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Introduction
The decorator module is over ten years old, but still alive and kicking. It is used by several frameworks
(IPython, scipy, authkit, pylons, pycuda, sugar, ...) and has been stable for a long time. It is your best
option if you want to preserve the signature of decorated functions in a consistent way across Python
releases. Version 4.0 is fully compatible with the past, except for one thing: support for Python 2.4 and 2.5
has been dropped. That decision made it possible to use a single code base both for Python 2.X and
Python 3.X. This is a huge bonus, since I could remove over 2,000 lines of duplicated
documentation/doctests. Having to maintain separate docs for Python 2 and Python 3 effectively stopped
any development on the module for several years. Moreover, it is now trivial to distribute the module as an
universal wheel since 2to3 is no more required. Since Python 2.5 has been released 9 years ago, I felt
that it was reasonable to drop the support for it. If you need to support ancient versions of Python, stick
with the decorator module version 3.4.2. This version supports all Python releases from 2.6 up to 3.5,
which currently is still in beta status.

What's new
Since now there is a single manual for all Python versions, I took the occasion for overhauling the
documentation. Therefore, even if you are an old time user, you may want to read the docs again, since
several examples have been improved. The packaging has been improved and I am distributing the code
in wheel format too. The integration with setuptools has been improved and now you can use
python setup.py test to run the tests. A new utility function decorate(func, caller) has been
added, doing the same job that in the past was done by decorator(caller, func). The old
functionality is still there for compatibility sake, but it is deprecated and not documented anymore.

Apart from that, there is a new experimental feature. The decorator module now includes an
implementation of generic (multiple dispatch) functions. The API is designed to mimic the one of
functools.singledispatch (introduced in Python 3.4) but the implementation is much simpler;
moreover all the decorators involved preserve the signature of the decorated functions. For the moment
the facility is there mostly to exemplify the power of the module. In the future it could be
enhanced/optimized; on the other hand, both its behavior and its API could change. Such is the fate of
experimental features. In any case it is very short and compact (less then one hundred lines) so you can
extract it for your own use. Take it as food for thought.

Usefulness of decorators
Python decorators are an interesting example of why syntactic sugar matters. In principle, their
introduction in Python 2.4 changed nothing, since they do not provide any new functionality which was not
already present in the language. In practice, their introduction has significantly changed the way we
structure our programs in Python. I believe the change is for the best, and that decorators are a great idea
since:

• decorators help reducing boilerplate code;

• decorators help separation of concerns;

• decorators enhance readability and maintenability;

• decorators are explicit.

Still, as of now, writing custom decorators correctly requires some experience and it is not as easy as it
could be. For instance, typical implementations of decorators involve nested functions, and we all know
that flat is better than nested.

The aim of the decorator module it to simplify the usage of decorators for the average programmer,
and to popularize decorators by showing various non-trivial examples. Of course, as all techniques,
decorators can be abused (I have seen that) and you should not try to solve every problem with a
decorator, just because you can.

http://pythonwheels.com/


You may find the source code for all the examples discussed here in the documentation.py file, which
contains the documentation you are reading in the form of doctests.

Definitions
Technically speaking, any Python object which can be called with one argument can be used as a
decorator. However, this definition is somewhat too large to be really useful. It is more convenient to split
the generic class of decorators in two subclasses:

• signature-preserving decorators, i.e. callable objects taking a function as input and returning a
function with the same signature as output;

• signature-changing decorators, i.e. decorators that change the signature of their input function, or
decorators returning non-callable objects.

Signature-changing decorators have their use: for instance the builtin classes staticmethod and
classmethod are in this group, since they take functions and return descriptor objects which are not
functions, nor callables.

However, signature-preserving decorators are more common and easier to reason about; in particular
signature-preserving decorators can be composed together whereas other decorators in general cannot.

Writing signature-preserving decorators from scratch is not that obvious, especially if one wants to define
proper decorators that can accept functions with any signature. A simple example will clarify the issue.

Statement of the problem
A very common use case for decorators is the memoization of functions. A memoize decorator works by
caching the result of the function call in a dictionary, so that the next time the function is called with the
same input parameters the result is retrieved from the cache and not recomputed. There are many
implementations of memoize in http://www.python.org/moin/PythonDecoratorLibrary, but they do not
preserve the signature. In recent versions of Python you can find a sophisticated lru_cache decorator
in the standard library (in functools). Here I am just interested in giving an example.

A simple implementation could be the following (notice that in general it is impossible to memoize correctly
something that depends on non-hashable arguments):

def memoize_uw(func):
    func.cache = {}

    def memoize(*args, **kw):
        if kw:  # frozenset is used to ensure hashability
            key = args, frozenset(kw.items())
        else:
            key = args
        if key not in func.cache:
            func.cache[key] = func(*args, **kw)
        return func.cache[key]
    return functools.update_wrapper(memoize, func)

Here I used the functools.update_wrapper utility, which has been added in Python 2.5 expressly to
simplify the definition of decorators (in older versions of Python you need to copy the function attributes
__name__, __doc__, __module__ and __dict__ from the original function to the decorated function
by hand). Here is an example of usage:

@memoize_uw
def f1(x):
    "Simulate some long computation"

http://www.python.org/moin/PythonDecoratorLibrary
https://docs.python.org/3/library/functools.html#functools.update_wrapper


    time.sleep(1)
    return x

The implementation above works in the sense that the decorator can accept functions with generic
signatures; unfortunately this implementation does not define a signature-preserving decorator, since in
general memoize_uw returns a function with a different signature from the original function.

Consider for instance the following case:

@memoize_uw
def f1(x):
    "Simulate some long computation"
    time.sleep(1)
    return x

Here the original function takes a single argument named x, but the decorated function takes any number
of arguments and keyword arguments:

>>> from decorator import getargspec  # akin to inspect.getargspec
>>> print(getargspec(f1))
ArgSpec(args=[], varargs='args', varkw='kw', defaults=None)

This means that introspection tools such as pydoc will give wrong informations about the signature of f1,
unless you are using Python 3.5. This is pretty bad: pydoc will tell you that the function accepts a generic
signature *args, **kw, but when you try to call the function with more than an argument, you will get an
error:

>>> f1(0, 1)
Traceback (most recent call last):
   ...
TypeError: f1() takes exactly 1 positional argument (2 given)

Notice even in Python 3.5 inspect.getargspec and inspect.getfullargspec (which are
deprecated in that release) will give the wrong signature.

The solution
The solution is to provide a generic factory of generators, which hides the complexity of making
signature-preserving decorators from the application programmer. The decorate function in the
decorator module is such a factory:

>>> from decorator import decorate

decorate takes two arguments, a caller function describing the functionality of the decorator and a
function to be decorated; it returns the decorated function. The caller function must have signature
(f, *args, **kw) and it must call the original function f with arguments args and kw, implementing
the wanted capability, i.e. memoization in this case:

def _memoize(func, *args, **kw):
    if kw:  # frozenset is used to ensure hashability
        key = args, frozenset(kw.items())
    else:
        key = args
    cache = func.cache  # attribute added by memoize



    if key not in cache:
        cache[key] = func(*args, **kw)
    return cache[key]

At this point you can define your decorator as follows:

def memoize(f):
    """
    A simple memoize implementation. It works by adding a .cache dictionary
    to the decorated function. The cache will grow indefinitely, so it is
    your responsability to clear it, if needed.
    """
    f.cache = {}
    return decorate(f, _memoize)

The difference with respect to the memoize_uw approach, which is based on nested functions, is that the
decorator module forces you to lift the inner function at the outer level. Moreover, you are forced to pass
explicitly the function you want to decorate, there are no closures.

Here is a test of usage:

>>> @memoize
... def heavy_computation():
...     time.sleep(2)
...     return "done"

>>> print(heavy_computation()) # the first time it will take 2 seconds
done

>>> print(heavy_computation()) # the second time it will be instantaneous
done

The signature of heavy_computation is the one you would expect:

>>> print(getargspec(heavy_computation))
ArgSpec(args=[], varargs=None, varkw=None, defaults=None)

A trace decorator
As an additional example, here is how you can define a trivial trace decorator, which prints a message
everytime the traced function is called:

def _trace(f, *args, **kw):
    kwstr = ', '.join('%r: %r' % (k, kw[k]) for k in sorted(kw))
    print("calling %s with args %s, {%s}" % (f.__name__, args, kwstr))
    return f(*args, **kw)

def trace(f):
    return decorate(f, _trace)

Here is an example of usage:



>>> @trace
... def f1(x):
...     pass

It is immediate to verify that f1 works

>>> f1(0)
calling f1 with args (0,), {}

and it that it has the correct signature:

>>> print(getargspec(f1))
ArgSpec(args=['x'], varargs=None, varkw=None, defaults=None)

The same decorator works with functions of any signature:

>>> @trace
... def f(x, y=1, z=2, *args, **kw):
...     pass

>>> f(0, 3)
calling f with args (0, 3, 2), {}

>>> print(getargspec(f))
ArgSpec(args=['x', 'y', 'z'], varargs='args', varkw='kw', defaults=(1, 2))

Function annotations
Python 3 introduced the concept of function annotations,i.e. the ability to annotate the signature of a
function with additional information, stored in a dictionary named __annotations__. The decorator
module, starting from release 3.3, is able to understand and to preserve the annotations. Here is an
example:

>>> @trace
... def f(x: 'the first argument', y: 'default argument'=1, z=2,
...       *args: 'varargs', **kw: 'kwargs'):
...     pass

In order to introspect functions with annotations, one needs the utility inspect.getfullargspec, new
in Python 3 (and deprecated in favor of inspect.signature in Python 3.5):

>>> from inspect import getfullargspec
>>> argspec = getfullargspec(f)
>>> argspec.args
['x', 'y', 'z']
>>> argspec.varargs
'args'
>>> argspec.varkw
'kw'
>>> argspec.defaults
(1, 2)
>>> argspec.kwonlyargs

http://www.python.org/dev/peps/pep-3107/


[]
>>> argspec.kwonlydefaults

You can check that the __annotations__ dictionary is preserved:

>>> f.__annotations__ is f.__wrapped__.__annotations__
True

Here f.__wrapped__ is the original undecorated function. Such an attribute is added to be consistent
with the way functools.update_wrapper work. Another attribute which is copied from the original
function is __qualname__, the qualified name. This is an attribute which is present starting from Python
3.3.

decorator.decorator
It may be annoying to write a caller function (like the _trace function above) and then a trivial wrapper
(def trace(f): return decorate(f, _trace)) every time. For this reason, the decorator
module provides an easy shortcut to convert the caller function into a signature-preserving decorator: the
decorator function:

>>> from decorator import decorator
>>> print(decorator.__doc__)
decorator(caller) converts a caller function into a decorator

The decorator function can be used as a signature-changing decorator, just as classmethod and
staticmethod. However, classmethod and staticmethod return generic objects which are not
callable, while decorator returns signature-preserving decorators, i.e. functions of a single argument.
For instance, you can write directly

>>> @decorator
... def trace(f, *args, **kw):
...     kwstr = ', '.join('%r: %r' % (k, kw[k]) for k in sorted(kw))
...     print("calling %s with args %s, {%s}" % (f.__name__, args, kwstr))
...     return f(*args, **kw)

and now trace will be a decorator.

>>> trace
<function trace at 0x...>

Here is an example of usage:

>>> @trace
... def func(): pass

>>> func()
calling func with args (), {}

blocking
Sometimes one has to deal with blocking resources, such as stdin, and sometimes it is best to have
back a "busy" message than to block everything. This behavior can be implemented with a suitable family
of decorators, where the parameter is the busy message:



def blocking(not_avail):
    def _blocking(f, *args, **kw):
        if not hasattr(f, "thread"):  # no thread running
            def set_result():
                f.result = f(*args, **kw)
            f.thread = threading.Thread(None, set_result)
            f.thread.start()
            return not_avail
        elif f.thread.isAlive():
            return not_avail
        else:  # the thread is ended, return the stored result
            del f.thread
            return f.result
    return decorator(_blocking)

Functions decorated with blocking will return a busy message if the resource is unavailable, and the
intended result if the resource is available. For instance:

>>> @blocking("Please wait ...")
... def read_data():
...     time.sleep(3) # simulate a blocking resource
...     return "some data"

>>> print(read_data())  # data is not available yet
Please wait ...

>>> time.sleep(1)
>>> print(read_data())  # data is not available yet
Please wait ...

>>> time.sleep(1)
>>> print(read_data())  # data is not available yet
Please wait ...

>>> time.sleep(1.1)  # after 3.1 seconds, data is available
>>> print(read_data())
some data

decorator(cls)
The decorator facility can also produce a decorator starting from a class with the signature of a caller.
In such a case the produced generator is able to convert functions into factories of instances of that class.

As an example, here will I show a decorator which is able to convert a blocking function into an
asynchronous function. The function, when called, is executed in a separate thread. This is very similar to
the approach used in the concurrent.futures package. Of course the code here is just an example,
it is not a recommended way of implementing futures. The implementation is the following:

class Future(threading.Thread):
    """
    A class converting blocking functions into asynchronous
    functions by using threads.
    """
    def __init__(self, func, *args, **kw):
        try:



            counter = func.counter
        except AttributeError:  # instantiate the counter at the first call
            counter = func.counter = itertools.count(1)
        name = '%s-%s' % (func.__name__, next(counter))

        def func_wrapper():
            self._result = func(*args, **kw)
        super(Future, self).__init__(target=func_wrapper, name=name)
        self.start()

    def result(self):
        self.join()
        return self._result

The decorated function returns a Future object, which has a .result() method which blocks until the
underlying thread finishes and returns the final result. Here is a minimalistic example of usage:

>>> futurefactory = decorator(Future)
>>> @futurefactory
... def long_running(x):
...     time.sleep(.5)
...     return x

>>> fut1 = long_running(1)
>>> fut2 = long_running(2)
>>> fut1.result() + fut2.result()
3

contextmanager
For a long time Python had in its standard library a contextmanager decorator, able to convert
generator functions into GeneratorContextManager factories. For instance if you write

>>> from contextlib import contextmanager
>>> @contextmanager
... def before_after(before, after):
...     print(before)
...     yield
...     print(after)

then before_after is a factory function returning GeneratorContextManager objects which can be
used with the with statement:

>>> with before_after('BEFORE', 'AFTER'):
...     print('hello')
BEFORE
hello
AFTER

Basically, it is as if the content of the with block was executed in the place of the yield expression in
the generator function. In Python 3.2 GeneratorContextManager objects were enhanced with a
__call__ method, so that they can be used as decorators as in this example:



>>> @ba
... def hello():
...     print('hello')
...
>>> hello()
BEFORE
hello
AFTER

The ba decorator is basically inserting a with ba: block inside the function. However there two issues:
the first is that GeneratorContextManager objects are callable only in Python 3.2, so the previous
example will break in older versions of Python (you can solve this by installing contextlib2); the
second is that GeneratorContextManager objects do not preserve the signature of the decorated
functions: the decorated hello function here will have a generic signature
hello(*args, **kwargs) but will break when called with more than zero arguments. For such
reasons the decorator module, starting with release 3.4, offers a decorator.contextmanager
decorator that solves both problems and works in all supported Python versions. The usage is the same
and factories decorated with decorator.contextmanager will returns instances of
ContextManager, a subclass of contextlib.GeneratorContextManager with a __call__
method acting as a signature-preserving decorator.

The FunctionMaker class
You may wonder about how the functionality of the decorator module is implemented. The basic
building block is a FunctionMaker class which is able to generate on the fly functions with a given
name and signature from a function template passed as a string. Generally speaking, you should not need
to resort to FunctionMaker when writing ordinary decorators, but it is handy in some circumstances.
You will see an example shortly, in the implementation of a cool decorator utility (decorator_apply).

FunctionMaker provides a .create classmethod which takes as input the name, signature, and body
of the function we want to generate as well as the execution environment were the function is generated
by exec. Here is an example:

>>> def f(*args, **kw): # a function with a generic signature
...     print(args, kw)

>>> f1 = FunctionMaker.create('f1(a, b)', 'f(a, b)', dict(f=f))
>>> f1(1,2)
(1, 2) {}

It is important to notice that the function body is interpolated before being executed, so be careful with the
% sign!

FunctionMaker.create also accepts keyword arguments and such arguments are attached to the
resulting function. This is useful if you want to set some function attributes, for instance the docstring
__doc__.

For debugging/introspection purposes it may be useful to see the source code of the generated function;
to do that, just pass the flag addsource=True and a __source__ attribute will be added to the
generated function:

>>> f1 = FunctionMaker.create(
...     'f1(a, b)', 'f(a, b)', dict(f=f), addsource=True)
>>> print(f1.__source__)
def f1(a, b):



    f(a, b)
<BLANKLINE>

FunctionMaker.create can take as first argument a string, as in the examples before, or a function.
This is the most common usage, since typically you want to decorate a pre-existing function. A framework
author may want to use directly FunctionMaker.create instead of decorator, since it gives you
direct access to the body of the generated function. For instance, suppose you want to instrument the
__init__ methods of a set of classes, by preserving their signature (such use case is not made up; this
is done in SQAlchemy and in other frameworks). When the first argument of FunctionMaker.create
is a function, a FunctionMaker object is instantiated internally, with attributes args, varargs,
keywords and defaults which are the the return values of the standard library function
inspect.getargspec. For each argument in the args (which is a list of strings containing the names
of the mandatory arguments) an attribute arg0, arg1, ..., argN is also generated. Finally, there is a
signature attribute, a string with the signature of the original function.

Notice: you should not pass signature strings with default arguments, i.e. something like
'f1(a, b=None)'. Just pass 'f1(a, b)' and then a tuple of defaults:

>>> f1 = FunctionMaker.create(
...     'f1(a, b)', 'f(a, b)', dict(f=f), addsource=True, defaults=(None,))
>>> print(getargspec(f1))
ArgSpec(args=['a', 'b'], varargs=None, varkw=None, defaults=(None,))

Getting the source code
Internally FunctionMaker.create uses exec to generate the decorated function. Therefore
inspect.getsource will not work for decorated functions. That means that the usual ?? trick in
IPython will give you the (right on the spot) message
Dynamically generated function. No source code available. In the past I have considered
this acceptable, since inspect.getsource does not really work even with regular decorators. In that
case inspect.getsource gives you the wrapper source code which is probably not what you want:

def identity_dec(func):
    def wrapper(*args, **kw):
        return func(*args, **kw)
    return wrapper

def wrapper(*args, **kw):
    return func(*args, **kw)

>>> import inspect
>>> print(inspect.getsource(example))
    def wrapper(*args, **kw):
        return func(*args, **kw)
<BLANKLINE>

(see bug report 1764286 for an explanation of what is happening). Unfortunately the bug is still there, in all
versions of Python except Python 3.5, which is not yet released. There is however a workaround. The
decorated function has an attribute __wrapped__, pointing to the original function. The easy way to get
the source code is to call inspect.getsource on the undecorated function:

>>> print(inspect.getsource(factorial.__wrapped__))
@tail_recursive

http://bugs.python.org/issue1764286


def factorial(n, acc=1):
    "The good old factorial"
    if n == 0:
        return acc
    return factorial(n-1, n*acc)
<BLANKLINE>

Dealing with third party decorators
Sometimes you find on the net some cool decorator that you would like to include in your code. However,
more often than not the cool decorator is not signature-preserving. Therefore you may want an easy way
to upgrade third party decorators to signature-preserving decorators without having to rewrite them in
terms of decorator. You can use a FunctionMaker to implement that functionality as follows:

def decorator_apply(dec, func):
    """
    Decorate a function by preserving the signature even if dec
    is not a signature-preserving decorator.
    """
    return FunctionMaker.create(
        func, 'return decfunc(%(signature)s)',
        dict(decfunc=dec(func)), __wrapped__=func)

decorator_apply sets the attribute __wrapped__ of the generated function to the original function, so
that you can get the right source code. If you are using a Python more recent than 3.2, you should also set
the __qualname__ attribute to preserve the qualified name of the original function.

Notice that I am not providing this functionality in the decorator module directly since I think it is best to
rewrite the decorator rather than adding an additional level of indirection. However, practicality beats
purity, so you can add decorator_apply to your toolbox and use it if you need to.

In order to give an example of usage of decorator_apply, I will show a pretty slick decorator that
converts a tail-recursive function in an iterative function. I have shamelessly stolen the basic idea from
Kay Schluehr's recipe in the Python Cookbook,
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691.

class TailRecursive(object):
    """
    tail_recursive decorator based on Kay Schluehr's recipe
    http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691
    with improvements by me and George Sakkis.
    """

    def __init__(self, func):
        self.func = func
        self.firstcall = True
        self.CONTINUE = object()  # sentinel

    def __call__(self, *args, **kwd):
        CONTINUE = self.CONTINUE
        if self.firstcall:
            func = self.func
            self.firstcall = False
            try:
                while True:

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691


                    result = func(*args, **kwd)
                    if result is CONTINUE:  # update arguments
                        args, kwd = self.argskwd
                    else:  # last call
                        return result
            finally:
                self.firstcall = True
        else:  # return the arguments of the tail call
            self.argskwd = args, kwd
            return CONTINUE

Here the decorator is implemented as a class returning callable objects.

def tail_recursive(func):
    return decorator_apply(TailRecursive, func)

Here is how you apply the upgraded decorator to the good old factorial:

@tail_recursive
def factorial(n, acc=1):
    "The good old factorial"
    if n == 0:
        return acc
    return factorial(n-1, n*acc)

>>> print(factorial(4))
24

This decorator is pretty impressive, and should give you some food for your mind ;) Notice that there is no
recursion limit now, and you can easily compute factorial(1001) or larger without filling the stack
frame. Notice also that the decorator will not work on functions which are not tail recursive, such as the
following

def fact(n):  # this is not tail-recursive
    if n == 0:
        return 1
    return n * fact(n-1)

(reminder: a function is tail recursive if it either returns a value without making a recursive call, or returns
directly the result of a recursive call).

Multiple dispatch
There has been talk of implementing multiple dispatch (i.e. generic) functions in Python for over ten years.
Last year for the first time something concrete was done and now in Python 3.4 we have a decorator
functools.singledispatch which can be used to implement generic functions. As the name implies,
it has the restriction of being limited to single dispatch, i.e. it is able to dispatch on the first argument of the
function only. The decorator module provide a decorator factory dispatch_on which can be used to
implement generic functions dispatching on any argument; moreover it can manage dispatching on more
than one argument and, of course, it is signature-preserving.

Here I will give a very concrete example (taken from a real-life use case) where it is desiderable to
dispatch on the second argument. Suppose you have an XMLWriter class, which is instantiated with some
configuration parameters and has a .write method which is able to serialize objects to XML:



class XMLWriter(object):
    def __init__(self, **config):
        self.cfg = config

    @dispatch_on('obj')
    def write(self, obj):
        raise NotImplementedError(type(obj))

Here you want to dispatch on the second argument since the first, self is already taken. The
dispatch_on decorator factory allows you to specify the dispatch argument by simply passing its name
as a string (notice that if you mispell the name you will get an error). The function decorated is turned into
a generic function and it is the one which is called if there are no more specialized implementations.
Usually such default function should raise a NotImplementedError, thus forcing people to register
some implementation. The registration can be done with a decorator:

@XMLWriter.write.register(float)
def writefloat(self, obj):
    return '<float>%s</float>' % obj

Now the XMLWriter is able to serialize floats:

>>> writer = XMLWriter()
>>> writer.write(2.3)
'<float>2.3</float>'

I could give a down-to-earth example of situations in which it is desiderable to dispatch on more than one
argument (for instance once I implemented a database-access library where the first dispatching
argument was the the database driver and the second one was the database record), but here I prefer to
follow the tradition and show the time-honored Rock-Paper-Scissors example:

class Rock(object):
    ordinal = 0

class Paper(object):
    ordinal = 1

class Scissors(object):
    ordinal = 2

I have added an ordinal to the Rock-Paper-Scissors classes to simplify the implementation. The idea is to
define a generic function win(a, b) of two arguments corresponding to the moves of the first and
second player respectively. The moves are instances of the classes Rock, Paper and Scissors; Paper
wins over Rock, Scissors wins over Paper and Rock wins over Scissors. The function will return +1 for a
win, -1 for a loss and 0 for parity. There are 9 combinations, however combinations with the same ordinal
(i.e. the same class) return 0; moreover by exchanging the order of the arguments the sign of the result
changes, so it is enough to specify directly only 3 implementations:

@dispatch_on('a', 'b')
def win(a, b):
    if a.ordinal == b.ordinal:
        return 0
    elif a.ordinal > b.ordinal:



        return -win(b, a)
    raise NotImplementedError((type(a), type(b)))

@win.register(Rock, Paper)
def winRockPaper(a, b):
    return -1

@win.register(Paper, Scissors)
def winPaperScissors(a, b):
    return -1

@win.register(Rock, Scissors)
def winRockScissors(a, b):
    return 1

Here is the result:

>>> win(Paper(), Rock())
1
>>> win(Scissors(), Paper())
1
>>> win(Rock(), Scissors())
1
>>> win(Paper(), Paper())
0
>>> win(Rock(), Rock())
0
>>> win(Scissors(), Scissors())
0
>>> win(Rock(), Paper())
-1
>>> win(Paper(), Scissors())
-1
>>> win(Scissors(), Rock())
-1

The point of generic functions is that they play well with subclassing. For instance, suppose we define a
StrongRock which does not lose against Paper:

class StrongRock(Rock):
    pass

@win.register(StrongRock, Paper)
def winStrongRockPaper(a, b):
    return 0

Then we do not need to define other implementations, since they are inherited from the parent:

>>> win(StrongRock(), Scissors())
1



You can introspect the precedence used by the dispath algorithm by calling
.dispatch_info(*types):

>>> win.dispatch_info(StrongRock, Scissors)
[('StrongRock', 'Scissors'), ('Rock', 'Scissors')]

Since there is no direct implementation for (StrongRock, Scissors) the dispatcher will look at the
implementation for (Rock, Scissors) which is available. Internally the algorithm is doing a cross product of
the class precedence lists (or Method Resolution Orders, MRO for short) of StrongRock and Scissors
respectively.

Generic functions and virtual ancestors
Generic function implementations in Python are complicated by the existence of "virtual ancestors", i.e.
superclasses which are not in the class hierarchy. Consider for instance this class:

class WithLength(object):
    def __len__(self):
        return 0

This class defines a __len__ method and as such is considered to be a subclass of the abstract base
class collections.Sized:

>>> issubclass(WithLength, collections.Sized)
True

However, collections.Sized is not in the MRO of WithLength, it is not a true ancestor. Any
implementation of generic functions, even with single dispatch, must go through some contorsion to take
into account the virtual ancestors.

In particular if we define a generic function

@dispatch_on('obj')
def get_length(obj):
    raise NotImplementedError(type(obj))

implemented on all classes with a length

@get_length.register(collections.Sized)
def get_length_sized(obj):
    return len(obj)

then get_length must be defined on WithLength instances

>>> get_length(WithLength())
0

even if collections.Sized is not a true ancestor of WithLength. Of course this is a contrived
example since you could just use the builtin len, but you should get the idea.

Since in Python it is possible to consider any instance of ABCMeta as a virtual ancestor of any other class
(it is enough to register it as ancestor.register(cls)), any implementation of generic functions must
take virtual ancestors into account. Let me give an example.

Suppose you are using a third party set-like class like the following:

http://www.python.org/2.3/mro.html
http://www.python.org/2.3/mro.html


class SomeSet(collections.Sized):
    # methods that make SomeSet set-like
    # not shown ...
    def __len__(self):
        return 0

Here the author of SomeSet made a mistake by not inheriting from collections.Set, but only from
collections.Sized.

This is not a problem since you can register a posteriori collections.Set as a virtual ancestor of
SomeSet:

>>> _ = collections.Set.register(SomeSet)
>>> issubclass(SomeSet, collections.Set)
True

Now, let us define an implementation of get_length specific to set:

@get_length.register(collections.Set)
def get_length_set(obj):
    return 1

The current implementation, as the one used by functools.singledispatch, is able to discern that a
Set is a Sized object, so the more specific implementation for Set is taken:

>>> get_length(SomeSet())  # NB: the implementation for Sized would give 0
1

Sometimes it is not clear how to dispatch. For instance, consider a class C registered both as
collections.Iterable and collections.Sized and define a generic function g with
implementations both for collections.Iterable and collections.Sized. It is impossible to
decide which implementation to use, since the ancestors are independent, and the following function will
raise a RuntimeError when called:

def singledispatch_example1():
    singledispatch = dispatch_on('obj')

    @singledispatch
    def g(obj):
        raise NotImplementedError(type(g))

    @g.register(collections.Sized)
    def g_sized(object):
        return "sized"

    @g.register(collections.Iterable)
    def g_iterable(object):
        return "iterable"

    g(C())  # RuntimeError: Ambiguous dispatch: Iterable or Sized?

This is consistent with the "refuse the temptation to guess" philosophy. functools.singledispatch
would raise a similar error.



It would be easy to rely on the order of registration to decide the precedence order. This is reasonable, but
also fragile: if during some refactoring you change the registration order by mistake, a different
implementation could be taken. If implementations of the generic functions are distributed across
modules, and you change the import order, a different implementation could be taken. So the decorator
module prefers to raise an error in the face of ambiguity. This is the same approach taken by the standard
library.

However, it should be noticed that the dispatch algorithm used by the decorator module is different from
the one used by the standard library, so there are cases where you will get different answers. The
difference is that functools.singledispatch tries to insert the virtual ancestors before the base
classes, whereas decorator.dispatch_on tries to insert them after the base classes. I will give an
example showing the difference:

def singledispatch_example2():
    # adapted from functools.singledispatch test case
    singledispatch = dispatch_on('arg')

    class S(object):
        pass

    class V(c.Sized, S):
        def __len__(self):
            return 0

    @singledispatch
    def g(arg):
        return "base"

    @g.register(S)
    def g_s(arg):
        return "s"

    @g.register(c.Container)
    def g_container(arg):
        return "container"

    v = V()
    assert g(v) == "s"
    c.Container.register(V)  # add c.Container to the virtual mro of V
    assert g(v) == "s"  # since the virtual mro is V, Sized, S, Container
    return g, V

If you play with this example and replace the singledispatch definition with
functools.singledispatch, the assert will break: g will return "container" instead of "s",
because functools.singledispatch will insert the Container class right before S. The only way
to understand what is happening here is to scratch your head by looking at the implementations. I will just
notice that .dispatch_info is quite useful:

>>> g, V = singledispatch_example2()
>>> g.dispatch_info(V)
[('V',), ('Sized',), ('S',), ('Container',)]

The current implementation does not implement any kind of cooperation between implementations, i.e.
there is nothing akin to call-next-method in Lisp, nor akin to super in Python.

Finally, let me notice that the decorator module implementation does not use any cache, whereas the one
in singledispatch has a cache.



Caveats and limitations
One thing you should be aware of, is the performance penalty of decorators. The worse case is shown by
the following example:

$ cat performance.sh
python3 -m timeit -s "
from decorator import decorator

@decorator
def do_nothing(func, *args, **kw):
    return func(*args, **kw)

@do_nothing
def f():
    pass
" "f()"

python3 -m timeit -s "
def f():
    pass
" "f()"

On my laptop, using the do_nothing decorator instead of the plain function is five times slower:

$ bash performance.sh
1000000 loops, best of 3: 1.39 usec per loop
1000000 loops, best of 3: 0.278 usec per loop

It should be noted that a real life function would probably do something more useful than f here, and
therefore in real life the performance penalty could be completely negligible. As always, the only way to
know if there is a penalty in your specific use case is to measure it.

More importantly, you should be aware that decorators will make your tracebacks longer and more difficult
to understand. Consider this example:

>>> @trace
... def f():
...     1/0

Calling f() will give you a ZeroDivisionError, but since the function is decorated the traceback will
be longer:

>>> f()
Traceback (most recent call last):
  ...
     File "<string>", line 2, in f
     File "<doctest __main__[22]>", line 4, in trace
       return f(*args, **kw)
     File "<doctest __main__[51]>", line 3, in f
       1/0
ZeroDivisionError: ...

You see here the inner call to the decorator trace, which calls f(*args, **kw), and a reference to 
File "<string>", line 2, in f. This latter reference is due to the fact that internally the decorator



module uses exec to generate the decorated function. Notice that exec is not responsibile for the
performance penalty, since is the called only once at function decoration time, and not every time the
decorated function is called.

At present, there is no clean way to avoid exec. A clean solution would require to change the CPython
implementation of functions and add an hook to make it possible to change their signature directly.
However, at present, even in Python 3.5 it is impossible to change the function signature directly,
therefore the decorator module is still useful. Actually, this is the main reasons why I keep maintaining
the module and releasing new versions. It should be noticed that in Python 3.5 a lot of improvements have
been made: in that version you can decorated a function with func_tools.update_wrapper and
pydoc will see the correct signature; still internally the function will have an incorrect signature, as you
can see by using inspect.getfullargspec: all documentation tools using such function (which has
been correctly deprecated) will see the wrong signature.

In the present implementation, decorators generated by decorator can only be used on user-defined
Python functions or methods, not on generic callable objects, nor on built-in functions, due to limitations of
the inspect module in the standard library, especially for Python 2.X (in Python 3.5 a lot of such
limitations have been removed).

There is a restriction on the names of the arguments: for instance, if try to call an argument _call_ or
_func_ you will get a NameError:

>>> @trace
... def f(_func_): print(f)
...
Traceback (most recent call last):
  ...
NameError: _func_ is overridden in
def f(_func_):
    return _call_(_func_, _func_)

Finally, the implementation is such that the decorated function makes a (shallow) copy of the original
function dictionary:

>>> def f(): pass # the original function
>>> f.attr1 = "something" # setting an attribute
>>> f.attr2 = "something else" # setting another attribute

>>> traced_f = trace(f) # the decorated function

>>> traced_f.attr1
'something'
>>> traced_f.attr2 = "something different" # setting attr
>>> f.attr2 # the original attribute did not change
'something else'

LICENSE
Copyright (c) 2005-2015, Michele Simionato All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in bytecode form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.



THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

If you use this software and you are happy with it, consider sending me a note, just to gratify my ego. On
the other hand, if you use this software and you are unhappy with it, send me a patch!
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