

o State-of-health data

e Transparent serial data

» Triggers

* Events

Data of each type (except events) may be requested by channel, start time, and end
time. Event data (which are not channel-specific) may be requested by start and end
time. Time-series, state of health, and transparent serial data are sent in the original
compressed format received from the data-acquisition instrument. Triggersare sent in
asummary form which includes the channel name, trigger time, and duration. Event
data include the time and duration. For all datatypes, data are normally sent in chron-
ological order.

The DataServer also provides data-availability information of two types:

» Channdl list: alist of the available channels

» Precislist: alist of available channels, including the start and end time of data
available on each channel

Compressed dataare tagged with a4-byteinteger key which identifiesthe channel. The
channel list and precislist provide across-reference from channel keysto ASCII chan-
nel names.

14602R4
2003-11-07

Nanometrics Data Formats 4 5
Reference Guide

Chapter 4: Data Access Protocol

4.2 Subscription protocol

Every client program must implement the communication protocol summarized by the
following steps. Italics indicate specific message types. Message formats are given in
the next section.

1

o b~ w DN

0.

Open a socket to the DataServer, using the port number specified in the
DataServer configuration (typically 28002).

Read the connection time from the socket as a 4-byte integer.
Send a ConnectRequest (encoding the connection time) to the DataServer.
Wait for a Ready message from the DataServer.

Send a Request message of the appropriate type to request data from the
DataServer.

Receive and process response messages from the DataServer, until receiving a
Ready message. The Ready message indicates the end of data for the last request,
and indicates that the DataServer is ready for another request. Each request may
elicit 0 or more response messages.

Repeat steps 5 and 6 for each data request.

(optional) Send a Terminate message indicating that you are about to close the
connection. Do NOT wait for a Ready message.

Close the socket.

Note (1) The ConnectRequest message is used to provide basic logon security. The

first message sent by the client must be a ConnectRequest from an authorized
user; otherwise, DataServer will close the connection.

(2) The DataServer will process one request at a time, and send a Ready mes-
sage when it is ready for the next request. Sending a request while the server is
still processing the previous request will cancel the previous request. The
DataServer will send a Ready message to indicate end-of-data for the previous
request, then start processing the new request.

(3) The DataServer will process any number of requests (one at a time) over a

single connection, provided that the connection remains active. A connection will
be closed if it becomes inactive (if no request is received for 20 seconds follow-
ing a Ready message).

(4) If no data are available for a certain request, the DataServer will simply return
a Ready message.

(5) The DataServer will close the connection if it receives an improperly format-
ted request, or a request of an unknown or unsupported type.

46 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 4: Data Access Protocol

4.3 Client message and request types

As summarized above, all communication under this protocol isinitiated by the client;
the DataServer simply sendsdatain responseto aclient request. Version 1.0 of thispro-

tocol supports the eleven request typeslisted in Table 4-1.

Table 4-1 Client request types for Data Access Protocol v1.0

Request Type Purpose Server Response*
ConnectRequest Initiates the connection Ready
RequestPending Keeps the connection alive but does not Ready

request data

CancelRequest

Cancels the last request (typically a long
data request)

Ready. The client will receive two Ready
messages - one for the request being
cancelled, and one for the
CancelRequest itself.

TerminateMessage

Indicates that the client is about to close
the connection

Closes the connection

ChannelListRequest

Requests a list of channels available from
the server

ChannelList - a list of channel names and
associated channel keys

PrecisListRequest

Requests a list of channels and time
intervals available from the server

PrecislList - a list of channels with start
and end time of available data

ChannelinfoRequest

Requests supplementary information for a
specified channel

ChannelHeader - brief information about
the requested channel

DataSizeRequest

Requests information about the volume of
data available for a specified channel and
time interval (this is useful in order to pre-
allocate storage space for the data to be
received)

DataSize - an estimate of the packet size
and number of packets available

DataRequest Requests data for a specified data N CompressedData packets. N may be
channel and time interval. This may be zero if no data are available for the
used to request time-series, state of specified channel and time interval.
health, or transparent serial data.

TriggerRequest Requests seismic trigger data for a N NaqgsTrigger packets. N may be zero if
specified data channel (or set of no data are available for the specified
channels) and time interval channels and time interval.

EventRequest Requests seismic event data for the N NagsEvent packets. N may be zero if

specified time interval

no data are available for the specified
time interval.

*

In all cases except TerminateMessage, the DataServer will send a Ready message to indicate

the end-of-data for a given request.

4.4 Message formats

Each message consists of a 12-byte header and avariable length data content field. The
header provides the type and length of the content. The client application should read
the header first, then read the content after determining its type and length.

Nanometrics Data Formats
Reference Guide

14602R4
2003-11-07

47

Chapter 4: Data Access Protocol

4.4.1 Request messages

Requests are messages sent by the client to DataServer.

44.1.1 ConnectRequest

The purpose of the ConnectRequest isto initiate the connection and to authenticate the
client requesting the connection.

Header:
4 byteint Signature = 0X7ABCDEOF
4 byteint message type = 206
4 byteint message content length = 24
Content:
12 byte string User name (maximum 11 characters), zero terminated.
4 byteint Data Access Protocol version (currently 0)
4 byteint Thetimein seconds since Jan. 1, 1970 (UT) that the connection was

opened. This should normally be the same value as that sent by the
DataServer when the socket is first opened.

4 byteint 32-bit CRC computed for the username, protocol version, connec-
tion time, and password. This enablesthe username and password to
be verified without sending the password with the message.

4.41.2 RequestPending
A ReguestPending message is sent to keep the connection active (and open). It has no

content.

Header:
4 byteint Signature = Ox7ABCDEOF
4 byteint message type = 110
4 byteint message content length = 0

4.4.1.3 CancelRequest
A Cancel Request message is sent to cancel the previous request. It has no content.

Header:
4 byteint Signature = 0x7ABCDEOF
4 byteint message type = 205
4 byteint message content length = 0

44.1.4 TerminateMessage

A TerminateMessage may be sent by either DataServer or the client to indicate that the
connection is about to be closed. There are currently 3 message types defined:

* Normal Shutdown: sent by the client to indicate that it is disconnecting
» Error Shutdown: sent by DataServer to indicate that afatal error has occurred

48 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 4: Data Access Protocol

» Timeout Shutdown: sent by DataServer to indicate that an inactive connection is
being closed.

A TerminateMessage may also include abrief ASCII string to provide a more detailed
explanation of why the connection is being closed.

Header:
4 byteint Signature = 0x7TABCDEOF
4 byteint message type = 200
4 byteint message content length=4 + N
Content:
4 byteint Reason for termination
1 = Normal shutdown
2 = Error shutdown
3 = Timeout shutdown
N byte string String message (none if N = 0)

4.4.1.5 ChannelListRequest

A ChannelListRequest is sent to request the list of channels available from the server.
It has no content.

Header:
4 byteint Signature = OXx7TABCDEOF
4 byteint message type = 209
4 byteint message content length =0

4.4.1.6 PrecisListRequest

A PrecisListRequest is sent to request the list of channels and time intervals available
from the server. It providesfieldsto allow the client to request information for a subset

of channels.
Header:
4 byteint Signature = 0Xx7ABCDEOF
4 byteint message type = 203
4 byteint message content length = 12
Content:
4 byteint Instrument ID for which data are requested (or -1 for al instru-
ments).
4 byteint Datatype for which data are requested (1 for time series, 2 for state
of health, 6 for transparent serial, or -1 for al types).
4 byteint Channel for which data are requested (or -1 for al channels).

4.4.1.7 ChannelinfoRequest

A ChannellnfoReguest is sent to request supplementary information for a specified
channel.

14602R4 Nanometrics Data Formats 49
2003-11-07 Reference Guide

Chapter 4: Data Access Protocol

Header:
4 byteint Signature = 0x7ABCDEOF
4 byteint message type = 226
4 byteint message content length = 8
Content:
4 byteint Channel key of the channel for which data are requested.
4 byteint Type defines the type of data being requested (currently ignored).

4.4.1.8 DataSizeRequest

A DataSzeRequest is sent to request the packet size and number of packets that would
be sent in response to a given DataRequest. This message isuseful in caseswhereitis

desired to pre-allocate memory or storage space for the requested data.

Header:
4 byteint Signature = OX7TABCDEOF
4 byteint message type = 229
4 byteint message content length = 12
Content:
4 byteint Channel key for which data are requested.
4 byteint Start time of the interval for which data are requested, in seconds
since January 1, 1970 (UT).
4 byteint End time of the interval for which data are requested, in seconds

4419 DataRequest

since January 1, 1970 (UT).

A DataRequest is sent to request datafor a specified channel and time interval. It may
be used to request any type of data: time-series, state of health, or transparent serial.

Header:
4 byteint Signature = Ox7TABCDEOF
4 byteint message type = 227
4 byteint message content length = 12
Content:
4 byteint Channel key for which data are requested.
4 byteint Start time of the interval for which data are requested, in seconds
since January 1, 1970 (UT).
4 byteint End time of the interval for which data are requested, in seconds

44110 TriggerRequest

since January 1, 1970 (UT).

A Trigger Request issent to request seismic trigger datafor aspecified channel and time

interval.

Header:
4 byteint

Signature = 0X7ABCDEOF

50 Nanometrics Data Formats
Reference Guide

14602R4
2003-11-07

Chapter 4: Data Access Protocol

4 byteint message type = 231
4 byteint message content length = 12
Content:

4 byteint Channel key for which data are requested
(use key = 0 to request triggers for al channels).

4 byteint Start time of the interval for which data are requested, in seconds
since January 1, 1970 (UT).

4 byteint End time of the interval for which data are requested, in seconds

since January 1, 1970 (UT).

44111 EventRequest

An EventRequest is sent to request seismic event data for a specified time interval.

Header:
4 byteint Signature = 0Xx7ABCDEOF
4 byteint message type = 232
4 byteint message content length = 16
Content:
4 byteint Start time of the interval for which data are requested, in seconds
since January 1, 1970 (UT).
4 byteint End time of the interval for which data are requested, in seconds
since January 1, 1970 (UT).
8 byte float Minimum event amplitude requested. The amplitude scaleis server-

dependent and does not necessarily correspond to event magnitude.
DataServer 1.00 considers al eventsto have amplitude 1.0.
4.4.2 Response messages

The following messages are sent to the client by DataServer in response to requests:

4421 ReadyMessage

A ReadyMessage s sent to the client by DataServer to indicate that it has sent al data
available for the previous request, and is ready for the next request. It has no content.

Header:
4 byteint Signature = 0x7ABCDEOF
4 byteint message type = 208
4 byteint message content length =0

44.2.2 ChannellList

A ChannelList message contains alist of the data channels available. Each stream is
identified by an unique integer key (which encodes digitizer/channel information) and
an 11-character ASCII string which encodesthe station and channel name. The channel
list contains time-series, serial and state-of-health channels. The data type for agiven
channel can be determined from the channel key using the following formula: type =
((key >> 8) & Oxff).

14602R4 Nanometrics Data Formats 51
2003-11-07 Reference Guide

Chapter 4: Data Access Protocol

Header:
4 byteint Signature = 0x7ABCDEOF
4 byteint message type = 150
4 byteint message content length=4+ N * 16
Content:
4 byteint number of channels available= N
N 16-byte channel info bundles of the form:
{
4 byteint Channel key = ((ID << 16) | (type << 8) | channel)
where ID isthe full instrument serial number
type isthedata subtype:
1 =time series
2 = state of health
6 = transparent serial
channel isthe data channel number (0 to 5)
12 bytes zero-terminated channel name string (e.g. STNO1.BHZ).
}

4423 PrecisList

A PrecisList contains alist of the data channels available, plus the start and end time
for the available datafor each channel. It issimilar to aChannelList, but provides more
information. It will include only channels for which data are available on the server.

Header:
4 byteint Signature = OXx7TABCDEOF
4 byteint message type = 253
4 byteint message content length=4+ N * 24
Content:
4 byteint number of channels available= N
N 24-byte channel info bundles of the form:
{
4 byteint Channel key = ((ID << 16) | (type << 8) | channel)
where 1D isthe full instrument serial number
type isthedata subtype:
1=time series
2 = dtate of health
6 = transparent serial
channel isthe data channel number (0 to 5)
12 bytes zero-terminated channel name string (e.g. STNO1.BHZ).
4 byteint Start time of the data available for this channel, in seconds since
January1,1970 (UT).
4 byteint End time of the data available for this channel, in seconds since
January1,1970 (UT).
}
52 Nanometrics Data Formats 14602R4

Reference Guide 2003-11-07

Chapter 4: Data Access Protocol

4424 ChannelHeader

A ChannelHeader is sent in response to a ChannelInfoRequest. It contains supplemen-
tary information for the specified channel.

Header:
4 byteint
4 byteint
4 byteint
Content:
4 byteint
12 bytes
12 bytes

4425 DataSize

Signature = 0x7TABCDEOF
message type = 256
message content length = 28

Channel key for this channel.
zero-terminated channel name string (e.g. STNO1.BHZ).
zero-terminated network name string

A DataSze message is sent in response to a DataSzeRequest. It contains the packet
length for data on the requested channel, plus an estimate of the number of packets that
would be sent in response to a DataRequest.

Header:
4 byteint
4 byteint
4 byteint
Content:
4 byteint
4 byteint
4 byteint

4.4.26 NagsEvent

Signature = 0x7ABCDEOF

message type = 257
message content length = 12

Channel key for which data were requested.
Length in bytes of data packets for this channel.

Estimated (maximum) number of packetsavailablefor therequested
interval.

A NagsEvent message contains information about a single seismic event. DataServer
may send any number of NagsEvent messages in response to an EventRequest.

Header:
4 byteint
4 byteint
4 byteint
Content:
8 byte float
8 byteint
8 byteint

Signature = 0X7ABCDEOF
message type = 260
message content length = 24

Time of the event in seconds since January 1, 1970 (UT).
Duration of the event in seconds.

Amplitude of the event. The amplitude scale is server- dependent
which may or may not correspond to event magnitude. DataServer
1.00 considers all eventsto have amplitude 1.0.

14602R4
2003-11-07

Nanometrics Data Formats 53
Reference Guide

Chapter 4: Data Access Protocol

4.4.2.7 NaqgsTrigger

44.2.8 CompressedData

A NagsTrigger message containsinformation about atrigger on asingle channel. Trig-
gers indicate changes in signal energy which may result from a seismic event.
DataServer may send any number of NagsTrigger messages in response to a Trigger-

Request.

Header:
4 byteint
4 byteint
4 byteint
Content:
4 byteint
12 bytes
8 byte float
8 byteint

Signature = OXx7TABCDEOF

message type = 259
message content length = 32

Channel key for the channel on which trigger was detected.
Zero-terminated channel name string (e.g. STNO1.BHZ).
Time of the trigger in seconds since January 1, 1970 (UT).
Duration of the event in seconds.

CompressedData messages contain datain the original compressed format received
from the data-acquisition instrument. Details of theinternal compressed packet format
are givenin Chapter 1, “NMXP Data Format”.

Header:
4 byteint
4 byteint
4 byteint
Content:
4 byteint
N bytes

Signature = Ox7ABCDEOF
Datatype=1
Data content length = variable

Oldest sequence number
N byte compressed data packet

54

Nanometrics Data Formats
Reference Guide

14602R4
2003-11-07

Tagged File Format

The Nanometrics Tagged File Format is used by both Nanometrics Binary Pick Files
and Nanometrics Y -files. It is designed to be quick and easy to read and write, espe-
cialy using the C language. The tagged format allows the format to be extended with-
out breaking backwards or forwards compatibility. This chapter describes tagged file
data types, tag types, and tag formats.

5.1 Overview

Tagged files are divided into records. Each record starts with atag indicating the type
of datain the record. Following the tag is the data. Each tag has the offset in bytesto
the next tag so that if a program reading the file does not understand the type of data
indicated by the tag, it can skip over it to the next tag. This preserves forward compat-
ibility since older programs can read newer versions of the format as they can simply
ignore any new records. This also preserves backward compatibility since newer pro-
grams can skip out-of-date records and look for the newer, replacement records.

Thereis no padding or alignment of the records in a tagged file. Each tag or block of
datais written immediately following the last byte of the last record.

Each tagged file starts with atag indicating the type of file. This tag has no data
attached to it. It isimmediately followed by the first data tag.

5.2 Data types

The descriptions of the file formats use the following data types:
CHAR signed 8 bit character
UCHAR unsigned 8 bit character
SHORT signed 16 hit integer
USHORT unsigned 16 bit integer
LONG signed 32 hit integer
ULONG unsigned 32 bit integer
FLOAT |EEE 32 hit floating point number
DOUBLE |EEE 64 hit floating point number
REALTIME DOUBLE containing the number of seconds since January 1, 1970
BOOL16 a16 bit boolean value (integer) - either 0 (FALSE) or 1 (TRUE)

14602R4
2003-11-07

Nanometrics Data Formats 5 5
Reference Guide

Chapter 5: Tagged File Format

PTR a 32 bit integer -- unused externally and should always be O
UNIQUEID aunique 32 hit integer that identifies an instance of arecord

If thereisan array of adatatype thisisindicated by square brackets containing the
number of elementsin the array; for example, CHAR Name[13] indicatesthat Nameis
acharacter array containing 13 elements.

Some of thefields contain astring of characters. A string is defined as an array of char-
acters. There are two types of strings used in the data files: zero terminated and blank
padded:

» Zeroterminated strings (called ASCI1Z) are compatible with the C definition of a
string. That is, an array of characters ending with an ASCII 0 (not the “0” charac-
ter).

» Blank padded strings (called BLANKPAD) are used when the entire array of char-
acters must be printable. In this case there is no terminating zero. Every character
in the array must be a printable so if an array entry isnot used by thetext it must be
set to the space character.

The PTR field is only used internally by programs and never holds valid data. These
fields should be set to zero when writing atagged file and should be ignored when read-
ing.

The UNIQUEID field is used to uniquely identify instances of records. In some cases
arecord needs to be associated with another record. Thisisdone by assigning aunique
number to the Self field of the other record and then using this number in the first
record. For example, an event record hasto indicate which of its many solution records
isthe preferred one. It does this by giving the unique 1D of the preferred solution Pre-
ferredSolution field for the event. Each solution has a Self field with a unique number
-- the solution whose Self field matches the PreferredSolution field is the preferred
solution.

5.3 Tag format

UCHAR Format
UCHAR Magic
USHORT Type
LONG NextTag
LONG NextSame
LONG Spare

Format Thisisthe byte order format for this data. Use the letter “I” for Intel format
data (little endian) or the letter “M” for Motorola (big endian) format

Magic Thisisaunique number that allows programs to check that this avalid tag.
This number must be 31.
Type Thisisthe type of data attached to thistag. It must be one of the predefined

tag types listed below.

NextTag NextTag isthe offset in bytes from the end of thistag to the start of the next
tag. That means, the offset is the size of the data attached to this tag.

NextSame NextSameisthe offset in bytesfrom the end of thistag to the start of the next
tag with the same type. If zero, there is no next tag with the same type.

56

Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Chapter 5: Tagged File Format

5.4 Tag types

Spare

Spareis added to pad the size of the tag to an even sixteen bytes. Also avail-
able for future use. Should aways be zero.

Thelist below gives the tag types which have been defined so far. See Chapter 6, “Y -
File Format”, for examples of usage.

© 0 N o ok~ WDNPEFL O

W W WwWwWwWwwWRNNNRNNNRNNNNRRRRRRR R P R
®© O R WN PO OXAVIOODITRONRPODOWOWNOOaDDWNEPRO

TAG_Y_FILE
TAG_STATION_INFO
TAG_STATION_LOCATION
TAG_STATION_PARAMETERS
TAG_STATION_DATABASE
TAG_SERIES INFO
TAG_SERIES DATABASE
TAG_DATA_INT32
TAG_PICK_FILE
TAG_UNASSOCIATED_PICKA
TAG_CRUSTAL_MODEL
TAG_CRUSTAL_LAYER
TAG_EVENTA
TAG_MAGNITUDE
TAG_PICKA

TAG_SOLUTION
TAG_HYPO_PARAMETERS
TAG_ASSOCIATION
TAG_STN_LOC_PARAMETERS
TAG_HYPO_STN_PARAMETERS
TAG_LOC_STN_PARAMETERS
TAG_LOC_PARAMETERS
TAG_X_FILE
TAG_DATA_STEIM
TAG_EVENT_COMMENTS
TAG_SOLUTION_COMMENTS
TAG_STATION_RESPONSE
TAG_PICKB

TAG_EVENTB
TAG_UNASSOCIATED_PICKB
TAG_RINGBUFFER_FILE
TAG_RINGBUFFER_INFO
TAG_RINGBUFFER_INDEX
TAG_RINGBUFFER DATA
TAG_LOGBUFFER_FILE
TAG_LOGBUFFER_INFO
TAG_LOGBUFFER_DATA

14602R4
2003-11-07

Nanometrics Data Formats 57
Reference Guide

Chapter 5: Tagged File Format

37
38
39
40
41
42
43

TAG_SOHBUFFER FILE
TAG_SOHBUFFER_INFO
TAG_SOHBUFFER_LABEL
TAG_SOHBUFFER_CALIB
TAG_SOHBUFFER_DATA
TAG_SKIP_DATA
TAG_END_MARKER

58

Nanometrics Data Formats

Reference Guide

14602R4
2003-11-07

Y-File Format

This chapter defines the format used in the Nanometrics Y -file format version 5. It
includes adescription of the physical format of thefile and adescription of the meaning
of each field in thefile. A Y-fileis an instance of atagged file; see also Chapter 5,
“Tagged File Format”.

A Y-file always contains only one series of continuous data. If there ais break in the
data, then you will need more than one Y -file to hold the data.

6.1 File format

ThefirsttaginaY-file must bethe TAG_Y_FILE tag. This must be followed by the
following tags, in any order:

TAG_STATION_INFO
TAG_STATION_LOCATION
TAG_STATION_PARAMETERS
TAG_STATION_DATABASE
TAG_SERIES_INFO
TAG_SERIES DATABASE

Thefollowing tag is optional :
TAG_STATION_RESPONSE

Each tag must be followed by the data associated with the tag. See below for adescrip-
tion of the data for each tag.

Thelast tag in the file must bea TAG_DATA_INT32 tag. This tag must be followed
by an array of LONG's. The number of entriesin the array must agree with what was
described in the TAG_SERIES INFO data.

6.2 Field descriptions

6.2.1 TAG_STATION_INFO

UCHAR Update[8]
STNID StationlD
UCHAR NetworklD[51] (ASCI1Z)
14602R4 Nanometrics Data Formats 59

2003-11-07 Reference Guide

Chapter 6: Y-File Format

UCHAR
UCHAR
UCHAR
UCHAR
Update

StationlD

NetworklD
SiteName
Comment
SensorType

DataFormat

6.2.1.1 Station ID
UCHAR Station[5]
UCHAR Location[2]
UCHAR Channel[3]
Station
Location
Channel

SiteName[61] (ASCII1Z)
Comment[31] (ASCIIZ)
SensorType[51] (ASCI1Z)
DataFormat[7] (ASCIIZ)

Thisfield isonly used internally for administrative purposes. It
should always be set to zeroes.

Stationl D is the identification name of the station in SEED format.
This uses a sub-record called STNID which is described above.

Thisis some descriptive text identifying the network.
SiteName is some text identifying the site.
Comment is any comment for this station.

SensorTypeis some text describing the type of sensor used at the
station.

DataFormat is some text describing the data format recorded at the
station.

(BLANKPAD)

(BLANKPAD)

(BLANKPAD)

Station isthe five letter SEED format station identification.
Location isthe two letter SEED format location identification.
Channel isthe three letter SEED format channel identification.

6.2.2 TAG_STATION_LOCATION

UCHAR
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
Update

Latitude
Longitude
Elevation
Depth

Azimuth
Dip

Update[8]

Latitude

Longitude

Elevation

Depth

Azimuth

Dip

Thisfield isonly used internally for administrative purposes. It
should always be set to zeroes.

Latitude isthe latitude in degrees of the location of the station. The
latitude should be between -90 (South) and +90 (North).

Longitude is the longitude in degrees of the location of the station.
The longitude should be between -180 (West) and +180 (East).

Elevation is the elevation in meters above sealevel of the station.
Depth is the depth in meters of the sensor.

Azimuth is the azimuth of the sensor in degrees clockwise.

Dip isthe dip of the sensor. 90 degreesis defined as vertical right
way up.

60 Nanometrics Data Formats
Reference Guide

14602R4
2003-11-07

Chapter 6: Y-File Format

UCHAR
REALTIME
REALTIME
FLOAT
FLOAT
FLOAT
FLOAT
UCHAR
UCHAR
UCHAR
UCHAR
UCHAR
Update

StartValidTime
EndvaidTime
Sensitivity
SensFreq
SampleRate

MaxClkDrift
SensUnits

CadlibUnits

ChanFlags
UpdateFlag
Filler

UCHAR
REALTIME
UCHAR
Update

LoadDate
Key

6.2.5 TAG_SERIES_INFO

UCHAR
REALTIME
REALTIME

6.2.3 TAG_STATION_PARAMETERS

Update[16]

StartValidTime

EndvaidTime

Sensitivity

SensFreq

SampleRate

MaxCIkDrift

SensUnitg[24] (ASCIIZ)

CalibUnitg[24] (ASCIIZ)

ChanFlags[27] (BLANKPAD)

UpdateFlag

Filler[4]

Thisfield isonly used internally for administrative purposes. It
should always be set to zeroes.

Thisisthe time that the information in these records became valid.
Thisisthetime that theinformation in these records becameinvalid.
Sengitivity is the sensitivity of the sensor in nanometers per bit.
Thisisthe frequency at which the sensitivity was measured.

Thisisthe number of samples per second. This value can be less
than 1.0. (i.e. 0.1)

Thisis the maximum drift rate of the clock in seconds per sample.

Thisis some text indicating the unitsin which the sensitivity was
measured.

Thisis some text indicating the unitsin which calibration input was
measured.

Text indicating the channel flags according to the SEED definition.
Thisflag must be “N” or “U” according to the SEED definition.

Pads out the record to satisfy the alignment restrictions for reading
data on a SPARC processor.

6.2.4 TAG_SERIES_DATABASE, TAG_STATION_DATABASE

Update] 8]

LoadDate

Key[16]

Thisfield isonly used internally for administrative purposes. It
should always be set to zeroes.

LoadDate is the date the information was loaded into the database.
Key isaunique key that identifies this record in the database.

Update[16]
StartTime
EndTime

Nanometrics Data Formats 61
Reference Guide

Chapter 6: Y-File Format

ULONG
LONG
LONG
LONG
UCHAR
UCHAR
Update

StartTime
EndTime
NumSamples
DCOffset
MaxAmplitude
MinAmplitude
Format
FormatVersion

NumSamples
DCOffset
MaxAmplitude
MinAmplitude

Format[8] (ASCI1Z)
FormatVersion[8] (ASCI1Z)

Thisfield isonly used internally for administrative purposes. It

should always be set to zeroes.

Thisis start time of the datain this series.

Thisis end time of the datain this series.

Thisisthe number of samples of datain this series.
DCOffset isthe DC offset of the data.

MaxAmplitude is the maximum amplitude of the data.
MinAmplitude is the minimum amplitude of the data.

Thisisthe format of the data. This should alwaysbe“YFILE".
FormatVersion isthe version of the format of the data. This should

awaysbe“5.0”

6.2.6 TAG_STATION_RESPONSE

UCHAR
UCHAR
Update

PathName

Update[8]
PathName[260]

Thisfield isonly used internally for administrative purposes. It

should always be set to zeroes.

PathName is the full name of the file which contains the response

information for this station.

62

Nanometrics Data Formats

Reference Guide

14602R4
2003-11-07

Data Stream Client

ThefiledsClient.c is an example DataStream client program. The purpose of this code
isto demonstrate how to communicate with the NagsServer datastream service. It is
written for Windows 95 or NT, but may easily be modified to run on other platforms.

dsClient connects to the datastream service, requests data for a single channel, and
prints out someinformation about each data packet received. It can request and receive
time-series, state-of-health, or seria data

The reguested channel name, and the host name and port name for the datastream serv-
ice, are input as command-line parameters. By default, the program connects to port
28000 on the local machine. Note that all data received from the datastream server are
in network byte order (most-significant bytefirst), except for compressed data packets.
Compressed data packets are forwarded without modification from the originating
instrument; these packets are ordered least significant byte (L SB)-first.

Copyright 1999 Nanometrics, Inc. All rights reserved. This source code is distributed
as documentation in support of Nanometrics NagsServer data streams. As documenta-
tion, Nanometrics offers no support and/or warranty for this product. In particular,
Nanometrics provides no support and/or warranty for any software developed using
part or all of this source code.

[* Includes -----ccmmmmmee e ettt et e e */

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <errno. h>

#i ncl ude <sys/types. h>

#i ncl ude <wi nsock. h>

#i ncl ude <w nbase. h>

#i ncl ude <ctype. h>

[* Defini tiONS --- - o e */
/1 default host and port for datastream server

#defi ne DEFAULT_HOST "l ocal host "

#def i ne DEFAULT_PORT 28000

#define | NVALI D_| NET_ADDRESS | NADDR _NONE

Il first 4 bytes of all messages
#defi ne NMX_SI GNATURE Ox7abcdeOf

14602R4
2003-11-07

Nanometrics Data Formats 63
Reference Guide

Appendix A: Data Stream Client

/1 defines the message types

#def i ne CONNECT_MSG 100
#define CHANNEL_LI ST 150
#defi ne ERROR_MSG 190
#def i ne TERM NATE_MSG 200
#def i ne COMPRESSED_DATA 1

/Il time series

#define TI MSER_TYPE 1
#defi ne TI MSER_ADD REQ 120
/1 state of health

#defi ne SOH TYPE 2
#def i ne SOH_ADD_REQ 121
/1 transparent serial

#defi ne SERI AL_TYPE 6
#defi ne SERI AL_ADD_REQ 124

/1l macro to determ ne data type from key
#defi ne dataType(key) ((key >> 8) & OxFF);

/1 used to indicate a valid return
#defi ne SOCKET_OK 0

#defi ne KEY_NOT_FOUND -1

/1 maxi mum tine between connection attenpts (seconds)
#def i ne SLEEPMAX 10

[* SErUCtUMES - -- - - o - oo oo m oo oo */
/1 for docunmentation on nessage structures see the NagsServer manual

/1 Header for all messages
struct MessageHeader

{

unsi gned | ong signature;
unsi gned | ong type;

unsi gned | ong | engt h;

b

/1 Request for time series data (single channel)
struct Dat aAddRequest

{
| ong nuntChannel s;
| ong channel ;
| ong stcDel ay;
long format;
| ong sendBuf fers;
H

/'l Request for soh or serial data (single channel)
struct AddRequest

{
| ong nunChannel s;
| ong channel ;
I ong stcDel ay;
| ong sendBuf fers;
H

/'l The key/nane info for one channel
struct Channel Key

{
I ong key;

6 4 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Appendix A: Data Stream Client

char name[12] ;

b

/1 A channel list structure
struct Channel Li st

{

unsi gned | ong | ength;
Channel Key channel [200] ;

H
[* Variables ------ccmommmme ettt e e */

/'l use a static ChannellList to keep it sinple
static Channel Li st channel Li st;

/**

Function: initSockets

Pur pose: initializes sockets for W ndows

static int initSockets()

{
WORD wWer si onRequest ed = MAKEWORD(1, 1);
WSADATA wsaDat a;

int err = WSASt art up(wer si onRequest ed, &wsabDat a) ;

if (err '=0)
/1 Tell the user that we couldn't find a useable
/1 winsock.dll.
return 1;

/1 Confirmthat the Wndows Sockets DLL supports 1.1.

/1 Note that if the DLL supports versions greater than 1.1
/] in addition to 1.1, it will still return 1.1 in wWersion
/1 since that is the version we requested.

if (LOBYTE(wsaData.wWersion) !=
HI BYTE(wsaDat a. Wersion) !

1]
1)
/1 Tell the user that we couldn't find a useable w nsock.dll.

WBAC eanup() ;
return 1;

}

/1 The Wndows Sockets DLL is acceptable.
return O;

}

/**

Function: addressString

Pur pose: makes a dotted string for an | P address
__ *
static char* dottedString(unsigned | ong addr)
{
static char buffer[32];
unsi gned char* paddress = (unsigned char*) &addr;
sprintf(buffer, "% %. %. %",
(unsigned int) paddress[O0],
(unsigned int) paddress[1],
14602R4 Nanometrics Data Formats 65

2003-11-07 Reference Guide

Appendix A: Data Stream Client

(unsigned int) paddress[2],
(unsigned int) paddress[3]);
return buffer;

}

/**

Function: get Addr essOf Host

Sunmary: Gets the internet address for the given host.
First tries to interpret hostnane as a dotted string.
If that fails, it tries to interpret it as a host nane.

Par anet er s:
hostnane - the nane of the host
paddress - the internet address (returned)

Return val ue:
TRUE on success
FALSE for unknown host

___ *
static int get AddressOf Host (char* hostname, unsigned | ong* paddress)
{
struct hostent *pHost = NULL;
if (!hostnane)
{
*paddress = | NVALI D_| NET_ADDRESS;
return FALSE;
}
/1l First try to interpret nanme as dotted decimal, then as a host nane.
*paddress = inet_addr (hostnane);
if (*paddress == | NVALI D_| NET_ADDRESS)
pHost = get host bynane(host nane) ;
el se
pHost = get host byaddr ((char*) paddress, sizeof (unsigned |ong), AF_INET);
if (pHost != NULL)
{
mencpy(paddress, pHost->h_addr, (size_t) pHost->h_length);
return TRUE;
}
el se
{
*paddress = | NVALI D_| NET_ADDRESS;
return FALSE;
}
}

/**

Function: openSocket

Pur pose: opens a socket and connects
__ *
static int openSocket (unsigned | ong host Address, int portNum
{
static int sleepTime = 1;
66 Nanometrics Data Formats 14602R4

Reference Guide 2003-11-07

Appendix A: Data Stream Client

int isock = 0;
struct sockaddr_in psServAddr;

whi | e(1)

{
i sock = socket (AF_INET, SOCK _STREAM O0);
if (isock < 0)

{
printf ("dsdient: Can't open stream socket\n");
exit(12);
}
/* Fill in the structure "psServAddr" with the address of server

that we want to connect with */
menset (&psServAddr, sizeof (psServAddr), 0);
psServAddr.sin_fam |y = AF_| NET;
psServAddr. si n_addr.s_addr = host Address;

psServAddr. sin_port = htons((unsigned short) portNunj;

printf("attenpting to connect to % port %\ n",
dottedString(host Address), portNum;

if (connect(isock, (struct sockaddr *)&psServAddr, sizeof(psServAddr)) >= 0)

{

sl eepTime = 1;

printf ("Connection established, path nunber=%\n",

return isock;

}

el se

{
printf("Trying again later...Sleeping\n");
cl osesocket (isock);
Sl eep (1000 * sl eepTine);
sl eepTinme *= 2;
if (sleepTine > SLEEPMAX)

sl eepTi me = SLEEPMAX;
}
}
}

i sock);

/**

Function: s_send
Purpose: sends a nessage and conputes rc

Ret ur n: rc SOCKET_OK on success
rc = SOCKET_ERROR on error

static int s_send(int isock, void* data, int |ength)

{
int sendCount = send(isock, (char*) data, length, 0);

if (sendCount != |ength)
return SOCKET_ERROR

return SOCKET_CK;
}

IR R R EEEEEEEEEEEEEEEEEREEE]

Function: s_recv

Purpose: receives a message and conputes rc

14602R4
2003-11-07

Nanometrics Data Formats

Reference Guide

67

Appendix A: Data Stream Client

Ret ur n:

SOCKET_OK on success
SOCKET_ERROR on error

rc
rc

static int s_recv(int isock, void* data, int |ength)

{

int recvCount = recv(isock, (char*) data, length, 0);

if (recvCount != length)
return SOCKET_ERROR

return SOCKET_CK;

}

IR AR R R R EEEEEEEEEEEEEEEEEREEE]

Functi on:

Pur pose:

sendHeader

sends a MessageHeader to the server

static int sendHeader(int isock, int type, int |ength)

nsg. signature = htonl (NMX_SI GNATURE) ;

htonl (type);
= htonl (l ength);

return s_send(isock, &rsg, sizeof(nsg));

{
int sendCount = O;
MessageHeader nsgQ;
nsg. type
msg. | ength

}

/**

Functi on:

Pur pose:

recei veHeader

receives a MessageHeader fromthe server

static int receiveHeader(int isock, MessageHeader* pnsg)

{

int rc = s_recv(isock, pnsg, sizeof(MssageHeader));

if (rc ==
{

pnmsg- >si

pnsg- >t ype

SOCKET_OK)

ghat ure nt ohl (pnmsg- >si gnature);

nt ohl (pnsg- >t ype);

pnsg- >l engt h = ntohl (pnmsg- >l ength);

if (pnsg->signature != NMX_SI GNATURE)
rc = SOCKET_ERROR;

}

return rc;

}

/**

Function: sendConnect Message
Purpose: sends a Connect nessage to server
__ *
static int sendConnect Message(i nt isock)
14602R4

68 Nanometrics Data Formats
Reference Guide

2003-11-07

Appendix A: Data Stream Client

{
return sendHeader (i sock, CONNECT_MSG 0);

}

IR R R EE R EREREEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEE R EEEEE R

Function: request TypeChannel

Purpose: requests one channel of serial or soh data

static int request TypeChannel (int isock, int channel, int type)
{

AddRequest request;

int sendCount = O;

int rc = sendHeader (i sock, type, sizeof(request));

if (rc == SOCKET_OX)

{
request. nunChannel s = htonl (1);
request . channel = htonl (channel);
request . st cDel ay = htonl (0);
request.sendBuffers = htonl (0);
rc = s_send(isock, &request, sizeof(request));
}
return rc;

}

/**

Function: request Serial Channel

Purpose: requests one channel of serial data

static int requestSerial Channel (int isock, int channel)

{
printf("Requesting serial channel 0x%8.8x\n", channel);
return request TypeChannel (i sock, channel, SERI AL_ADD REQ ;

}

/**

Function: request SohChannel

Pur pose: requests one channel of SOH data

static int request SohChannel (int isock, int channel)

{

printf("Requesting soh channel 0x%8.8x\n", channel);
return request TypeChannel (i sock, channel, SOH ADD REQ ;

}

IR AR R R EEEEEEEEEEEEEEEEEREE]

Function: request Dat aChannel

Purpose: requests one channel of tinme series data

static int requestDataChannel (int isock, int channel)

{

14602R4
2003-11-07

Nanometrics Data Formats 69
Reference Guide

Appendix A: Data Stream Client

Dat aAddRequest request;
int rc = 0;

printf("Requesting tinme series channel 0x%8.8x\n", channel);
rc = sendHeader (i sock, TIMSER _ADD REQ si zeof (request));

if (rc == SOCKET_OK)
{

request. nunChannel s = htonl (1);
request . channel = htonl (channel);
request . st cDel ay = htonl (0);
request . f or mat = htonl (-1);
request. sendBuffers = htonl (0);

rc = s_send(isock, &request, sizeof(request));

}

return rc;

}

IR AR R R R EEEEEEEEEEEEEEEEREEE]

Function: request Channel

Purpose: requests one channel of any type

static int requestChannel (int isock, int channel)
{
int type = dataType(channel);
if (type == TI MSER TYPE)
return request Dat aChannel (i sock, channel);
else if (type == SOH TYPE)
return request SohChannel (i sock, channel);
el se
return request Seri al Channel (i sock, channel);

}

1RSSR R R R EEEEEEEEEEEEEEEEEREEE]

Function: receiveChannel Li st

Purpose: receives a Channel List fromthe server

__ *
static int receiveChannel List(int isock, ChannellList* plist, int |ength)
{
int ich = 0;
int recvCount = recv(isock, (char*) plist, length, 0);
if (recvCount != |length)
return SOCKET_ERROR
plist->length = ntohl (plist->length);
if ((unsigned) length !'= 4 + plist->length * sizeof (Channel Key))
{
printf("wong nunber of channels in Channel List\n");
return SOCKET_ERROR
}
for (ich =0; ich < (int) plist->length; ich++)
{
plist->channel [ich].key = ntohl (plist->channel [ich].key);
printf("channel % has key O0x%B.8x\n", plist->channel[ich].nane,
plist->channel [ich].key);
70 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Appendix A: Data Stream Client

}

return SOCKET_CK;
}

1RSSR R R R EEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEE]

Function: | ookupChannel

Purpose: 1ooks up a channel in the Channel List

static int |ookupChannel (char* name, Channel List* plist)

{
int length = plist->length;
int ich = 0;

for (ich =0; ich < length; ich++)
{
if (stricnmp(name, plist->channel[ich].nanme) == 0)
return plist->channel [ich]. key;

}

return KEY_NOT_FOUND;
}

IR AR R R R EEEEEEEEEEEEEEEEEREEE]

Function: receiveError

Purpose: receives an Error nessage fromthe server

static int receiveError(int isock, int |ength)

{

int rc = 0;

if (length > 0)
{
char* buffer = (char*) malloc(length);
rc = s_recv(isock, buffer, length);
if (rc == SOCKET_OK)
printf("%\n", buffer);
free(buffer);
}
return rc;

}

/**

Function: receiveTernination

Purpose: receives a Term nate message fromthe server

__ *
static int receiveTerm nation(int isock, int |ength)
{

int reason = 0;

int rc = s_recv(isock, &reason, 4);

if (rc == SOCKET_OX)

{

printf("Connection closed by server, reason = %\ n", ntohl (reason));

if (length > 4)

14602R4
2003-11-07

Nanometrics Data Formats
Reference Guide

Appendix A: Data Stream Client

rc = receiveError(isock, length - 4);

}

return rc;

}

IR AR R R EEEEEEEEEEEEEEEEEREEE]

Function: flushBytes

Purpose: receives and di scards sone bytes fromthe server

static int flushBytes(int isock, int |ength)
{

int rc =0;

if (length > 0)

{
char* buffer = (char*) malloc(length);
rc = s_recv(isock, buffer, length);
free(buffer);

}

return rc;

}

IR AR R R R EREREEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE R

Function: processData

Pur pose: processes conpressed data fromthe server

__ *
static void processData(char* buffer, int length)
{
int bundl es = (length - 21) / 17;
int type = buffer[4];
int ol destSeq = 0;
int sequence = 0;
int ti meSecs = 0;
short timeFrac = 0;
short instrument = 0;
short channel = 0;
short byteCount = 0;
doubl e pktTime = 0;
/'l copy the header contents into local fields
/1 note these are little endian (LSB first)
mencpy(&ol dest Seq, &buffer[0], 4);
mencpy (& i meSecs, &uffer[5], 4);
mencpy (&t i meFrac, &uffer[9], 2);
menmcpy (& nstrument, &buffer[11], 2);
mencpy(&sequence, &buffer[13], 4);
menmcpy(&yt eCount, &buffer[17], 2);
mencpy(&hannel , &uffer[19], 2);
pkt Time = tinmeSecs + 0.0001 * timeFrac;
/1 print out header and/or data for different packet types
if (type == TI MSER _TYPE)
{
channel = buffer[17] & 0x07;
72 Nanometrics Data Formats 14602R4

Reference Guide 2003-11-07

Appendix A: Data Stream Client

printf("Rx time series inst %:% seq %u tine % 4f bundl es %\ n",
i nstrunment, channel, sequence, pktTime, bundles);

}
else if (type == SOH TYPE)
{
printf("Rx SOH i nst %u:soh seq %u tine % 4f bundl es %\ n",
i nstrunent, sequence, pktTinme, bundles);
}
else if (type == SERI AL_TYPE)
{
char* data = &buffer[21];
int ix;
printf("Rx serial data inst %: %l seq %u tine % 4f bytes %\ n",
i nstrunment, channel, sequence, pktTinme, byteCount);
/1 make a printable version of the data
for (ix = 0; ix < byteCount; ix++)
{
if (Yisprint(data[ix]))
data[ix] =".";
}
/1 and print it out
fwite(data, 1, byteCount, stdout);
printf("\n");
}
el se
{
printf("unrecogni zed data type: %\ n", type);
}

}

/**

Function: receiveData

Purpose: receives conpressed data fromthe server

__ *
static int receiveData(int isock, int |ength)
{
int rc =0;
if (length > 0)
{
char* buffer = (char*) malloc(length);
rc = s_recv(isock, buffer, length);
if (rc == SOCKET_OK)
processDat a(buffer, |ength);
free(buffer);
}
return rc;
}

/**

Function: receiveMessage

Pur pose: receives nessage fromthe server,
requests channel Name if it gets a Channel Li st

14602R4
2003-11-07

Nanometrics Data Formats
Reference Guide

73

Appendix A: Data Stream Client

stati

{
/*

c int receiveMessage(int isock, char* channel Nanme)

receive a nessage header */

MessageHeader header;

int rc = recei veHeader (i sock, &header);
if (rc !'= SOCKET_OK)
return rc;
/* receive whatever nessage is incomng */
if (header.type == CHANNEL_LI ST)
{
rc = recei veChannel Li st (i sock, &channel Li st, header.|ength);
if (rc == SOCKET_OX)
{
int key = | ookupChannel (channel Name, &channel List);
if (key == KEY_NOT_FOUND)
{
printf("Channel % not found in channel list\n", channel Nane);
exit(1);
rc = request Channel (i sock, key);
}
return rc;
}
/1 if it is an Error nessage, receive it and print it out
el se if (header.type == ERROR_MSG
{
return receiveError(isock, header.l|ength);
}
/1 if it is a Term nate nessage, receive it, print it,
/1 and return SOCKET_ERROR to exit |oop
el se if (header.type == TERM NATE_NMSG)
{
recei veTerm nation(isock, header.|ength);
return SOCKET_ERROR
}
/1 if it is data, receive it
el se if (header.type == COWRESSED DATA)
{
return receiveData(isock, header.l|ength);
}
/1 if it is anything else, just read it to keep in sync
el se
{

printf("Unrecogni zed nessage, type = %, length = %\ n",

r

}
}

/****

header.type, header.|ength);
eturn flushBytes(isock, header.|ength);

kkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkhkhkkhhkhkhkkhhkhkhhhhhhkhkhkhkhkhkhkhkhkhkhhhkkk*k

Function: nmain

Pur

pose: does everything

7 4 Nanometrics Data Formats 14602R4

Reference Guide

2003-11-07

Appendix A: Data Stream Client

void main (int argc, char* argv[])
{
int port Num DEFAULT_PORT;
char* serverName = DEFAULT_HOCST;
char* channel Nanme = NULL;
unsi gned | ong host Addr ess;

int isock;
int rc = 0;
channel Li st.length = 0;

printf("dsCient v1.0 - Sanple datastreamclient programn");
printf("Copyright (C) 1999 Nanonetrics, Inc.\n\n");

/* get server address & port fromcommand |line. */

if (argc < 2)

{
printf("Usage: dsclient channel [host [port]]\n");
exit(1);

}

channel Nane = argv[1];

if (argc >= 3)
serverName = argv[2];

if (argc >= 4)
portNum = atoi (argv[3]);

printf("Starting dsclient with the follow ng options:\n");
printf(" datastreamhost: %\n", serverNane);

printf(" datastreamport: %\ n", portNum;

printf(" data channel: %\ n", channel Nane);

/1 initialize sockets

if (initSockets() !'=0)

{
printf("Cannot initialize Wnsock DLL\n");
exit(1l);

}

/1 get the IP address for the host string
if (!getAddressOf Host (serverNane, &host Address))

{ printf("Cannot resolve host nane: %", serverNane);
exit(1);

}

el se

{
printf("Datastream server host: % (%)\n",

server Nane, dottedString(host Address));

}

/* Main |oop */

for (53)

{

/* open a TCP socket */
i sock = openSocket (host Address, portNunj;

/* send the Connect nessage */
rc = sendConnect Message(i sock);

while (rc == SOCKET_OK)
rc = recei veMessage(i sock, channel Nane);

14602R4 Nanometrics Data Formats 7 5
2003-11-07 Reference Guide

Appendix A: Data Stream Client

printf("lost connection!\n");
cl osesocket (isock);
Sl eep (3000);
}
}

76 Nanometrics Data Formats 14602R4
Reference Guide 2003-11-07

Serial Packet CRC

To detect serial transmission errors, each packet sent by serial port is preceded by a 2-
byte synchronization word (OXAABB) and followed by a 2-byte CRC.

Nanometrics instruments use the 16-bit CRC-CCITT as the CRC polynomial. The
CRC is computed using areflected CRC algorithm, using O as the inital value of the
CRC. The CRC is computed over the entire message (including the synchronization
word), then appended to the message without modification. On receive, the CRC com-
puted over the entire message (including the synchronization word and the CRC bytes)
should be zero. Packets for which the receive CRC is not zero are discarded.

The seria transmission algorithm (including computation of CRC) is asfollows:

unsi gned short ausCrcTabl e[256] =

{
0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF, 0x8C48, 0x9DC1,
OxAF5A, OxBED3, OxCA6C, OxDBE5, OxE97E, OxF8F7, 0x1081, 0x0108, 0x3393, 0x221A,
Ox56A5, 0x472C, 0x75B7, O0x643E, 0x9CC9, 0x8D40, OxBFDB, OxAE52, OxDAED, 0xCB64,
OxF9FF, OxE876, 0x2102, 0x308B, 0x0210, 0x1399, 0x6726, O0x76AF, 0x4434, 0x55BD,
OxAD4A, O0xBCC3, Ox8E58, Ox9FD1, OxEB6E, OxFAE7, OxC87C, OxDI9F5, 0x3183, 0x200A,
0x1291, 0x0318, Ox77A7, Ox662E, 0x54B5, 0x453C, OxBDCB, O0xAC42, Ox9ED9, O0x8F50,
OxXFBEF, OxEA66, OxD8FD, 0xC974, 0x4204, 0x538D, 0x6116, O0x709F, 0x0420, Ox15A9,
0x2732, 0x36BB, OxCEAC, OxDFC5, OxEDSE, OxFCD7, 0x8868, 0x99El, OxAB7A, O0xBAF3,
0x5285, 0x430C, 0x7197, Ox601E, Ox14Al, 0x0528, 0x37B3, 0x263A, OxDECD, 0xCr44,
OxFDDF, OxEC56, O0x98E9, 0x8960, OxBBFB, OxAA72, 0x6306, 0x728F, 0x4014, 0x519D,
0x2522, 0x34AB, 0x0630, 0x17B9, OxEF4E, OxFEC7, 0OxCC5C, OxDDD5, OxA96A, OxB8ES3,
Ox8A78, Ox9BF1l, 0x7387, 0x620E, 0x5095, 0x411C, Ox35A3, 0x242A, 0x16Bl, 0x0738,
OxFFCF, OxEE46, O0xDCDD, 0xCD54, OxB9EB, 0xA862, Ox9AF9, 0x8B70, 0x8408, 0x9581,
OxA71A, 0xB693, 0xC22C, 0xD3A5, OxE13E, OxFOB7, 0x0840, 0x19C9, 0x2B52, 0x3ADB,
Ox4E64, Ox5FED, 0x6D76, Ox7CFF, 0x9489, 0x8500, O0xB79B, 0xA612, 0OxD2AD, 0xC324,
OxF1BF, OxE036, 0x18Cl, 0x0948, 0x3BD3, Ox2A5A, Ox5EE5, 0x4F6C, 0x7DF7, O0x6C7E,
OxA50A, 0xB483, 0x8618, 0x9791, OxE32E, OxF2A7, 0xCO3C, 0xD1B5, 0x2942, 0x38CB,
0x0A50, O0x1BD9, Ox6F66, OXx7EEF, 0x4C74, Ox5DFD, O0xB58B, 0xA402, 0x9699, 0x8710,
OxF3AF, O0xE226, 0xDOBD, 0xCl134, 0x39C3, 0x284A, O0x1ADl1l, 0x0B58, Ox7FE7, OX6EG6E,
0x5CF5, 0x4D7C, 0xC60C, 0xD785, OxE51E, O0xF497, 0x8028, 0x91Al, OxA33A, 0xB2B3,
0x4A44, Ox5BCD, 0x6956, 0x78DF, 0x0C60, Ox1DE9, Ox2F72, Ox3EFB, 0xD68D, 0xCr04,
OxF59F, OxE416, O0x90A9, 0x8120, O0xB3BB, 0xA232, Ox5AC5, 0x4B4C, 0x79D7, O0x685E,
Ox1CE1l, 0x0D68, Ox3FF3, Ox2E7A, OxE70E, OxF687, O0xC41C, 0xD595, OxAl12A, OxBOA3,
0x8238, 0x93B1, 0x6B46, Ox7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, OxO0E70, Ox1FF9,
OxF78F, OxE606, 0xD49D, 0xC514, OxB1AB, 0xA022, 0x92B9, 0x8330, O0x7BC7, Ox6A4E,
0x58D5, 0x495C, Ox3DE3, 0x2C6A, Ox1EF1l, OxOF78

b

#define CrcUpdate(usCrc, ubByte) \
((usCrc) >> 8) ™ ausCrcTable [((usCrc) & Oxff) ~ (ubByte)]

14602R4 Nanometrics Data Formats 77
2003-11-07 Reference Guide

Appendix B: Serial Packet CRC

SendByt e (ubByte) RecvByte ()
{
usCrc = CrcUpdat e(usCrc, ubByte); ubByte = UscRx ~ ubScranbl e;
UscTx = ubByte ™ ubScranbl e; usCrc = CrcUpdate (usCrc, ubByte);
} return ubByte,;
}
SendWord (usWord) RecvWord ()
{ {
SendByte (usWird >> 0); usWwrd = RecvByte ();
SendByte (usWrd >> 8); usWord | = RecvByte () << §;
} return usWord;
}
SendLong (ul Long) RecvLong ()
{
SendByte (ul Long >> 0); ul Long = RecvByte ();
SendByte (ul Long >> 8); ul Long | = RecvByte () << 8;
SendByte (ul Long >> 16); ul Long | = RecvByte () << 16;
SendByte (ul Long >> 24); ul Long | = RecvByte () << 24;
} return ul Long;
}
SendMsg (pubbDat a)
{
usCrc = 0;
SendByt e (ubSyncl);
SendByt e (ubSync2);
SendLong (ul A dest SequenceNunber) ;
for (us = 0; us < usNunmber MsgByte, us ++)
SendByt e (pubData [us]);
usCrc2 = usCrc;
SendWord (usCrc2);
}
78 Nanometrics Data Formats 14602R4

Reference Guide 2003-11-07

	Contents
	Chapter 1 NMXP Data Format
	1.1 Overview
	1.1.1 Overview of Protocol
	1.1.2 Transport-specific wrapping
	1.1.3 Description of inbound packets

	1.2 Inbound packet types
	1.3 Packet header
	1.4 Compressed data packet
	1.4.1 Compressed data packet header
	1.4.1.1 Extended seismic data header

	1.4.2 Data bundle
	1.4.3 Null bundle

	1.5 State-of-Health packets
	1.5.1 Status packet header bundle
	1.5.2 VCXO calibration bundle
	1.5.3 Null bundle
	1.5.4 Min-Max1 bundle (Orion only)
	1.5.5 Min-Max2 bundle (Orion only)
	1.5.6 Instrument Log bundle (Orion/HRD only)
	1.5.7 GPS Location bundle
	1.5.8 GPS Satellite Status/Reference Time Error bundle (Rockwell GPS- specific)
	1.5.9 D1 (Early) Threshold Trigger bundle (Orion only)
	1.5.10 D2 (Late) Threshold Trigger bundle (Orion only)
	1.5.11 D1 (Early) STA/LTA Trigger bundle (Orion only)
	1.5.12 D2 (Late) STA/LTA Trigger bundle (Orion only)
	1.5.13 Event bundle (Orion only)
	1.5.14 RM-3 SOH bundle (RM-3 only)
	1.5.15 RM-3 Rx Status bundle (RM-3 only)
	1.5.16 Fast External State-Of-Health bundle
	1.5.17 Slow External State-Of-Health bundle
	1.5.18 Instrument SOH bundle
	1.5.19 Orion Internal Temperature Slow SOH bundle (Orion only)
	1.5.20 Orion Source Voltages Slow SOH bundle (Orion only)
	1.5.21 Orion Powering Status Slow SOH bundle (Orion only)
	1.5.22 GPS Time Quality bundle
	1.5.23 GPS Satellite Information bundle
	1.5.24 Serial Port Map bundle
	1.5.25 Telemetry Packet Reader Errors bundle
	1.5.26 Serial Port Errors bundle
	1.5.27 Receiver Slot State bundle
	1.5.28 Transmitter Slot Error bundle
	1.5.29 Receiver Slot Error bundle
	1.5.30 Libra Instrument SOH bundle
	1.5.31 Libra Environment SOH bundle
	1.5.32 Transmitter bundle
	1.5.33 Receiver bundle
	1.5.34 Burst bundle
	1.5.35 Epoch bundle
	1.5.36 Libra GPS Time Quality bundle
	1.5.37 Libra System Time Quality bundle
	1.5.38 Libra Operation State bundle
	1.5.39 Serial Data Bytes bundle
	1.5.40 Telemetry Packet Sender Soh bundle
	1.5.41 Authentication Soh bundle
	1.5.42 TimeServer Instrument Soh bundle
	1.5.43 TimeServer Time PLL Soh bundle
	1.5.44 TimeServer M12 GPS Soh bundle
	1.5.45 NMXbus Master Soh bundle
	1.5.46 NMXbus Request Soh bundle
	1.5.47 NMXbus Rx Soh bundle
	1.5.48 NMXbus Tx Soh bundle
	1.5.49 NMXbus Device List Soh bundle
	1.5.50 Trident PLL Status Soh bundle

	1.6 Log message packet
	1.6.1 Log message packet format

	1.7 Transparent serial packet
	1.7.1 Transparent serial packet format
	1.7.2 Authentication information

	Chapter 2 NMX Alert Format
	2.1 Overview
	2.2 Alert frame format
	2.2.1 Argument substitution

	2.3 Definition of Alert Messages
	2.3.1 Alert Messages Generated by AlertMailer
	2.3.1.1 AlertSystemUp
	2.3.1.2 AlertSystemDown
	2.3.1.3 ComponentOffline
	2.3.1.4 ComponentOnline
	2.3.1.5 MailErr

	2.3.2 Alert Messages Generated by NaqsServer
	2.3.2.1 NaqsAlive
	2.3.2.2 NaqsStatus
	2.3.2.3 NaqsReport
	2.3.2.4 RbfOpenFail
	2.3.2.5 RbfWriteFail
	2.3.2.6 RbfWriteOk
	2.3.2.7 InstrumentOffline
	2.3.2.8 InstrumentOnline
	2.3.2.9 NaqsEvent

	2.3.3 Alert Messages Generated by each Carina Instrument (CARxxx)
	2.3.3.1 VSatShutdown
	2.3.3.2 VSatResume
	2.3.3.3 VSatTxOutage
	2.3.3.4 VSatTxOk
	2.3.3.5 VSatSelfRxOutage
	2.3.3.6 VSatSelfRxOk
	2.3.3.7 VSatRxOutage
	2.3.3.8 VSatRxOk

	2.3.4 Alert messages generated by each Cygnus, Janus, or Europa
	2.3.4.1 PowerWarn
	2.3.4.2 PowerOk
	2.3.4.3 SohWarn
	2.3.4.4 SohOk

	Chapter 3 Private Data Streams
	3.1 Data stream types
	3.2 Subscription protocol
	3.3 Message formats
	3.3.1 Client messages
	3.3.1.1 Connect
	3.3.1.2 Request Pending
	3.3.1.3 Terminate Subscription

	3.3.2 AddChannels messages
	3.3.2.1 AddTime-SeriesChannels
	3.3.2.2 AddSohChannels
	3.3.2.3 AddSerialChannels
	3.3.2.4 AddTriggerChannels
	3.3.2.5 AddEvents

	3.3.3 Remove Channels messages
	3.3.3.1 RemoveTimeSeriesChannels
	3.3.3.2 RemoveSohChannels
	3.3.3.3 RemoveSerialChannels
	3.3.3.4 RemoveTriggerChannels
	3.3.3.5 RemoveEvents

	3.3.4 Server messages
	3.3.4.1 Channel List
	3.3.4.2 Error

	3.3.5 Data messages
	3.3.5.1 Compressed Data, Soh or Transparent Serial Packets
	3.3.5.2 Decompressed Data Packets
	3.3.5.3 Trigger Packet
	3.3.5.4 Event Packet

	Chapter 4 Data Access Protocol
	4.1 Data types
	4.2 Subscription protocol
	4.3 Client message and request types
	4.4 Message formats
	4.4.1 Request messages
	4.4.1.1 ConnectRequest
	4.4.1.2 RequestPending
	4.4.1.3 CancelRequest
	4.4.1.4 TerminateMessage
	4.4.1.5 ChannelListRequest
	4.4.1.6 PrecisListRequest
	4.4.1.7 ChannelInfoRequest
	4.4.1.8 DataSizeRequest
	4.4.1.9 DataRequest
	4.4.1.10 TriggerRequest
	4.4.1.11 EventRequest

	4.4.2 Response messages
	4.4.2.1 ReadyMessage
	4.4.2.2 ChannelList
	4.4.2.3 PrecisList
	4.4.2.4 ChannelHeader
	4.4.2.5 DataSize
	4.4.2.6 NaqsEvent
	4.4.2.7 NaqsTrigger
	4.4.2.8 CompressedData

	Chapter 5 Tagged File Format
	5.1 Overview
	5.2 Data types
	5.3 Tag format
	5.4 Tag types

	Chapter 6 Y-File Format
	6.1 File format
	6.2 Field descriptions
	6.2.1 TAG_STATION_INFO
	6.2.1.1 Station ID

	6.2.2 TAG_STATION_LOCATION
	6.2.3 TAG_STATION_PARAMETERS
	6.2.4 TAG_SERIES_DATABASE, TAG_STATION_DATABASE
	6.2.5 TAG_SERIES_INFO
	6.2.6 TAG_STATION_RESPONSE

	Appendix A Data Stream Client
	Appendix B Serial Packet CRC

