Creating Excel files with Python and
XisxWriter
Release 3.1.9

John McNamara

October 19, 2023

CONTENTS

1 Introduction 3
2 Getting Started with XlsxWriter 5
2.1 Installing XIsxWriter e 5
2.2 Runningasample program oL e e e e e 6
2.3 Documentation. e 7
3 Tutorial 1: Create a simple XLSX file 9
4 Tutorial 2: Adding formatting to the XLSX File 13
5 Tutorial 3: Writing different types of data to the XLSX File 17
6 The Workbook Class 21
6.1 Constructor. e e e e 21
6.2 workbook.add worksheet() e 25
6.3 workbook.add_format() 26
6.4 workbook.add chart() 27
6.5 workbook.add chartsheet() Lo 28
6.6 workbook.close(). e e 29
6.7 workbook.set_size() 30
6.8 workbook.tab_ratio() 30
6.9 workbook.set_properties() 31
6.10 workbook.set_custom_property()o 33
6.11 workbook.define_name() e 35
6.12 workbook.add_vba_project() 37
6.13 workbook.add signed_vba project(). 37
6.14 workbook.set_vba_name() 38
6.15 workbook.worksheets() 38
6.16 workbook.get worksheet_ by name() 38
6.17 workbook.get default_url format() 0 ... 38
6.18 workbook.set_calc_ mode() 39
6.19 workbook.use_zipB4() e e e 39
6.20 workbook.read_only_recommended() oL oo 39
7 The Worksheet Class 41

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10
7.11
712
7.13
7.14
7.15
7.16
717
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48

worksheetwrite() e 41
worksheet.add_write_handler() 44
worksheet.write_string() L 45
worksheet.write_number() 46
worksheet.write_formula() e 47
worksheet.write_array_formula() oo o 48
worksheet.write_dynamic_array formula(), . 50
worksheet.write_blank() 51
worksheet.write_boolean() 52
worksheet.write_datetime() L 52
worksheet.write_url() 53
worksheet.write_rich_string()o 56
worksheet.write_row() L 58
worksheet.write_column() 59
worksheet.set_row() e 60
worksheet.set_ row pixels() e 61
worksheet.set_column() 62
worksheet.set_column_pixels() e 64
worksheet.autofit() 65
worksheet.insert_image()o 67
worksheet.insert_chart() Lo 70
worksheet.insert_textbox() 73
worksheet.insert_button() 74
worksheet.data_validation() 76
worksheet.conditional_format() o oL 78
worksheet.add table() 80
worksheet.add_sparkline() e 80
worksheet.write_comment() 82
worksheet.show_comments() e 84
worksheet.set_ comments_author(), 84
worksheet.get name() e 85
worksheet.activate() L 85
worksheet.select() L 86
worksheet.hide() e 86
worksheet.very_hidden() 87
worksheet.set_first sheet() 87
worksheet.merge_range()o 88
worksheet.autofilter() e 90
worksheet.filter_column() 91
worksheet.filter_column_list(). 92
worksheet.set_selection() L 93
worksheet.set top left cell)o 93
worksheet.freeze_panes() e 94
worksheet.split_panes() e 95
worksheet.set_zoom() L 96
worksheet.right_to_left() 96
worksheet.hide_zero() e 97
worksheet.set_background() 97

9

7.49
7.50
7.51
7.52
7.53
7.54
7.55

worksheet.set_tab color()
worksheet.protect() e
worksheet.unprotect_range()
worksheet.set_default_row() L
worksheet.outline_settings() e
worksheet.set_vba_name()
worksheet.ignore_errors() e e e e e e

The Worksheet Class (Page Setup)

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23

worksheet.set_landscape() L
worksheet.set_portrait()
worksheet.set_page view() L
worksheet.set_pagebreak view() oL
worksheet.set_paper() e
worksheet.center_horizontally()
worksheet.center_vertically() e
worksheet.set_margins()
worksheet.set_header() e
worksheet.set_footer()
worksheet.repeat_rows() o e
worksheet.repeat_columns() L
worksheet.hide_gridlines()
worksheet.print_row_col_headers()
worksheet.hide_row_col_headers()
worksheet.print_area() e
worksheet.print_across() e
worksheet.fit to pages() e
worksheet.set_start_page()o
worksheet.set_print_scale() e
worksheet.print_black_and_white()o oL,
worksheet.set_ h_pagebreaks() e
worksheet.set_v_pagebreaks() Lo

The Format Class

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

Creating and using a Formatobject, .
Format Defaults e
Modifying Formats
Number Format Categories e
Number Formats in differentlocales
Format methods and Format properties
format.set_font_ name() L
format.set_font_size() e
format.set_font_color() e
format.set_bold() e
format.set_italic() e
format.set_underline()
format.set_font_strikeout()
format.set_font_script()

9.15 format.set_ num_format() 135
9.16 format.set_locked() e 138
9.17 format.set_hidden() e 139
9.18 format.set_align() e e 139
9.19 format.set_center_across() e e 141
9.20 format.set_text_ wrap() o e e 142
9.21 format.set_rotation() e 143
9.22 format.set_reading_order() 144
9.23 format.set_indent() 144
9.24 format.set_shrink() L 145
9.25 format.set_text justlast() 146
9.26 format.set_pattern() e 146
9.27 format.set_bg_color() e 146
9.28 format.set_fg color() e 147
9.29 format.set_border() 147
9.30 format.set_bottom() e 148
9.31 format.set_top() o o e e 148
9.32 format.set left() e 148
9.33 format.set_right() 148
9.34 format.set_border_color() e 149
9.35 format.set_bottom_color() 149
9.36 format.set_top_color() e 149
9.37 format.set_left_color() e 149
9.38 format.set_right_color() e 150
9.39 format.set_diag border() 150
9.40 format.set_diag type() e 150
9.41 format.set_diag color() e 151
9.42 format.set_quote_prefix() L 151
10 The Chart Class 153
10.1 chart.add_series() o o i i e e e e 155
10.2 chart.set_x_axis() . . - . . .« o e 157
10.3 chart.set_y axis() i i e e 164
10.4 chart.set_x2_axis() . -« o o e 164
10.5 chart.set_y2_axis() i e 165
10.6 chart.combine() e 165
10.7 chart.set_size() e 166
10.8 chartset title() e 166
10.9 chartset_legend() e 168
10.10chart.set_chartarea() e 170
10.11chart.set_plotarea() o 171
10.12chart.set_style() e e 172
10.13chart.set_table() o 173
10.14chart.set_up_down_bars() e 174
10.15chart.set_drop_lines() 175
10.16chart.set_high_low_lines() 176
10.17chart.show _blanks_as() o . 177
10.18chart.show_na_as_empty_cell() 177

10.19chart.show_hidden_data()
10.20chart.set_rotation()
10.21chart.set_hole_size()

11 The Chartsheet Class
11.1 chartsheet.set_chart()
11.2 Worksheet methods
11.3 Chartsheet Example

12 The Exceptions Class
12.1 Exception:
12.2 Exception:
12.3 Exception:
12.4 Exception:
12.5 Exception:
12.6 Exception:
12.7 Exception:
12.8 Exception:
12.9 Exception:
12.10 Exception:
12.11 Exception:
12.12 Exception:

13 Working with Cell Notation
13.1 Row and Column Ranges

XlsxWriterException
XlsxFileError

XlsxInputError
FileCreateError e
UndefinedimageSize
UnsupportedimageFormat
FileSizeError
EmptyChartSerieso
DuplicateTableName
InvalidWorksheetName
DuplicateWorksheetName
OverlappingRange

13.2 Relative and Absolute cell referenceso oL,
13.3 Defined Namesand Named Ranges

13.4 Cell Utility Functions

14 Working with and Writing Data
14.1 Writing data to a worksheetcell

14.2 Writing unicode data
14.3 Writing lists of data
14.4 Writing dicts of data
14.5 Writing dataframes
14.6 Writing user defined types

15 Working with Formulas

15.1 Non US Excel functionsand syntax

15.2 Formula Results
15.3 Dynamic Array support

15.4 Dynamic Arrays - The Implicit Intersection Operator ‘@”
15.5 Dynamic Arrays - The Spilled Range Operator “#”
15.6 The Excel 365 LAMBDA() function
15.7 Formulas added in Excel 2010 andlater.

15.8 Using Tables in Formulas

15.9 Dealing with formulaerrors e

16 Working with Dates and Time

16.1 Default Date Formatting .
16.2 Timezone Handling . . .

17 Working with Colors

18 Working with Charts

18.1 Chart Value and Category
18.2 Chart Series Options . .

AXES . . . e e e e

18.3 Chart seriesoption: Marker e
18.4 Chartseriesoption: Trendline
18.5 Chartseriesoption: ErrorBars
18.6 Chart series option: Datalabels
18.7 Chart series option: Custom Datalabels
18.8 Chart seriesoption: Points e
18.9 Chart series option: Smooth

18.10Chart Formatting
18.11 Chart formatting: Line . .
18.12Chart formatting: Border

18.13Chart formatting: Solid Fill

18.14Chart formatting: Pattern Fill
18.15Chart formatting: Gradient Fill

18.16ChartFonts.
18.17Chart Layout
18.18 Date Category Axes . . .
18.19Chart Secondary Axes .
18.20Combined Charts
18.21Chartsheets

18.22Charts from Worksheet Tables

18.23Chart Limitations
18.24Chart Examples

19 Working with Object Positioning
19.1 Object scaling due to automatic row height adjustment
19.2 Object Positioning with Cell Moving and Sizing

19.3 Image sizing and DPI . .

19.4 Reporting issues with image insertion

20 Working with Autofilters

20.1 Applying an autofilter . .
20.2 Filter data in an autofilter

20.3 Setting afilter criteriaforacolumn L

20.4 Setting a column list filter
20.5 Example

21 Working with Data Validation

21.1 data_validation()
21.2 Data Validation Examples

22 Working with Conditional Formatting

Vi

22.1 The conditional_format() methodo
22.2 Conditional FormatOptions
22.3 Conditional Formatting Examples oL

23 Working with Worksheet Tables
23.1 add_table() e e e
23.2 data e
23.3 header row L e e e
23.4 autofilter e
23.5 banded rows L e e e e e
23.6 banded columns e e e e
23.7 first_column e e
23.8 last_ column e e e
23.9 style e
23.10Name L e e e e e e e e e e
23.11total row e e e e e e e
23.12C0IUumNSs . . . e e e e e e e
23.13Example e

24 Working with Textboxes
241 Textboxoptions e
24.2 Textbox size and positioning
24.3 Textbox Formatting
24.4 Textbox formatting: Line
24.5 Textbox formatting: Border
24.6 Textbox formatting: Solid Fill
24.7 Textbox formatting: Gradient Fillo
24.8 Textbox formatting: Fonts
24.9 Textbox formatting: Align e
24.10Textbox formatting: Text Rotation
24 11 Textbox Textlink o o
2412 Textbox Hyperlink
24.13Textbox Description e
24.14Textbox Decorative

25 Working with Sparklines
25.1 The add_sparkline() method
25.2 raNQE . . . e e e e e e e e e e e
25.3 1YPe . . .
25.4 style e
255 markers L
25.6 negative_points L e e
25.7 aXiS . . .o
25.8 rEVEISE e e e e e e e e e e
25.9 weight.
25.10high_point, low_point, first_point, last_ point
25.11max, MIN e e e e e e e e e e e e e e e e
25.12empty_cells L e

vii

26

27

28

29

30

31

32

25.13show_hidden e
25.14date_axis e e e e e
25.15series_Color L e e
25.16location e e e e
25.17Grouped Sparklines e
25.18Sparkline examples L e e e

Working with Cell Comments
26.1 Setting Comment Properties

Working with Outlines and Grouping
27.1 Outlines and Grouping in XIsxWriter

Working with Memory and Performance
28.1 Performance Figures e

Working with VBA Macros

29.1 The Excel XLSMfileformat
29.2 How VBA macros are included in XlsxWriter
29.3 Thevba_extractpy utility
29.4 Adding the VBA macros to a XlsxWriterfileo oo
29.5 Settingthe VBA codenames e
29.6 Adding a VBA macro signature file to an XlsxWriterfile
29.7 Whattodoifitdoesntwork,

Working with Pandas and XisxWriter

30.1 Using XIlsxWriterwithPandas
30.2 Accessing XlsxWriterfromPandas o ...
30.3 Adding Charts to Dataframe output
30.4 Adding Conditional Formatting to Dataframe output
30.5 Formatting of the Dataframe output L.
30.6 Formatting of the Dataframe headers
30.7 Adding a Dataframe to a WorksheetTable
30.8 Adding an autofilter to a Dataframe output
30.9 Handling multiple Pandas Dataframes
30.10Passing XlsxWriter constructor optionstoPandas
30.11Saving the Dataframe outputtoastring
30.12Additional Pandas and Excel Information

Working with Polars and XlsxWriter

31.1 Sharing XlsxWriter workbooks with Polars
31.2 Adding Charts to Dataframe output
31.3 Adding Conditional Formatting to Dataframe output
31.4 Handling multiple Polars Dataframes
31.5 Formatting the dataframeoutput
31.6 Adding Sparklines to the output dataframe

Examples
32.1 Example: HelloWorld o e

viii

32.2
32.3
32.4
32.5
32.6
32.7
32.8
32.9

Example:
Example:
Example:
Example:
Example:
Example:
Example:
Example:
32.10Example:
32.11 Example:
32.12Example:
32.13Example:
32.14Example:
32.15Example:
32.16 Example:
32.17Example:
32.18 Example:
32.19Example:
32.20 Example:
32.21 Example:
32.22 Example:
32.23 Example:
32.24 Example:
32.25Example:
32.26 Example:
32.27 Example:
32.28 Example:
32.29 Example:
32.30 Example:
32.31 Example:
32.32Example:
32.33 Example:
32.34 Example:
32.35Example:
32.36 Example:
32.37 Example:
32.38 Example:
32.39Example:
32.40Example:
32.41 Example:
32.42Example:
32.43Example:
32.44Example:
32.45Example:
32.46 Example:
32.47 Example:
32.48 Example:
32.49Example:

Simple Feature Demonstration 422
Catch exceptiononclosing 423
Datesand TimesinExcel 424
Adding hyperlinks 426
Array formulas e e 428
Dynamic array formulas o 429
Applying Autofilters L 435
Data Validation and Drop Down Lists 441
Conditional Formatting. 446
Defined names/Namedranges i i i i it 453
MergingCells 454
Autofittingcolumnso L 456
Writing “Rich” strings with multiple formats 457
Merging Cells witha Rich String 459
Inserting images intoaworksheet 461
Inserting images from a URL or byte stream into a worksheet 463
Left to Right worksheetsandtext 465
Simple Djangoclass 466
Simple HTTP Server 467
Adding Headers and Footers to Worksheets 469
Freeze Panes and SplitPanes 472
Worksheet Tables 475
Writing User Defined Types (1)o oo o oo 483
Writing User Defined Types (2)« o o o o oo i i oo 485
Writing User Definedtypes (3) o . o o oo oo 487
Ignoring Worksheet errorsandwarnings 489
Sparklines (Simple) e 491
Sparklines (Advanced) 492
Adding Cell Comments to Worksheets (Simple) 499
Adding Cell Comments to Worksheets (Advanced) 501
Insert Textboxes into a Worksheet 506
Outlineand Grouping o i e 511
Collapsed Outline and Grouping i 516
Setting Document Propertieso 521
Simple Unicode with Python3 523
Unicode - Polishin UTF-8 524
Unicode-ShiftJIS 525
Setting a Worksheet Watermark 527
Setting the Worksheet Background 528
Setting Worksheet Tab Colors 529
Diagonal bordersincells 531
Enabling Cell protection in Worksheets 532
Hiding Worksheets 534
Hiding Rowsand Columns 535
Example of subclassing the Workbook and Worksheet classes 537
Advanced example of subclassing L. 539
Adding a VBA macrotoa Workbook L. 542
Excel 365 LAMBDA() function 544

33.1
33.2
33.3
33.4
33.5
33.6
33.7
33.8
33.9

34.1
34.2
34.3
34.4
34.5
34.6
34.7
34.8
34.9

35.1
35.2
35.3
35.4
35.5
35.6
35.7

33 Chart Examples
Example:

Chart (Simple)

Example:
Example:
Example:
Example:
Example:
Example:
Example:
Example:
33.10Example:
33.11 Example:
33.12Example:
33.13Example:
33.14Example:
33.15Example:
33.16 Example:
33.17Example:
33.18 Example:
33.19Example:
33.20 Example:
33.21 Example:
33.22 Example:
33.23Example:

Area Chart
Bar Chart

Column Chart
Line Chart
Pie Chart

Doughnut Chart
Scatter Chart
Radar Chart
Stock Chart
Styles Chart
Chart with Pattern Fills

Chart with Gradient Fills
Secondary Axis Chart
Combined Chart
Pareto Chart
Gauge Chart
Clustered Chart
Date Axis Chart
Charts with Data Tables
Charts with Data Tools
Charts with Data Labels
Chartsheet

34 Pandas with XisxWriter Examples
Example:
Example:
Example:
Example:
Example:
Example:
Example:
Example:
Example:
34.10Example:
34.11 Example:
34.12Example:
34.13Example:

Pandas Excel example
Pandas Excel with multiple dataframes
Pandas Excel dataframe positioning
Pandas Excel output with a chart
Pandas Excel output with conditional formatting
Pandas Excel output with an autofilter
Pandas Excel output with a worksheet table
Pandas Excel output with datetimes
Pandas Excel output with column formatting
Pandas Excel output with user defined header format
Pandas Excel output with percentage formatting
Pandas Excel output with a line chart
Pandas Excel output with a column chart

35 Polars with XlsxWriter Examples
Example:
Example:
Example:
Example:
Example:
Example:
Example:

Polars Excel getting started example
Polars integration with XlsxWriter
Polars Excel dataframe positioning
Polars Excel with multiple dataframes
Polars Excel output with a chart
Polars Excel output with conditional formatting
Polars default format example

35.8 Example: Polars custom format example
35.9 Example: Polars Excel output with sparklines

36 Alternative modules for handling Excel files

36.1 OpenPyXL

36.2 XIWINGS o e e
36.3 XLWT . . o e e
36.4 XLRD

37 Libraries that use or enhance XisxWriter
37.1 Pandas
37.2 XlsxPandasFormatter

38 Known Issues and Bugs

38.1 “Content is Unreadable. Open and Repair”
38.2 “Exception caught in workbook destructor. Explicit close() may be required”
38.3 Formulas displayed as #NAME? untiledited
38.4 Formula results displaying as zero in non-Excel applications
38.5 Images not displayed correctly in Excel 2001 for Mac and non-Excel applications . .
38.6 Charts series created from Worksheet Tables cannot have user defined names . . .

39 Reporting Bugs

Upgrade to the latest version ofthemodule
Read the documentation
Look at the example programs 0.

39.1
39.2
39.3
39.4
39.5

Use the official XlsxWriter Issue tracker on GitHub
Pointers for submitting a bug report

40 Frequently Asked Questions

41

40.1
40.2
40.3
40.4
40.5
40.6
40.7

PLOLOOODO

Changes in XisxWriter

411
41.2
41.3
41.4
41.5
41.6
41.7
41.8
41.9

Release 3.1.9 - October 19 2023
Release 3.1.8 - October 15 2023
Release 3.1.7 - October 9 2023

Release 3.1.6 - October 1 2023

Release 3.1.5 - September 24 2023
Release 3.1.4 - September 18 2023
Release 3.1.3 - September 8 2023
Release 3.1.2 - May 28 2023
Release 3.1.1 - May 21 2023
41.10Release 3.1.0 - April 13 2023
41.11Release 3.0.9 - March 10 2023

. Why do my formulas show a zero result in some, non-Excel applications?
.Why do my formulas havea @ inthem?
. Can | apply a format to arange of cellsinonego?

Xi

41.12Release 3.0.8 - February 32023 Lo 672

41.13Release 3.0.7 - January 142023 e 672
41.14Release 3.0.6 - January 52023 e e 673
41.15Release 3.0.5-January 12023 673
41.16Release 3.0.4 - December 282022 673
41.17Release 3.0.3 - February 272022 673
41.18Release 3.0.2 - October 31 2021 673
41.19Release 3.0.1 - August 102021 e 673
41.20Release 3.0.0 - August 102021 L 674
41.21Release 2.0.0 - August 92021 e 674
41.22Release 1.4.5-July 292021 e e 674
41.23Release 1.4.4-July 42021 e 674
41.24Release 1.4.3-May 122021 o o e e 674
41.25Release 1.4.2-May 72021 e e 674
41.26Release 1.4.1 -May 6 2021 e 674
41.27Release 1.4.0 - April 232021 e e 675
41.28Release 1.3.9- April 152021 e 675
41.29Release 1.3.8 -March292021 e 675
41.30Release 1.3.7 - October 132020 o o o i i e 675
41.31Release 1.3.6 - September232020o 675
41.32Release 1.3.5-September21 2020 676
41.33Release 1.3.4 - September 16 2020 oo 676
41.34Release 1.3.3-August 132020 e 676
41.35Release 1.3.2- August 62020 676
41.36Release 1.3.1 - August 32020 e 676
41.37Release 1.3.0-July 302020 e e 676
41.38Release 1.2.9-May 292020 o i i i i e e e 676
41.39Release 1.2.8 - February 222020 e 677
41.40Release 1.2.7 - December232019 677
41.41Release 1.2.6 - November 152019 677
41.42Release 1.2.5-November 102019 i 677
41.43Release 1.2.4 - November 92019 677
41.44Release 1.2.3-November 72019 i 677
41.45Release 1.2.2-October 16 2019 o i 678
41.46Release 1.2.1 - September 142019 678
41.47Release 1.2.0 - August26 2019 678
41.48Release 1.1.9-August 192019 678
41.49Release 1.1.8-May 52019 e 678
41.50Release 1.1.7 - April202019 o e 678
41.51Release 1.1.6 - April 72019 e 679
41.52Release 1.1.5-February 222019 679
41.53Release 1.1.4 - February 102019 679
41.54Release 1.1.3-February 92019 679
41.55Release 1.1.2-October202018 i e 679
41.56Release 1.1.1 - September222018 679
41.57Release 1.1.0 - September22018 679
41.58Release 1.0.9 - August 272018 e 680
41.59Release 1.0.8 - August 272018 680

Xii

41.60Release 1.0.7 -
41.61Release 1.0.6 -
41.62Release 1.0.5 -
41.63Release 1.0.4 -
41.64Release 1.0.3 -
41.65Release 1.0.2 -
41.66Release 1.0.1 -
41.67Release 1.0.0 -
41.68Release 0.9.9 -
41.69Release 0.9.8 -
41.70Release 0.9.7 -
41.71Release 0.9.6 -
41.72Release 0.9.5 -
41.73Release 0.9.4 -
41.74Release 0.9.3 -
41.75Release 0.9.2 -
41.76 Release 0.9.1 -
41.77Release 0.9.0 -
41.78Release 0.8.9 -
41.79Release 0.8.8 -
41.80Release 0.8.7 -
41.81Release 0.8.6 -
41.82Release 0.8.5 -
41.83Release 0.8.4 -
41.84Release 0.8.3 -
41.85Release 0.8.2 -
41.86Release 0.8.1 -
41.87Release 0.8.0 -
41.88Release 0.7.9 -
41.89Release 0.7.8 -
41.90Release 0.7.7 -
41.91Release 0.7.6 -
41.92Release 0.7.5 -
41.93Release 0.7.4 -
41.94Release 0.7.3 -
41.95Release 0.7.2 -
41.96Release 0.7.1 -
41.97Release 0.7.0 -
41.98Release 0.6.9 -
41.99Release 0.6.8 -

41
41
41
41
41
41
41
41

.10Release 0.6.7 -
.10Release 0.6.6 -
.10Release 0.6.5 -
.10Release 0.6.4 -
.10Release 0.6.3 -
.10Release 0.6.2 -
.10BRelease 0.6.1 -
.10Release 0.6.0 -

August 162018 e 680
August 152018 680
May 192018 e e 680
April 142018 e 680
April 102018 e 681
October 14 2017 e e 681
October 14 2017 o e e e 681
September 16 2017 681
September52017 681
July 12017 . . . o 681
June 252017 e e e 681
Dec262016 e 681
Dec242016 e e e 682
Dec22016. o e e 682
July 82016 e 682
June 132016 e 682
June 82016 682
June 72016 e 682
June 12016 682
May 312016 e e 682
May 132016 e 683
April27 2016 e e 683
April 172016 o e 683
dJanuary 162016 e 683
January 142016 L 683
January 132016 683
January 122016 e 683
January 102016 683
January 92016 e 683
dJanuary 62016 684
October 192015 e 684
October 72015 684
October4 2015 e 684
September292015 684
May 72015 e e 684
March292015. e 684
March232015. e 684
March212015. e 684
March192015. e 685
March 172015 e 685
March 12015 685
January 162015o 685
December312014 685
November 152014 e 685
November 6 2014 686
November 12014 e 686
October292014 686
October 152014 e 686

41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41

.108elease 0.5.9 -
.10Release 0.5.8 -
.11®Release 0.5.7 -
.11Release 0.5.6 -
.11Release 0.5.5 -
.11Release 0.5.4 -
.114Release 0.5.3 -
.11Release 0.5.2 -
.11Release 0.5.1 -
.11Release 0.5.0 -
.118elease 0.4.9 -
.11Release 0.4.8 -
.12Release 0.4.7 -
.12Release 0.4.6 -
.12Release 0.4.5 -
.12Release 0.4.4 -
.128Release 0.4.3 -
.12Release 0.4.2 -
.12Release 0.4.1 -
.12Release 0.4.0 -
.128elease 0.3.9 -
.12Release 0.3.8 -
.13Release 0.3.7 -
.13Release 0.3.6 -
.13Release 0.3.5 -
.13Release 0.3.4 -
.134Release 0.3.3 -
.13Release 0.3.2 -
.13Release 0.3.1 -
.13Release 0.3.0 -
.138elease 0.2.9 -
.13Release 0.2.8 -
.14Release 0.2.7 -
.14Release 0.2.6 -
.14Release 0.2.5 -
.14Release 0.2.4 -
.144Release 0.2.3 -
.14Release 0.2.2 -
.14Release 0.2.1 -
.14Release 0.2.0 -
.14BRelease 0.1.9 -
.14Release 0.1.8 -
.15®Release 0.1.7 -
.15Release 0.1.6 -
.15Release 0.1.5 -
.15Release 0.1.4 -
.15Release 0.1.3 -
.15Release 0.1.2 -

October 112014 686

September282014 686
August 132014 e 687
July 222014 e e e 687
May 6 2014 e e 687
May 4 2014 e e 687
February 202014 e 687
December312013 688
December22013 e 688
November 172013 o 688
November 172013 e 688
November 132013 688
November 92013 i e 688
October23 2013 e 689
October21 2013 e 689
October 16 2013 e 689
September 122013 689
August 302013 e 689
August28 2013 689
August26 2013 L 689
August24 2013 e 689
August 232013 690
August 162013 690
July 262013 e e 690
June 282013 e 690
June 27 2013 e e e 690
June 102013 e e e 690
May 12013 e e 691
April 27 2013 e e 691
April 72013 . . . e e 691
April 72013 e 691
April4 2013 e 691
April32013 e 691
April 12013 e 692
April 12013 e e 692
March31 2013 e 692
March 27 2013 e 692
March 27 2013 e 692
March 252013 e 692
March24 2013 e 692
March 192013 e 693
March 182013 e e 693
March 182013 e 693
March 172013 e 693
March 102013 e 693
March8 2013 e 693
March 72013 e 694
March6 2013 e 694

Xiv

41.15@elease 0.1.1 -March 32013
41.15Release 0.1.0 - February 282013 i
41.158elease 0.0.9 - February 272013 e
41.15%Release 0.0.8 - February 26 2013 e
41.16@Release 0.0.7 - February 252013 e
41.16Release 0.0.6 - February 222013
41.16Release 0.0.5- February 21 2013 e
41.16Release 0.0.4 - February 202013 e
41.164Release 0.0.3 - February 192013
41.16%elease 0.0.2 - February 182013
41.16Release 0.0.1 - February 172013 i

42 Author
42.1 Asking questions

42.2 Sponsorshipand Donations

43 License

Index

XV

XVi

Creating Excel files with Python and XlsxWriter, Release 3.1.9

XlsxWriter is a Python module for creating Excel XLSX files.

e 00 | demo.xlsx
Home | Layout | Tables | Charts | Smartart | »| v Lt~
Al | € & (= fx| Helo v
| . B s Dl P | —
Hello
2 |World |
3 123
4 123.456
5
6 python
i
‘ powered
9
10
11
12
12
e N .
¥ e

XlsxWriter is a Python module that can be used to write text, numbers, formulas and hyperlinks
to multiple worksheets in an Excel 2007+ XLSX file. It supports features such as formatting and

many more, including:

* 100% compatible Excel XLSX files.

Full formatting.

Merged cells.

Defined names.

Charts.

Autofilters.

Data validation and drop down lists.

Conditional formatting.
Worksheet PNG/JPEG/GIF/BMP/WMF/EMF images.

Rich multi-format strings.

» Cell comments.

CONTENTS 1

Creating Excel files with Python and XisxWriter, Release 3.1.9

+ Textboxes.
* Integration with Pandas and Polars.
* Memory optimization mode for writing large files.

It supports Python 3.4+ and PyPy3 and uses standard libraries only.

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

XlsxWriter is a Python module for writing files in the Excel 2007+ XLSX file format.

It can be used to write text, numbers, and formulas to multiple worksheets and it supports features
such as formatting, images, charts, page setup, autofilters, conditional formatting and many others.

XlsxWriter has some advantages and disadvantages over the alternative Python modules for writ-
ing Excel files.

» Advantages:
— It supports more Excel features than any of the alternative modules.

— It has a high degree of fidelity with files produced by Excel. In most cases the files
produced are 100% equivalent to files produced by Excel.

— It has extensive documentation, example files and tests.
— ltis fast and can be configured to use very little memory even for very large output files.
» Disadvantages:
— It cannot read or modify existing Excel XLSX files.
XlsxWriter is licensed under a BSD 2-Clause License and the source code is available on GitHub.

To try out the module see the next section on Getting Started with XlsxWriter.

https://github.com/jmcnamara/XlsxWriter

Creating Excel files with Python and XisxWriter, Release 3.1.9

4 Chapter 1. Introduction

CHAPTER
TWO

GETTING STARTED WITH XLSXWRITER

Here are some easy instructions to get you up and running with the XlsxWriter module.

2.1 Installing XilsxWriter

The first step is to install the XlsxWriter module. There are several ways to do this.

2.1.1 Using PIP

The pip installer is the preferred method for installing Python modules from PyPI, the Python
Package Index:

$ pip install XlsxWriter

Or to a non system dir:
$ pip install --user XlsxWriter

2.1.2 Installing from a tarball

If you download a tarball of the latest version of XlsxWriter you can install it as follows (change the
version number to suit):

$ tar -zxvf XlsxWriter-1.2.3.tar.gz

$ cd XlsxWriter-1.2.3
$ python setup.py install

A tarball of the latest code can be downloaded from GitHub as follows:

$ curl -0 -L http://github.com/jmcnamara/XlsxWriter/archive/main.tar.gz

$ tar zxvf main.tar.gz
$ cd XlsxWriter-main/
$ python setup.py install

2.1.3 Cloning from GitHub

The XlsxWriter source code and bug tracker is in the XlsxWriter repository on GitHub. You can
clone the repository and install from it as follows:

https://pip.pypa.io/en/latest/
https://pypi.org/
https://github.com/jmcnamara/XlsxWriter

Creating Excel files with Python and XisxWriter, Release 3.1.9

$ git clone https://github.com/jmcnamara/XlsxWriter.git

$ cd XlsxWriter
$ python setup.py install

2.2 Running a sample program

If the installation went correctly you can create a small sample program like the following to verify
that the module works correctly:

import xlsxwriter

workbook = xlsxwriter.Workbook('hello.xlsx")
worksheet = workbook.add worksheet()

worksheet.write('Al', 'Hello world')
workbook.close()

Save this to a file called hello. py and run it as follows:

$ python hello.py

This will output a file called hello.x1sx which should look something like the following:

6 Chapter 2. Getting Started with XisxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

R N 11 . S————
Home | Layout | Tables | Charts | Smartirt | » v fE
Al 3 @ (- fx| Helloworld |+

NSNS N — |

Hello world |

o sweeus [

Mormal View

If you downloaded a tarball or cloned the repo, as shown above, you should also have a directory
called examples with some sample applications that demonstrate different features of XlsxWriter.

2.3 Documentation

The latest version of this document is hosted on Read The Docs. It is also available as a PDF.

Once you are happy that the module is installed and operational you can have a look at the rest of
the XIsxWriter documentation. Tutorial 1: Create a simple XLSX file is a good place to start.

2.3. Documentation 7

https://github.com/jmcnamara/XlsxWriter/tree/main/examples
https://xlsxwriter.readthedocs.io
https://raw.githubusercontent.com/jmcnamara/XlsxWriter/main/docs/XlsxWriter.pdf

Creating Excel files with Python and XisxWriter, Release 3.1.9

8 Chapter 2. Getting Started with XisxWriter

CHAPTER
THREE

TUTORIAL 1: CREATE A SIMPLE XLSX FILE

Let’s start by creating a simple spreadsheet using Python and the XlsxWriter module.

Say that we have some data on monthly outgoings that we want to convert into an Excel XLSX
file:

expenses = (
['Rent', 10007,

['Gas', 100],
['Food', 300],
['Gym', 507,

)

To do that we can start with a small program like the following:

import xlsxwriter

Create a workbook and add a worksheet.
workbook = xlsxwriter.Workbook('Expenses0l.xlsx")
worksheet = workbook.add worksheet()

Some data we want to write to the worksheet.
expenses = (
['Rent', 1000],

['Gas', 100],
['Food', 3001,
['Gym', 501,

)

Start from the first cell. Rows and columns are zero indexed.

row 0
col 0

Iterate over the data and write it out row by row.
for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost)
row += 1

Write a total using a formula.
worksheet.write(row, 0, 'Total')
worksheet.write(row, 1, '=SUM(B1:B4)"')

Creating Excel files with Python and XisxWriter, Release 3.1.9

workbook.close()

If we run this program we should get a spreadsheet that looks like this:

@00 | tutorial0 1.xlsx
Home | Layout | Tables | Charts | SmartArt | | v Lt~
BS @ @ [fx| =SUM(B1:B4) |+
TV £ N NNV N R ————

Rent 1000
Gas 100
Food 300
Gym 50

Tota

mm%mn.ﬁwn;p,

10
11
12

1>
| sveees R I

Mormal View Rieady e

This is a simple example but the steps involved are representative of all programs that use XI-
sxWriter, so let’s break it down into separate parts.

The first step is to import the module:

import xlsxwriter

The next step is to create a new workbook object using the Workbook () constructor.

Workbook () takes one, non-optional, argument which is the filename that we want to create:

workbook = xlsxwriter.Workbook('Expenses0l.xlsx"')

Note: XlsxWriter can only create new files. It cannot read or modify existing files.

The workbook object is then used to add a new worksheet via the add worksheet () method:

worksheet = workbook.add worksheet()

10 Chapter 3. Tutorial 1: Create a simple XLSX file

Creating Excel files with Python and XlsxWriter, Release 3.1.9

By default worksheet names in the spreadsheet will be Sheet1, Sheet2 etc., but we can also
specify a name:

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet('Data')
worksheet3 = workbook.add worksheet()

We can then use the worksheet object to write data via the write () method:

worksheet.write(row, col, some data)

Note: (Throughout XlsxWriter, rows and columns are zero indexed. The first cell in a worksheet,
Al,is (0, 0).

So in our example we iterate over our data and write it out as follows:

for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost)
row += 1

We then add a formula to calculate the total of the items in the second column:

worksheet.write(row, 1, '=SUM(B1:B4)"')

Finally, we close the Excel file via the close () method:

workbook. close()

And that’s it. We now have a file that can be read by Excel and other spreadsheet applications.

In the next sections we will see how we can use the XlsxWriter module to add formatting and other
Excel features.

11

Creating Excel files with Python and XisxWriter, Release 3.1.9

12 Chapter 3. Tutorial 1: Create a simple XLSX file

CHAPTER
FOUR

TUTORIAL 2: ADDING FORMATTING TO THE XLSX FILE

In the previous section we created a simple spreadsheet using Python and the XisxWriter module.

This converted the required data into an Excel file but it looked a little bare. In order to make the
information clearer we would like to add some simple formatting, like this:

® 00 tutorial02.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 IR - R
B6 @ @ (- fx| =SUM(B2:BS) v
A B B e C s D el Bl =

Item Cost

Rent 51,000
Gas 5100
Food 5300
Gym 550

Tota

le'*-le-hWMI-l,

10
11
12

13
& 1 '

Mormal View Ready e

The differences here are that we have added Item and Cost column headers in a bold font, we
have formatted the currency in the second column and we have made the Total string bold.

To do this we can extend our program as follows:

13

Creating Excel files with Python and XisxWriter, Release 3.1.9

import xlsxwriter

Create a workbook and add a worksheet.
workbook = xlsxwriter.Workbook('Expenses02.xlsx")
worksheet = workbook.add worksheet()

Add a bold format to use to highlight cells.
bold = workbook.add format({'bold': True})

Add a number format for cells with money.
money = workbook.add format({'num format': 'S$#,##0'})

Write some data headers.
worksheet.write('Al', 'Item', bold)
worksheet.write('B1', 'Cost', bold)

Some data we want to write to the worksheet.
expenses = (
['Rent', 100017,

['Gas', 100],
['Food', 3001,
['Gym', 507,

)

Start from the first cell below the headers.
row 1
col 0

Iterate over the data and write it out row by row.
for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost, money)
row += 1

Write a total using a formula.
worksheet.write(row, 0, 'Total', bold)
worksheet.write(row, 1, '=SUM(B2:B5)', money)

workbook.close()

The main difference between this and the previous program is that we have added two Format
objects that we can use to format cells in the spreadsheet.

Format objects represent all of the formatting properties that can be applied to a cell in Excel such
as fonts, number formatting, colors and borders. This is explained in more detail in The Format
Class section.

For now we will avoid getting into the details and just use a limited amount of the format function-
ality to add some simple formatting:

Add a bold format to use to highlight cells.
bold = workbook.add format({'bold': True})

14 Chapter 4. Tutorial 2: Adding formatting to the XLSX File

Creating Excel files with Python and XlsxWriter, Release 3.1.9

money = workbook.add format({'num format': '$#,##0'})

We can then pass these formats as an optional third parameter to the worksheetwrite () method
to format the data in the cell:

write(row, column, token, [format])

Like this:

worksheet.write(row, 0, 'Total', bold)

Which leads us to another new feature in this program. To add the headers in the first row of the
worksheet we used write() like this:

worksheet.write('Al', 'Item', bold)
worksheet.write('B1', 'Cost', bold)

So, instead of (row, col) we used the Excel "Al’ style notation. See Working with Cell Nota-
tion for more details but don’t be too concerned about it for now. It is just a little syntactic sugar to
help with laying out worksheets.

In the next section we will look at handling more data types.

15

Creating Excel files with Python and XisxWriter, Release 3.1.9

16 Chapter 4. Tutorial 2: Adding formatting to the XLSX File

CHAPTER
FIVE

TUTORIAL 3: WRITING DIFFERENT TYPES OF DATA TO THE XLSX
FILE

In the previous section we created a simple spreadsheet with formatting using Python and the
XlsxWriter module.

This time let’'s extend the data we want to write to include some dates:

expenses = (
['Rent', '2013-01-13', 1000],

['Gas', '2013-01-14', 100],
['Food', '2013-01-16', 300],
['Gym', '2013-01-20', 507,

)

The corresponding spreadsheet will look like this:

17

Creating Excel files with Python and XisxWriter, Release 3.1.9

3N 3 W— [tutorial03.xlsx .
Home | Layout | Tables | Charts | Smartart | » v fE
B2 | @ & (= fx| 1370172013 v
J A BN ¢ | b | E | |5
1 |ltem Date Cost
Rent | January 132013| 51,000
3 |Gas January 14 2013 $100
4 |Food January 16 2013 5300
5 |Gym January 20 2013 550
6 |Total $1,450
Fi
B
9
10
11
12
13

4 4 Sh!!tl_ Il
— o (+/ | |

Mormal View Ready o

The differences here are that we have added a Date column with formatting and made that column
a little wider to accommodate the dates.

To do this we can extend our program as follows:

from datetime import datetime
import xlsxwriter

Create a workbook and add a worksheet.
workbook = xlsxwriter.Workbook('Expenses03.xlsx")
worksheet = workbook.add worksheet()

Add a bold format to use to highlight cells.
bold = workbook.add format({'bold': 1})

Add a number format for cells with money.
money format = workbook.add format({'num format': '$#,##0'})

Add an Excel date format.
date format = workbook.add format({'num format': 'mmmm d yyyy'})

Adjust the column width.
worksheet.set column(1l, 1, 15)

Write some data headers.

18 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.write('Al', 'Item', bold)
worksheet.write('B1', 'Date', bold)
worksheet.write('C1l', 'Cost', bold)

Some data we want to write to the worksheet.
expenses = (
['Rent', '2013-01-13', 10001,

['Gas', '2013-01-14', 100],
['Food', '2013-01-16', 300],
['Gym', '2013-01-20', 507,

)

Start from the first cell below the headers.
row 1
col 0

for item, date str, cost in (expenses):
Convert the date string into a datetime object.
date = datetime.strptime(date str, "%Y-%m-%d")

worksheet.write string (row, col, item)
worksheet.write datetime(row, col + 1, date, date format)
worksheet.write number (row, col + 2, cost, money format)
row += 1

Write a total using a formula.
worksheet.write(row, 0, 'Total', bold)
worksheet.write(row, 2, '=SUM(C2:C5)', money format)

workbook.close()

The main difference between this and the previous program is that we have added a new Format
object for dates and we have additional handling for data types.

Excel treats different types of input data, such as strings and numbers, differently although it gen-
erally does it transparently to the user. XlsxWriter tries to emulate this in the worksheetwrite ()
method by mapping Python data types to types that Excel supports.

The write() method acts as a general alias for several more specific methods:
* write string()
* write number()
« write blank()
« write formula()
 write datetime()
* write boolean()
* write url()

In this version of our program we have used some of these explicit write methods for different
types of data:

19

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.write string (row, col, item)
worksheet.write datetime(row, col + 1, date, date format)
worksheet.write number (row, col + 2, cost, money format)

This is mainly to show that if you need more control over the type of data you write to a worksheet
you can use the appropriate method. In this simplified example the write() method would
actually have worked just as well.

The handling of dates is also new to our program.

Dates and times in Excel are floating point numbers that have a number format applied to display
them in the correct format. If the date and time are Python datetime objects XlsxWriter makes
the required number conversion automatically. However, we also need to add the number format
to ensure that Excel displays it as as date:

from datetime import datetime
date format = workbook.add format({'num format': 'mmmm d yyyy'})

for item, date str, cost in (expenses):
date = datetime.strptime(date str, "SY-%m-%d")

worksheet.write datetime(row, col + 1, date, date format)

Date handling is explained in more detail in Working with Dates and Time.

The last addition to our program is the set column() method to adjust the width of column ‘B’
so that the dates are more clearly visible:

worksheet.set column('B:B', 15)

That completes the tutorial section.

In the next sections we will look at the APl in more detail starting with The Workbook Class.

20 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

https://docs.python.org/3/library/datetime.html#module-datetime

CHAPTER
SIX

THE WORKBOOK CLASS

The Workbook class is the main class exposed by the XlsxWriter module and it is the only class
that you will need to instantiate directly.

The Workbook class represents the entire spreadsheet as you see it in Excel and internally it
represents the Excel file as it is written on disk.

6.1 Constructor
Workbook (filename[, options])
Create a new XlsxWriter Workbook object.
Parameters
+ filename (siring) — The name of the new Excel file to create.
» options (dict) — Optional workbook parameters. See below.
Return type A Workbook object.

The Workbook () constructor is used to create a new Excel workbook with a given filename:

import xlsxwriter

workbook
worksheet

xlsxwriter.Workbook('filename.xlsx")
workbook.add worksheet()

worksheet.write(0, 0, 'Hello Excel')

workbook.close()

21

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

® 00 || filename.xlsx
Home | Layout | Tables | Charts | SmartArt | ¥ W fFv
Al S <] fx| Hello Excel |1-
4 A N N N N W _— " —-—- e
Hello Excel
2
3
4
3
B
7
8
9
10
11
12
E?:J—j sheet1 | ¥ I
N :
| Normal View | Ready i

The constructor options are:

» constant_memory: Reduces the amount of data stored in memory so that large files can

be written efficiently:

workbook = xlsxwriter.Workbook(filename, {'constant memory': True})
Note, in this mode a row of data is written and then discarded when a cell in a new row
is added via one of the worksheet write () methods. Therefore, once this mode is ac-

tive, data should be written in sequential row order. For this reason the add table() and
merge range() Worksheet methods don’t work in this mode.

See Working with Memory and Performance for more details.

« tmpdir: XUsxWriter stores workbook data in temporary files prior to assembling the final
XLSX file. The temporary files are created in the system’s temp directory. If the default
temporary directory isn’t accessible to your application, or doesn’t contain enough space,
you can specify an alternative location using the tmpdir option:

workbook = xlsxwriter.Workbook(filename, {'tmpdir': '/home/user/tmp'})

The temporary directory must exist and will not be created.

* in_memory: To avoid the use of temporary files in the assembly of the final XLSX file, for
example on servers that don’t allow temp files, set the in_memory constructor option to

22

Chapter 6. The Workbook Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

True:

workbook = xlsxwriter.Workbook(filename, {'in memory': True})

This option overrides the constant memory option.

Note: This option used to be the recommended way of deploying XlsxWriter on Google APP
Engine since it didn’t support a /tmp directory. However, the Python 3 Runtime Environment

in Google App Engine supports a filesystem with read/write access to /tmp which means this
option isn’t required.

strings_to_numbers: Enable the worksheetwrite () method to convert strings to num-
bers, where possible, using float () in order to avoid an Excel warning about “Numbers
Stored as Text”. The default is False. To enable this option use:

workbook = xlsxwriter.Workbook(filename, {'strings to numbers': True})

strings_to_formulas: Enable the worksheetwrite () method to convert strings to formu-
las. The default is True. To disable this option use:

workbook = xlsxwriter.Workbook(filename, {'strings to formulas': False})

strings_to_urls: Enable the worksheetwrite() method to convert strings to urls. The
default is True. To disable this option use:

workbook = xlsxwriter.Workbook(filename, {'strings to urls': False})

use_future_functions: Enable the use of newer Excel “future” functions without having to
prefix them with with x1fn.. The default is False. To enable this option use:

workbook = xlsxwriter.Workbook(filename, {'use future functions': True})

See also Formulas added in Excel 2010 and later.

max_url_length: Set the maximum length for hyperlinks in worksheets. The default is 2079
and the minimum is 255. Versions of Excel prior to Excel 2015 limited hyperlink links and
anchor/locations to 255 characters each. Versions after that support urls up to 2079 charac-
ters. XIsxWriter versions >= 1.2.3 support the new longer limit by default. However, a lower
or user defined limit can be set via the max_url_length option:

workbook = xlsxwriter.Workbook(filename, {'max url length': 255})

nan_inf_to_errors: Enable the worksheetwrite() and write number() methods to
convert nan, inf and -inf to Excel errors. Excel doesn’t handle NAN/INF as numbers
so as a workaround they are mapped to formulas that yield the error codes #NUM! and
#DIV/0!. The default is False. To enable this option use:

workbook = xlsxwriter.Workbook(filename, {'nan inf to errors': True})
default_date format: This option is used to specify a default date format string for use

with the worksheetwrite datetime() method when an explicit format isn’t given. See
Working with Dates and Time for more details:

6.1.

Constructor 23

https://cloud.google.com/appengine/docs/standard/python3/runtime#filesystem

Creating Excel files with Python and XisxWriter, Release 3.1.9

xlsxwriter.Workbook(filename, {'default date format': ‘'dd/mm/yy'})

* remove_timezone: Excel doesn’t support timezones in datetimes/times so there isn’'t any

fail-safe way that XlsxWriter can map a Python timezone aware datetime into an Excel date-
time in functions such as write datetime(). As such the user should convert and re-
move the timezones in some way that makes sense according to their requirements. Al-
ternatively the remove timezone option can be used to strip the timezone from datetime
values. The default is False. To enable this option use:

workbook = xlsxwriter.Workbook(filename, {'remove timezone': True})

See also Timezone Handling in XlsxWriter.

use_zip64: Use ZIP64 extensions when writing the xIsx file zip container to allow files
greater than 4 GB. This is the same as calling use zip64() after creating the Workbook
object. This constructor option is just syntactic sugar to make the use of the option more
explicit. The following are equivalent:

workbook = xlsxwriter.Workbook(filename, {'use zip64': True})

workbook = xlsxwriter.Workbook(filename)
workbook.use zip64()

See the note about the Excel warning caused by using this option in use zip64().

date_1904: Excel for Windows uses a default epoch of 1900 and Excel for Mac uses an
epoch of 1904. However, Excel on either platform will convert automatically between one
system and the other. XlsxWriter stores dates in the 1900 format by default. If you wish
to change this you can use the date 1904 workbook option. This option is mainly for
enhanced compatibility with Excel and in general isn’t required very often:

workbook = xlsxwriter.Workbook(filename, {'date 1904': True})

When specifying a filename it is recommended that you use an .x1sx extension or Excel will
generate a warning when opening the file.

The Workbook () method also works using the with context manager. In which case it doesn’t
need an explicit close() statement:

with xlsxwriter.Workbook('hello world.xlsx') as workbook:
worksheet = workbook.add worksheet()

worksheet.write('Al', 'Hello world")

It is possible to write files to in-memory strings using ByteslO as follows:

from io import BytesIO

output = BytesIO()
workbook = xlsxwriter.Workbook(output)
worksheet = workbook.add worksheet()

24

Chapter 6. The Workbook Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.write('Al', 'Hello')
workbook.close()

xlsx data = output.getvalue()
To avoid the use of any temporary files and keep the entire file in-memory use the in_memory
constructor option shown above.

See also Example: Simple HTTP Server.

6.2 workbook.add worksheet()

add_worksheet ([name])
Add a new worksheet to a workbook.

Parameters name (siring) — Optional worksheet name, defaults to Sheetl, etc.
Return type A worksheet object.
Raises
* DuplicateWorksheetName — if a duplicate worksheet name is used.
* InvalidWorksheetName — if an invalid worksheet name is used.
+ ReservedWorksheetName — if a reserved worksheet name is used.
The add_worksheet () method adds a new worksheet to a workbook.

At least one worksheet should be added to a new workbook. The Worksheet object is used to
write data and configure a worksheet in the workbook.

The name parameter is optional. If it is not specified, or blank, the default Excel convention will be
followed, i.e. Sheet1, Sheet2, etc.:

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet('Foglio2")
worksheet3 = workbook.add worksheet('Data')
worksheet4 = workbook.add worksheet()

6.2. workbook.add_worksheet() 25

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

800 | | worksheets.xlsx
Home | Layout . Tables | Charts | SmartArt | ¥ W fFv
A3 @ £ E
A AT N N ——————, — -—"—

1 |Mote the worksheet names

2
<« » » [Sheetl | Foglio2 | Data | Sheeta [+ [N I

Mormal View Ready S

The worksheet name must be a valid Excel worksheet name:

« It must be less than 32 characters. This error will raise a InvalidWorksheetName excep-
tion.

« It cannot contain any of the characters: [] : * ? / \. This error will raise a In-
validWorksheetName exception.

« It cannot begin or end with an apostrophe. This error will raise a InvalidWorksheetName
exception.

* You cannot use the same, case insensitive, name for more than one worksheet. This error
will raise a DuplicateWorksheetName exception.

* You should not use the Excel reserved name “History”, or case insensitive variants as this is
restricted in English, and other, versions of Excel.

The rules for worksheet names in Excel are explained in the Microsoft Office documentation on
how to Rename a worksheet.

6.3 workbook.add format()

add_format ([properties])
Create a new Format object to formats cells in worksheets.

Parameters properties (dictionary) — An optional dictionary of format properties.
Return type A format object.

The add format () method can be used to create new Format objects which are used to apply
formatting to a cell. You can either define the properties at creation time via a dictionary of property
values or later via method calls:

formatl
format2

workbook.add format(props) # Set properties at creation.
workbook.add format() # Set properties later.

See the The Format Class section for more details about Format properties and how to set them.

26 Chapter 6. The Workbook Class

https://support.microsoft.com/en-us/office/rename-a-worksheet-3f1f7148-ee83-404d-8ef0-9ff99fbad1f9

Creating Excel files with Python and XlsxWriter, Release 3.1.9

6.4 workbook.add chart()

add_chart (options)
Create a chart object that can be added to a worksheet.

Parameters options (dictionary) — An dictionary of chart type options.
Return type A Chart object.

This method is use to create a new chart object that can be inserted into a worksheet via the
insert chart() Worksheet method:

chart = workbook.add chart({'type': 'column'})

The properties that can be set are:

type (required)
subtype (optional)
name (optional)
* type
This is a required parameter. It defines the type of chart that will be created:

chart = workbook.add chart({'type': 'line'})

The available types are:

area
bar
column
doughnut
line

pie
radar
scatter
stock

* subtype
Used to define a chart subtype where available:

workbook.add chart({'type': 'bar', 'subtype': 'stacked'})

See the The Chart Class for a list of available chart subtypes.
* name
Set the name for the chart sheet:

chart = workbook.add chart({'type': 'column', 'name': 'MyChart'})

The name property is optional and if it isn’t supplied it will default to Chartl, Chart2, etc.
The name must be a valid Excel chart name.

6.4. workbook.add_chart() 27

Creating Excel files with Python and XisxWriter, Release 3.1.9

Note: A chart can only be inserted into a worksheet once. If several similar charts are required
then each one must be created separately with add chart().

See also Working with Charts and Chart Examples.

6.5 workbook.add_chartsheet()
add_chartsheet ([sheetname])
Add a new add_chartsheet to a workbook.

Parameters sheetname (siring) — Optional chartsheet name, defaults to Chart1,
etc.

Return type A charisheet object.

The add_chartsheet () method adds a new chartsheet to a workbook.

800 [% chartsheet.xlsx
Home | Layout | Tables | Charts | SmartArt | 3| v Lt~
00 (- 5 E

Results of sample analysis

-

i ¥

duraple bajh [ra)

N warni

|| PR l ShettlJ Chartlﬂ

7 | Mormal View Ready A

See The Chartsheet Class for details.

The sheetname parameter is optional. If it is not specified the default Excel convention will be
followed, i.e. Chart1, Chart2, etc.

28 Chapter 6. The Workbook Class

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.1.9

The chartsheet name must be a valid Excel worksheet name. See add worksheet () for the
limitation on Excel worksheet names.

6.6 workbook.close()

close()
Close the Workbook object and write the XLSX file.

Raises

FileCreateError — if there is a file or permissions error during writing.

DuplicateTableName — if a duplicate worksheet table name was added.

EmptyChartSeries — if a chart is added without a data series.

UndefinedimageSize — if an image doesn’t contain height/width data.

UnsupportedimageFormat — if an image type isn’t supported.

FileSizeError — if the filesize would require ZIP64 extensions.
The workbook close () method writes all data to the xIsx file and closes it:

workbook.close()

This is a required method call to close and write the xlIsxwriter file, unless you are using the with
context manager, see below.

The Workbook object also works using the with context manager. In which case it doesn’t need
an explicit close () statement:

With xlsxwriter.Workbook('hello world.xlsx') as workbook:
worksheet = workbook.add worksheet()

worksheet.write('Al', 'Hello world')

The workbook will close automatically when exiting the scope of the with statement.

The most common exception during close() is FileCreateError which is generally caused
by a write permission error. On Windows this usually occurs if the file being created is already
open in Excel. This exception can be caught in a try block where you can instruct the user to
close the open file before overwriting it:

while True:
try:
workbook.close()
except xlsxwriter.exceptions.FileCreateError as e:

decision = input("Exception caught in workbook.close(): \n"
"Please close the file if it is open in Excel.\n"
"Try to write file again? [Y/n]: " % e)
if decision != 'n':
continue
break

6.6. workbook.close() 29

Creating Excel files with Python and XisxWriter, Release 3.1.9

The close() method can only write a file once. It doesn’'t behave like a save method and it
cannot be called multiple times to write a file at different stages. If it is called more than once it will
raise a UserWarning in order to help avoid issues where a file is closed within a loop or at the
wrong scope level.

See also Example: Catch exception on closing.

6.7 workbook.set_size()
set_size (width, height)
Set the size of a workbook window.
Parameters
» width (/nt) — Width of the window in pixels.
* height (/nf) — Height of the window in pixels.
The set size() method can be used to set the size of a workbook window:
workbook.set size(1200, 800)
The Excel window size was used in Excel 2007 to define the width and height of a workbook
window within the Multiple Document Interface (MDI). In later versions of Excel for Windows this

interface was dropped. This method is currently only useful when setting the window size in Excel
for Mac 2011. The units are pixels and the default size is 1073 x 644.

Note, this doesn’t equate exactly to the Excel for Mac pixel size since it is based on the original
Excel 2007 for Windows sizing. Some trial and error may be required to get an exact size.

6.8 workbook.tab_ratio()
set_tab_ratio(tab ratio)
Set the ratio between the worksheet tabs and the horizontal slider.
Parameters tab_ratio (float) — The tab ratio between 0 and 100.

The set tab ratio() method can be used to set the ratio between worksheet tabs and the
horizontal slider at the bottom of a workbook. This can be increased to give more room to the tabs
or reduced to increase the size of the horizontal slider:

30 Chapter 6. The Workbook Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Creating Excel files with Python and XlsxWriter, Release 3.1.9

®_® ™ Workbook1
Home Layout Tables Charts SmartArt 3w -ﬁ-v
|

A1 10 @ (= 5 |~

_ Y B s s s s Y s i = ansamms st s | —

12 Slider

- |4 4 & l Sh!!ll_ |”

Mormal View Rieacy e

The default value in Excel is 60. It can be changed as follows:

workbook.set tab ratio(75)

6.9 workbook.set_properties()
set_properties (properties)
Set the document properties such as Title, Author etc.
Parameters properties (dict) — Dictionary of document properties.

The set properties() method can be used to set the document properties of the Excel file
created by XlsxWriter. These properties are visible when you use the Office Button ->
Prepare -> Properties option in Excel and are also available to external applications that
read or index windows files.

The properties that can be set are:
- title
* subject
« author

« manager

6.9. workbook.set_properties() 31

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

company
category
keywords
comments
status

hyperlink base

created - the file creation date as a datetime.date object.

The properties are all optional and should be passed in dictionary format as follows:

workbook.set properties({

"title':
'subject':
'author':
'manager’':
‘company':
'category':
"keywords':
'created':
‘comments’:

'This is an example spreadsheet’,
'With document properties',

'John McNamara',

'Dr. Heinz Doofenshmirtz',

'of Wolves',

'Example spreadsheets',

‘Sample, Example, Properties’,
datetime.date(2018, 1, 1),

'Created with Python and XlsxWriter'})

32

Chapter 6. The Workbook Class

https://docs.python.org/3/library/datetime.html#datetime.date

Creating Excel files with Python and XlsxWriter, Release 3.1.9

doc_properties.xlsx Properties

.w Statistics Contents Custom]7

Title: Ill'his is an example spreadsheet I
Subject: |W'|th document properties |
Author: |juhr‘| Mchamara |
Manager: |Dr. Heinz Doofenshmirtz |
Company: |of Wolves |
Category: |Example spreadsheets |
Keywords: |Sam ple, Example, Properties |
Comments: Created with Python and XlsxWriter

Hyperlink base:

Template:

[| Save preview picture with this document

[Cancel] E

See also Example: Setting Document Properties.

6.10 workbook.set _custom_property()
set_custom_property(name, value[, property_type])
Set a custom document property.
Parameters
* name (siring) — The name of the custom property.
+ value — The value of the custom property (various types).

» property_type (string) — The type of the property. Optional.

6.10. workbook.set_custom_property() 33

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

The set _custom property() method can be used to set one or more custom document prop-
erties not covered by the standard properties in the set properties() method above.

For example:

Date parameters should be datetime.datetime objects.

date = datetime.strptime('2016-12-12",

workbook.set custom property
workbook.set custom property
workbook.set custom property
workbook.set custom property
workbook.set custom property
workbook.set custom property

"%Y-%m-%d ")

('Checked by"', "Eve')
('Date completed’, date)
('Document number', 12345)
('Reference number', 1.2345)
('Has review', True)
('Signed off"', False)

custom_properties.xlsx Properties

General Summary Statistics

Marne:

Type:

Value:

Properties:

Checked by Maodify
Client Delete
Date completed
Department
Destination
Disposition
Text
Eve Link to content

MName Value Type b
Checked b Eve Text

Date completed 12/12/2016 Date
Document number 12345 Mumber
Reference number 1.2345 Mumber
Has review Yes Yes orno
Signed off Mo Yes orno

34

Chapter 6. The Workbook Class

https://docs.python.org/3/library/datetime.html#datetime.datetime

Creating Excel files with Python and XlsxWriter, Release 3.1.9

The optional property type parameter can be used to set an explicit type for the custom prop-
erty, just like in Excel. The available types are:

text
date
number
bool

However, in almost all cases the type will be inferred correctly from the Python type, like in the
example above.

Note: the name and value parameters are limited to 255 characters by Excel.

6.11 workbook.define_name()
define_name()
Create a defined name in the workbook to use as a variable.
Parameters
* name (string) — The defined name.
« formula (siring) — The cell or range that the defined name refers to.

This method is used to defined a name that can be used to represent a value, a single cell or a
range of cells in a workbook. These are sometimes referred to as a “Named Range”.

Defined names are generally used to simplify or clarify formulas by using descriptive variable
names:

workbook.define name('Exchange rate', '=0.96")
worksheet.write('B3', '=B2*Exchange rate')

6.11. workbook.define_name() 35

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

® @ defined_name.xlsx
| # Home | Layout Tables | Charts | SmartArt | 3| v £~
B3 +| € @ ([fx| =Exchange_rate |+

A A L-fi-J C =

1 |This worksheet contains some defined names.
2 |See Formulas -> Name Manager above.

nExar'nple farmula in cell B3 -

PR l Shutl_‘[Shezt?“ [l

Mormal View Ready i

As in Excel a name defined like this is “global” to the workbook and can be referred to from any
worksheet:

Global workbook name.
workbook.define name('Sales', '=Sheetl!G1:H10")

It is also possible to define a local/worksheet name by prefixing it with the sheet name using the
syntax 'sheetname!definedname’:

Local worksheet name.
workbook.define name('Sheet2!Sales', '=Sheet2!G1:G10")

If the sheet name contains spaces or special characters you must follow the Excel convention and
enclose it in single quotes:

workbook.define name("'New Data'!Sales", '=Sheet2!G1:G10")

The rules for names in Excel are explained in the Microsoft Office documentation on how to Define
and use names in formulas.

See also Example: Defined names/Named ranges.

36 Chapter 6. The Workbook Class

https://support.microsoft.com/en-us/office/define-and-use-names-in-formulas-4d0f13ac-53b7-422e-afd2-abd7ff379c64
https://support.microsoft.com/en-us/office/define-and-use-names-in-formulas-4d0f13ac-53b7-422e-afd2-abd7ff379c64

Creating Excel files with Python and XlsxWriter, Release 3.1.9

6.12 workbook.add _vba_project()
add_vba_project (vba_project[, is_stream])
Add a vbaProject binary to the Excel workbook.
Parameters
» vba_project — The vbaProject binary file name.
* is_stream (bool) — The vba_project is an in memory byte stream.

The add vba project() method can be used to add macros or functions to a workbook using
a binary VBA project file that has been extracted from an existing Excel xlsm file:

workbook.add vba project('./vbaProject.bin')
Only one vbaProject.bin file can be added per workbook. The name doesn’t have to be
vbaProject.bin. Any suitable path/name for an existing VBA bin file will do.

The is_stream parameter is used to indicate that vba project refers to a ByteslO byte stream
rather than a physical file. This can be used when working with the workbook in_memory mode.

See Working with VBA Macros for more details.

6.13 workbook.add_signed_vba_project()

add_signed vba project(vba project,
signature [,
project_is_stream, [
signature_is_stream]]):
Add a vbaProject binary and a vbaProjectSignature binary to the Excel workbook.

Parameters
» vba_project — The vbaProject binary file name.
« signature — The vbaProjectSignature binary file name.
 project_is_stream (bool) — The vba_project is an in memory byte stream.
« signature_is_stream (boo/) — The signature is an in memory byte stream.

The add _signed vba project() method can be used to add digitally signed macros or func-
tions to a workbook. The method adds a binary VBA project file and a binary VBA project signature
file that have been extracted from an existing Excel xlsm file with digitally signed macros:

workbook.add_signed vba_project(‘./vbaProject.bin’, ‘./vbaProjectSignature.bin’)

Only one vbaProject.bin file can be added per workbook. The name doesn’t have to be
vbaProject.bin. Any suitable path/name for an existing VBA bin file will do. The same applies
for vbaProjectSignature.bin.

The project is stream (signature is stream, resp.) parameter is used to indicate that
vba project (signature, resp.) refers to a ByteslO byte stream rather than a physical file.
This can be used when working with the workbook in_memory mode.

6.12. workbook.add_vba_project() 37

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Creating Excel files with Python and XisxWriter, Release 3.1.9

See Working with VBA Macros for more details.

6.14 workbook.set vba name()

set_vba_name (name)
Set the VBA name for the workbook.

Parameters name (siring) — The VBA name for the workbook.

The set _vba name() method can be used to set the VBA codename for the workbook. This is
sometimes required when a vbaProject macro included via add _vba project() refers to the
workbook. The default Excel VBA name of ThisWorkbook is used if a user defined name isn’t
specified.

See Working with VBA Macros for more details.

6.15 workbook.worksheets()

worksheets ()
Return a list of the worksheet objects in the workbook.

Return type A list of worksheet objects.

The worksheets () method returns a list of the worksheets in a workbook. This is useful if you
want to repeat an operation on each worksheet in a workbook:

for worksheet in workbook.worksheets():
worksheet.write('Al', 'Hello')

6.16 workbook.get worksheet_by name()

get_worksheet_by name (name)
Return a worksheet object in the workbook using the sheetname.

Parameters name (siring) — Name of worksheet that you wish to retrieve.
Return type A worksheet object.

The get worksheet by name() method returns the worksheet or chartsheet object with the
given name or None if it isn’t found:

worksheet = workbook.get worksheet by name('Sheetl')

6.17 workbook.get default_url_format()

get_default_url_format()
Return a format object.

Return type A format object.

38 Chapter 6. The Workbook Class

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.1.9

The get default url format() method gets a copy of the default url format used when a
user defined format isn’t specified with write url(). The format is the hyperlink style defined
by Excel for the default theme:

url format = workbook.get default url format()

6.18 workbook.set calc_mode()

set_calc_mode(mode)
Set the Excel calculation mode for the workbook.

Parameters mode (string) — The calculation mode string

Set the calculation mode for formulas in the workbook. This is mainly of use for workbooks with
slow formulas where you want to allow the user to calculate them manually.

The mode parameter can be:

« auto: The default. Excel will re-calculate formulas when a formula or a value affecting the
formula changes.

« manual: Only re-calculate formulas when the user requires it. Generally by pressing F9.

» auto_except tables: Excel will automatically re-calculate formulas except for tables.

6.19 workbook.use_zip64()

use_zip64()
Allow ZIP64 extensions when writing the xIsx file zip container.

Use ZIP64 extensions when writing the xIsx file zip container to allow files greater than 4 GB.

Note: When using the use zip64 () option the zip file created by the Python standard library
zipfile.py may cause Excel to issue a warning about repairing the file. This warning is annoy-

ing but harmless. The “repaired” file will contain all of the data written by XlsxWriter, only the zip
container will be changed.

6.20 workbook.read_only_recommended()

read_only_recommended ()
Add a recommendation to open the file in “read-only” mode.

This method can be used to set the Excel “Read-only Recommended” option that is available when
saving a file. This presents the user of the file with an option to open it in “read-only” mode. This
means that any changes to the file can’t be saved back to the same file and must be saved to a
new file. It can be set as follows:

import xlsxwriter

workbook = xlsxwriter.Workbook('file.xlsx")

6.18. workbook.set_calc_mode() 39

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet = workbook.add worksheet()
workbook.read only recommended()

workbook. close()

Which will raise a dialog like the following when opening the file:

Alert
The author would like you to open ile.xlsx' as read-

only unless you need to make changes. Open as read-
only?

No Cancel Yes

40 Chapter 6. The Workbook Class

CHAPTER
SEVEN

THE WORKSHEET CLASS

The worksheet class represents an Excel worksheet. It handles operations such as writing data
to cells or formatting worksheet layout.

A worksheet object isn’t instantiated directly. Instead a new worksheet is created by calling the
add worksheet () method from a Workbook () object:

workbook = xlsxwriter.Workbook('filename.xlsx")
worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()

worksheetl.write('Al', 123)

workbook.close()

e 00 7 filename.xlsx
Home | Layout | Tables | Charts | SmartArt | ¥ v B~
All 10 & (= fx |~
| ety B | C [Db | E | F [P
123
<< » i JJ_sheets [sheetz [+ I [l
Mormal View Ready A

XlsxWriter supports Excels worksheet limits of 1,048,576 rows by 16,384 columns.

7.1 worksheet.write()

write (row, col, *args)
Write generic data to a worksheet cell.

41

Creating Excel files with Python and XisxWriter, Release 3.1.9

Parameters
* row — The cell row (zero indexed).
» col — The cell column (zero indexed).

» *args — The additional args that are passed to the sub methods such as
number, string and cell_format.

Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns Other values from the called write methods.

Excel makes a distinction between data types such as strings, numbers, blanks, formulas and
hyperlinks. To simplify the process of writing data to an XlsxWriter file the write () method acts
as a general alias for several more specific methods:

e write string()
* write number()
« write blank()
* write formula()
* write datetime()
* write boolean()
« write url()
The rules for handling data in write() are as follows:

 Data types float, int, long, decimal.Decimal and fractions.Fraction are writ-
ten using write number().

» Data types datetime.datetime, datetime.date datetime.time or date-
time.timedelta are written usingwrite datetime() .

* None and empty strings " " are written usingwrite blank().
 Data type bool is written usingwrite boolean().
Strings are then handled as follows:

« Strings that start with "=" are assumed to match a formula and are written using
write formula(). This can be overridden, see below.

« Strings that match supported URL types are written using write url(). This can be
overridden, see below.

* When the Workbook () constructor strings to numbers optionis True strings that con-
vert to numbers using float () are written usingwrite number() in order to avoid Excel
warnings about “Numbers Stored as Text”. See the note below.

« Strings that don’t match any of the above criteria are written using write string().

42 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/fractions.html#fractions.Fraction
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

Creating Excel files with Python and XlsxWriter, Release 3.1.9

If none of the above types are matched the value is evaluated with float () to see if it corresponds
to a user defined float type. If it does then it is written using write number().

Finally, if none of these rules are matched then a TypeError exception is raised. However, it is
also possible to handle additional, user defined, data types using the add write handler()
method explained below and in Writing user defined types.

Here are some examples:

write blank()
write blank()

‘)
None)

worksheet.write
worksheet.write

worksheet.write(0, 0, 'Hello') # write string()
worksheet.write(1, 0, 'World') # write string()
worksheet.write(2, 0, 2) # write number()
worksheet.write(3, 0, 3.00001) # write number()
worksheet.write(4, 0, '=SIN(PI()/4)"') # write formula()
(5, o, #
(6, 0, #

This creates a worksheet like the following:

@00 | write.xlsx
Home | Layout | Tables | Charts | SmartArt | 3| v Lt~
AS 1 8 @ (- fx| =SINPID/4) |
T A WY NN 2 NN ¢ VU R SR
1 |Hello
2 |World
3 2
4 3.00001
6
i
B
9
10
11
12
1>
ARRE EUYEY [

Mormal View Ready A

Note: The Workbook() constructor option takes three optional arguments that can be used
to override string handling in the write() function. These options are shown below with their

default values:

7.1. worksheet.write() 43

Creating Excel files with Python and XisxWriter, Release 3.1.9

xlsxwriter.Workbook(filename, {'strings to numbers': False,
'strings to formulas': True,
'strings to urls': True})

The write() method supports two forms of notation to designate the position of cells: Row-
column notation and A1 notation:

worksheet.write(0, 0, 'Hello')
worksheet.write('Al', 'Hello')

See Working with Cell Notation for more details.

The cell format parameter in the sub write methods is used to apply formatting to the cell.
This parameter is optional but when present it should be a valid Format object:

cell format = workbook.add format({'bold': True, 'italic': True})

worksheet.write(0, 0, 'Hello', cell format)

7.2 worksheet.add_write_handler()
add _write handler (user type, user_function)
Add a callback function to the write() method to handle user define types.
Parameters
 user_type (fype) — The user type() to match on.

» user_function (fypes.FunctionType) — The user defined function to write
the type data.

As explained above, the write() method maps basic Python types to corresponding Excel
types. If you want to write an unsupported type then you can either avoid write() and map
the user type in your code to one of the more specific write methods or you can extend it using the
add write handler() method.

For example, say you wanted to automatically write uuid values as strings using write() you
would start by creating a function that takes the uuid, converts it to a string and then writes it using
write string():

def write uuid(worksheet, row, col, uuid, format=None):
string uuid = str(uuid)
return worksheet.write string(row, col, string uuid, format)

You could then add a handler that matches the uuid type and calls your user defined function:

worksheet.add write handler(uuid.UUID, write uuid)

Then you can use write () without further modification:

44 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/types.html#types.FunctionType
https://docs.python.org/3/library/uuid.html#module-uuid

Creating Excel files with Python and XlsxWriter, Release 3.1.9

my uuid = uuid.uuid3(uuid.NAMESPACE DNS, 'python.org")

Write the UUID. This would raise a TypeError without the handler.
worksheet.write('Al', my uuid)

[NN [7 user_types1.xlsx
| # Home | Layout Tables | Charts | SmartArt |}}, v {3
A1 : | € fx| |~
s A R | —]

1 |6fad59ea-eeBa-Icad-894e-db77e160355e

2
A 4 &P | 5h +

Mormal View Ready S

Multiple callback functions can be added using add write handler() but only one callback
action is allowed per type. However, it is valid to use the same callback function for different types:

worksheet.add write handler(int, test number range)
worksheet.add write handler(float, test number range)

See Writing user defined types for more details on how this feature works and how to write callback
functions, and also the following examples:

» Example: Writing User Defined Types (1)

» Example: Writing User Defined Types (2)

» Example: Writing User Defined types (3)

7.3 worksheet.write_string()
write_string (row, col, string[, cell_format])
Write a string to a worksheet cell.
Parameters
* row (/nt) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
« string (string) — String to write to cell.
« cell_format (Format) — Optional Format object.
Returns 0: Success.

Returns -1: Row or column is out of worksheet bounds.

7.3. worksheet.write_string() 45

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

Returns -2: String truncated to 32k characters.
Thewrite string() method writes a string to the cell specified by row and column:

worksheet.write string(0, 0, 'Your text here')
worksheet.write string('A2', 'or here')

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

Unicode strings are supported in UTF-8 encoding. This generally requires that your source file is
UTF-8 encoded:

worksheet.write('Al', u'Some UTF-8 text')

e 0o |] utf8_01.xlsx
Home | Layout | Tahles | Charts | SmartArt | M v
Al7 0 ® fx| A
MY 8 | C | D | E |2
1 | 3to ¢pasa Ha pycckom!
2
PR Sheetl | + !
> sheet1 (] . I
| Normal Yiew | Ready A

See Example: Simple Unicode with Python 3 for a more complete example.

Alternatively, you can read data from an encoded file, convert it to UTF-8 during reading and then
write the data to an Excel file. See Example: Unicode - Polish in UTF-8 and Example: Unicode -
Shift JIS.

The maximum string size supported by Excel is 32,767 characters. Strings longer than this will be
truncated by write string().

Note: Even though Excel allows strings of 32,767 characters it can only display 1000 in a cell.
However, all 32,767 characters are displayed in the formula bar.

7.4 worksheet.write_number()

write_number (row, col, number|, cell_format])
Write a number to a worksheet cell.

46 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Parameters
* row (/int) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
« humber (int or float) — Number to write to cell.
« cell_format (Format) — Optional Format object.

Returns 0: Success.

Returns -1: Row or column is out of worksheet bounds.

The write number() method writes numeric types to the cell specified by row and column:

worksheet.write number(0, 0, 123456)
worksheet.write number('A2', 2.3451)

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

The numeric types supported are float, int, long, decimal.Decimal and frac-
tions.Fraction or anything that can be converted via float ().

When written to an Excel file numbers are converted to IEEE-754 64-bit double-precision floating
point. This means that, in most cases, the maximum number of digits that can be stored in Excel
without losing precision is 15.

Note: NAN and INF are not supported and will raise a TypeError exception unless the
nan_inf to_errors Workbook() option is used.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

7.5 worksheet.write_formula()
write_formula(row, col, formula[, cell_format|, value]])
Write a formula to a worksheet cell.
Parameters
* row (int) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
» formula (sfring) — Formula to write to cell.
« cell_format (Format) — Optional Format object.
« value — Optional result. The value if the formula was calculated.
Returns 0: Success.

Returns -1: Row or column is out of worksheet bounds.

7.5. worksheet.write_formula() 47

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/fractions.html#fractions.Fraction
https://docs.python.org/3/library/fractions.html#fractions.Fraction
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

The write formula() method writes a formula or function to the cell specified by row and
column:

worksheet.write formula(0, 0, '=B3 + B4')

worksheet.write formula(l, 0, '=SIN(PI()/4)")
worksheet.write formula(2, 0, '=SUM(B1:B5)")
worksheet.write formula('A4', '=IF(A3>1,"Yes", "No")"')
worksheet.write formula('A5', '=AVERAGE(1, 2, 3, 4)"')
worksheet.write formula('A6', '=DATEVALUE("1-Jan-2013")")

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

Array formulas are also supported:

worksheet.write formula('A7', '{=SUM(A1:B1*A2:B2)}")

See also the write array formula() method below.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

If required, it is also possible to specify the calculated result of the formula using the optional
value parameter. This is occasionally necessary when working with non-Excel applications that
don’t calculate the result of the formula:

worksheet.write('Al', '=2+2', num format, 4)

See Formula Results for more details.

Excel stores formulas in US style formatting regardless of the Locale or Language of the Excel
version:

worksheet.write formula('Al', '=SUM(1, 2, 3)"') # 0K
worksheet.write formula('A2', '=SOMME(1, 2, 3)') # French. Error on Lload.

See Non US Excel functions and syntax for a full explanation.

Excel 2010 and 2013 added functions which weren’t defined in the original file specification.
These functions are referred to as future functions. Examples of these functions are ACOT,
CHISQ.DIST.RT, CONFIDENCE.NORM, STDEV.P, STDEV.S and WORKDAY . INTL. In XIlsxWriter
these require a prefix:

worksheet.write formula('Al', '= x1fn.STDEV.S(B1:B10)")

See Formulas added in Excel 2010 and later for a detailed explanation and full list of functions
that are affected.

7.6 worksheet.write_array formula()

write_array_formula(first_row, first col, last row, last col, formula[, cell_format],

value]])
Write an array formula to a worksheet cell.

48 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Parameters
« first_row (inf) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.

* last_row (int) — The last row of the range.

last_col (int) — The last col of the range.

 formula (siring) — Array formula to write to cell.

» cell_format (Format) — Optional Format object.

 value — Optional result. The value if the formula was calculated.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

Thewrite array formula() method writes an array formula to a cell range. In Excel an array
formula is a formula that performs a calculation on a set of values. It can return a single value or
a range of values.

An array formula is indicated by a pair of braces around the formula: {=SUM(A1:B1*A2:B2)}.

For array formulas that return a range of values you must specify the range that the return values
will be written to:

worksheet.write array formula(0, 0, 2, 0, '{=TREND(C1:C3,B1:B3)}")
worksheet.write array formula('Al:A3"', "{=TREND(C1:C3,B1:B3)}"')

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

If the array formula returns a single value then the first and last parameters should be the
same:

worksheet.write array formula('Al:Al1', '{=SUM(B1:C1*B2:C2)}")

It this case however it is easier to just use the write formula() orwrite() methods:

worksheet.write('Al', '{=SUM(B1:C1*B2:C2)}")
worksheet.write formula('Al', '{=SUM(B1:C1*B2:C2)}")

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

If required, it is also possible to specify the calculated result of the formula (see discussion of
formulas and the value parameter for the write formula() method above). However, using
this parameter only writes a single value to the upper left cell in the result array. See Formula
Results for more details.

See also Example: Array formulas.

7.6. worksheet.write_array_ formula() 49

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

7.7 worksheet.write_dynamic_array_formula()

write_dynamic_array_formula(first row, first col, last row, last col, formulal,

cell_format[, value]])
Write an array formula to a worksheet cell.

Parameters
« first_row (/nt) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.
* last_row (int) — The last row of the range.
« last_col (int) — The last col of the range.

 formula (siring) — Array formula to write to cell.

cell_format (Format) — Optional Format object.

« value — Optional result. The value if the formula was calculated.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

The write dynamic array formula() method writes an dynamic array formula to a cell
range. Dynamic array formulas are explained in detail in Dynamic Array support.

The syntax of write dynamic_array formula() is the same as
write array formula(), shown above, except that you don’'t need to add {} braces:

worksheet.write dynamic_array formula('B1:B3', '=LEN(A1:A3)")

Which gives the following result:

50 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.1.9

B function_new

Home Insert Draw O Tell me = Share] Comments
B1 . frx =LEN(A1:A3) v
A B C D E F

1 |Foo 3
2 |Food 4
3 |Frood 5

Sheet +
Ready 1T £ 1 —— + 125%

It is also possible to specify the first cell of the range to get the same results:

worksheet.write dynamic_array formula('B1:B1', '=LEN(A1:A3)")

See also Example: Dynamic array formulas.

7.8 worksheet.write_blank()
write_blank (row, col, blank|, cell_format])
Write a blank worksheet cell.
Parameters
* row (/int) — The cell row (zero indexed).
* col (int) — The cell column (zero indexed).
» blank — None or empty string. The value is ignored.
+ cell_format (Format) — Optional Format object.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Write a blank cell specified by row and column:

worksheet.write blank(0, 0, None, cell format)
worksheet.write blank('A2', None, cell format)

7.8. worksheet.write_blank() 51

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

This method is used to add formatting to a cell which doesn’t contain a string or number value.

Excel differentiates between an “Empty” cell and a “Blank” cell. An “Empty” cell is a cell which
doesn’t contain data or formatting whilst a “Blank” cell doesn’t contain data but does contain for-
matting. Excel stores “Blank” cells but ignores “Empty” cells.

As such, if you write an empty cell without formatting it is ignored:

worksheet.write('Al', None, cell format)
worksheet.write('A2', None)

This seemingly uninteresting fact means that you can write arrays of data without special treatment
for None or empty string values.

7.9 worksheet.write _boolean()
write_boolean (row, col, boolean|, cell_format])
Write a boolean value to a worksheet cell.
Parameters
* row (/int) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
* boolean (boo/) — Boolean value to write to cell.
« cell_format (Format) — Optional Format object.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

The write boolean() method writes a boolean value to the cell specified by row and column:

worksheet.write boolean(0, 0, True)
worksheet.write boolean('A2', False)

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

7.10 worksheet.write datetime()
write_datetime (row, col, datetimel, cell_format])
Write a date or time to a worksheet cell.
Parameters

* row (int) — The cell row (zero indexed).

52 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

» col (int) — The cell column (zero indexed).
 datetime (datetime) — A datetime.datetime, .date, .time or .delta object.
« cell_format (Format) — Optional Format object.

Returns 0: Success.

Returns -1: Row or column is out of worksheet bounds.

The write datetime() method can be used to write a date or time to the cell specified by row
and column:

worksheet.write datetime(0, 0, datetime, date format)
worksheet.write datetime('A2', datetime, date format)

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

The datetime should be a datetime.datetime, datetime.date datetime.time or date-
time.timedelta object. The datetime class is part of the standard Python libraries.

There are many ways to create datetime objects, for example the date-
time.datetime.strptime() method:

date time = datetime.datetime.strptime('2013-01-23", '%Y-%m-%d')

See the datetime documentation for other date/time creation methods.

A date/time should have a cell format of type Format, otherwise it will appear as a number:

date format = workbook.add format({'num format': 'd mmmm yyyy'})

worksheet.write datetime('Al', date time, date format)
If required, a default date format string can be set using the Workbook() constructor de-
fault date format option.

See Working with Dates and Time for more details and also Timezone Handling in XlsxWriter.

7.11 worksheet.write_url()
write_url(row, col, url[, cell_format], string[, tio]]])
Write a hyperlink to a worksheet cell.
Parameters
* row (int) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
* url (string) — Hyperlink url.

« cell_format (Format) — Optional Format object. Defaults to the Excel hy-
perlink style.

7.11. worksheet.write_url() 53

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

« string (string) — An optional display string for the hyperlink.
« tip (string) — An optional tooltip.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns -2: String longer than 32k characters.
Returns -3: Url longer than Excel limit of 2079 characters.
Returns -4: Exceeds Excel limit of 65,530 urls per worksheet.

The write url() method is used to write a hyperlink in a worksheet cell. The url is comprised
of two elements: the displayed string and the non-displayed link. The displayed string is the same
as the link unless an alternative string is specified:

worksheet.write url(0, 0, 'https://www.python.org/")
worksheet.write url('A2', 'https://www.python.org/")

Both row-column and A1 style notation are supported, as shown above. See Working with Cell
Notation for more details.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
and the default Excel hyperlink style will be used if it isn’t specified. If required you can access the
default url format using the Workbook get default url format() method:

url format = workbook.get default url format()

Four web style URI’s are supported: http://, https://, ftp:// andmailto::

worksheet.write url('Al', 'ftp://www.python.org/")
worksheet.write url('A2', 'https://www.python.org/")
worksheet.write url('A3', 'mailto:jmcnamara@cpan.org')

All of the these URI types are recognized by the write () method, so the following are equivalent:

worksheet.write url('A2', 'https://www.python.org/")
worksheet.write ('A2', 'https://www.python.org/') # Same.

You can display an alternative string using the string parameter:

worksheet.write url('Al', 'https://www.python.org', string='Python home")

Note: If you wish to have some other cell data such as a number or a formula you can overwrite
the cell using another calltowrite *():

worksheet.write url('Al', 'https://www.python.org/")

Overwrite the URL string with a formula. The cell will still be a link.
Note the use of the default url format for consistency with other links.
url format = workbook.get default url format()

worksheet.write formula('Al', '=1+1', url format)

54 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.1.9

There are two local URIs supported: internal: and external:. These are used for hyperlinks
to internal worksheet references or external workbook and worksheet references:

Link to a cell on the current worksheet.
worksheet.write url('Al', ‘'internal:Sheet2!Al")

Link to a cell on another worksheet.
worksheet.write url('A2', ‘'internal:Sheet2!A1:B2")

Worksheet names with spaces should be single quoted like in Excel.
worksheet.write url('A3', "internal:'Sales Data'!Al")

Link to another Excel workbook.
worksheet.write url('A4', r'external:c:\temp\foo.xlsx")

Link to a worksheet cell in another workbook.
worksheet.write url('A5', r'external:c:\foo.xlsx#Sheet2!Al")

Link to a worksheet in another workbook with a relative link.
worksheet.write url('A7', r'external:..\foo.xlsx#Sheet2!Al")

Link to a worksheet in another workbook with a network link.
worksheet.write url('A8', r'external:\\NET\share\foo.xlsx")

Worksheet references are typically of the form Sheet1!Al. You can also link to a worksheet
range using the standard Excel notation: Sheet1!Al:B2.

In external links the workbook and worksheet name must be separated by the # character: ex-
ternal:Workbook.xlsx#Sheetl!Al’.

You can also link to a named range in the target worksheet. For example say you have a named
range called my name in the workbook c:\temp\foo.x1lsx you could link to it as follows:

worksheet.write url('Al4', r'external:c:\temp\foo.xlsx#my name")
Excel requires that worksheet names containing spaces or non alphanumeric characters are single
quoted as follows 'Sales Data’!Al.

Links to network files are also supported. Network files normally begin with two back slashes as
follows \\NETWORK\ etc. In order to generate this in a single or double quoted string you will have
to escape the backslashes, '\\\\NETWORK\\etc’ or use a raw string r’\\NETWORK\etc"’.

Alternatively, you can avoid most of these quoting problems by using forward slashes. These are
translated internally to backslashes:

worksheet.write url('Al4', "external:c:/temp/foo.xlsx")
worksheet.write url('Al5', 'external://NETWORK/share/foo.xlsx")

See also Example: Adding hyperlinks.

Note: XisxWriter will escape the following characters in URLs as required by Excel: \s " < >\

7.11. worksheet.write_url() 55

Creating Excel files with Python and XisxWriter, Release 3.1.9

[T ° 7~ { }unlessthe URL already contains %xx style escapes. In which case it is assumed
that the URL was escaped correctly by the user and will by passed directly to Excel.

Note: Versions of Excel prior to Excel 2015 limited hyperlink links and anchor/locations to 255
characters each. Versions after that support urls up to 2079 characters. XlsxWriter versions >=

1.2.3 support this longer limit by default. However, a lower or user defined limit can be set via the
max_url length property in the Workbook () constructor.

7.12 worksheet.write_rich_string()
write_rich_string(row, col, *string parts|, cell_format])
Write a “rich” string with multiple formats to a worksheet cell.
Parameters
* row (int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
« string_parts (/ist) — String and format pairs.
+ cell_format (Format) — Optional Format object.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns -2: String longer than 32k characters.
Returns -3: 2 consecutive formats used.
Returns -4: Empty string used.
Returns -5: Insufficient parameters.

Thewrite rich string() method is used to write strings with multiple formats. For example
to write the string “This is bold and this is italic’ you would use the following:

bold
italic

workbook.add format({'bold': True})
workbook.add format({'italic': True})

worksheet.write rich string('Al"',
'This is ',
bold, 'bold',
' and this is ',
italic, ‘'italic')

56 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e 00 7] rich_strings.xlsx
Home | Layout | Tables | Charts Smartart | » v fE
Al 3 & (- fx| Thisis bold and this is italic |+
This is bold and this is italic
~ PR Sh!!tl_ - Il
Mormal "."iewl Ftead'r [|

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.write rich string(0, 0, 'This is ', bold, 'bold")
worksheet.write rich string('Al', 'This is ', bold, 'bold')

See Working with Cell Notation for more details.

The basic rule is to break the string into fragments and put a Format object before the fragment
that you want to format. For example:

Unformatted string.
'This is an example string'

Break it into fragments.
'This is an ', 'example', ' string'

Add formatting before the fragments you want formatted.
'This is an ', format, 'example', ' string'

In XlsxWriter.
worksheet.write rich string('Al"’,

'This is an ', format, 'example', ' string')

String fragments that don’t have a format are given a default format. So for example when writing

the string “Some bold text” you would use the first example below but it would be equivalent to the
second:

Some bold format and a default format.

bold workbook.add format({'bold': True})
default = workbook.add format()

With default formatting:
worksheet.write rich string('Al"',

'Some ',
bold, 'bold',
" text')

7.12. worksheet.write_rich_string() 57

https://docs.python.org/3/library/functions.html#format

Creating Excel files with Python and XisxWriter, Release 3.1.9

Or more explicitly:
worksheet.write rich string('Al"',
default, 'Some ',
bold, 'bold',
default, ' text')

If you have formats and segments in a list you can add them like this, using the standard Python
list unpacking syntax:

segments = ['This is ', bold, 'bold', ' and this is ', blue, 'blue']
worksheet.write rich string('A9', *segments)

In Excel only the font properties of the format such as font name, style, size, underline, color
and effects are applied to the string fragments in a rich string. Other features such as border,
background, text wrap and alignment must be applied to the cell.

The write rich string() method allows you to do this by using the last argument as a cell
format (if it is a format object). The following example centers a rich string in the cell:

bold
center

workbook.add format({'bold': True})
workbook.add format({'align': 'center'})

worksheet.write rich string('A5"',
'Some ',
bold, 'bold text',
' centered’,

center)

Note: Excel doesn’t allow the use of two consecutive formats in a rich string or an
empty string fragment. For either of these conditions a warning is raised and the input to

write rich string() is ignored.

Also, the maximum string size supported by Excel is 32,767 characters. If the rich string exceeds
this limit a warning is raised and the inputto write rich string() is ignored.

See also Example: Writing “Rich” strings with multiple formats and Example: Merging Cells with
a Rich String.

7.13 worksheet.write_row()
write_row(row, col, data|, cell_format])
Write a row of data starting from (row, col).
Parameters
* row (int) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
« data — Cell data to write. Variable types.

» cell_format (Format) — Optional Format object.

58 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Returns 0: Success.
Returns Other: Error return value of the write() method.

Thewrite row() method can be used to write a list of data in one go. This is useful for convert-
ing the results of a database query into an Excel worksheet. The write() method is called for
each element of the data. For example:

data = ('Foo', 'Bar', 'Baz')
worksheet.write row('Al', data)

worksheet.write('Al', data[0])
worksheet.write('B1l', data[l])
worksheet.write('Cl', data[2])

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.write row(0, 0, data)
worksheet.write row('Al', data)

See Working with Cell Notation for more details.

7.14 worksheet.write_column()
write_column (row, col, data|, cell_format])
Write a column of data starting from (row, col).
Parameters
* row (/int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
- data — Cell data to write. Variable types.
+ cell_format (Format) — Optional Format object.
Returns 0: Success.
Returns Other: Error return value of the write() method.

The write column() method can be used to write a list of data in one go. This is useful for
converting the results of a database query into an Excel worksheet. The write() method is
called for each element of the data. For example:

data = ('Foo', 'Bar', 'Baz')

worksheet.write column('Al', data)

7.14. worksheet.write_column() 59

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.write('Al', datal[0])
worksheet.write('A2', data[ll])
worksheet.write('A3', data[2])

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.write column(0, 0, data)
worksheet.write column('Al', data)

See Working with Cell Notation for more details.

7.15 worksheet.set _row()

set_row(row, height, cell_format, options)
Set properties for a row of cells.

Parameters

 row (int) — The worksheet row (zero indexed).

* height (float) — The row height, in character units.

» cell_format (Format) — Optional Format object.

» options (dict) — Optional row parameters: hidden, level, collapsed.
Returns 0: Success.
Returns -1: Row is out of worksheet bounds.

The set row() method is used to change the default properties of a row. The most common use
for this method is to change the height of a row:

worksheet.set row(0, 20)

The height is specified in character units. To specify the height in pixels use the
set row pixels() method.

The other common use for set row() is to set the Format for all cells in the row:

cell format = workbook.add format({'bold': True})

worksheet.set row(0, 20, cell format)

If you wish to set the format of a row without changing the default row height you can pass None
as the height parameter or use the default row height of 15:

worksheet.set row(1l, None, cell format)
worksheet.set row(1l, 15, cell format)

The cell format parameter will be applied to any cells in the row that don’t have a format. As
with Excel it is overridden by an explicit cell format. For example:

60 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.set row(0, None, formatl) # Row 1 has formatl.

worksheet.write('Al', 'Hello') # Cell Al defaults to formatl.
worksheet.write('Bl', 'Hello', format2) # Cell Bl keeps format2.

The options parameter is a dictionary with the following possible keys:
« "hidden’
« "level’
« 'collapsed’

Options can be set as follows:

worksheet.set row(0, 20, cell format, {'hidden': True})

Or use defaults for other properties and set the options only.
worksheet.set row(0, None, None, {'hidden': True})

The "hidden’ option is used to hide a row. This can be used, for example, to hide intermediary
steps in a complicated calculation:

worksheet.set row(0, 20, cell format, {'hidden': True})
The 'level’ parameter is used to set the outline level of the row. Outlines are described in

Working with Outlines and Grouping. Adjacent rows with the same outline level are grouped
together into a single outline.

The following example sets an outline level of 1 for some rows:

worksheet.set row(0, None, None, {'level': 1})
worksheet.set row(1l, None, None, {'level': 1})
worksheet.set row(2, None, None, {'level': 1})

Excel allows up to 7 outline levels. The ' level’ parameter should be in the range 0 <= level
<= 7.

The "hidden’ parameter can also be used to hide collapsed outlined rows when used in con-
junction with the ’ Llevel’ parameter:

worksheet.set row(1l, None, None, {'hidden': 1, 'level': 1})
worksheet.set row(2, None, None, {'hidden': 1, 'level': 1})

The 'collapsed’ parameter is used in collapsed outlines to indicate which row has the collapsed
"+" symbol:

worksheet.set row(3, None, None, {'collapsed': 1})

7.16 worksheet.set_row_pixels()

set_row_pixels (row, height, cell_format, options)
Set properties for a row of cells, with the row height in pixels.

7.16. worksheet.set_row_pixels() 61

Creating Excel files with Python and XisxWriter, Release 3.1.9

Parameters

 row (int) — The worksheet row (zero indexed).

+ height (float) — The row height, in pixels.

» cell_format (Format) — Optional Format object.

+ options (dict) — Optional row parameters: hidden, level, collapsed.
Returns 0: Success.
Returns -1: Row is out of worksheet bounds.

The set _row pixels() method is identical to set row() except that the height can be set in
pixels instead of Excel character units:

worksheet.set row pixels(0, 18)

All other parameters and options are the same as set row(). See the documentation on
set row() for more details.

7.17 worksheet.set_column()
set_column (first_col, last col, width, cell_format, options)
Set properties for one or more columns of cells.
Parameters
« first_col (int) — First column (zero-indexed).
« last_col (int) — Last column (zero-indexed). Can be same as first_col.
 width (float) — The width of the column(s), in character units.
« cell_format (Format) — Optional Format object.
» options (dict) — Optional parameters: hidden, level, collapsed.
Returns 0: Success.
Returns -1: Column is out of worksheet bounds.

The set _column() method can be used to change the default properties of a single column or
a range of columns:

worksheet.set column(1l, 3, 30)

If set column() is applied to a single column the value of first col and last col should
be the same:

worksheet.set column(1l, 1, 30)

It is also possible, and generally clearer, to specify a column range using the form of A1 notation
used for columns. See Working with Cell Notation for more details.

Examples:

62 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.set column(0, 0, 20) # Column A width set to 20.
worksheet.set column(1l, 3, 30) # Columns B-D width set to 30.
worksheet.set column('E:E', 20) # Column E width set to 20.
worksheet.set column('F:H', 30) # Columns F-H width set to 30.

The width parameter sets the column width in the same units used by Excel which is: the number
of characters in the default font. The default width is 8.43 in the default font of Calibri 11. The actual
relationship between a string width and a column width in Excel is complex. See the following
explanation of column widths from the Microsoft support documentation for more details. To set
the width in pixels use the set column pixels() method.

See also the autofit () method for simulated autofitting of column widths.

As usual the cell format Format parameter is optional. If you wish to set the format without
changing the default column width you can pass None as the width parameter:

cell format = workbook.add format({'bold': True})

worksheet.set column(0, 0, None, cell format)

The cell format parameter will be applied to any cells in the column that don’t have a format.
For example:

worksheet.set column('A:A', None, formatl) # Col 1 has formatl.

worksheet.write('Al', 'Hello') # Cell Al defaults to formatl.
worksheet.write('A2', 'Hello', format2) # Cell A2 keeps format2.

A row format takes precedence over a default column format:

worksheet.set row(0, None, formatl) # Set format for row 1.
worksheet.set column('A:A', None, format2) # Set format for col 1.

worksheet.write('Al', 'Hello') # Defaults to formatl
worksheet.write('A2', 'Hello') # Defaults to format2

The options parameter is a dictionary with the following possible keys:
« "hidden’
« "level’
« 'collapsed’

Options can be set as follows:

worksheet.set column('D:D', 20, cell format, {'hidden': 1})

Or use defaults for other properties and set the options only.
worksheet.set column('E:E', None, None, {'hidden': 1})

The "hidden’ option is used to hide a column. This can be used, for example, to hide interme-
diary steps in a complicated calculation:

7.17. worksheet.set_column() 63

https://learn.microsoft.com/en-US/office/troubleshoot/excel/determine-column-widths
https://learn.microsoft.com/en-US/office/troubleshoot/excel/determine-column-widths

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.set column('D:D', 20, cell format, {'hidden': 1})

The 'level’ parameter is used to set the outline level of the column. Outlines are described in
Working with Outlines and Grouping. Adjacent columns with the same outline level are grouped
together into a single outline.

The following example sets an outline level of 1 for columns B to G:

worksheet.set column('B:G', None, None, {'level': 1})

Excel allows up to 7 outline levels. The ' level’ parameter should be in the range 0 <= level
<= 7.

The "hidden’ parameter can also be used to hide collapsed outlined columns when used in
conjunction with the ' Llevel’ parameter:

worksheet.set column('B:G', None, None, {'hidden': 1, 'level': 1})

The 'collapsed’ parameter is used in collapsed outlines to indicate which column has the
collapsed '+’ symbol:

worksheet.set column('H:H', None, None, {'collapsed': 1})

7.18 worksheet.set_column_pixels()

set_column_pixels(first_col, last_col, width, cell_format, options)
Set properties for one or more columns of cells, with the width in pixels.
Parameters

« first_col (int) — First column (zero-indexed).

last_col (int) — Last column (zero-indexed). Can be same as first_col.

 width (float) — The width of the column(s), in pixels.

cell_format (Format) — Optional Format object.

« options (dict) — Optional parameters: hidden, level, collapsed.
Returns 0: Success.
Returns -1: Column is out of worksheet bounds.

The set _column_pixels() methodisidenticalto set column() except that the width can be
set in pixels instead of Excel character units:

worksheet.set column pixels(5, 5, 75)

64 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[Width: 10,00 75 pixels) |

E F G H |

All other parameters and options are the same as set column(). See the documentation on
set column() for more details.

7.19 worksheet.autofit()

autofit()
Simulates autofit for column widths.
Returns Nothing.

The autofit () method can be used to simulate autofitting column widths based on the largest
string/number in the column:

worksheet.autofit()

7.19. worksheet.autofit() 65

Creating Excel files with Python and XisxWriter, Release 3.1.9

autofit » ,O @ {? K2l

File Homi Insed Draw Page Form Data Revie View Help - 15 v
113 S I~ v
A B C D E
1 |Foo 12345 Some longer text http://ww.google.com
2 |Food 12345678 https://eithub.com
3 |Foody 12345
4 Froody
3
&
7
[~]
Sheet1 ®] |]
Ready HH L] i + 10

See Example: Autofitting columns

There is no option in the xIsx file format that can be used to say “autofit columns on loading”.
Auto-fitting of columns is something that Excel does at runtime when it has access to all of the
worksheet information as well as the Windows functions for calculating display areas based on
fonts and formatting.

The worksheet.autofit () method simulates this behavior by calculating string widths using
metrics taken from Excel. As such there are some limitations to be aware of when using this
method:

* |t is a simulated method and may not be accurate in all cases.

* It is based on the default font and font size of Calibri 11. It will not give accurate results for
other fonts or font sizes.

This isn’t perfect but for most cases it should be sufficient and if not you can set your own widths,
see below.

The autofit() method won'’t override a user defined column width set with set column()
or set _column_pixels() if it is greater than the autofit value. This allows the user to set a
minimum width value for a column.

Youcan also call set _column() and set column_ pixels() afterautofit() to override any
of the calculated values.

66 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

7.20 worksheet.insert_image()
insert_image (row, col, filenamel, options])
Insert an image in a worksheet cell.
Parameters
* row (int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
« filename — Image filename (with path if required).

» options (dict) — Optional parameters for image position, scale and url.
Returns 0: Success.

Returns -1: Row or column is out of worksheet bounds.

This method can be used to insert a image into a worksheet. The image can be in PNG, JPEG,
GIF, BMP, WMF or EMF format (see the notes about BMP and EMF below):

worksheet.insert image('B2', 'python.png')
800 D insert_image.xlsx
Home | Layout | Tables | Charts | SmartArt | ¥ v -
A22 L0 & (=~ fx |-

A [N R N T N — T —— — -
1

2

3 thon

2 PY

5

[

7

8

]

Kl powered

11

12

13

14

15

16

- R B [

Mormal View Ready S

Both row-column and A1 style notation are supported. The following are equivalent:

7.20. worksheet.insert_image() 67

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.insert image(1l, 1, 'python.png')
worksheet.insert image('B2', 'python.png')

See Working with Cell Notation for more details.
A file path can be specified with the image name:

worksheetl.insert image('B10', '../images/python.png")
worksheet2.insert image('B20', r'c:\images\python.png")

The insert image () method takes optional parameters in a dictionary to position and scale the
image. The available parameters with their default values are:

{
‘X offset': 0,
'y offset': 0,
'X scale': 1,
'y scale': 1,
'object position': 2,
‘image data': None,
"url': None,
'description': None,
'decorative': False,
}

The offset values are in pixels:

worksheetl.insert image('B2', 'python.png', {'x offset': 15, 'y offset': 10})

The offsets can be greater than the width or height of the underlying cell. This can be occasionally
useful if you wish to align two or more images relative to the same cell.

The x_scale and y_scale parameters can be used to scale the image horizontally and verti-
cally:

worksheet.insert image('B3', 'python.png', {'x scale': 0.5, 'y scale': 0.5})

The url parameter can used to add a hyperlink/url to the image. The tip parameter gives an
optional mouseover tooltip for images with hyperlinks:

worksheet.insert image('B4', 'python.png', {'url': 'https://python.org'})
See alsowrite url() for details on supported URlIs.
The image data parameter is used to add an in-memory byte stream in 10.BytesIO format:
worksheet.insert image('B5', 'python.png', {'image data': image data})
This is generally used for inserting images from URLs:

url = 'https://python.org/logo.png'
image data = io.BytesIO(urllib2.urlopen(url).read())

worksheet.insert image('B5', url, {'image data': image data})

68 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/io.html#io.BytesIO

Creating Excel files with Python and XlsxWriter, Release 3.1.9

When using the image data parameter a flename must still be passed to insert image()
since it is used by Excel as a default description field (see below). However, it can be a blank string
if the description isn’t required. In the previous example the filename/description is extracted from
the URL string. See also Example: Inserting images from a URL or byte stream into a worksheet.

The description field can be used to specify a description or “alt text” string for the image. In
general this would be used to provide a text description of the image to help accessibility. It is an
optional parameter and defaults to the filename of the image. It can be used as follows:

worksheet.insert image('B3', 'python.png',
{'description': 'The logo of the Python programming language. ']

Alt Text []

How would you describe this object and its
context to someone who is blind?

(1-2 sentences recommended)

The logo of the Python programming language.

Mark as decorative

The optional decorative parameter is also used to help accessibility. It is used to mark the
image as decorative, and thus uninformative, for automated screen readers. As in Excel, if this
parameter is in use the description field isn’'t written. It is used as follows:

worksheet.insert image('B3', 'python.png', {'decorative': True})

The object position parameter can be used to control the object positioning of the image:

worksheet.insert image('B3', 'python.png', {'object position': 1})

Where object position has the following allowable values:
1. Move and size with cells.
2. Move but don’t size with cells (the default).
3. Don’t move or size with cells.
4

. Same as Option 1 to “move and size with cells” except XlsxWriter applies hidden cells after
the image is inserted.

7.20. worksheet.insert_image() 69

Creating Excel files with Python and XisxWriter, Release 3.1.9

See Working with Object Positioning for more detailed information about the positioning and scal-
ing of images within a worksheet.

Note:
+ BMP images are only supported for backward compatibility. In general it is best to avoid
BMP images since they aren’t compressed. If used, BMP images must be 24 bit, true color,
bitmaps.

+ EMF images can have very small differences in width and height when compared to Excel
files. Despite a lot of effort and testing it wasn’t possible to exactly match Excel’s calculations
for handling the dimensions of EMF files. However, the differences are small (< 1%) and in
general aren’t visible.

See also Example: Inserting images into a worksheet.

7.21 worksheet.insert_chart()
insert_chart(row, col, chart|, options])
Write a string to a worksheet cell.
Parameters
* row (/int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
+ chart — A chart object.
 options (dict) — Optional parameters to position and scale the chart.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

This method can be used to insert a chart into a worksheet. A chart object is created via the
Workbook add chart () method where the chart type is specified:

chart = workbook.add chart({type, 'column'})

It is then inserted into a worksheet as an embedded chart:

worksheet.insert chart('B5', chart)

70 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

16 7
14
12

10
M Seriesl

87 B Series2
67 Series3
4
0 - T T T T)

1 2 3 4 5

Note: A chart can only be inserted into a worksheet once. If several similar charts are required
then each one must be created separately with add chart().

See The Chart Class, Working with Charts and Chart Examples.
Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.insert chart(4, 1, chart)
worksheet.insert chart('B5', chart)

See Working with Cell Notation for more details.

The insert chart() method takes optional parameters in a dictionary to position and scale the
chart. The available parameters with their default values are:

{

‘X offset':
'y offset':
'X scale':
'y scale':
'object position': 1,

"description': None,
'decorative’: False,

~ ~ 0~

PR RO

}
The offset values are in pixels:

worksheet.insert chart('B5', chart, {'x offset': 25, 'y offset': 10})

The x_scaleandy scale parameters can be used to scale the chart horizontally and vertically:

worksheet.insert chart('B5', chart, {'x scale': 0.5, 'y scale': 0.5})

These properties can also be set via the Chart set size() method.

The description field can be used to specify a description or “alt text” string for the chart. In

7.21. worksheet.insert_chart() 71

Creating Excel files with Python and XisxWriter, Release 3.1.9

general this would be used to provide a text description of the chart to help accessibility. It is an
optional parameter and has no default. It can be used as follows:

worksheet.insert chart('B5', chart,
{'description': 'Chart showing sales for the current year'})

Alt Text []

How would you describe this object and its context to
someone who is blind?

(1-2 detailed sentences recommended)

Chart showing sales for the current year

Mark as decorative

The optional decorative parameter is also used to help accessibility. It is used to mark the chart

as

decorative, and thus uninformative, for automated screen readers. As in Excel, if this parameter

is in use the description field isn’t written. It is used as follows:

worksheet.insert chart('B5', chart, {'decorative': True})

The object position parameter can be used to control the object positioning of the chart:

worksheet.insert chart('B5', chart, {'object position': 2})

Where object position has the following allowable values:

1. Move and size with cells (the default).
2. Move but don’t size with cells.

3. Don’'t move or size with cells.

See Working with Object Positioning for more detailed information about the positioning and scal-
ing of charts within a worksheet.

72

Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

7.22 worksheet.insert_textbox()
insert_textbox (row, col, textbox[, options])
Write a string to a worksheet cell.
Parameters
* row (int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
« text (siring) — The text in the textbox.
» options (dict) — Optional parameters to position and scale the textbox.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

This method can be used to insert a textbox into a worksheet:

worksheet.insert textbox('B2', 'A simple textbox with some text")
@9 textbox.xlsx
| # Home | Layout | Tables | Charts | SmartArt | »| v L~

B17 10 @ (-~ & |
B I - T o s s D o F s s Pt e =

A simple textbox with some text

WD | 00| | O | W | B | G| P |

FRFE— l Sh!!tl_ |||

Mormal View Ready A

Both row-column and A1 style notation are supported. The following are equivalent:

7.22. worksheet.insert_textbox() 73

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.insert textbox(1l, 1, 'Some text')
worksheet.insert textbox('B2', 'Some text')

See Working with Cell Notation for more details.
The size and formatting of the textbox can be controlled via the options dict:

Size and position
width

height

x_scale

y scale

x _offset

y offset

object position

Formatting
line

border

fill

gradient

font

align

text rotation

Links
textlink
url

tip

Accessibility
description
decorative

These options are explained in more detail in the Working with Textboxes section.
See also Example: Insert Textboxes into a Worksheet.

See Working with Object Positioning for more detailed information about the positioning and scal-
ing of images within a worksheet.

7.23 worksheet.insert_button()
insert_button (row, col[, options])
Insert a VBA button control on a worksheet.
Parameters
* row (int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).

+ options (dict) — Optional parameters to position and scale the button.

74 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
The insert button() method can be used to insert an Excel form button into a worksheet.

This method is generally only useful when used in conjunction with the Workbook
add vba project() method to tie the button to a macro from an embedded VBA project:

Add the VBA project binary.
workbook.add vba project('./vbaProject.bin')

Add a button tied to a macro in the VBA project.

worksheet.insert button('B3', {'macro': 'say hello',
"caption': 'Press Me'})
[NON ¥ macros.xlsm
| # Home | Layout | Tables | Charts | SmartArt | 3| v i~
A19 10 o (- i |~
-J&ﬁ B | C | D —
1
2
3 |Press the button to say hello. Press Me
4
]
6
7
B L
9
10
11 Helle from Python!
12 1
13 L |

See Working with VBA Macros and Example: Adding a VBA macro to a Workbook for more
details.

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.insert button(2, 1, {'macro': 'say hello',
'caption': 'Press Me'})

7.23. worksheet.insert_button() 75

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.insert button('B3', {'macro': 'say hello',
'caption': 'Press Me'})
See Working with Cell Notation for more details.

The insert button() method takes optional parameters in a dictionary to position and scale
the chart. The available parameters with their default values are:

{
‘macro': None,
'caption': 'Button 1°',
'width': 64,
"height': 20.
"X offset': 0,
'y offset': 0,
‘X scale': 1,
'y scale': 1,
'description': None,
}

The macro option is used to set the macro that the button will invoke when the user clicks on it.
The macro should be included using the Workbook add vba project() method shown above.

The caption is used to set the caption on the button. The default is Button n where n is the
button number.

The default button width is 64 pixels which is the width of a default cell and the default button
height is 20 pixels which is the height of a default cell.

The offset, scale and description options are the same as for insert _chart(), see above.

7.24 worksheet.data_validation()
data_validation (first_row, first_col, last _row, last_col, options)
Write a conditional format to range of cells.
Parameters
« first_row (/nt) — The first row of the range. (All zero indexed.)
« first_col (/nt) — The first column of the range.
* last_row (int) — The last row of the range.
» last_col (int) — The last col of the range.
« options (dict) — Data validation options.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns -2: Incorrect parameter or option.

The data validation() method is used to construct an Excel data validation or to limit the
user input to a dropdown list of values:

76 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.data validation('B3', {'validate': 'integer',
'criteria': 'between',
'minimum': 1,
"'maximum': 10})

worksheet.data validation('B13', {'validate': 'list"',

'source': ['open', 'high', 'close']})
@, 00 data_validate.xlsx
Home | Layout | Tables | Charts | SmartArt | »| v R~
B3 AR %) (= fx| 7
A A
Some examples of data validation in XlsxWriter Enter values in
1 this column
2
nEnter an integer between 1 and 10 |7
a .
5 |Enter an integer that is not between 1 and 10 (using cell references)
6
{ |Enter an integer greater than 0
8
9 |Enter an integer less than 10
10
11 |Enter a decimal between 0.1 and 0.5
44 » K l ih!![l_l |||
Mormal View Enter b

The data validation can be applied to a single cell or a range of cells. As usual you can use A1 or
Row/Column notation, see Working with Cell Notation:

worksheet.data validation(l, 1, {'validate': 'list"',

'source': ['open', 'high', 'close']})
worksheet.data validation('B2', {'validate': 'list"',

'source': ['open', 'high', 'close'l})

With Row/Column notation you must specify all four cells in the range: (first row,
first col, last row, last col). If you need to refer to a single cell set the /ast_val-
ues equal to the first_ values. With A1 notation you can refer to a single cell or a range of cells:

worksheet.data validation(0, 0, 4, 1, {...})
worksheet.data validation('Bl"', {...})

7.24. worksheet.data_validation() 77

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.data validation('Cl:E5"', {...})

The options parameter in data validation() must be a dictionary containing the parameters
that describe the type and style of the data validation. There are a lot of available options which
are described in detail in a separate section: Working with Data Validation. See also Example:
Data Validation and Drop Down Lists.

7.25 worksheet.conditional format()

conditional format (first_row, first _col, last _row, last col, options)
Write a conditional format to range of cells.
Parameters

« first_row (int) — The first row of the range. (All zero indexed.)

first_col (/nt) — The first column of the range.

last_row (/int) — The last row of the range.

last_col (int) — The last col of the range.

+ options (dict) — Conditional formatting options.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns -2: Incorrect parameter or option.

The conditional format() method is used to add formatting to a cell or range of cells based
on user defined criteria:

worksheet.conditional format('B3:K12', {'type': 'cell!',
‘criteria': '>="',
'value': 50,
"format': formatl})

78 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e 00 " conditional_format.xlsx
Home | Layout | Tables | Charts | SmartArt | ¥ W fFv
A20 110 & (-~ & |~
4 A [V TN IO N W F—O————
1 |Cells with values »= 50 are in light red. Values < 50 are in light green.
2
3 34 72 38 a0 75
4 6 24 1 84 a4
5 28 79 a7 13 85
6 27 71 40 17 18
7 88 25 33 23 &7
8 24 100 20 B8 29
9 & 57 28 28 10
52 78 1 96 26
&0 54 a1 717 81
70 5 46 14 71
< < »»i [sheet1 | Sheet2 | Sheet3 | Sheerd [€' ||
Mormal View Ready o

The conditional format can be applied to a single cell or a range of cells. As usual you can use A1
or Row/Column notation, see Working with Cell Notation:

worksheet.conditional format(0, 0, 2, 1, {'type': 'cell!',
'criteria': '>=',
'value': 50,
"format': formatl})
This is equivalent to the following:
worksheet.conditional format('Al:B3', {'type': 'cell!',
'criteria': '>=',
'value': 50,
"format': formatl})

With Row/Column notation you must specify all four cells in the range: (first row,
first col, last row, last col). If you need to refer to a single cell set the /ast_val-
ues equal to the first_values. With A1 notation you can refer to a single cell or a range of cells:

worksheet.conditional format(o, 0, 4, 1, {...})
worksheet.conditional format('Bl', {...})
worksheet.conditional format('Cl:E5"', {...})

The options parameter in conditional format () must be a dictionary containing the param-
eters that describe the type and style of the conditional format. There are a lot of available options

7.25. worksheet.conditional_format() 79

Creating Excel files with Python and XisxWriter, Release 3.1.9

which are described in detail in a separate section: Working with Conditional Formatting. See also
Example: Conditional Formatting.

7.26 worksheet.add table()

add_table (first_row, first_col, last_row, last _col, options)
Add an Excel table to a worksheet.

Parameters

« first_row (int) — The first row of the range. (All zero indexed.)

first_col (int) — The first column of the range.

last_row (/nt) — The last row of the range.

last_col (/nt) — The last col of the range.

options (dict) — Table formatting options. (Optional)
Raises OverlappingRange if the range overlaps a previous merge or table range.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns -2: Incorrect parameter or option.
Returns -3: Not supported in constant _memory mode.
The add _table() method is used to group a range of cells into an Excel Table:

worksheet.add table('B3:F7', { ... })

This method contains a lot of parameters and is described in Working with Worksheet Tables.
Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.add table(2, 1, 6, 5, { ... })
worksheet.add table('B3:F7', { ... })

See Working with Cell Notation for more details.

See also the examples in Example: Worksheet Tables.

Note: Tables aren’t available in XlsxWriter when Workbook() ’'constant memory’ mode is
enabled.

7.27 worksheet.add_sparkline()

add_sparkline (row, col, options)

Add sparklines to a worksheet.

Parameters

80 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

* row (int) — The cell row (zero indexed).

+ col (int) — The cell column (zero indexed).

+ options (dict) — Sparkline formatting options.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.

Returns -2: Incorrect parameter or option.

Sparklines are small charts that fit in a single cell and are used to show trends in data.

@00 sparklines1.xlsx
Home | Layout | Tables | Charts | SmartArt | | v Lt~
A23 110 @ (- f| |~
e VSN B8 | C | D | E | F | 3
-2 2 3 -1 0 "~
30 20 33 20 15 mem o
1 -1 -1 1 o BT

W oo~duv AWM=

4 4 e l ih!!tl_l |||

Mormal View Rieady e

The add_sparkline() worksheet method is used to add sparklines to a cell or a range of cells:

worksheet.add sparkline('F1', {'range': 'Al:E1'})

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.add sparkline(0, 5, {'range': 'Al:E1'})
worksheet.add sparkline('F1', {'range': 'Al:E1'})

See Working with Cell Notation for more details.

This method contains a lot of parameters and is described in detail in Working with Sparklines.

7.27. worksheet.add_sparkline() 81

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

See also Example: Sparklines (Simple) and Example: Sparklines (Advanced).

Note: Sparklines are a feature of Excel 2010+ only. You can write them to an XLSX file that can
be read by Excel 2007 but they won'’t be displayed.

7.28 worksheet.write_comment()
write_comment (row, col, comment|, options])
Write a comment to a worksheet cell.
Parameters
* row (/nt) — The cell row (zero indexed).
» col (int) — The cell column (zero indexed).
» comment (siring) — String to write to cell.
+ options (dict) — Comment formatting options.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns -2: String longer than 32k characters.

The write comment () method is used to add a comment to a cell. A comment is indicated in
Excel by a small red triangle in the upper right-hand corner of the cell. Moving the cursor over the
red triangle will reveal the comment.

The following example shows how to add a comment to a cell:

worksheet.write('Al', 'Hello')
worksheet.write comment('Al', 'This is a comment')

82 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e 00 | comments1.xlsx
Home | Layout | Tables | Charts | Smartart | » v fE
Al | @ & (= fx| Helo |+

e e e e e e | =

This is a commest

WD (00| =4 O W || k| LD
-
ﬁ

10
11
12

12
E | |

Mormal View Cell A1 commented by o

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.write comment(0, 0, 'This is a comment')
worksheet.write comment('Al', 'This is a comment')

See Working with Cell Notation for more details.

The properties of the cell comment can be modified by passing an optional dictionary of key/value
pairs to control the format of the comment. For example:

worksheet.write comment('C3', 'Hello', {'x scale': 1.2, 'y scale': 0.8})

Most of these options are quite specific and in general the default comment behavior will be all
that you need. However, should you need greater control over the format of the cell comment the
following options are available:

author
visible
Xx_scale
width

y scale
height
color
font_name
font _size

7.28. worksheet.write_comment() 83

Creating Excel files with Python and XisxWriter, Release 3.1.9

start _cell
start _row
start_col
x_offset
y offset

For more details see Working with Cell Comments and Example: Adding Cell Comments to Work-
sheets (Advanced) .

7.29 worksheet.show comments|()

show_comments ()
Make any comments in the worksheet visible.

This method is used to make all cell comments visible when a worksheet is opened:

worksheet.show comments()

Individual comments can be made visible using the visible parameter of the write comment
method (see above):

worksheet.write comment('C3', 'Hello', {'visible': True})

If all of the cell comments have been made visible you can hide individual comments as follows:

worksheet.show comments()
worksheet.write comment('C3', 'Hello', {'visible': False})

For more details see Working with Cell Comments and Example: Adding Cell Comments to Work-
sheets (Advanced) .

7.30 worksheet.set_comments_author()

set_comments_author (author)
Set the default author of the cell comments.

Parameters author (siring) — Comment author.
This method is used to set the default author of all cell comments:
worksheet.set comments author('John Smith")
Individual comment authors can be set using the author parameter of the write comment
method (see above).
If no author is specified the default comment author name is an empty string.

For more details see Working with Cell Comments and Example: Adding Cell Comments to Work-
sheets (Advanced) .

84 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.1.9

7.31 worksheet.get_name()

get_name()
Retrieve the worksheet name.

The get name() method is used to retrieve the name of a worksheet. This is something useful
for debugging or logging:

for worksheet in workbook.worksheets():
print worksheet.get name()

There is no set _name() method. The only safe way to set the worksheet name is via the
add worksheet () method.

7.32 worksheet.activate()

activate()
Make a worksheet the active, i.e., visible worksheet.

The activate() method is used to specify which worksheet is initially visible in a multi-sheet
workbook:

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()
worksheet3 = workbook.add worksheet()

worksheet3.activate()

e 00 | activate.xlsx
Home | Layout | Tables | Charts | Smartirt | ¥ v I
AS 110 & (- f| -
| A W NN <N NS - TRUSS NS U —— -1
1
2
— TR | Sheetl_‘[SheetEJ Sheet3 |!+ 1 II
— Mormal View Rieady w

More than one worksheet can be selected via the select () method, see below, however only
one worksheet can be active.

The default active worksheet is the first worksheet.

7.31. worksheet.get_name() 85

Creating Excel files with Python and XisxWriter, Release 3.1.9

7.33 worksheet.select()

select()
Set a worksheet tab as selected.

The select () method is used to indicate that a worksheet is selected in a multi-sheet workbook:

worksheetl.activate()
worksheet2.select()
worksheet3.select()

A selected worksheet has its tab highlighted. Selecting worksheets is a way of grouping them
together so that, for example, several worksheets could be printed in one go. A worksheet that
has been activated via the activate () method will also appear as selected.

7.34 worksheet.hide()

hide()
Hide the current worksheet.
The hide () method is used to hide a worksheet:

worksheet2.hide()

You may wish to hide a worksheet in order to avoid confusing a user with intermediate data or
calculations.

86 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e 00 | hide_sheet.xlsx
Home | Layout | Tables | Charts | SmartArt | ¥ W fFv
A28 0 & (- K |~
A ;i | B | C | D |=]
1 |Sheet2 is hidden
2
3
4
5
6
7
B
9
R l Shuu‘[Shutﬂu-. I
Mormal View Ready o

A hidden worksheet can not be activated or selected so this method is mutually exclusive with the
activate() and select () methods. In addition, since the first worksheet will default to being
the active worksheet, you cannot hide the first worksheet without activating another sheet:

worksheet2.activate()
worksheetl.hide()

See Example: Hiding Worksheets for more details.

7.35 worksheet.very _hidden()
very_hidden()
Hide the current worksheet. Can only be unhidden by VBA.

The very hidden() method can be used to hide a worksheet similar to the hide() method.
The difference is that the worksheet cannot be unhidden in the the Excel user interface. The Excel
worksheet “xISheetVeryHidden” option can only be unset programmatically by VBA.

7.36 worksheet.set_first_sheet()

set_first_sheet()
Set current worksheet as the first visible sheet tab.

7.35. worksheet.very_hidden() 87

Creating Excel files with Python and XisxWriter, Release 3.1.9

The activate () method determines which worksheet is initially selected. However, if there are
a large number of worksheets the selected worksheet may not appear on the screen. To avoid this
you can select which is the leftmost visible worksheet tab using set first sheet():

for in range(1l, 21):
workbook.add worksheet

worksheet19.set first sheet() # First visible worksheet tab.
worksheet20.activate() # First visible worksheet.

This method is not required very often. The default value is the first worksheet.

7.37 worksheet.merge_range()
merge_range (first_row, first_col, last_row, last col, data[, cell format])
Merge a range of cells.
Parameters
« first_row (inf) — The first row of the range. (All zero indexed.)
« first_col (/nt) — The first column of the range.

+ last_row (int) — The last row of the range.

last_col (int) — The last col of the range.

data — Cell data to write. Variable types.
« cell_format (Format) — Optional Format object.
Raises OverlappingRange if the range overlaps a previous merge or table range.
Returns 0: Success.
Returns -1: Row or column is out of worksheet bounds.
Returns Other: Error return value of the called write() method.
The merge range() method allows cells to be merged together so that they act as a single area.

Excel generally merges and centers cells at same time. To get similar behavior with XlsxWriter
you need to apply a Format:

merge format = workbook.add format({'align': 'center'})
worksheet.merge range('B3:D4', 'Merged Cells', merge format)

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.merge range(2, 1, 3, 3, 'Merged Cells', merge format)
worksheet.merge range('B3:D4', 'Merged Cells', merge format)

See Working with Cell Notation for more details.

It is possible to apply other formatting to the merged cells as well:

88 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

merge format = workbook.add format({

'bold': True,
"border': 6,
‘align': ‘center’,
'valign': 'vcenter',
'fg color': '#D7E4BC',
})
worksheet.merge range('B3:D4', 'Merged Cells', merge format)

a0o | mergel.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 IR - R
Ald 10 & (= |~
| : B | C | D ——
1
2
3
Merged Cells
4
5
6
Fi
B
9
10
— e e I

Mormal View Ready o

See Example: Merging Cells for more details.

The merge range() method writes its data argument using write(). Therefore it will handle
numbers, strings and formulas as usual. If this doesn’t handle your data correctly then you can
overwrite the first cell with a call to one of the other write * () methods using the same Format
as in the merged cells. See Example: Merging Cells with a Rich String.

7.37. worksheet.merge_range() 89

Creating Excel files with Python and XisxWriter, Release 3.1.9

800 [merge_rich_string.xlsx
Home | Layout | Tables | Charts | SmartArt | »| v LF-
A25 110 & (= A& |~
& AN R N R 5 T N I ———e
1
2
3 L L
2 This is red and this is blue
5
6
7
B
9
44 B K| l Sh!![l_ |||
Mormal View Ready “

Note: Merged ranges generally don’'t work in XlsxWriter when Workbook()
stant_memory’ mode is enabled.

"con-

7.38 worksheet.autofilter()

autofilter (first_row, first_col, last _row, last _col)
Set the autofilter area in the worksheet.
Parameters
« first_row (inf) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.
* last_row (int) — The last row of the range.

« last_col (int) — The last col of the range.

The autofilter() method allows an autofilter to be added to a worksheet. An autofilter is a
way of adding drop down lists to the headers of a 2D range of worksheet data. This allows users

to filter the data based on simple criteria so that some data is shown and some is hidden.

920 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e 00 I autofilter.xlsx
Home | Layout | Tables | Charts | Smartart | » v fE
Al | @ & (= fx| Region |+
_| : B | [| D -
Region =T | ltem |E| Volume Month |E|
3 |East Apple 5000 July
21 |East Grape 7000 December
33 |East Orange 4000 October
37 |East Grape 7000 October
44 |East Apple 5000 April
51 |East Grape 6000 February
52
53
54
55
56
h:‘ . .h-l l Sher_tl_i Sher_tz_i Shuti_J_ Shumi Sher_tS_i She |||
ormal View Filter Mode o

To add an autofilter to a worksheet:

worksheet.autofilter('A1:D11")

Both row-column and A1 style notation are supported. The following are equivalent:

worksheet.autofilter(0, 0, 10, 3)
worksheet.autofilter('Al1:D11")

See Working with Cell Notation for more details.

Filter conditions can be applied using the filter column() or filter column Llist()
methods.

See Working with Autofilters for more details.

7.39 worksheet.filter_column()

filter_column(col criteria)
Set the column filter criteria.

Parameters

« col (int) — Filter column (zero-indexed).

7.39. worksheet.filter_column() 91

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

« criteria (string) — Filter criteria.

The filter column method can be used to filter columns in a autofilter range based on simple
conditions.

The conditions for the filter are specified using simple expressions:

worksheet.filter column('A', 'x > 2000")
worksheet.filter column('B', 'x > 2000 and x < 5000")

The col parameter can either be a zero indexed column number or a string column name:

worksheet.filter column(2, 'X > 2000")
worksheet.filter column('C', 'x > 2000")

See Working with Cell Notation for more details.

It isn’t sufficient to just specify the filter condition. You must also hide any rows that don’t match
the filter condition. See Working with Autofilters for more details.

7.40 worksheet.filter_column_list()

filter_column_list (col, filters)
Set the column filter criteria in Excel 2007 list style.

Parameters
+ col (int) — Filter column (zero-indexed).
« filters (/ist) — List of filter criteria to match.

The filter column list() method can be used to represent filters with multiple selected
criteria:

worksheet.filter column list('A', ['March', 'April', 'May'l)

The col parameter can either be a zero indexed column number or a string column name:

worksheet.filter column_list(2, ['March', 'April', 'May'l])
worksheet.filter column list('C', ['March', 'April', 'May'l)

See Working with Cell Notation for more details.

One or more criteria can be selected:

worksheet.filter column list('A', ['March'l])
worksheet.filter column list('C', [100, 110, 120, 130])

To filter blanks as part of the list use Blanks as a list item:

worksheet.filter column list('A', ['March', 'April', 'May', 'Blanks'])

It isn’t sufficient to just specify filters. You must also hide any rows that don’t match the filter
condition. See Working with Autofilters for more details.

92 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Creating Excel files with Python and XlsxWriter, Release 3.1.9

7.41 worksheet.set _selection()
set_selection (first_row, first_col, last_row, last col)
Set the selected cell or cells in a worksheet.
Parameters

« first_row (/nt) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.
* last_row (int) — The last row of the range.
» last_col (int) — The last col of the range.

The set selection() method can be used to specify which cell or range of cells is selected in
a worksheet. The most common requirement is to select a single cell, in which case the first
and last parameters should be the same.

The active cell within a selected range is determined by the order in which first and last
are specified.

Examples:

worksheetl.set selection
worksheet2.set selection

(3, 3, 3
(3, 3, 6
worksheet3.set selection(6, 3
(I
(
(

worksheet4.set selection

worksheet5.set selection

3
3
6
worksheet6.set selection('

D4')
D4:G7")
G7:D4")

As shown above, both row-column and A1 style notation are supported. See Working with Cell
Notation for more details. The default cell selectionis (0, 0), "Al’.

7.42 worksheet.set_top_left_cell()

set_top_left_cell(row, col)
Set the first visible cell at the top left of a worksheet.

Parameters
» row (int) — The cell row (zero indexed).
» col (int) — The cell column (zero indexed).

This set top left cell method can be used to set the top leftmost visible cell in the work-
sheet:

worksheet.set top left cell(31, 26)

worksheet.set top left cell('AA32")

7.41. worksheet.set_selection() 93

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NON | top_left_cell.xlsx

i # Home i Layout _ Tables i Charts i SmartArt i | v -
AH2 = fx -

D st AU e e A e A e e A s A

32

| 33 |

34 |

35 |

36 |

| 37 |

38 |

As shown above, both row-column and A1 style notation are supported. See Working with Cell
Notation for more details.

7.43 worksheet.freeze panes()
freeze_panes (row, co/[, top_row, left_col])
Create worksheet panes and mark them as frozen.
Parameters

* row (int) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
* top_row (inf) — Topmost visible row in scrolling region of pane.
« left_col (int) — Leftmost visible row in scrolling region of pane.

The freeze panes() method can be used to divide a worksheet into horizontal or vertical re-
gions known as panes and to “freeze” these panes so that the splitter bars are not visible.

The parameters row and col are used to specify the location of the split. It should be noted that
the split is specified at the top or left of a cell and that the method uses zero based indexing.
Therefore to freeze the first row of a worksheet it is necessary to specify the split at row 2 (which
is 1 as the zero-based index).

94 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

You can set one of the row and col parameters as zero if you do not want either a vertical or
horizontal split.

Examples:

worksheet.freeze panes
worksheet.freeze panes
worksheet.freeze panes

(1,
('A
(0,
worksheet.freeze panes('B
(1,
(I

worksheet.freeze panes
worksheet.freeze panes

As shown above, both row-column and A1 style notation are supported. See Working with Cell
Notation for more details.

The parameters top row and left col are optional. They are used to specify the top-most or
left-most visible row or column in the scrolling region of the panes. For example to freeze the first
row and to have the scrolling region begin at row twenty:

worksheet.freeze panes(1l, 0, 20, 0)

You cannot use A1 notation for the top row and left col parameters.

See Example: Freeze Panes and Split Panes for more details.

7.44 worksheet.split_panes()
split_panes(x, y[, top_row, left col])
Create worksheet panes and mark them as split.
Parameters

* x (float) — The position for the vertical split.
* y (float) — The position for the horizontal split.
* top_row (/int) — Topmost visible row in scrolling region of pane.
« left_col (int) — Leftmost visible row in scrolling region of pane.

The split panes method can be used to divide a worksheet into horizontal or vertical regions
known as panes. This method is different from the freeze panes() method in that the splits
between the panes will be visible to the user and each pane will have its own scroll bars.

The parameters y and x are used to specify the vertical and horizontal position of the split. The
units for y and x are the same as those used by Excel to specify row height and column width.
However, the vertical and horizontal units are different from each other. Therefore you must specify
the y and x parameters in terms of the row heights and column widths that you have set or the
default values which are 15 for a row and 8. 43 for a column.

You can set one of the y and x parameters as zero if you do not want either a vertical or horizontal
split. The parameters top row and left col are optional. They are used to specify the top-
most or left-most visible row or column in the bottom-right pane.

Example:

7.44. worksheet.split_panes() 95

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.split panes(15, 0)
worksheet.split panes(0, 8.43)
worksheet.split panes(15, 8.43)

You cannot use A1 notation with this method.

See Example: Freeze Panes and Split Panes for more details.

7.45 worksheet.set_zoom()

set_zoom(zoom)
Set the worksheet zoom factor.

Parameters zoom (int) — Worksheet zoom factor.
Set the worksheet zoom factor in the range 10 <= zoom <= 400:

worksheetl.set zoom(50)
worksheet2.set zoom(75)
worksheet3.set zoom(300)
worksheet4.set zoom(400)

The default zoom factor is 100. It isn’t possible to set the zoom to “Selection” because it is calcu-
lated by Excel at run-time.

Note, set zoom() does not affect the scale of the printed page. For that you should use
set print scale().

7.46 worksheet.right_to_left()
right_to_left()
Display the worksheet cells from right to left for some versions of Excel.

The right to left() method is used to change the default direction of the worksheet from
left-to-right, with the A1 cell in the top left, to right-to-left, with the A1 cell in the top right:

worksheet.right to left()

This is useful when creating Arabic, Hebrew or other near or far eastern worksheets that use
right-to-left as the default direction.

96 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Home Insert Draw Page Layout = Share [J1 Comments

N8 . fr v
E D C B A

English text / 4= =3 1
e pai f English text| 2
English text / 4= =3 3

4

W 0O =] h

+ Sheet2 Sheetl
HH o - + 125%

See also the Format set reading order () property to set the direction of the text within cells
and the Example: Left to Right worksheets and text example program.

7.47 worksheet.hide zero()

hide zero()
Hide zero values in worksheet cells.

The hide zero() method is used to hide any zero values that appear in cells:

worksheet.hide zero()

7.48 worksheet.set_background()
set_background (filename[, is_byte_stream])
Set the background image for a worksheet.
Parameters
« filename (sir) — The image file (or byte stream).

* is_byte_stream (bool) — The file is a stream of bytes.

7.47. worksheet.hide_zero() 97

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Creating Excel files with Python and XisxWriter, Release 3.1.9

The set _background () method can be used to set the background image for the worksheet:

worksheet.set background('logo.png')

[NON [~ background.xlsx
| A Home | Layout Tables | Charts | SmartArt | 3 v i~
A74 10 @ (- fx| |~
.. < 0o o o s W
1 —. .l o .l
2 | MR NiIThn M NnlLithn
3 _' '-J"—j LI 1wFl 1 I- '.J"..-ILl 150 1 a
19 | W e 1| W R P |
: IIJ[JWEI cu IIJUWEI cu
7 s [_ ol L s _ o lel
8 | ommulill (ML ILTH] | ool [DLILTRCDIT | .
9 | =y [T D e
lu ‘ nl_‘ll.fnl"nA - nnll!nl"f_'!A 1
11 PUOWCTCO pUWCICO
12 : - : -
13 m. s il I+I’ﬁa_\ﬁ _ W | I+I’ﬁhﬁ
14 | «umlll . UL IV il UL U
15 | W& A el & L 4
e powered | = powered | |
= T b T :
| Mormal ¥iew Ready A

The set background() method supports all the image formats supported by in-
sert _image().

Some people use this method to add a watermark background to their document. However, Mi-
crosoft recommends using a header image to set a watermark. The choice of method depends
on whether you want the watermark to be visible in normal viewing mode or just when the file is
printed. In XlsxWriter you can get the header watermark effect using set header():

worksheet.set header('&C&G', {'image center': 'watermark.png'})

It is also possible to pass an in-memory byte stream to set background() if the
is byte stream parameter is set to True. The stream should be i0.BytesIO:

worksheet.set background(io bytes, is byte stream=True)

See Example: Setting the Worksheet Background for an example.

98 Chapter 7. The Worksheet Class

https://support.microsoft.com/en-us/office/add-a-watermark-in-excel-a372182a-d733-484e-825c-18ddf3edf009
https://docs.python.org/3/library/io.html#io.BytesIO

Creating Excel files with Python and XlsxWriter, Release 3.1.9

7.49 worksheet.set tab color()

set_tab_color()
Set the color of the worksheet tab.

Parameters color (siring) — The tab color.
The set tab color() method is used to change the color of the worksheet tab:

worksheetl.set tab color('red')
worksheet2.set tab color('#FF9900")

The color can be a Html style #RRGGBB string or a limited number named colors, see Working with
Colors.

See Example: Setting Worksheet Tab Colors for more details.

7.50 worksheet.protect()

protect()
Protect elements of a worksheet from modification.

Parameters
» password (siring) — A worksheet password.
« options (dict) — A dictionary of worksheet options to protect.
The protect () method is used to protect a worksheet from modification:

worksheet.protect()

The protect () method also has the effect of enabling a cell’s Locked and hidden properties if
they have been set. A locked cell cannot be edited and this property is on by default for all cells.
A hidden cell will display the results of a formula but not the formula itself. These properties can
be set using the set locked() and set hidden() format methods.

You can optionally add a password to the worksheet protection:
worksheet.protect('abcl23")

r

The password should be an ASCII string. Passing the empty string is the same as turning on
protection without a password. See the note below on the “password” strength.

You can specify which worksheet elements you wish to protect by passing a dictionary in the
options argument with any or all of the following keys:

options = {

'objects': False,
'scenarios': False,
'format cells': False,
‘format _columns': False,
‘format _rows': False,

7.49. worksheet.set_tab_color() 99

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

‘insert columns': False,
‘insert rows': False,
‘insert hyperlinks': False,
‘delete columns': False,
'delete rows': False,
'select locked cells': True,

'sort': False,
‘autofilter': False,
'pivot tables': False,

‘select unlocked cells': True,

}

The default boolean values are shown above. Individual elements can be protected as follows:

worksheet.protect('abcl23', {'insert rows': True})

For chartsheets the allowable options and default values are:

options = {
'objects': True,
‘content': True,

}

See also the set locked() and set hidden() format methods and Example: Enabling Cell
protection in Worksheets.

Note: Worksheet level passwords in Excel offer very weak protection. They do not encrypt your
data and are very easy to deactivate. Full workbook encryption is not supported by XisxWriter.

However, it is possible to encrypt an XlsxWriter file using a third party open source tool called
msoffice-crypt. This works for macOS, Linux and Windows:

msoffice-crypt.exe -e -p password clear.xlsx encrypted.xlsx

7.51 worksheet.unprotect_range()
unprotect_range(cell_range, range_name)
Unprotect ranges within a protected worksheet.
Parameters
« cell_range (string) — The cell or cell range to unprotect.
* range_name (siring) — An name for the range.

The unprotect range() method is used to unprotect ranges in a protected worksheet. It can
be used to set a single range or multiple ranges:

("A1")
worksheet.unprotect range('C1l")
worksheet.unprotect range('E1:E3")
worksheet.unprotect range('G1:K100")

worksheet.unprotect range

100 Chapter 7. The Worksheet Class

https://github.com/herumi/msoffice
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.1.9

As in Excel the ranges are given sequential names like Rangel and Range2 but a user defined
name can also be specified:

worksheet.unprotect range('G4:16', 'MyRange')

7.52 worksheet.set_default_row()

set_default_row(height, hide_unused rows)
Set the default row properties.

Parameters
* height (float) — Default height. Optional, defaults to 15.

» hide_unused_rows (bool) — Hide unused rows. Optional, defaults to
False.

The set default row() method is used to set the limited number of default row properties
allowed by Excel which are the default height and the option to hide unused rows. These param-
eters are an optimization used by Excel to set row properties without generating a very large file
with an entry for each row.

To set the default row height:

worksheet.set default row(24)

To hide unused rows:

worksheet.set default row(hide unused rows=True)

See Example: Hiding Rows and Columns for more details.

7.53 worksheet.outline_settings()
outline_settings (visible, symbols_below, symbols_right, auto_style)
Control outline settings.
Parameters
« visible (bool) — Outlines are visible. Optional, defaults to True.

» symbols_below (boo/) — Show row outline symbols below the outline bar.
Optional, defaults to True.

» symbols_right (boo/) — Show column outline symbols to the right of the
outline bar. Optional, defaults to True.

+ auto_style (bool) — Use Automatic style. Optional, defaults to False.

The outline settings() method is used to control the appearance of outlines in Excel. Out-
lines are described in Working with Outlines and Grouping:

7.52. worksheet.set_default_row() 101

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheetl.outline settings(False, False, False, True)

The 'visible’ parameter is used to control whether or not outlines are visible. Setting this
parameter to False will cause all outlines on the worksheet to be hidden. They can be un-hidden
in Excel by means of the “Show Outline Symbols” command button. The default setting is True
for visible outlines.

The "symbols below’ parameter is used to control whether the row outline symbol will appear
above or below the outline level bar. The default setting is True for symbols to appear below the
outline level bar.

The 'symbols right’ parameter is used to control whether the column outline symbol will
appear to the left or the right of the outline level bar. The default setting is True for symbols to
appear to the right of the outline level bar.

The "auto style’ parameter is used to control whether the automatic outline generator in Ex-
cel uses automatic styles when creating an outline. This has no effect on a file generated by
XlsxWriter but it does have an effect on how the worksheet behaves after it is created. The
default setting is False for “Automatic Styles” to be turned off.

The default settings for all of these parameters correspond to Excel’s default parameters.

The worksheet parameters controlled by outline settings() are rarely used.

7.54 worksheet.set_vba name()

set_vba_name (name)
Set the VBA name for the worksheet.

Parameters name (siring) — The VBA name for the worksheet.

The set _vba name() method can be used to set the VBA codename for the worksheet (there
is a similar method for the workbook VBA name). This is sometimes required when a vbaProject
macro included via add_vba project () refers to the worksheet. The default Excel VBA name
of Sheetl, etc., is used if a user defined name isn’t specified.

See Working with VBA Macros for more details.

7.55 worksheet.ignore_errors()
ignore_errors (options)
Ignore various Excel errors/warnings in a worksheet for user defined ranges.
Returns 0: Success.
Returns -1: Incorrect parameter or option.

The ignore_errors() method can be used to ignore various worksheet cell errors/warnings.
For example the following code writes a string that looks like a number:

worksheet.write string('D2', '123")

102 Chapter 7. The Worksheet Class

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.1.9

This causes Excel to display a small green triangle in the top left hand corner of the cell to indicate
an error/warning:

o0 ® ¥ ignore_warning.xlsx
| A Home | Layout | Tables | Charts | SmartArt |))| v 3

A22 L 0 @ (= fx |~
A NN TN N N - WA S O ———

_a' Mumber Stored as Text 123

Convert to Number

Help on this error

lgnore Error

Edit in Fermula Bar

Errer Checking Options...

W oo~ o v & | m =

(<< v v | sheets [+ I I

Mormal View Ready A

Sometimes these warnings are useful indicators that there is an issue in the spreadsheet but
sometimes it is preferable to turn them off. Warnings can be turned off at the Excel level for all
workbooks and worksheets by using the using “Excel options -> Formulas -> Error checking rules”.
Alternatively you can turn them off for individual cells in a worksheet, or ranges of cells, using the
ignore errors() method with a dict of options and ranges like this:

worksheet.ignore errors({'number stored as text': 'Al:H50'})

Or for more than one option:
worksheet.ignore errors({'number stored as text': 'Al:H50',
‘eval_error': 'Al:H50'})

The range can be a single cell, a range of cells, or multiple cells and ranges separated by spaces:

Single cell.
worksheet.ignore errors({'eval error': 'C6'})

Or a single range:
worksheet.ignore errors({'eval error': 'C6:G8'})

Or multiple cells and ranges:
worksheet.ignore errors({'eval error': 'C6 E6 G1:G20 J2:J6'})

7.55. worksheet.ignore_errors() 103

Creating Excel files with Python and XisxWriter, Release 3.1.9

Note: calling ignore_errors () multiple times will overwrite the previous settings.

You can turn off warnings for an entire column by specifying the range from the first cell in the
column to the last cell in the column:

worksheet.ignore_errors({'number stored as text': 'Al1:A1048576'})
Or for the entire worksheet by specifying the range from the first cell in the worksheet to the last
cell in the worksheet:

worksheet.ignore errors({'number stored as text': 'Al:XFD1048576'})

The worksheet errors/warnings that can be ignored are:
* number stored as text: Turn off errors/warnings for numbers stores as text.
« eval error: Turn off errors/warnings for formula errors (such as divide by zero).

« formula differs: Turn off errors/warnings for formulas that differ from surrounding for-
mulas.

- formula_range: Turn off errors/warnings for formulas that omit cells in a range.
« formula_unlocked: Turn off errors/warnings for unlocked cells that contain formulas.
- empty cell reference: Turn off errors/warnings for formulas that refer to empty cells.

« list data validation: Turn off errors/warnings for cells in a table that do not comply
with applicable data validation rules.

» calculated column: Turn off errors/warnings for cell formulas that differ from the column
formula.

« two _digit text year: Turn off errors/warnings for formulas that contain a two digit text
representation of a year.

See also Example: Ignoring Worksheet errors and warnings.

104 Chapter 7. The Worksheet Class

CHAPTER
EIGHT

THE WORKSHEET CLASS (PAGE SETUP)

Page set-up methods affect the way that a worksheet looks to the user or when it is printed. They
control features such as paper size, orientation, page headers and margins and gridlines.

These methods are really just standard worksheet methods. They are documented separately for
the sake of clarity.

8.1 worksheet.set_landscape()

set_landscape()
Set the page orientation as landscape.

This method is used to set the orientation of a worksheet’s printed page to landscape:

worksheet.set landscape()

8.2 worksheet.set_portrait()

set_portrait()
Set the page orientation as portrait.

This method is used to set the orientation of a worksheet’s printed page to portrait. The default
worksheet orientation is portrait, so you won’t generally need to call this method:

worksheet.set portrait()

8.3 worksheet.set_page view()

set_page_ view(view=1)
Set the page view mode.
Parameters view (inf) —0: Normal, 1: Page Layout, 2: Page Break.
This method is used to display the worksheet in “Page View/Layout” mode:

worksheet.set page view()

It can also be used to set the other view modes:

105

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

» 0: Normal view mode.
» 1: Page view mode (the default).

« 2: Page break view mode. Same as set _pagebreak view().

8.4 worksheet.set_pagebreak_view()

set_pagebreak view()
Set the page break view mode.
This method is used to display the worksheet in “Page Break Preview” mode:

worksheet.set pagebreak view()

8.5 worksheet.set_paper()
set_paper (index)
Set the paper type.
Parameters index (int) — The Excel paper format index.

This method is used to set the paper format for the printed output of a worksheet. The following
paper styles are available:

Index | Paper format Paper size

0 Printer default Printer default

1 Letter 81/2x111in

2 Letter Small 81/2x111in

3 Tabloid 11 x17in

4 Ledger 17 x 11in

5 Legal 81/2x14in

6 Statement 51/2x81/2in

7 Executive 71/4x101/2in

8 A3 297 x 420 mm

9 Ad 210 x 297 mm

10 A4 Small 210 x 297 mm

11 A5 148 x 210 mm

12 B4 250 x 354 mm

13 B5 182 x 257 mm

14 Folio 81/2x13in

15 Quarto 215 x 275 mm

16 — 10x14 in

17 — 11x17 in

18 Note 81/2x11in

19 Envelope 9 37/8x87/8

20 Envelope 10 41/8x91/2

21 Envelope 11 41/2x103/8
Continued on next page

106

Chapter 8. The Worksheet Class (Page Setup)

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Table 8.1 — continued from previous page

Index | Paper format Paper size

22 Envelope 12 4 3/4 x 11

23 Envelope 14 5x111/2

24 C size sheet —

25 D size sheet —

26 E size sheet —

27 Envelope DL 110 x 220 mm
28 Envelope C3 324 x 458 mm
29 Envelope C4 229 x 324 mm
30 Envelope C5 162 x 229 mm
31 Envelope C6 114 x 162 mm
32 Envelope C65 114 x 229 mm
33 Envelope B4 250 x 353 mm
34 Envelope B5 176 x 250 mm
35 Envelope B6 176 x 125 mm
36 Envelope 110 x 230 mm
37 Monarch 3.875x75in
38 Envelope 35/8x61/2in
39 Fanfold 147/8x 11 in
40 German Std Fanfold 81/2x12in
41 German Legal Fanfold | 8 1/2 x 13 in

Note, it is likely that not all of these paper types will be available to the end user since it will depend
on the paper formats that the user’s printer supports. Therefore, it is best to stick to standard paper

types:

worksheet.set paper(1l)
worksheet.set paper(9)

If you do not specify a paper type the worksheet will print using the printer’s default paper style.

8.6 worksheet.center_horizontally()

center_horizontally()

Center the printed page horizontally.

Center the worksheet data horizontally between the margins on the printed page:

worksheet.center horizontally()

8.7 worksheet.center_vertically()

center_vertically()

Center the printed page vertically.

Center the worksheet data vertically between the margins on the printed page:

8.6. worksheet.center_horizontally() 107

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.center vertically()

8.8 worksheet.set_margins()
set_margins ([left=0.7,] right=0.7,] top=0.75,] bottom=0.75]]])
Set the worksheet margins for the printed page.
Parameters
* left (float) — Left margin in inches. Default 0.7.
* right (float) — Right margin in inches. Default 0.7.
* top (float) — Top margin in inches. Default 0.75.
» bottom (float) — Bottom margin in inches. Default 0.75.

The set_margins () method is used to set the margins of the worksheet when it is printed. The
units are in inches. All parameters are optional and have default values corresponding to the
default Excel values.

8.9 worksheet.set_header()

set_header (/header=",] options]])
Set the printed page header caption and options.
Parameters
 header (siring) — Header string with Excel control characters.
» options (dict) — Header options.

Headers and footers are generated using a string which is a combination of plain text and control
characters.

The available control character are:

108 Chapter 8. The Worksheet Class (Page Setup)

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Control Category Description

&L Justification | Left

&C Center

&R Right

&P Information | Page number

&N Total number of pages
&D Date

&T Time

&F File name

&A Worksheet name
&Z Workbook path
&fontsize Font Font size
&”font,style” Font name and style
&U Single underline

&E Double underline
&S Strikethrough

&X Superscript

&Y Subscript

&[Picture] Images Image placeholder
&G Same as &[Picture]
&& Misc. Literal ampersand “&”

Text in headers and footers can be justified (aligned) to the left, center and right by prefixing the
text with the control characters &L, &C and &R.

For example:

worksheet.set header('&LHello')

For simple text, if you do not specify any justification the text will be centered. However, you must

prefix the text with &C if you specify a font name or any other formatting:

8.9. worksheet.set_header()

109

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.set header('Hello')

You can have text in each of the justification regions:

worksheet.set header('&LCiao&CBello&RCielo')

The information control characters act as variables that Excel will update as the workbook or
worksheet changes. Times and dates are in the users default format:

worksheet.set header('&CPage &P of &N')

| Page 1 of 6 |

worksheet.set header('&CUpdated at &T')

| Updated at 12:30 PM

Images can be inserted using the options shown below. Each image must have a placeholder
in header string using the &[Picture] or &G control characters:

worksheet.set header('&L&G', {'image left': 'logo.jpg'})

110 Chapter 8. The Worksheet Class (Page Setup)

Creating Excel files with Python and XlsxWriter, Release 3.1.9

® 00 [headers_footers.xlsx
Home | Layout | Tables | Charts SmartArt ¥ W fFv
ALl 20 & (=~ fx| v

J ool f oo) o @] 0 3 4] 0 o5 B T B]

. |I.3| .

2|

python

powered

1 1]

Select Print Preview to see the header and footer

3.
| | | B =t

e | l SimpIeJ Image_‘[Variables [l

Page Layout View | Ready A

You can specify the font size of a section of the text by prefixing it with the control character &n
where n is the font size:

worksheetl.set header('&C&30Hello Big')
worksheet2.set header('&C&10OHello Small')

You can specify the font of a section of the text by prefixing it with the control sequence
&"font,style" where fontname is a font name such as “Courier New” or “Times New Ro-
man” and style is one of the standard Windows font descriptions: “Regular”, “Italic”, “Bold” or
“Bold Italic™

worksheetl.set header('&C&"Courier New,Italic"Hello')
worksheet2.set header('&C&"Courier New,Bold Italic"Hello')
worksheet3.set header('&C&"Times New Roman,Regular"Hello"')

It is possible to combine all of these features together to create sophisticated headers and footers.
As an aid to setting up complicated headers and footers you can record a page set-up as a macro
in Excel and look at the format strings that VBA produces. Remember however that VBA uses
two double quotes " " to indicate a single double quote. For the last example above the equivalent
VBA code looks like this:

.LeftHeader = ""
.CenterHeader = "&""Times New Roman,Regular""Hello"
.RightHeader = ""

8.9. worksheet.set_header() 111

Creating Excel files with Python and XisxWriter, Release 3.1.9

Alternatively you can inspect the header and footer strings in an Excel file by unzipping it and
grepping the XML sub-files. The following shows how to do that using libxml’s xmllint to format the
XML for clarity:

$ unzip myfile.xlsm -d myfile
$ xmllint --format ~find myfile -name "*.xml" | xargs® | egrep "Header|Footer" | sed '

<headerFooter scaleWithDoc="0">
<oddHeader>&L&P</oddHeader>
</headerFooter>

To include a single literal ampersand & in a header or footer you should use a double ampersand
&&:

worksheetl.set header('&CCuriouser && Curiouser - Attorneys at Law')

The available options are:
« margin: (float) Header margin in inches. Defaults to 0.3 inch.
« image left: (string) The path to the image. Needs &G placeholder.
« image center: (string) Same as above.
« image right: (string) Same as above.
- image data left: (ByteslO) A byte stream of the image data.
+ image data center: (ByteslO) Same as above.
+ image data right: (ByteslO) Same as above.
» scale with doc: (boolean) Scale header with document. Defaults to True.
« align with margins: (boolean) Align header to margins. Defaults to True.

As with the other margins the margin value should be in inches. The default header and footer
margin is 0.3 inch. It can be changed as follows:

worksheet.set header('&CHello', {'margin': 0.75})

The header and footer margins are independent of, and should not be confused with, the top and
bottom worksheet margins.

The image options must have an accompanying &[Picture] or &G control character in the
header string:

worksheet.set header('&L&[Picture]&C&[Picture]&R&[Picture] ',

{'image left': ‘red.jpg’,
‘image center': 'blue.jpg’,
‘image right': ‘'yellow.jpg'})

The image data parameters are used to add an in-memory byte stream in i0.BytesIO for-
mat:

112 Chapter 8. The Worksheet Class (Page Setup)

https://gnome.pages.gitlab.gnome.org/libxml2/xmllint.html
https://docs.python.org/3/library/io.html#io.BytesIO

Creating Excel files with Python and XlsxWriter, Release 3.1.9

image file
image data

open('logo.jpg', 'rb")
BytesIO(image file.read())

worksheet.set header('&L&G",
{'image left': 'logo.jpg"',
'image data left': image data})

When using the image data parameters a filename must still be passed to to the equivalent
image parameter since it is required by Excel. See also insert image() for details on han-
dling images from byte streams.

Note, Excel does not allow header or footer strings longer than 255 characters, including control
characters. Strings longer than this will not be written and a warning will be issued.

See also Example: Adding Headers and Footers to Worksheets.

8.10 worksheet.set_footer()

set_footer ([footer=",] options]])
Set the printed page footer caption and options.

Parameters
« footer (siring) — Footer string with Excel control characters.
« options (dict) — Footer options.

The syntax of the set footer() method is the same as set header().

8.11 worksheet.repeat_rows|()
repeat_rows (first_row][, last_row])
Set the number of rows to repeat at the top of each printed page.
Parameters
« first_row (inf) — First row of repeat range.
« last_row (int) — Last row of repeat range. Optional.

For large Excel documents it is often desirable to have the first row or rows of the worksheet print
out at the top of each page.

This can be achieved by using the repeat rows () method. The parameters first row and
last row are zero based. The last row parameter is optional if you only wish to specify one
row:

worksheetl.repeat rows(0)
worksheet2.repeat rows(0, 1)

8.10. worksheet.set_footer() 113

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

8.12 worksheet.repeat_columns()

repeat_columns (first_coll, last col])
Set the columns to repeat at the left hand side of each printed page.

Parameters
« first_col (int) — First column of repeat range.
« last_col (int) — Last column of repeat range. Optional.

For large Excel documents it is often desirable to have the first column or columns of the worksheet
print out at the left hand side of each page.

This can be achieved by using the repeat columns() method. The parameters
first column and last column are zero based. The last column parameter is optional
if you only wish to specify one column. You can also specify the columns using A1 column nota-
tion, see Working with Cell Notation for more details.:

worksheetl.repeat columns(0)

worksheet2.repeat columns
worksheet3.repeat columns
worksheet4.repeat columns

0
0
"A
"A

)
")
")

PRy

1
A
B

8.13 worksheet.hide_gridlines()
hide_gridlines ([option=1])
Set the option to hide gridlines on the screen and the printed page.
Parameters option (int) — Hide gridline options. See below.

This method is used to hide the gridlines on the screen and printed page. Gridlines are the lines
that divide the cells on a worksheet. Screen and printed gridlines are turned on by default in an
Excel worksheet.

If you have defined your own cell borders you may wish to hide the default gridlines:

worksheet.hide gridlines()

The following values of option are valid:
0. Don’t hide gridlines.
1. Hide printed gridlines only.
2. Hide screen and printed gridlines.

If you don’t supply an argument the default option is 1, i.e. only the printed gridlines are hidden.

8.14 worksheet.print_row_col_headers()

print_row_col_headers()
Set the option to print the row and column headers on the printed page.

114 Chapter 8. The Worksheet Class (Page Setup)

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

When you print a worksheet from Excel you get the data selected in the print area. By default
the Excel row and column headers (the row numbers on the left and the column letters at the top)
aren’t printed.

The print row col headers () method sets the printer option to print these headers:

worksheet.print row col headers()

8.15 worksheet.hide row col headers()

hide_row_col_headers()
Set the option to hide the row and column headers in a worksheet.

This method is similar to the print _row col headers() except that it hides the row and col-
umn headers on the worksheet:

worksheet.hide row col headers()

[NN [hide_row_col_headers.xlsx
| # Home | Layout Tables | Charts | SmartArt | » v B
A15 = fx -
44 »»i I Sheer1 J +J |
Mormal ¥iew Ready s

8.16 worksheet.print_area()

print_area(first_row, first_col, last_row, last _col)
Set the print area in the current worksheet.

8.15. worksheet.hide_row_col_headers() 115

Creating Excel files with Python and XisxWriter, Release 3.1.9

Parameters
« first_row (infeger) — The first row of the range. (All zero indexed.)
« first_col (integer) — The first column of the range.
* last_row (integer) — The last row of the range.
« last_col (integer) — The last col of the range.

Returns 0: Success.

Returns -1: Row or column is out of worksheet bounds.

This method is used to specify the area of the worksheet that will be printed.

All four parameters must be specified. You can also use A1 notation, see Working with Cell
Notation:

worksheetl.print area('Al1:H20")
worksheet2.print area(0, 0, 19, 7)

In order to set a row or column range you must specify the entire range:

worksheet3.print _area('A1:H1048576")

8.17 worksheet.print_across()
print_across()
Set the order in which pages are printed.

The print across method is used to change the default print direction. This is referred to by
Excel as the sheet “page order”:

worksheet.print across()

The default page order is shown below for a worksheet that extends over 4 pages. The order is
called “down then across”:

[1] [3]
[2] [4]

However, by using the print across method the print order will be changed to “across then
down”:

[1] [2]
[3] [4]

8.18 worksheet.fit_to_pages()

fit_to_pages (width, height)
Fit the printed area to a specific number of pages both vertically and horizontally.

Parameters

116 Chapter 8. The Worksheet Class (Page Setup)

Creating Excel files with Python and XlsxWriter, Release 3.1.9

+ width (/nf) — Number of pages horizontally.
* height (/nt) — Number of pages vertically.

The fit to pages() method is used to fit the printed area to a specific number of pages both
vertically and horizontally. If the printed area exceeds the specified number of pages it will be
scaled down to fit. This ensures that the printed area will always appear on the specified number
of pages even if the page size or margins change:

worksheetl.fit to pages(l, 1) # Fit to 1x1 pages.
worksheet2.fit to pages(2, 1) # Fit to 2x1 pages.
worksheet3.fit to pages(l, 2) # Fit to 1x2 pages.

The print area can be defined using the print area() method as described above.

A common requirement is to fit the printed output to n pages wide but have the height be as long
as necessary. To achieve this set the height to zero:

worksheetl.fit to pages(l, 0) # 1 page wide and as long as necessary.

Note: Althoughitis validto use both fit to pages() andset print scale() onthe same
worksheet in Excel only allows one of these options to be active at a time. The last method call

made will set the active option.

Note: The fit to pages() will override any manual page breaks that are defined in the
worksheet.

Note: Whenusing fit to pages() it may also be required to set the printer paper size using
set paper() or else Excel will default to “US Letter”.

8.19 worksheet.set_start_page()

set_start_page()
Set the start/first page number when printing.

Parameters start_page (int) — Starting page number.

The set start page() method is used to set the page number of the starting page when the
worksheet is printed out. It is the same as the “First Page Number” option in Excel:

Start print from page 2.
worksheet.set start page(2)

8.20 worksheet.set_print_scale()

set_print_scale()
Set the scale factor for the printed page.

Parameters scale (int) — Print scale of worksheet to be printed.

8.19. worksheet.set_start_page() 117

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

Set the scale factor of the printed page. Scale factors in the range 10 <= $scale <= 400 are
valid:

worksheetl.set print scale(50)
worksheet2.set print scale(75)
worksheet3.set print scale(300)
worksheet4.set print scale(400)

The default scale factor is 100. Note, set print scale() does not affect the scale of the
visible page in Excel. For that you should use set zoom().

Note also that although it is valid to use both fit to pages() and set print scale() on
the same worksheet Excel only allows one of these options to be active at a time. The last method
call made will set the active option.

8.21 worksheet.print_black_and_white()
print_black_and_white()

Set the worksheet to print in black and white.
Set the option to print the worksheet in black and white:

worksheet.print black and white()

8.22 worksheet.set_h_pagebreaks|()
set_h_pagebreaks (breaks)
Set the horizontal page breaks on a worksheet.
Parameters breaks (/ist) — List of page break rows.

The set h pagebreaks () method adds horizontal page breaks to a worksheet. A page break
causes all the data that follows it to be printed on the next page. Horizontal page breaks act
between rows.

The set h pagebreaks () method takes a list of one or more page breaks:

worksheetl.set v pagebreaks([20])
worksheet2.set v pagebreaks([20, 40, 60, 80, 100])

To create a page break between rows 20 and 21 you must specify the break at row 21. However
in zero index notation this is actually row 20. So you can pretend for a small while that you are
using 1 index notation:

worksheet.set h pagebreaks([20])

Note: Note: If you specify the “fit to page” option viathe fit to pages () method it will override
all manual page breaks.

There is a silent limitation of 1023 horizontal page breaks per worksheet in line with an Excel
internal limitation.

118 Chapter 8. The Worksheet Class (Page Setup)

https://docs.python.org/3/library/stdtypes.html#list

Creating Excel files with Python and XlsxWriter, Release 3.1.9

8.23 worksheet.set_v_pagebreaks()

set_v_pagebreaks (breaks)
Set the vertical page breaks on a worksheet.
Parameters breaks (/ist) — List of page break columns.

The set v _pagebreaks () method is the same as the above set h pagebreaks() method
except it adds page breaks between columns.

8.23. worksheet.set_v_pagebreaks() 119

https://docs.python.org/3/library/stdtypes.html#list

Creating Excel files with Python and XisxWriter, Release 3.1.9

120 Chapter 8. The Worksheet Class (Page Setup)

CHAPTER
NINE

THE FORMAT CLASS

This section describes the methods and properties that are available for formatting cells in Excel.

The properties of a cell that can be formatted include: fonts, colors, patterns, borders, alignment
and number formatting.

® 00 formats.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 IR - R
Al 1| @ @ (= fx| Fonts v
. B | C | D | E |=

L

Fonts

FONTS

FONTS

Font color

Fills

Barders |
Bold

ftalic

Bold and Italic

==
N,_lnmm-qmm-hwm

4 4 e l Sh!!tll |||

Mormal View Ready o

9.1 Creating and using a Format object

Cell formatting is defined through a Format object. Format objects are created by calling the
workbook add format () method as follows:

121

Creating Excel files with Python and XisxWriter, Release 3.1.9

cell formatl
cell format2

workbook.add format()
workbook.add format(props)

There are two ways of setting Format properties: by using the object interface or by setting the
property as a dictionary of key/value pairs in the constructor. For example, a typical use of the
object interface would be as follows:

cell format = workbook.add format()
cell format.set bold()
cell format.set font color('red")

By comparison the properties can be set by passing a dictionary of properties to the
add format () constructor:

cell format = workbook.add format({'bold': True, 'font color': 'red'})

In general the key/value interface is more flexible and clearer than the object method and is the
recommended method for setting format properties. However, both methods produce the same
result.

Once a Format object has been constructed and its properties have been set it can be passed as
an argument to the worksheet write () methods as follows:

worksheet.write 0

(, 'Foo', cell format
worksheet.write string(

(

(

_)
, 'Bar', cell format)
, 3, cell format)
v cell format)

worksheet.write number

, 0
1, 0
2, 0

worksheet.write blank (3, ©

Formats can also be passed to the worksheet set row() and set column() methods to define

the default formatting properties for a row or column:

worksheet.set row(0, 18, cell format)
worksheet.set column('A:D', 20, cell format)

9.2 Format Defaults
The default Excel 2007+ cell format is Calibri 11 with all other properties off.
In general a format method call without an argument will turn a property on, for example:

cell format = workbook.add format()

cell format.set bold()
cell format.set bold(True)

Since most properties are already off by default it isn’t generally required to turn them off. However,
it is possible if required:

cell format.set bold(False)

122 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

9.3 Modifying Formats

Each unique cell format in an XlsxWriter spreadsheet must have a corresponding Format object. It
isn’t possible to use a Format with awrite () method and then redefine it for use at a later stage.
This is because a Format is applied to a cell not in its current state but in its final state. Consider
the following example:

cell format = workbook.add format({'bold': True, 'font color': 'red'})
worksheet.write('Al', 'Cell Al', cell format)

cell format.set font color('green')
worksheet.write('B1', 'Cell B1', cell format)

Cell A1 is assigned a format which initially has the font set to the color red. However, the color is
subsequently set to green. When Excel displays Cell A1 it will display the final state of the Format
which in this case will be the color green.

9.4 Number Format Categories

The set num format () method, shown below, is used to set the number format for numbers:

import xlsxwriter

workbook = xlsxwriter.Workbook('currency format.xlsx")
worksheet = workbook.add worksheet()

currency format = workbook.add format({'num format': '$#,##0.00'})
worksheet.write('Al', 1234.56, currency format)

workbook.close()

If the number format you use is the same as one of Excel’s built in number formats then it will have
a number category such as General, Number, Currency, Accounting, Date, Time, Percentage,
Fraction, Scientific, Text, Special or Custom. In the case of the example above the formatted
output shows up as a Number category:

9.3. Modifying Formats 123

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NN ™ currency_format.xlsx
| A Home | Layout | Tables | Charts | SmartArt | 3 A i~
. Edit : Font g.ﬁllgnmant : Mumber : :
 camioan o[|o] [, [[1]
- - General 'E
 Paste §IB|I|QH&||£_I_J§ Mign
A 2| B & (= fx| 123456 Currency -
] 5 B | C | D Accounting ¢ [=]
2 Time I
3 Percentage -
Fraction
4 Scientific
5 Text
6 Special
7 Custom...
B T
| et [i
i [+ | |
Mormal ¥iew Ready A

If we wanted it to have a different category, such as Currency, then we would have to match the
number format string with the number format used by Excel. The easiest way to do this is to open
the Number Formatting dialog in Excel and set the format that you want:

124 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Format Cells

Category: Sample
General $1,234.56
Number
: .
Accounting Decimal places: 2 *
-ﬁ?: Currency symbaol:
Percentage $ English (United States)
Fraction
Scientific Megative numbers:
Text -$1,234.10
Special $1,234.10
Custom ($1,234.10)
(81,234.10)

Currency formats are used for general monetary values. Use Accounting formats to align
decimal points in a column.

Then, while still in the dialog, change to Custom. The format displayed is the format used by Excel.

9.4. Number Format Categories 125

Creating Excel files with Python and XisxWriter, Release 3.1.9

Format Cells

Category: Sample

General $1,234.56

Number

Currency Tvpe:

. ype:

Accounting

Date [§5-400]# ##0.00

Time

Percentage General

Fraction o

Scientific 0.00

Text & HED

Special & #80.00
###0_); (# ##0)

#4840 _);[Red] (# ##0)

Delete

Type the number format code, using one of the existing codes as a starting point.

If we put the format that we found (' [$$-4091#,##0.00") into our previous example and rerun
it we will get a number format in the Currency category:

import xlsxwriter

workbook = xlsxwriter.Workbook('currency format.xlsx")
worksheet = workbook.add worksheet()

currency format = workbook.add format({'num format': '[$$-409]#,##0.00'})
worksheet.write('Al', 1234.56, currency format)

126

Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

workbook.close()

Here is the output:

[NON | ™ currency_format.xlsx
| . # Home [Layout | Tables | Charts | SmartArt |})| P
Edit : Font gﬁlignment : Mumber

ﬁ . Calibri (Body) |+[11 [+] ' ECurr&ncy e

Paste | E, I | E”d"l'li ',E align l@ b % b | IECunditIunaI

. Formatting
Al 1 0 @ (- fx| 1234.56 v

A A VU IS R ;TN N O E— ———
1 $1,234.56)

2
3
4
3
6
i
8
—

[« < > v JJ| sheets [+ I Il

Mormal ¥iew Ready A

The same process can be used to find format strings for Date or Accountancy formats. However,
you also need to be aware of the OS settings Excel uses for number separators such as the
“grouping/thousands” separator and the “decimal” point. See the next section for details.

9.5 Number Formats in different locales

As shown in the previous section the set num format() method is used to set the number
format for Xlsxwriter formats. A common use case is to set a number format with a “group-
ing/thousands” separator and a “decimal” point:

import xlsxwriter

workbook = xlsxwriter.Workbook('number format.xlsx')
worksheet = workbook.add worksheet()

number format = workbook.add format({'num format': '#,##0.00'})
worksheet.write('Al', 1234.56, number format)

workbook.close()

9.5. Number Formats in different locales 127

Creating Excel files with Python and XisxWriter, Release 3.1.9

In the US locale (and some others) where the number “grouping/thousands” separator is ”;” and
the “decimal” point is ”.” this would be shown in Excel as:

[NN [number_format.xlsx
Home | Layout Tables | Charts | SmartArt 3 v i~
1 @9 @ (- fx| 1234.56 E

A
4 A NN N IS N VU IS ———
0 1,234.56]
2

B zs) L Shee + [

Mormal ¥iew Ready

B

In other locales these values may be reversed or different. They are generally set in the “Region”
settings of Windows or Mac OS. Excel handles this by storing the number format in the file format
in the US locale, in this case #,##0.00, but renders it according to the regional settings of the
host OS. For example, here is the same, unmodified, output file shown above in a German locale:

[NON | ™ number_format.xlsx
Home | Layout Tables | Charts | SmartArt 3 v £~
A1 | & ® (= fx| 123456 |»

I R R BN SO SO U U A o 1
| 1.23456]
2

= [T —— L sreer [N I
Mormal View

Ready

B

And here is the same file in a Russian locale. Note the use of a space as the “grouping/thousands”
separator:

128 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

2

=[]

[number_format.xlsx
A Home | Layout Tables | Charts | SmartArt |}}, v 13-
A1 . fx| 1234,56 >
] B | ¢ | b | E | F |
1234,56

E 44 & F lﬂh!!‘t].‘!'l','

Mormal ¥iew

Ready

In order to replicate Excel’s behavior all XlsxWriter programs should use US locale formatting
which will then be rendered in the settings of your host OS.

9.6 Format methods and Format properties

The following table shows the Excel format categories, the formatting properties that can be ap-
plied and the equivalent object method:

Category | Description Property Method Name
Font Font type "font _name’ set font name()
Font size "font _size’ set font size()
Font color "font color’ set font color()
Bold "bold’ set bold()
Italic "italic’ set italic()
Underline "underline’ set underline()
Strikeout "font strikeout’ | set font strikeout()
Super/Subscript "font script’ set font script()
Number Numeric format "num_format’ set num_format()
Protection | Lock cells "locked’ set locked()
Hide formulas "hidden’ set hidden()
Alignment | Horizontal align "align’ set align()
Vertical align "valign’ set align()
Rotation "rotation’ set rotation()
Text wrap "text _wrap’ set text wrap()
Reading order "reading order’ | set reading order()
Justify last "text justlast’ set text justlast()
Center across "center _across’ set center across()
Indentation "indent’ set indent()
Shrink to fit "shrink’ set shrink()
Pattern Cell pattern "pattern’ set pattern()
Background color | "bg color’ set bg color()
Continued on next page

9.6. Format methods and Format properties

129

Creating Excel files with Python and XisxWriter, Release 3.1.9

Table 9.1 — continued from previous page

Category | Description Property Method Name
Foreground color | 'fg_color’ set fg color()
Border Cell border "border’ set border()
Bottom border "bottom’ set bottom()
Top border "top’ set top()
Left border "left’ set left()
Right border "right’ set right()
Border color "border_color’ set border color()
Bottom color "bottom color’ set bottom color()
Top color "top_color’ set top color()
Left color "left color’ set left color()
Right color "right color’ set right color()

The format properties and methods are explained in the following sections.

9.7 format.set font _name()

set_font_name (fontname)
Set the font used in the cell.

Parameters fontname (string) — Cell font.
Specify the font used used in the cell format:

cell format.set font name('Times New Roman')

e @ format_example.xlsx
| # Home | Layout Tables | Charts | SmartArt | » v L5~
Ad = fx -
VY B | C | D [E]
1 Times New Roman
Sheetl
- e B
Mormal View Ready A

Excel can only display fonts that are installed on the system that it is running on. Therefore it is
best to use the fonts that come as standard such as ‘Calibri’, ‘Times New Roman’ and ‘Courier
New’.

The default font for an unformatted cell in Excel 2007+ is ‘Calibri’.

130 Chapter 9. The Format Class

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.1.9

9.8 format.set _font_size()
set_font_size(size)
Set the size of the font used in the cell.
Parameters size (int) — The cell font size.

Set the font size of the cell format:

cell format = workbook.add format()
cell format.set font size(30)

i & format_example.xlsx
i # Home | Layout | Tables | Charts | SmartArt | »| v -
DS s fx| |~
D e e e e T T e s - A ey —

, |Font Size 30
o L) -

Ready

Excel adjusts the height of a row to accommodate the largest font size in the row. You can also
explicitly specify the height of a row using the set row() worksheet method.

9.9 format.set_font_color()

set_font_color(color)
Set the color of the font used in the cell.

Parameters color (siring) — The cell font color.
Set the font color:

cell format = workbook.add format()

cell format.set font color('red')

worksheet.write(0, 0, 'Wheelbarrow', cell format)

9.8. format.set_font_size() 131

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

0 ®

| | format_example.xlsx

Home | Layout Tables | Charts | SmartArt | 2| v L~

|+

A

A4 1] 0 & (= fx|
B | C

D

[-—

Wheelbarrow

R S.h!!'tl__
| (+) f

Mormal View Ready i

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working

with Colors.

Note: The set font color() method is used to set the color of the font in a cell. To set the
color of a cell use the set bg color() and set pattern() methods.

9.10 format.set_bold()

set_bold()

Turn on bold for the format font.

Set the bold property of the font:

cell format.set bold()

®_@® | format_example.xlsx
Home Layout Tables | Charts SmartArt | 3 v i~
E21 1] 0 & (= fx| K
J A [B8 [€ [D [EENSEN=
1 Bold Text
= PR lihnul| II
Mormal View Ready o

132

Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

9.11 format.set italic()
set_italic()

Turn on italic for the format font.
Set the italic property of the font:

cell format.set italic()

| format_sxample.xlsx
Home Layout Tables | Charts | SmartArt | 3 v -
0 @& (- K& |~

W SN N SN O N — N E=

Ad
B A
Italic Text

ﬂMI-l

FREE-— ihutl_ Il
| [+ | |

Mormal View Ready

9.12 format.set_underline()

set_underline()
Turn on underline for the format.

Parameters style (/nt) — Underline style.

Set the underline property of the format:

cell format.set underline()

9.11. format.set_italic() 133

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

@9 | format_example.xlsx
Home | Layout Tables | Charts | SmartArt | 2| v L~
E21 41D & (= fx| E
J A [B [€ | D HES-
1 Underlined text
2
— 4 4 & Kl 5h!!‘tl
------ Nmmal'uiarwl Ru_l |” A

The available underline styles are:
* 1 = Single underline (the default)
» 2 = Double underline
+ 33 = Single accounting underline

* 34 = Double accounting underline

9.13 format.set_font_strikeout()

set_font_strikeout()
Set the strikeout property of the font.

®_@® | format_example.xlsx
Home Layout Tables | Charts SmartArt | 3 v i~
s 10 & (~ & As
J A | 8 [€€ | D NG
1 |StrikecutText
| 2
— PR E—— Sheetl
----- . B sheet1 / + IR [i
ormal View Ready o

134 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

9.14 format.set_font_script()

set_font_script()
Set the superscript/subscript property of the font.
The available options are:
* 1 = Superscript
» 2 = Subscript

e _® format_example.xlsx
I # Home I Layout _ Tables I Charts I SmartArt I » v B
A : fx -
_ | B C D E
1 Superscript™
—_1 Sheetl
EEJ Mormal View ReadH A

This property is generally only useful when used in conjunction with write rich string().

9.15 format.set hum_format()

set_num_format (format_string)
Set the number format for a cell.

Parameters format_string (siring) — The cell number format.

This method is used to define the numerical format of a number in Excel. It controls whether a
number is displayed as an integer, a floating point number, a date, a currency value or some other
user defined format.

The numerical format of a cell can be specified by using a format string or an index to one of
Excel’s built-in formats:

cell formatl
cell format2

workbook.add format()
workbook.add format()

cell formatl.set num format('d mmm yyyy') # Format string.
cell format2.set num format(0xOF) # Format index.

Format strings can control any aspect of number formatting allowed by Excel:

9.14. format.set_font_script() 135

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

cell format0l.set num format('0.000")
worksheet.write(1l, 0, 3.1415926, cell format01l)

cell format02.set num_ format('#,##0")
worksheet.write(2, 0, 1234.56, cell format02)

cell format@3.set num format('#,##0.00")
worksheet.write(3, 0, 1234.56, cell format03)

cell format@4.set num format('0.00")
worksheet.write(4, 0, 49.99, cell format04)

cell format05.set num format('mm/dd/yy")
worksheet.write(5, 0, 36892.521, cell format05)

cell format06.set num format('mmm d yyyy')
worksheet.write(6, 0, 36892.521, cell format06)

cell format07.set num format('d mmmm yyyy')
worksheet.write(7, 0, 36892.521, cell format07)

-> 3.142

-> 1,235

-> 1,234.56

-> 49,99

-> 01/01/01

-> Jan 1 2001

-> 1 January 2001

cell format08.set num format('dd/mm/yyyy hh:mm AM/PM")

worksheet.write(8, 0, 36892.521, cell format08)

-

\Y

01/01/2001 12:30 AM

cell format09.set num_format('0 "dollar and" .00 "cents"')

worksheet.write(9, 0, 1.87, cell format09)

Conditional numerical formatting.

-> 1 dollar and .87 cents

cell formatlO.set num format('[Green]General;[Red]-General;General')

worksheet.write(10, 0, 123, cell formatl0) # >
worksheet.write(11, 0, -45, cell formatlQ) #
worksheet.write(12, 0, 0, cell formatl0) #

A

Zip code.
cell formatll.set num format('00000")
worksheet.write(13, 0, 1209, cell formatll)

0 Green
0 Red
0 Default color

136

Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e 00 || number_formats.xlsx
Home | Layout | Tables | Charts | SmartArt | »| v LF-
All 1 0 & (= fx| 123 E
_-JM B | C | D | E =
2 3.142
3 1,235
4 1,234.56
3 49.99
b 01/01/01
i Jan 12001
8 1 January 2001
9 01/01/2001 12:30 PM
10 1 dollar and .87 cents
]
12 45/
13 v}
— << Psheen J+ T i

EEEE (2] [
Bl 0 Mormal View Ready o

The number system used for dates is described in Working with Dates and Time.

The color format should have one of the following values:

[Black] [Blue] [Cyan] [Green] [Magenta] [Red] [White] [Yellow]

For more information refer to the Microsoft documentation on cell formats.

For information on how to get a number format to show up as one of the number format categories
such as Currency, Accounting, Date, Time, Percentage, Fraction, Scientific or Text, see Number
Format Categories, above.

For backwards compatibility XlsxWriter also supports Excel’s built-in formats which are set via an
index number, rather than a string:

cell format.set num format(3) # Same as #,##0

The format indexes and the equivalent strings are shown in the following table:

Index | Format String
0 General

1 0

2 0.00

Continued on next page

9.15. format.set_num_format() 137

https://support.microsoft.com/en-us/office/create-a-custom-number-format-78f2a361-936b-4c03-8772-09fab54be7f4?ui=en-us&rs=en-us&ad=us

Creating Excel files with Python and XisxWriter, Release 3.1.9

Table 9.2 — continued from previous page
Index | Format String

3 #,##0

4 #,##0.00

5 ($#,##0), ($#,##0)

6 ($#,##0) ; [Red] ($#,##0)
7 ($#,##0.00); ($#,##0.00)
8 ($#,##0.00),; [Red] ($#,##0.00)
9 0%

10 0.00%

11 0.00E+00

12 # 7/?

13 # ??2/?7

14 m/d/yy

15 d-mmm-yy

16 d-mmm

17 mmm-yy

18 h:mm AM/PM

19 h:mm:ss AM/PM
20 h:mm

21 h:mm:ss

22 m/d/yy h:mm

37 (#,##0) ; (#,##0)

38 (#,##0) ; [Red] (#,##0)

39 (#,##0.00) ; (#,##0.00)

40 (#,##0.00) ; [Red] (#,##0.00)

41 (R #,#H0_) (* (#,##0); (¥ "-"); (@)

42 | ($* #,##0_); ($* (#,##0);_($* "-"); (@)

43 C(* #,##0.00); (* (#,##£0.00); (* "-"??7); (@)
44 (S #,##0.00); ($* (#,##0.00); ($* "-"??7), (@)
45 mm:ss

46 [h]:mm:ss

47 mm:ss.0
48 ##0.0E+0
49 @

Numeric formats 23 to 36 are not documented by Microsoft and may differ in international versions.
The listed date and currency formats may also vary depending on system settings.

The dollar sign in the above format usually appears as the defined local currency symbol. To get
more locale specific formatting see see Number Format Categories, above.

9.16 format.set_locked()

set_locked (state)
Set the cell locked state.

138 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Parameters state (bool) — Turn cell locking on or off. Defaults to True.

This property can be used to prevent modification of a cell’s contents. Following Excel’s conven-
tion, cell locking is turned on by default. However, it only has an effect if the worksheet has been
protected using the worksheet protect () method:

locked = workbook.add format()
locked.set locked(True)

unlocked = workbook.add format()
unlocked.set locked(False)

worksheet.protect()
worksheet.write('Al', '=1+2', locked)

worksheet.write('A2', '=1+2', unlocked)

9.17 format.set_hidden()
set_hidden()
Hide formulas in a cell.

This property is used to hide a formula while still displaying its result. This is generally used to hide
complex calculations from end users who are only interested in the result. It only has an effect if
the worksheet has been protected using the worksheet protect () method:

hidden = workbook.add format()
hidden.set hidden()

worksheet.protect()

worksheet.write('Al', '=1+2', hidden)

9.18 format.set_align()
set_align(alignment)
Set the alignment for data in the cell.

Parameters alignment (siring) — The vertical and or horizontal alignment direc-
tion.

This method is used to set the horizontal and vertical text alignment within a cell. The following
are the available horizontal alignments:

9.17. format.set_hidden() 139

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

Horizontal alignment
left

center

right

fill

justify

center_across
distributed

The following are the available vertical alignments:

Vertical alignment
top

vcenter

bottom

vjustify
vdistributed

As in Excel, vertical and horizontal alignments can be combined:

cell format = workbook.add format()

cell format.set align('center"')
cell format.set align('vcenter')

worksheet.set row(0, 70)
worksheet.set column('A:A', 30)

worksheet.write(0, 0, 'Some Text', cell format)

140 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[NN [format_example.xlsx
| # Home | Layout _ Tables | Charts | SmartArt | ¥ v L5~
A34 - fx =
| A P s C s D
Some Text
1
2
3 |
4
5 |
6
7]
5
q

4 4 B P Sh +
)

Mormal View Ready S

Text can be aligned across two or more adjacent cells using the 'center _across’ property.
However, for genuine merged cells it is better to use the merge range () worksheet method.

The 'vjustify’ (vertical justify) option can be used to provide automatic text wrapping in a cell.
The height of the cell will be adjusted to accommodate the wrapped text. To specify where the text
wraps use the set text wrap() method.

9.19 format.set_center_across()

set_center_across()
Center text across adjacent cells.

Text can be aligned across two or more adjacent cells using the set center across() method.
This is an alias for the set_align(’center_across’) method call.

Only the leftmost cell should contain the text. The other cells in the range should be blank but
should include the formatting:

cell format = workbook.add format()
cell format.set center across()

worksheet.write(1l, 1, 'Center across selection', cell format)

9.19. format.set_center_across() 141

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.write blank(1, 2, '', cell format)

For actual merged cells it is better to use the merge range () worksheet method.

9.20 format.set_text_wrap()

set_text_wrap()
Wrap text in a cell.

Turn text wrapping on for text in a cell:

cell format = workbook.add format()
cell format.set text wrap()

worksheet.write(0, 0, "Some long text to wrap in a cell", cell format)

If you wish to control where the text is wrapped you can add newline characters to the string:

worksheet.write(2, 0, "It's\na bum\nwrap", cell format)

[NON [% format_example.xlsx
| # Home | Layout | Tables | Charts | SmartArt | 3| v i~
A34 L0 & (=~ fx -
iy e | < | .0 | E | E |-
Some long
text to
wrapina
1 |cell
2
It's
a bum
3 |wrap
4
5
b
i
R -
e] seett SO [i
Mormal View Ready

|
||
=1
B,

Excel will adjust the height of the row to accommodate the wrapped text, as shown in the image
above. This can be useful but it can also have unwanted side-effects:

142 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

» Objects such as images or charts that cross the automatically adjusted cells will not be
scaled correctly. See Object scaling due to automatic row height adjustment.

* You may not want the row height to change. In that case you should set the row height to a
non-default value such as 15.001.

9.21 format.set_rotation()

set_rotation(angle)
Set the rotation of the text in a cell.

Parameters angle (inf) — Rotation angle in the range -90 to 90 and 270.
Set the rotation of the text in a cell. The rotation can be any angle in the range -90 to 90 degrees:

cell format = workbook.add format()
cell format.set rotation(30)

worksheet.write(0, 0, 'This text is rotated', cell format)

®_® [% format_example.xlsx
| # Home | Layout | Tables | Charts | SmartArt |}}|v £~
A34 1 8 & (~ fx| -
4 AW TN U N W — U ———, _— -
2
%‘d'
1|
2
3
4
5
7]
i
8
9
< e sheen [+ N [
Mormal View Ready A

The angle 270 is also supported. This indicates text where the letters run from top to bottom.

9.21. format.set_rotation() 143

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

9.22 format.set_reading_order()
set_reading_order (direction)
Set the reading order for the text in a cell.
Parameters direction (int) — Reading order direction.

Set the text reading direction. This is useful when creating Arabic, Hebrew or other near or far east-
ern worksheets. It can be used in conjunction with the Worksheet right to left() method to
also change the direction of the worksheet.

Home Insert Draw Page Layout = Share [J1 Comments

N8 . fr v
E D C B A

English text / 4= =3 1
e pai f English text| 2
English text / 4= =3 3

4

W 0O =] h

+ Sheet2 Sheetl
HH 1L L + 125%

9.23 format.set_indent()
set_indent (/evel)
Set the cell text indentation level.
Parameters level (int) — Indentation level.

This method can be used to indent text in a cell. The argument, which should be an integer, is
taken as the level of indentation:

cell formatl
cell format2

workbook.add format()
workbook.add format()

144 Chapter 9. The Format Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

cell formatl.set indent(1)
cell format2.set indent(2)

worksheet.write('Al', 'This text is indented 1 level', cell formatl)

worksheet.write('A2', 'This text is indented 2 levels', cell format2)
NN IR .1 81,111 2.1 S
Home | Layout | Tables | Charts | SmartArt | 3| v Lt~
A30 0 o (- i v
] . B | Ccl=
1 This text is indented 1 level
2 This text is indented 2 levels
3
4
5
7]
7
8
9
10
11
12
1>
hlld " ll- .Irl l ih!!‘tll ||I
ormal View Ready A

Indentation is a horizontal alignment property. It will override any other horizontal properties but it
can be used in conjunction with vertical properties.

9.24 format.set_shrink()

set_shrink()
Turn on the text “shrink to fit” for a cell.

This method can be used to shrink text so that it fits in a cell:

cell format = workbook.add format()
cell format.set shrink()

worksheet.write(0, 0, 'Honey, I shrunk the text!', cell format)

9.24. format.set_shrink() 145

Creating Excel files with Python and XisxWriter, Release 3.1.9

9.25 format.set_text justlast()

set_text_justlast()
Turn on the justify last text property.

Only applies to Far Eastern versions of Excel.

9.26 format.set_pattern()

set_pattern (index)
Parameters index (int) — Pattern index. 0 - 18.
Set the background pattern of a cell.

The most common pattern is 1 which is a solid fill of the background color.

9.27 format.set_bg_color()

set_bg_color(color)
Set the color of the background pattern in a cell.

Parameters color (siring) — The cell font color.

The set bg color () method can be used to set the background color of a pattern. Patterns are
defined via the set pattern() method. If a pattern hasn’t been defined then a solid fill pattern
is used as the default.

Here is an example of how to set up a solid fill in a cell:

cell format = workbook.add format()

cell format.set pattern(l) # This is optional when using a solid fill.
cell format.set bg color('green')

worksheet.write('Al', 'Ray', cell format)

e 00 | set_bg_color.xlsx

Home | Layout | Tables | Charts | SmartArt | ¥ v I
B7 10 & (=~ A& v

AV p T N WU —N—— -

1

2

Y [svees [

— Mormal View Rieady e

146 Chapter 9. The Format Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XlsxWriter, Release 3.1.9

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors.

9.28 format.set_fg_color()

set_fg_color(color)
Set the color of the foreground pattern in a cell.

Parameters color (siring) — The cell font color.
The set fg color() method can be used to set the foreground color of a pattern.

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors.

9.29 format.set_border()

set_border(style)
Set the cell border style.

Parameters style (int) — Border style index. Default is 1.

Individual border elements can be configured using the following methods with the same parame-
ters:

» set bottom()
« set top()

» set left()

« set right()

A cell border is comprised of a border on the bottom, top, left and right. These can be set to the
same value using set border () or individually using the relevant method calls shown above.

The following shows the border styles sorted by XisxWriter index number:

Index | Name Weight | Style

0 None 0

1 Continuous 1 | e
2 Continuous 2 | e
3 Dash 1 - - - - - -
4 Dot 1

5 Continuous L J N S
6 Double 3 S —
7 Continuous 0 | --eemeeaaas
8 Dash 2 - - - - o=
9 Dash Dot 1 - - -
10 Dash Dot 2 - - -
11 Dash Dot Dot | 1 - -
12 Dash Dot Dot | 2 - .-
13 SlantDash Dot | 2 / - .]/ -

9.28. format.set_fg_color() 147

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

The following shows the borders in the order shown in the Excel Dialog:

Index | Style Index | Style

0 None 12 - -
A 13 /- ./ -
4]10 - .- -
11 S 8 - - - - - -
9 S 2 e
3 - - - - - - 5 | -eeeeiie---
| R 6 ===========

9.30 format.set_bottom()

set_bottom(style)
Set the cell bottom border style.

Parameters style (int) — Border style index. Default is 1.

Set the cell bottom border style. See set border () for details on the border styles.

9.31 format.set_top()

set_top(style)
Set the cell top border style.

Parameters style (int) — Border style index. Default is 1.

Set the cell top border style. See set border() for details on the border styles.

9.32 format.set_left()

set_left(style)
Set the cell left border style.
Parameters style (/nt) — Border style index. Default is 1.

Set the cell left border style. See set border () for details on the border styles.

9.33 format.set_right()
set_right (style)
Set the cell right border style.
Parameters style (int) — Border style index. Default is 1.

Set the cell right border style. See set border () for details on the border styles.

148 Chapter 9. The Format Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

9.34 format.set_border_color()

set_border_color (color)
Set the color of the cell border.

Parameters color (siring) — The cell border color.

Individual border elements can be configured using the following methods with the same parame-
ters:

» set bottom color()
« set top color()
» set left color()

set right color()

Set the color of the cell borders. A cell border is comprised of a border on the bottom, top, left and
right. These can be set to the same color using set border color() orindividually using the
relevant method calls shown above.

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors.

9.35 format.set_bottom_color()

set_bottom_color(color)
Set the color of the bottom cell border.

Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

9.36 format.set_top_color()

set_top_color(color)
Set the color of the top cell border.

Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

9.37 format.set_left_color()

set_left_color(color)
Set the color of the left cell border.

Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

9.34. format.set_border_color() 149

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

9.38 format.set_right_color()

set_right_color(color)
Set the color of the right cell border.
Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

9.39 format.set_diag_border()
set_diag_border (style)
Set the diagonal cell border style.
Parameters style (/nt) — Border style index. Default is 1.
Set the style for a diagonal border. The style is the same as those used in set border().

See Example: Diagonal borders in cells.

o0 ® [diag_border.xlsx
| A Home | Layout | Tables | Charts | SmartArt |) v fi~
A22 110 O (- & v

T & A N N < N " ————" — " -
Text—"
TeRt—___

Tex—_

Teg——_
[« < > »i L sheers [+ S I

Mormal View Ready e

9.40 format.set_diag_type()

set_diag_type (style)
Set the diagonal cell border type.

150 Chapter 9. The Format Class

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Parameters style (/nt) — Border type, 1-3. No default.
Set the type of the diagonal border. The style should be one of the following values:
1. From bottom left to top right.
2. From top left to bottom right.

3. Same as type 1 and 2 combined.

9.41 format.set_diag_color()
set_diag_color(color)
Set the color of the diagonal cell border.
Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

9.42 format.set_quote_prefix()

set_quote prefix()
Turn on quote prefix for the format.

Set the quote prefix property of a format to ensure a string is treated as a string after editing. This
is the same as prefixing the string with a single quote in Excel. You don’t need to add the quote to
the string but you do need to add the format.

9.41. format.set_diag_color() 151

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

152 Chapter 9. The Format Class

CHAPTER
TEN

THE CHART CLASS

The Chart module is a base class for modules that implement charts in XlsxWriter. The informa-
tion in this section is applicable to all of the available chart subclasses, such as Area, Bar, Column,
Doughnut, Line, Pie, Scatter, Stock and Radar.

A chart object is created via the Workbook add chart () method where the chart type is speci-
fied:

chart = workbook.add chart({'type': 'column'})

Itis then inserted into a worksheet as an embedded chart using the insert chart () Worksheet
method:

worksheet.insert chart('A7', chart)

Or it can be set in a chartsheet using the set chart () Chartsheet method:

chartsheet = workbook.add chartsheet()
...
chartsheet.set chart(chart)

The following is a small working example or adding an embedded chart:

import xlsxwriter

workbook = xlsxwriter.Workbook('chart.xlsx")
worksheet = workbook.add worksheet()

Create a new Chart object.
chart = workbook.add chart({'type': 'column'})

Write some data to add to plot on the chart.
data = [

[ll 2’ 3’ 4! 5]!

[2, 4, 6, 8, 1017,

[3, 6, 9, 12, 15],
]

worksheet.write column('Al', datal[0])
worksheet.write column('Bl', datall])
worksheet.write column('Cl', datal2])

153

Creating Excel files with Python and XisxWriter, Release 3.1.9

Configure the chart. In simplest case we add one or more data series.

chart.add series({'values': '=Sheetl!A1:$A%$5"'})
chart.add series({'values': '=Sheetl!B1:B5'})
chart.add series({'values': '=Sheetl!C1:C5'})

Insert the chart into the worksheet.
worksheet.insert chart('A7', chart)

workbook.close()

16

14

12

10
W Seriesl

B Series2

W Series3

The supported chart types are:
» area: Creates an Area (filled line) style chart.
* bar: Creates a Bar style (transposed histogram) chart.
« column: Creates a column style (histogram) chart.
« line: Creates a Line style chart.
» pie: Creates a Pie style chart.
» doughnut: Creates a Doughnut style chart.
« scatter: Creates a Scatter style chart.
» stock: Creates a Stock style chart.
» radar: Creates a Radar style chart.
Chart subtypes are also supported for some chart types:

workbook.add chart({'type': 'bar', 'subtype': 'stacked'})

The available subtypes are:

area
stacked
percent stacked

154 Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

bar
stacked
percent stacked

column
stacked
percent stacked

scatter
straight with markers
straight
smooth with markers
smooth

line
stacked
percent stacked

radar
with _markers
filled

Methods that are common to all chart types are documented below. See Working with Charts for
chart specific information.

10.1 chart.add_series()
add_series (options)
Add a data series to a chart.
Parameters options (dict) — A dictionary of chart series options.

In Excel a chart series is a collection of information that defines which data is plotted such as
values, axis labels and formatting

For an XlsxWriter chart object the add series() method is used to set the properties for a
series:

chart.add series({

'categories': '=Sheetl!A1:$A%$5',
'values': '=Sheetl1!B1:B5"',
'line': {'color': 'red'},

}

Or using a list of values instead of category/value formulas:
[sheetname, first row, first col, last row, last col]
chart.add series({

‘categories': ['Sheetl', 0, 0, 4, 0],

'values': ['Sheetl', 0, 1, 4, 11,

‘line': {'color': 'red'},

}

10.1. chart.add_series() 155

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

As shown above the categories and values can take either a range formula such as
=Sheetl!A2:A7 or, more usefully when generating the range programmatically, a list with
zero indexed row/column values.

The series options that can be set are:

values: This is the most important property of a series and is the only mandatory option for
every chart object. This option links the chart with the worksheet data that it displays. The
data range can be set using a formula as shown in the first example above or using a list of
values as shown in the second example.

categories: This sets the chart category labels. The category is more or less the same
as the X axis. In most chart types the categories property is optional and the chart will
just assume a sequential series from 1. .n.

name: Set the name for the series. The name is displayed in the formula bar. For non-
Pie/Doughnut charts it is also displayed in the legend. The name property is optional and
if it isn’t supplied it will default to Series 1..n. The name can also be a formula such as
=Sheetl!A1 or a list with a sheetname, row and column such as ['Sheetl’, 0, 0].

line: Set the properties of the series line type such as color and width. See Chart format-
ting: Line.

border: Set the border properties of the series such as color and style. See Chart format-
ting: Border.

fill: Set the solid fill properties of the series such as color. See Chart formatting: Solid
Fill.

pattern: Set the pattern fill properties of the series. See Chart formatting: Pattern Fill.
gradient: Set the gradient fill properties of the series. See Chart formatting: Gradient Fill.

marker: Set the properties of the series marker such as style and color. See Chart series
option: Marker.

trendline: Set the properties of the series trendline such as linear, polynomial and moving
average types. See Chart series option: Trendline.

smooth: Set the smooth property of a line series.

y error_bars: Set vertical error bounds for a chart series. See Chart series option: Error
Bars.

X_error _bars: Set horizontal error bounds for a chart series. See Chart series option:
Error Bars.

data_ labels: Set data labels for the series. See Chart series option: Data Labels.
points: Set properties for individual points in a series. See Chart series option: Points.

invert if negative: Invert the fill color for negative values. Usually only applicable to
column and bar charts.

overlap: Set the overlap between series in a Bar/Column chart. The range is +/- 100. The
default is 0:

156

Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart.add series({

'categories': '=Sheetl!A1:$A%$5',
'values': '=Sheetl!B1:B5"',
‘overlap': 10,

}

Note, it is only necessary to apply the overlap property to one series in the chart.

» gap: Set the gap between series in a Bar/Column chart. The range is 0 to 500. The default

is 150:
chart.add series({
'categories': '=Sheetl!A1:$A%$5',
'values': '=Sheetl1!B1:B5"',
‘gap': 200,

}

Note, it is only necessary to apply the gap property to one series in the chart.

More than one series can be added to a chart. In fact, some chart types such as stock require
it. The series numbering and order in the Excel chart will be the same as the order in which they
are added in XlsxWriter.

It is also possible to specify non-contiguous ranges:

chart.add series({
'categories': '=(Sheetl!A1:A9,Sheetl!A14:A25)",
'values': '=(Sheet1!B1:B9,Sheetl!B14:B25) ",

}

10.2 chart.set_x_axis()
set_x_axis (options)
Set the chart X axis options.
Parameters options (dict) — A dictionary of axis options.
The set x axis() method is used to set properties of the X axis:

chart.set x axis({

'name': 'Earnings per Quarter’',
‘name_font': {'size': 14, 'bold': True},
‘num font': {'italic': True },

}

10.2. chart.set_x_axis() 157

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

16

14

12

10

o N OB O
T

1 2 3 4
Earnings per Quarter

W Seriesl
B Series2

W Series3

The options that can be set are:

name
name_font
name_layout
num_font
num_format

line

fill

pattern
gradient

min

max

minor unit
major_unit
interval unit
interval tick
crossing
position axis
reverse

log base

label position
label align
major _gridlines
minor_gridlines
visible

date axis

text axis
minor_unit type
major_unit type
minor_tick mark
major_tick mark
display units
display units visible

These options are explained below. Some properties are only applicable to value, category or

158

Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

date axes (this is noted in each case). See Chart Value and Category Axes for an explanation of
Excel’s distinction between the axis types.

* name: Set the name (also known as title or caption) for the axis. The name is displayed
below the X axis. (Applicable to category, date and value axes.):

chart.set x axis({'name': 'Earnings per Quarter'})

This property is optional. The default is to have no axis name.

The name can also be a formula such as =Sheet1!$A%$1 or a list with a sheetname, row
and column such as ['Sheetl’, 0, 0].

« name_font: Set the font properties for the axis name. (Applicable to category, date and
value axes.):

chart.set x axis({'name font': {'bold': True, 'italic': True}})

See the Chart Fonts section for more details on font properties.

« name_layout: Setthe (x, y) position of the axis caption in chart relative units. (Applica-
ble to category, date and value axes.):

chart.set x axis({

'name': 'X axis',

'name_layout': {
'x': 0.34,
'y': 0.85,

}

See the Chart Layout section for more details.

« num_font: Set the font properties for the axis numbers. (Applicable to category, date and
value axes.):

chart.set x axis({'name font': {'bold': True, 'italic': True}})

See the Chart Fonts section for more details on font properties.

« num format: Set the number format for the axis. (Applicable to category, date and value
axes.):

chart.set x axis({'num format': '#,##0.00'})
chart.set y axis({'num format': '0.00%'})

The number format is similar to the Worksheet Cell Format num_format apart from the fact
that a format index cannot be used. An explicit format string must be used as shown above.
See set num format() for more information.

« line: Set the properties of the axis line type such as color and width. See Chart formatting:
Line:

chart.set x axis({'line': {'none': True}})

10.2. chart.set_x_axis() 159

Creating Excel files with Python and XisxWriter, Release 3.1.9

fill: Set the solid fill properties of the axis such as color. See Chart formatting: Solid Fill.
Note, in Excel the axis fill is applied to the area of the numbers of the axis and not to the
area of the axis bounding box. That background is set from the chartarea fill.

pattern: Set the pattern fill properties of the axis. See Chart formatting: Pattern Fill.
gradient: Set the gradient fill properties of the axis. See Chart formatting: Gradient Fill.
min: Set the minimum value for the axis range. (Applicable to value and date axes only.):

chart.set x axis({'min': 3, 'max': 6})

80

70

60
. A
40 \

30
20 \
10

T T T T T)
3 35 4 4.5 5 5.5 6

max: Set the maximum value for the axis range. (Applicable to value and date axes only.)

minor unit: Set the increment of the minor units in the axis range. (Applicable to value
and date axes only.):

chart.set x axis({'minor unit': 0.4, 'major unit': 2})
major _unit: Set the increment of the major units in the axis range. (Applicable to value
and date axes only.)

interval unit: Set the interval unit for a category axis. Should be an integer value.
(Applicable to category axes only.):

chart.set x axis({'interval unit': 5})

interval tick: Set the tick interval for a category axis. Should be an integer value.
(Applicable to category axes only.):

chart.set x axis({'interval tick': 2})

crossing: Set the position where the y axis will cross the x axis. (Applicable to all axes.)

The crossing value can be a numeric value or the strings "'max’ or 'min’ to set the
crossing at the maximum/minimum axis:

160

Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart.set x axis({'crossing': 3})
chart.set y axis({'crossing': 'max'})

For category axes the numeric value must be an integer to represent the category num-
ber that the axis crosses at. For value and date axes it can have any value associated with
the axis. See also Chart Value and Category Axes.

If crossing is omitted (the default) the crossing will be set automatically by Excel based on
the chart data.

» position_axis: Position the axis on or between the axis tick marks. (Applicable to cate-
gory axes only.)

There are two allowable values on_tick and between:

chart.set x axis({'position axis': 'on tick'})
chart.set x axis({'position axis': 'between'})

» reverse: Reverse the order of the axis categories or values. (Applicable to category, date
and value axes.):

chart.set x axis({'reverse': True})

16
14
12

10
M Seriesl

8 M Series2
6 Series3
4
L | "1
T T T T 0
5 4 3 2 1

« log base: Set the log base of the axis range. (Applicable to value axes only.):

chart.set y axis({'log base': 10})

» label position: Set the “Axis labels” position for the axis. The following positions are
available:
next to (the default)
high
low
none

For example:

10.2. chart.set_x_axis() 161

Creating Excel files with Python and XisxWriter, Release 3.1.9

chart.set x axis({'label position': 'high'})
chart.set y axis({'label position': 'low'})

« label align: Align the “Axis labels” the axis. (Applicable to category axes only.)
The following Excel alignments are available:
center (the default)

right
left

For example:

chart.set x axis({'label align': 'left'})

« major gridlines: Configure the major gridlines for the axis. The available properties are:

visible
line

For example:

chart.set x axis({
'major gridlines': {
'visible': True,
'line': {'width': 1.25, 'dash type': 'dash'}
b
})

16 7

14

12 7

10 7 ¥ Seriesl

B Series2

Series3

T
I
+
I
1
I
I
T
I
+
I
|
I
I
T
I
+
I
1

ol

1 2 3 4 5

The visible property is usually on for the X axis but it depends on the type of chart.

The line property sets the gridline properties such as color and width. See Chart Format-
ting.

« minor _gridlines: This takes the same options as major _gridlines above.
The minor gridline visible property is off by default for all chart types.

« visible: Configure the visibility of the axis:

162 Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart.set y axis({'visible': False})

Axes are visible by default.

» date axis: This option is used to treat a category axis with date or time data as a Date
Axis. (Applicable to date category axes only.):

chart.set x axis({'date axis': True})

This option also allows you to set max and min values for a category axis which isn’t allowed
by Excel for non-date category axes.

See Date Category Axes for more details.

» text axis: This option is used to treat a category axis explicitly as a Text Axis. (Applicable
to category axes only.):

chart.set x axis({'text axis': True})

« minor _unit type: For date axis axes, see above, this option is used to set the type of
the minor units. (Applicable to date category axes only.):

chart.set x axis({
‘date _axis': True,
‘minor unit': 4,
‘minor _unit type': 'months’,

}

* major _unit type: Same as minor unit type, see above, but for major axes unit
types.

« minor_tick mark: Setthe axis minor tick mark type/position to one of the following values:

none
inside
outside
Cross (inside and outside)

For example:

chart.set x axis({'major tick mark': 'none',
'minor tick mark': 'inside'})

* major_tick mark: Same as minor_ tick mark, see above, but for major axes ticks.

« display units: Set the display units for the axis. This can be useful if the axis numbers
are very large but you don’t want to represent them in scientific notation. The available
display units are:

hundreds
thousands

ten thousands
hundred thousands
millions

10.2. chart.set_x_axis() 163

Creating Excel files with Python and XisxWriter, Release 3.1.9

ten millions
hundred millions
billions
trillions

Applicable to value axes only.:

chart.set x axis({'display units': 'thousands'})
chart.set y axis({'display units': 'millions'})

Millions
w
(=]

0 1 2 3 4 5 6
Thousands

» display units visible: Control the visibility of the display units turned on by the pre-
vious option. This option is on by default. (Applicable to value axes only.):

chart.set x axis({'display units': ‘'hundreds"',
‘display units visible': False})

10.3 chart.set_y axis()
set_y axis (options)
Set the chart Y axis options.
Parameters options (dict) — A dictionary of axis options.
The set y axis() method is used to set properties of the Y axis.

The properties that can be set are the same as for set x axis, see above.

10.4 chart.set_x2_ axis()
set_x2_axis (options)
Set the chart secondary X axis options.
Parameters options (dict) — A dictionary of axis options.

The set x2 axis() method is used to set properties of the secondary X axis, see
chart secondary axes().

164 Chapter 10. The Chart Class

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

The properties that can be set are the same as for set _x_axis, see above.

The default properties for this axis are:

‘label position': 'none',
‘crossing': "max',
'visible': False,

10.5 chart.set_y2 axis()
set_y2_ axis (options)
Set the chart secondary Y axis options.
Parameters options (dict) — A dictionary of axis options.

The set y2 axis() method is used to set properties of the secondary Y axis, see
chart secondary axes().

The properties that can be set are the same as for set X axis, see above.
The default properties for this axis are:

'major gridlines': {'visible': True}

10.6 chart.combine()

combine (chart)
Combine two charts of different types.
Parameters chart — A chart object created with add chart().

The chart combine () method is used to combine two charts of different types, for example a
column and line chart:

column_chart = workbook.add chart({'type': 'column'})
column chart.add series({...})

line chart = workbook.add chart({'type': 'line'})
line chart.add series({...})

column_chart.combine(line chart)

10.5. chart.set_y2_axis() 165

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

Combined chart - same Y axis

co
o

T 70 /\
E 60
= 50 / \
? 40 / R
% 0 / = Batch 1
E 20 l =—=Batch 2
“ 10

° | T

2 3 4 5 6 7

Test number

See the Combined Charts section for more details.

10.7 chart.set_size()

The set _size() method is used to set the dimensions of the chart. The size properties that can
be set are:

width
height
Xx_scale
y scale
x_offset
y offset

The width and height are in pixels. The default chart width x height is 480 x 288 pixels. The
size of the chart can be modified by setting the width and height or by setting the x_scale
andy scale:

chart.set size({'width': 720, 'height': 576})

Same as:
chart.set size({'x scale': 1.5, 'y scale': 2})

The x_offsetandy offset position the top left corner of the chart in the cell that it is inserted
into.

Note: the x offset and y offset parameters can also be set via the insert chart()
method:

worksheet.insert chart('E2', chart, {'x offset': 25, 'y offset': 10})

10.8 chart.set_title()

set_title(options)
Set the chart title options.

166 Chapter 10. The Chart Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Parameters options (dict) — A dictionary of chart size options.
The set _title() method is used to set properties of the chart title:

chart.set title({'name': 'Year End Results'})

Year End Results

e =
o N B O

W Series1

. B Series2

| I Series3
1 2 3 4 5

The properties that can be set are:

o N R O

* name: Set the name (title) for the chart. The name is displayed above the chart. The name
can also be a formula such as =Sheet1!A1 or a list with a sheetname, row and column
such as ['Sheetl’, 0, 0]. The name property is optional. The default is to have no
chart title.

« name_font: Set the font properties for the chart title. See Chart Fonts.

« overlay: Allow the title to be overlaid on the chart. Generally used with the layout property
below.

« layout: Setthe (x, y) position of the title in chart relative units:

chart.set title({

'name': 'Title’,
‘overlay': True,
'layout': {
'x': 0.42,
'y': 0.14,

}

See the Chart Layout section for more details.

* none: By default Excel adds an automatic chart title to charts with a single series and a user
defined series name. The none option turns this default title off. It also turns off all other
set title() options:

chart.set title({'none': True})

10.8. chart.set_title() 167

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

10.9 chart.set_legend()
set_legend (options)
Set the chart legend options.
Parameters options (dict) — A dictionary of chart legend options.

The set legend() method is used to set properties of the chart legend. For example it can be
used to turn off the default chart legend:

chart.set legend({'none': True})

16

14

12

10

The options that can be set are:

none

position

font

border

fill

pattern
gradient
delete series
layout

* none: In Excel chart legends are on by default. The none option turns off the chart legend:

chart.set legend({'none': True})

For backward compatibility, it is also possible to turn off the legend via the position prop-
erty:

chart.set legend({'position': 'none'})

» position: Set the position of the chart legend:

168 Chapter 10. The Chart Class

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart.set legend({'position': ‘'bottom'})

16 7
14 -
12 7

T 2 3 a4 5

B Series1 M Series2 Series3

(= A

The default legend position is right. The available positions are:

top

bottom

left

right

overlay left
overlay right
none

» font: Set the font properties of the chart legend:

chart.set legend({'font': {'size': 9, 'bold': True}})

See the Chart Fonts section for more details on font properties.

» border: Set the border properties of the legend such as color and style. See Chart format-
ting: Border.

« fill: Set the solid fill properties of the legend such as color. See Chart formatting: Solid
Fill.

« pattern: Set the pattern fill properties of the legend. See Chart formatting: Pattern Fill.
» gradient: Setthe gradient fill properties of the legend. See Chart formatting: Gradient Fill.

» delete series: This allows you to remove one or more series from the legend (the series
will still display on the chart). This property takes a list as an argument and the series are
zero indexed:

Delete/hide series index 0 and 2 from the legend.
chart.set legend({'delete series': [0, 2]})

10.9. chart.set_legend() 169

Creating Excel files with Python and XisxWriter, Release 3.1.9

16

B Series2

« layout: Setthe (x, y) position of the legend in chart relative units:

chart.set legend({

'layout': {
X' 0.80,
VA 0.37,

'width': 0.12,
"height': 0.25,

}

See the Chart Layout section for more details.

10.10 chart.set_chartarea()

set_chartarea(options)
Set the chart area options.

Parameters options (dict) — A dictionary of chart area options.

The set _chartarea() method is used to set the properties of the chart area. In Excel the chart
area is the background area behind the chart:

chart.set chartarea({
'border': {'none': True},
fill': {'color': 'red'}
})

170 Chapter 10. The Chart Class

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

The properties that can be set are:

* border: Set the border properties of the chartarea such as color and style. See Chart
formatting: Border.

« fill: Set the solid fill properties of the chartarea such as color. See Chart formatting: Solid
Fill.

« pattern: Set the pattern fill properties of the chartarea. See Chart formatting: Pattern Fill.

« gradient: Set the gradient fill properties of the chartarea. See Chart formatting: Gradient
Fill.

10.11 chart.set_plotarea()

set_plotarea(options)
Set the plot area options.

Parameters options (dict) — A dictionary of plot area options.

The set plotarea() method is used to set properties of the plot area of a chart. In Excel the
plot area is the area between the axes on which the chart series are plotted:

chart.set plotarea({
'border': {'color': 'red', 'width': 2, 'dash type': 'dash'},
Fill': {'color': '#FFFFC2'}

})

10.11. chart.set_plotarea() 171

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

16 T -

14

12

10
M Seriesl

B Series2

Series3

.
F-
ap
F—

The properties that can be set are:

» border: Set the border properties of the plotarea such as color and style. See Chart
formatting: Border.

fill: Set the solid fill properties of the plotarea such as color. See Chart formatting: Solid
Fill.

« pattern: Set the pattern fill properties of the plotarea. See Chart formatting: Pattern Fill.

» gradient: Set the gradient fill properties of the plotarea. See Chart formatting: Gradient
Fill.

« layout: Setthe (x, y) position of the plotarea in chart relative units:

chart.set plotarea({

'layout': {
'x': 0.13,
'y 0.26,

'width': 0.73,
"height': 0.57,

}

See the Chart Layout section for more details.

10.12 chart.set_style()
set_style(style id)
Set the chart style type.
Parameters style_id (int) — An index representing the chart style.

The set style() method is used to set the style of the chart to one of the 48 built-in styles
available on the ‘Design’ tab in Excel:

172 Chapter 10. The Chart Class

https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart.set style(37)

16 7

14 7

10
_— B Seriesl

B Series2

OSeries3

Tl

1 2 3 4 5

The style index number is counted from 1 on the top left. The default style is 2.

Note: In Excel 2013 the Styles section of the ‘Design’ tab in Excel shows what were referred to as
‘Layouts’ in previous versions of Excel. These layouts are not defined in the file format. They are

a collection of modifications to the base chart type. They can be replicated using the XlsxWriter
Chart API but they cannot be defined by the set style() method.

10.13 chart.set_table()

set_table(options)
Set properties for an axis data table.

Parameters options (dict) — A dictionary of axis table options.

The set table() method adds a data table below the horizontal axis with the data used to plot
the chart:

chart.set table()

10.13. chart.set_table() 173

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

16
14
12

8
M Seriesl
6
a4 ‘ M Series2
: ‘ '
Series3
2 | ol
) | 1 2 3 4 | 5
Seriesl 1 2 3 4 5
Series2 2 4 6 10
Series3 | 3 6 9 12 | 15

The available options, with default values are:

'horizontal': True # Display vertical lines in the table.

'vertical': True # Display horizontal lines in the table.
'outline': True # Display an outline in the table.
'show keys': False # Show the legend keys with the table data.
"font': {} # Standard chart font properties.

For example:

chart.set table({'show keys': True})

The data table can only be shown with Bar, Column, Line, Area and stock charts. See the Chart
Fonts section for more details on font properties.

10.14 chart.set_up_down_bars()

set_up_down_bars (options)
Set properties for the chart up-down bars.

Parameters options (dict) — A dictionary of options.

The set_up down_bars () method adds Up-Down bars to Line charts to indicate the difference
between the first and last data series:

chart.set up down bars()

It is possible to format the up and down bars to add fill, pattern or gradient and border
properties if required. See Chart Formatting:

chart.set _up down bars({
Iupl: {
"fill': {'color': '#00B050'},
'border': {'color': 'black'}
I

174 Chapter 10. The Chart Class

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

"down': {
"fill': {'color': 'red'},
'border': {'color': 'black'},

}

80

70

60

50 /
40
30 /

20

Series1

——Series2

10

Up-down bars can only be applied to Line charts and to Stock charts (by default).

10.15 chart.set_drop_lines()
set_drop_lines (options)
Set properties for the chart drop lines.
Parameters options (dict) — A dictionary of options.

The set _drop_lines() method adds Drop Lines to charts to show the Category value of points
in the data:

chart.set drop lines()

10.15. chart.set_drop_lines() 175

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 3.1.9

80

70

60

50

. AN

30

N

Seriesl

Series2

N
N

20

10

It is possible to format the Drop Line line properties if required. See Chart Formatting:

chart.set drop lines({'line': {'color': 'red',
'dash _type': 'square dot'}})

Drop Lines are only available in Line, Area and Stock charts.

10.16 chart.set_high_low_lines()
set_high_low_lines (options)
Set properties for the chart high-low lines.
Parameters options (dict) — A dictionary of options.

The set _high low lines () method adds High-Low lines to charts to show the maximum and
minimum values of points in a Category:

chart.set high low lines()

80

70

60

50

40 \

30

N

=—=Seriesl

Series2

N
N

20

10

176 Chapter 10. The Chart Class

https://docs.python.org/3/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 3.1.9

It is possible to format the High-Low Line line properties if required. See Chart Formatting:

chart.set high low lines({
'line': {
‘color': 'red',
‘dash_type': 'square dot'

}

High-Low Lines are only available in Line and Stock charts.

10.17 chart.show blanks as()

show_blanks_as (option)
Set the option for displaying blank/empty data cells in a chart.

Parameters option (siring) — A string representing the display option.

The show _blanks as () method controls how blank/empty data is displayed in a chart:

chart.show blanks as('span')

The available options are:

‘gap'’ # Blank data is shown as a gap. The default.
‘zero' # Blank data is displayed as zero.
‘span' # Blank data is connected with a line.

10.18 chart.show_na_as_empty_cell()

show_na_as_empty cell()
Display #N/A on charts as blank/empty cells.

Display #N/A values on a chart as blank/empty cells.:

chart.show na as empty cell()

10.19 chart.show_hidden_data()

show_hidden_data()
Display data on charts from hidden rows or columns.

Display data in hidden rows or columns on the chart:

chart.show hidden data()

10.20 chart.set_rotation()

set_rotation (rotation)
Set the Pie/Doughnut chart rotation.

10.17. chart.show_blanks_as()

177

https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

Parameters rotation (/nf) — The angle of rotation.

The set _rotation() method is used to set the rotation of the first segment of a Pie/Doughnut
chart. This has the effect of rotating the entire chart:

chart->set rotation(90)

The angle of rotation must be in the range 0 <= rotation <= 360.

This option is only available for Pie/Doughnut charts.

10.21 chart.set_hole_size()
set_hole_size(size)
Set the Doughnut chart hole size.
Parameters size (/nt) — The hole size as a percentage.
The set_hole size() method is used to set the hole size of a Doughnut chart:

chart->set hole size(33)

The value of the hole size must be in the range 10 <= size <= 90.
This option is only available for Doughnut charts.

See also Working with Charts and Chart Examples.

178 Chapter 10. The Chart Class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CHAPTER
ELEVEN

THE CHARTSHEET CLASS

In Excel a chartsheet is a worksheet that only contains a chart.

.8 00 [chartsheat.xlsx |
Home I Layout | Tables I Charts I Smartirt I » v fE
00 (- 5 E

Results of sample analysis

-

darple Hajeh [we)

ot waa

- l Sher_tlJ_ Chartlﬂ

| Normal View

The Chartsheet class has some of the functionality of data Worksheets such as tab selection,
headers, footers, margins and print properties but its primary purpose is to display a single chart.
This makes it different from ordinary data worksheets which can have one or more embedded

charts.

Like a data worksheet a chartsheet object isn’t instantiated directly. Instead a new chartsheet is
created by calling the add chartsheet () method from a Workbook object:

179

Creating Excel files with Python and XisxWriter, Release 3.1.9

workbook = xlsxwriter.Workbook('filename.xlsx")

worksheet = workbook.add worksheet() # Required for the chart data.
chartsheet = workbook.add chartsheet()

#

workbook. close()

A chartsheet object functions as a worksheet and not as a chart. In order to have it display data a
Chart object must be created and added to the chartsheet:

chartsheet
chart

workbook.add chartsheet()
workbook.add chart({'type': 'bar'})

Configure the chart.

chartsheet.set chart(chart)

The data for the chartsheet chart must be contained on a separate worksheet. That is why it is
always created in conjunction with at least one data worksheet, as shown above.

11.1 chartsheet.set_chart()

set_chart (chart)
Add a chart to a chartsheet.

Parameters chart — A chart object.

The set chart () method is used to insert a chart into a chartsheet. A chart object is created
via the Workbook add chart () method where the chart type is specified:

chart = workbook.add chart({type, 'column'})
chartsheet.set chart(chart)

Only one chart can be added to an individual chartsheet.

See The Chart Class, Working with Charts and Chart Examples.

11.2 Worksheet methods

The following The Worksheet Class methods are also available through a chartsheet:
» activate()
» select()
+ hide()

» set first sheet()

protect()

set zoom()

» set _tab color()

180 Chapter 11. The Chartsheet Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

« set landscape()
» set portrait()
» set paper()

« set margins()

» set header()

» set footer()

+ get name()

For example:

chartsheet.set tab color('#FF9900")

The set zoom() method can be used to modify the displayed size of the chart.

11.3 Chartsheet Example

See Example: Chartsheet.

11.3. Chartsheet Example 181

Creating Excel files with Python and XisxWriter, Release 3.1.9

182 Chapter 11. The Chartsheet Class

CHAPTER
TWELVE

THE EXCEPTIONS CLASS

The Exception class contains the various exceptions that can be raised by XisxWriter. In general
XlsxWriter only raised exceptions for un-recoverable errors or for errors that would lead to file
corruption such as creating two worksheets with the same name.

The hierarchy of exceptions in XlsxWriter is:
« XlsxWriterException(Exception)

— XlsxFileError(XlsxWriterException)
« FileCreateError(XlsxFileError)
» UndefinedImageSize (X1lsxFileError)
+ UndefinedImageSize (XlsxFileError)
« FileSizeError(XlsxFileError)

— XUsxInputError(XlsxWriterException)
« DuplicateTableName (XlsxInputError)
» InvalidWorksheetName (XlsxInputError)
« DuplicateWorksheetName (XlsxInputError)
« OverlappingRange (XlsxInputError)

12.1 Exception: XlsxWriterException
exception XUsxWriterException

Base exception for XlsxWriter.

12.2 Exception: XlsxFileError

exception XLsxFileError

Base exception for all file related errors.

183

Creating Excel files with Python and XisxWriter, Release 3.1.9

12.3 Exception: XlsxInputError

exception XUsxInputError

Base exception for all input data related errors.

12.4 Exception: FileCreateError

exception FileCreateError

This exception is raised if there is a file permission, or IO error, when writing the xlsx file to disk.
This can be caused by an non-existent directory or (in Windows) if the file is already open in Excel:

import xlsxwriter
workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()

The file exception.xlsx is already open in Excel.
workbook. close()

Raises:

xlsxwriter.exceptions.FileCreateError:
[Errno 13] Permission denied: 'exception.xlsx'

This exception can be caught in a try block where you can instruct the user to close the open file
before overwriting it:

while True:
try:
workbook. close()
except xlsxwriter.exceptions.FileCreateError as e:

decision = input("Exception caught in workbook.close(): \n"
"Please close the file if it is open in Excel.\n"
"Try to write file again? [Y/n]: " % e)
if decision != 'n':
continue
break

See also Example: Catch exception on closing.

12.5 Exception: UndefinedlmageSize

exception UndefinedImageSize

This exception is raised if an image added via insert image() doesn’t contain height or width
information. The exception is raised during Workbook close():

184 Chapter 12. The Exceptions Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

import xlsxwriter

workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()
worksheet.insert image('Al', 'logo.png"')
workbook.close()

Raises:

xlsxwriter.exceptions.UndefinedImageSize:
logo.png: no size data found in image file.

Note: This is a relatively rare error that is most commonly caused by XlsxWriter failing to parse
the dimensions of the image rather than the image not containing the information. In these cases

you should raise a GitHub issue with the image attached, or provided via a link.

12.6 Exception: UnsupportedimageFormat

exception UnsupportedImageFormat

This exception is raised if if an image added via insert image() isn’t one of the supported file
formats: PNG, JPEG, GIF, BMP, WMF or EMF. The exception is raised during Workbook close():

import xlsxwriter

workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()
worksheet.insert image('Al', 'logo.xyz')
workbook. close()

Raises:

xlsxwriter.exceptions.UnsupportedImageFormat:
logo.xyz: Unknown or unsupported image file format.

Note: If the image type is one of the supported types, and you are sure that the file format is
correct, then the exception may be caused by XisxWriter failing to parse the type of the image

correctly. In these cases you should raise a GitHub issue with the image attached, or provided via
a link.

12.7 Exception: FileSizeError

exception FileSizeError

12.6. Exception: UnsupportedimageFormat 185

Creating Excel files with Python and XisxWriter, Release 3.1.9

This exception is raised if one of the XML files that is part of the xIsx file, or the xIsx file itself,
exceeds 4GB in size:

import xlsxwriter

workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()

Write lots of data to create a very big file.
workbook. close()

Raises:

xlsxwriter.exceptions.FileSizeError:
Filesize would require ZIP64 extensions. Use workbook.use zip64().

As noted in the exception message, files larger than 4GB can be created by turning on the zipfile.py
ZIP64 extensions using the use zip64 () method.

12.8 Exception: EmptyChartSeries

exception EmptyChartSeries

This exception is raised if a chart is added to a worksheet without a data series. The exception is
raised during Workbook close():

import xlsxwriter

workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()

chart = workbook.add chart({'type': 'column'})
worksheet.insert chart('A7', chart)
workbook.close()

Raises:

xlsxwriter.exceptions.EmptyChartSeries:
Chartl must contain at least one data series. See chart.add series().

12.9 Exception: DuplicateTableName

exception DuplicateTableName

This exception is raised if a duplicate worksheet table name in used via add table(). The
exception is raised during Workbook close():

186 Chapter 12. The Exceptions Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

import xlsxwriter

workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet()

worksheet.add table('B1:F3', {'name': 'SalesData'})
worksheet.add table('B4:F7', {'name': 'SalesData'})

workbook. close()

Raises:

xlsxwriter.exceptions.DuplicateTableName:
Duplicate name 'SalesData’ used in worksheet.add table().

12.10 Exception: InvalidWorksheetName

exception InvalidWorksheetName

This exception is raised during Workbook add worksheet () if a worksheet name is too long or
contains restricted characters.

For example with a 32 character worksheet name:

import xlsxwriter
workbook = xlsxwriter.Workbook('exception.xlsx")

name = 'name that is longer than thirty one characters'
worksheet = workbook.add worksheet(name)

workbook. close()

Raises:

xlsxwriter.exceptions.InvalidWorksheetName:
Excel worksheet name 'name that is longer than thirty one characters'
must be <= 31 chars.

Or for a worksheet name containing one of the Excel restricted characters,i.e. [1 : * ? /
\:

import xlsxwriter
workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet('Data[Jan]"')

workbook.close()

Raises:

12.10. Exception: InvalidWorksheetName 187

Creating Excel files with Python and XisxWriter, Release 3.1.9

xlsxwriter.exceptions.InvalidWorksheetName:
Invalid Excel character '[]1:*?/\' in sheetname 'Datal[Jan]'.

Or for a worksheet name start or ends with an apostrophe:
import xlsxwriter
workbook = xlsxwriter.Workbook('exception.xlsx")
worksheet = workbook.add worksheet("'Sheetl'")

workbook.close()

Raises:

xlsxwriter.exceptions.InvalidWorksheetName:
Sheet name cannot start or end with an apostrophe "'Sheetl'".

12.11 Exception: DuplicateWorksheetName

exception DuplicateWorksheetName

This exception is raised during Workbook add worksheet () if a worksheet name has already
been used. As with Excel the check is case insensitive:

import xlsxwriter
workbook = xlsxwriter.Workbook('exception.xlsx")

worksheetl
worksheet?2

workbook.add worksheet('Sheetl")
workbook.add worksheet('sheetl"')

workbook.close()

Raises:

xlsxwriter.exceptions.DuplicateWorksheetName:
Sheetname 'sheetl', with case ignored, is already in use.

12.12 Exception: OverlappingRange

exception OverlappingRange

This exception is raised during Worksheet add table() or merge range() if the range over-
laps an existing worksheet table or merge range. This is a file corruption error in Excel:

import xlsxwriter
workbook = xlsxwriter.Workbook('exception.xlsx")

worksheet = workbook.add worksheet()

188 Chapter 12. The Exceptions Class

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.merge range('A1:G10', 'Range 1')
worksheet.merge range('G1l0:K20', 'Range 2')

workbook. close()

Raises:

xlsxwriter.exceptions.OverlappingRange:
Merge range 'G10:K20' overlaps previous merge range 'Al:G10'.

12.12. Exception: OverlappingRange 189

Creating Excel files with Python and XisxWriter, Release 3.1.9

190 Chapter 12. The Exceptions Class

CHAPTER
THIRTEEN

WORKING WITH CELL NOTATION

XlsxWriter supports two forms of notation to designate the position of cells: Row-column notation
and A1 notation.

Row-column notation uses a zero based index for both row and column while A1 notation uses the
standard Excel alphanumeric sequence of column letter and 1-based row. For example:

(0, 0)
('A1")

(6, 2)
('C7")

Row-column notation is useful if you are referring to cells programmatically:

for row in range(0, 5):
worksheet.write(row, 0, 'Hello')

A1 notation is useful for setting up a worksheet manually and for working with formulas:

worksheet.write('H1', 200)
worksheet.write('H2', '=H1+1"')

In general when using the XisxWriter module you can use A1 notation anywhere you can use
row-column notation. This also applies to methods that take a range of cells:

worksheet.merge range(2, 1, 3, 3, 'Merged Cells', merge format)
worksheet.merge range('B3:D4°', 'Merged Cells', merge format)

XlsxWriter supports Excel's worksheet limits of 1,048,576 rows by 16,384 columns.

Note:
* Ranges in A1 notation must be in uppercase, like in Excel.

+ In Excel it is also possible to use R1C1 notation. This is not supported by XisxWriter.

191

Creating Excel files with Python and XisxWriter, Release 3.1.9

13.1 Row and Column Ranges

In Excel you can specify row or column ranges such as 1:1 for all of the first row or A: A for all
of the first column. In XisxWriter these can be set by specifying the full cell range for the row or
column:

worksheet.print area('Al:XFD1") # Same as 1:1
worksheet.print area('A1:A1048576') # Same as A:A

This is actually how Excel stores ranges such as 1:1 and A: A internally.
These ranges can also be specified using row-column notation, as explained above:

worksheet.print area(0, 0, 0, 16383) # Same as 1:1
worksheet.print area(0, 0, 1048575, 0) # Same as A:A

To select the entire worksheet range you can specify A1:XFD1048576.

13.2 Relative and Absolute cell references

When dealing with Excel cell references it is important to distinguish between relative and absolute
cell references in Excel.

Relative cell references change when they are copied while Absolute references maintain fixed
row and/or column references. In Excel absolute references are prefixed by the dollar symbol as
shown below:

"Al' # Column and row are relative.
"$AL' # Column is absolute and row is relative.
"A$1' # Column is relative and row is absolute.

'A1' # Column and row are absolute.

See the Microsoft Office documentation for more information on relative and absolute references.

Some functions such as conditional format() may require absolute references, depending
on the range being specified.

13.3 Defined Names and Named Ranges

Itis also possible to define and use “Defined names/Named ranges” in workbooks and worksheets,
see define name():

workbook.define name('Exchange rate', '=0.96")
worksheet.write('B3', '=B2*Exchange rate')

See also Example: Defined names/Named ranges.

13.4 Cell Utility Functions

The XUsxWriter utility module contains several helper functions for dealing with A1 notation
as shown below. These functions can be imported as follows:

192 Chapter 13. Working with Cell Notation

https://support.microsoft.com/en-us/office/switch-between-relative-absolute-and-mixed-references-dfec08cd-ae65-4f56-839e-5f0d8d0baca9

Creating Excel files with Python and XlsxWriter, Release 3.1.9

from xlsxwriter.utility import x1 rowcol to cell

cell = x1_rowcol to cell(l, 2)

13.4.1 xI_rowcol_to_cell()

x1_rowcol_to_cell(row, col[, row_abs, col_abs])
Convert a zero indexed row and column cell reference to a A1 style string.

Parameters

* row (int) — The cell row.

* col (int) — The cell column.

» row_abs (bool) — Optional flag to make the row absolute.

+ col_abs (bool) — Optional flag to make the column absolute.
Return type A1 style string.

The x1_rowcol to cell() function converts a zero indexed row and column cell values to an
A1 style string:

cell = x1_rowcol to cell(0, 0)
cell = x1 rowcol to cell(0, 1)
cell = x1 rowcol to cell(l, 0)

The optional parameters row_abs and col abs can be used to indicate that the row or column
is absolute:

str = x1_rowcol to cell(0, 0, col abs=True)
str = x1_rowcol_to_cell(0, 0, row abs=True)
str = x1_rowcol_to cell(0, 0, row abs=True, col _abs=True)

13.4.2 xI_cell_to_rowcol()

x1_cell_to_rowcol(cell str)
Convert a cell reference in A1 notation to a zero indexed row and column.

Parameters cell_str (siring) — A1 style string, absolute or relative.
Return type Tuple of ints for (row, col).

The x1_cell to rowcol() function converts an Excel cell reference in A1 notation to a zero
based row and column. The function will also handle Excel’s absolute, $, cell notation:

(row, col) = x1 cell to rowcol('Al")
(row, col) = x1 cell to rowcol('Bl")
(row, col) = x1 cell to rowcol('C2")
(row, col) = x1 cell to rowcol('$C2")
(row, col) = x1 cell to rowcol('C$2")
(row, col) = x1 cell to rowcol('C2")

13.4. Cell Utility Functions 193

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/string.html#module-string

Creating Excel files with Python and XisxWriter, Release 3.1.9

13.4.3 xl_col_to_name()

x1_col_to_name (col[, col_abs])
Convert a zero indexed column cell reference to a string.

Parameters

* col (int) — The cell column.

+ col_abs (bool) — Optional flag to make the column absolute.
Return type Column style string.

The x1_col to name() converts a zero based column reference to a string:

column = x1 _col to name(0)
column = x1 col to name(1)
column = x1 col to name(702)

The optional parameter col abs can be used to indicate if the column is absolute:

column = x1 col to name(0, False)
column = x1_col to name(0, True)
column = x1 col to name(1l, True)

13.4.4 xI_range()

x1_range (first_row, first_col, last_row, last _col)
Converts zero indexed row and column cell references to a A1:B1 range string.

Parameters
« first_row (int) — The first cell row.
« first_col (int) — The first cell column.
* last_row (int) — The last cell row.
* last_col (int) — The last cell column.
Return type A1:B1 style range string.

The x1_range () function converts zero based row and column cell references to an A1:B1 style
range string:

cell range = x1 range(0, 0, 9, 0)
cell range = x1 _range(1l, 2, 8, 2)
cell range = x1l range(0, 0, 3, 4)
cell range = x1l range(0, 0, 0, 0)

13.4.5 xl_range_abs()

x1_range_abs (first_row, first_col, last_row, last_col)
Converts zero indexed row and column cell references to a A1:B1 absolute range string.

Parameters

194 Chapter 13. Working with Cell Notation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 3.1.9

« first_row (int) — The first cell row.

« first_col (/nt) — The first cell column.

* last_row (int) — The last cell row.

* last_col (int) — The last cell column.
Return type A1:B1 style range string.

The x1_range_abs () function converts zero based row and column cell references to an abso-
lute A1: B1 style range string:

cell range = x1 range abs(0, 0, 9, 0)
cell range = x1 _range abs(1, 2, 8, 2)
cell range = x1 range abs(0, 0, 3, 4)
cell range = x1 range abs(0, 0, 0, 0)

13.4. Cell Utility Functions 195

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 3.1.9

196 Chapter 13. Working with Cell Notation

CHAPTER
FOURTEEN

WORKING WITH AND WRITING DATA

The following sections explain how to write various types of data to an Excel worksheet using

XIsxWriter.

14.1 Writing data to a worksheet cell

The worksheet write() method is the most common means of writing Python data to cells

based on its type:

import xlsxwriter

workbook = xlsxwriter.Workbook('write data.xlsx")
worksheet = workbook.add worksheet()

worksheet.write(0, 0,
worksheet.write(1, 0,
worksheet.write(2, 0O,
worksheet.write(3, 0,
worksheet.write(4, 0,

workbook.close()

1234)
1234.56)
'Hello')
None)
True)

Writes
Writes
Writes
Writes
Writes

an int

a float
a string
None

a bool

197

Creating Excel files with Python and XisxWriter, Release 3.1.9

A8

[write_data.xlsx
| # Home | Layout | Tables | Charts | SmartArt | ¥ v -

A

fx| |~

d‘

C

VRN Y N -JHONN U 1

Hello

TRUE

1234
1234.56

[« < > v JJ| sheets [+ I Il

Mormal ¥iew

Ready

The write() method uses the type() of the data to determine which specific method to use
for writing the data. These methods then map some basic Python types to corresponding Excel
types. The mapping is as follows:

Python type

Excel type

Worksheet methods

int

long

float

Decimal

Fraction
basestring

str

unicode

None
datetime.date
datetime.datetime
datetime.time
datetime.timedelta
bool

Number

String

String (blank)
Number

Boolean

write(),write number()

write(),write string()

write(),write blank()
write(),write datetime()

write(),write boolean()

The write () method also handles a few other Excel types that are encoded as Python strings in

XlsxWriter:

198

Chapter 14. Working with and Writing Data

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Pseudo-type | Excel type | Worksheet methods
formula string | Formula write(),write formula()
url string URL write(),write url()

It should be noted that Excel has a very limited set of types to map to. The Python types that
the write () method can handle can be extended as explained in the Writing user defined types
section below.

14.2 Writing unicode data

Unicode data in Excel is encoded as UTF-8. XlsxWriter also supports writing UTF-8 data. This
generally requires that your source file is UTF-8 encoded:

worksheet.write('Al', 'Some UTF-8 text')

e 00 I utf8_01.xlsx
Home | Layout | Tahles | Charts | SmartArt | ¥ v I
AL7 10 & (- |~
S B | ¢ | b | E [H
1 370 ¢pasa Ha pycckom!
2
= 44 B K l Sh!!tl_! |||

- Mormal View Rieady e

See Example: Simple Unicode with Python 3 for a more complete example.

Alternatively, you can read data from an encoded file, convert it to UTF-8 during reading and then
write the data to an Excel file. See Example: Unicode - Polish in UTF-8 and Example: Unicode -
Shift JIS.

14.3 Writing lists of data

Writing compound data types such as lists with XlsxWriter is done the same way it would be in
any other Python program: with a loop. The Python enumerate () function is also very useful in
this context:

import xlsxwriter

workbook = xlsxwriter.Workbook('write list.xlsx")
worksheet = workbook.add worksheet()

my list = [1, 2, 3, 4, 5]

14.2. Writing unicode data 199

https://docs.python.org/3/library/functions.html#enumerate

Creating Excel files with Python and XisxWriter, Release 3.1.9

for row num, data in enumerate(my list):
worksheet.write(row num, 0, data)

workbook.close()

[NN [write_list.xlsx
A Home | Layout Tables | Charts | SmartArt 3 v fi~
A4 0 & (- fx |~

R e e T e F e E L =

E

M oEs W PR

WD) 00| = | O W | b | bad | |

| shee I

Mormal View Ready S

Or if you wanted to write this horizontally as a row:

import xlsxwriter

workbook = xlsxwriter.Workbook('write TlTist.xlsx")
worksheet = workbook.add worksheet()

my list = [1, 2, 3, 4, 5]

for col num, data in enumerate(my list):
worksheet.write(0, col num, data)

workbook.close()

200 Chapter 14. Working with and Writing Data

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[NON | [write_list.xlsx
A Home | Layout Tables | Charts | SmartArt 3 v &~
A4 11 O & (= fx| v
wwye. & | c< | 0o | E |l E |-
1 1 2 3 4 5
2
3
4
5
6
i
8
a9
10
11
12
12
mma ESNYEY I
Mormal ¥iew Ready A

For a list of lists structure you would use two loop levels:
import xlsxwriter

workbook = xlsxwriter.Workbook('write Tlist.xlsx")
worksheet = workbook.add worksheet()

my list = [[1, 1, 1, 1, 1],
(2, 2, 2, 2, 11,
[3, 3, 3, 3, 1],
(4, 4, 4, 4, 1],
[5, 5, 5, 5, 11]

for row num, row data in enumerate(my list):
for col num, col data in enumerate(row data):
worksheet.write(row num, col num, col data)

workbook.close()

14.3. Writing lists of data 201

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NON | [write_list.xlsx
A Home | Layout Tables | Charts | SmartArt 3 v &~
A4 0 & (= fx v
wye. & | c< | 0 | E | E |-
1 1 1 1 1 1
2 2 2 2 2 1
3 3 3 3 3 1
4 4 4 4 4 1
5 5 5 5 5 1
6
i
8
g9
10
11
12
12
R EVEY | I
ormal View Ready A

The worksheet class has two utility functions called write row() andwrite column() which
are basically a loop around the write () method:

import xlsxwriter

workbook = xlsxwriter.Workbook('write list.xlsx")
worksheet = workbook.add worksheet()

my list = [1, 2, 3, 4, 5]

worksheet.write row(0, 1, my list)
worksheet.write column(l, 0, my list)

workbook.close()

202 Chapter 14. Working with and Writing Data

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[NN [write_list.xlsx
l i Hnm-] Layout | Tables I Charts I SmartArt I}}|V E e 2
Al4 1 0 & (- & -
| S B | C | b [E | F |5
1 1 2 3 4 5
2 1
3 2
4 3
5 4
6 5
7
8
9
10
11
12
Elez - W[[
| Mormal View | Ready A

14.4 Writing dicts of data

Unlike lists there is no single simple way to write a Python dictionary to an Excel worksheet using
Xlsxwriter. The method will depend of the structure of the data in the dictionary. Here is a simple
example for a simple data structure:

import xlsxwriter

workbook = xlsxwriter.Workbook('write dict.xlsx")
worksheet = workbook.add worksheet()

my dict = {'Bob': [10, 11, 127,
'"Ann': [20, 21, 221,
'May': [30, 31, 321}

col num = 0

for key, value in my dict.items():
worksheet.write(0, col num, key)
worksheet.write column(1l, col num, value)
col_num += 1

workbook.close()

14.4. Writing dicts of data 203

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NON | [write_dict.xlsx
| # Home | Layout | Tables | Charts | SmartArt |))|V E e 2
A18 08 (- & v

T8 A (NN TN U U JO - O -—e=
1 May Bob Ann

2 30 10 20

3 31 11 21

4 32 12 22

5

6

7

3

9

10

11

12

1< < o v] sheen [+ [
ENormaIvIaw | Ready A

14.5 Writing dataframes

The best way to deal with dataframes or complex data structure is to use Python Pandas. Pandas
is a Python data analysis library. It can read, filter and re-arrange small and large data sets and
output them in a range of formats including Excel.

To use XlsxWriter with Pandas you specify it as the Excel writer engine:
import pandas as pd

Create a Pandas dataframe from the data.
df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]})

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter('pandas simple.xlsx', engine='xlsxwriter")

Convert the dataframe to an XlsxWriter Excel object.
df.to excel(writer, sheet name='Sheetl')

Close the Pandas Excel writer and output the Excel file.
writer.close()

The output from this would look like the following:

204 Chapter 14. Working with and Writing Data

https://pandas.pydata.org/

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[] @& [pandas_simple.xlsx
i # Home | Layout | Tables | Charts | SmartArt | » v -
| Al : fx| M
'ﬂ AT e e e e e e] =
| Data
2 i) 10
3 1 20
4 2 30
5 3 20
6 4 15
7 5 30
8 6 45
9
10 |
11
12|
éjﬁ-[sheet1 |+ i
N :
ormal View Ready i

For more information on using Pandas with XlsxWriter see Working with Pandas and XlsxWriter.

14.6 Writing user defined types

As shown in the first section above, the worksheet write() method maps the main Python data
types to Excel’s data types. If you want to write an unsupported type then you can either avoid
write () and map the user type in your code to one of the more specific write methods or you can
extend it using the add write handler() method. This can be, occasionally, more convenient
then adding a lot of if/else logic to your code.

As an example, say you wanted to modify write () to automatically write uuid types as strings.
You would start by creating a function that takes the uuid, converts it to a string and then writes it
usingwrite string():

def write uuid(worksheet, row, col, uuid, format=None):
return worksheet.write string(row, col, str(uuid), format)

You could then add a handler that matches the uuid type and calls your user defined function:

match, action()
worksheet.add write handler(uuid.UUID, write uuid)

14.6. Writing user defined types 205

https://docs.python.org/3/library/uuid.html#module-uuid

Creating Excel files with Python and XisxWriter, Release 3.1.9

Then you can use write () without further modification:

my uuid = uuid.uuid3(uuid.NAMESPACE DNS, 'python.org")

Write the UUID. This would raise a TypeError without the handler.
worksheet.write('Al', my uuid)

[NON | ™ user_types1.xlsx
| A Home | Layout | Tables | Charts | SmartArt |}}|v £ -

A1 10 @ (~ & Ad
: RS R —

- &
1 |6fad59ea-eeBa-Icad-894e-db772160355e

(<< v v | sheets [+ I I

Mormal View Ready A

Multiple callback functions can be added using add write handler() but only one callback
action is allowed per type. However, it is valid to use the same callback function for different types:

worksheet.add write handler(int, test number range)
worksheet.add write handler(float, test number_ range)

14.6.1 How the write handler feature works

Thewrite() methodis mainly a large if () statement that checks the type () of the input value
and calls the appropriate worksheet method to write the data. The add write handler()
method works by injecting additional type checks and associated actions into this 1 () statement.

Here is a simplified version of the write () method:

def write(self, row, col, *args):

The first arg should be the token for all write calls.
token = args[0]

Get the token type.
token type = type(token)

Check for any user defined type handlers with callback functions.
if token type in self.write handlers:

write handler = self.write handlers[token type]

function return = write handler(self, row, col, *args)

If the return value is None then the callback has returned
control to this function and we should continue as

206 Chapter 14. Working with and Writing Data

Creating Excel files with Python and XlsxWriter, Release 3.1.9

normal. Otherwise we return the value to the caller and exit.
if function return is None:

pass
else:

return function_ return

Check for standard Python types, if we haven't returned already.
if token type is bool:
return self.write boolean(row, col, *args)

Etc.

14.6.2 The syntax of write handler functions

Functions used in the add write handler () method should have the following method signa-
ture/parameters:

def my function(worksheet, row, col, token, format=None):
return worksheet.write string(row, col, token, format)

The function will be passed a worksheet instance, an integer row and col value, a token that
matches the type added to add write handler() and some additional parameters. Usually
the additional parameter(s) will only be a cell format instance. However, if you need to handle
other additional parameters, such as those passed to write url() then you can have more
generic handling like this:

def my function(worksheet, row, col, token, *args):
return worksheet.write string(row, col, token, *args)

Note, you don’t have to explicitly handle A1l style cell ranges. These will be converted to row and
column values prior to your function being called.

You can also make use of the row and col parameters to control the logic of the function. Say
for example you wanted to hide/replace user passwords with “***** when writing string data. If your
data was structured so that the password data was in the second column, apart from the header
row, you could write a handler function like this:

def hide password(worksheet, row, col, string, format=None):
if col == 1 and row > 0:
return worksheet.write string(row, col, '****', format)
else:
return worksheet.write string(row, col, string, format)

14.6. Writing user defined types 207

Creating Excel files with Python and XisxWriter, Release 3.1.9

& ® [user_types3.xlsx
| # Home | Layout Tables | Charts | SmartArt |}} v I3
A23 - fx v
A AN U -JN N WU —— N ——
1 |Name Password City
2 |Sara HEa Rome
ok I Sheetl | +
Mormal ¥iew Ready &

14.6.3 The return value of write handler functions
Functions used inthe add write handler () method should return one of the following values:

* None: to indicate that control is return to the parent write () method to continue as normal.
This is used if your handler function logic decides that you don’t need to handle the matched
token.

 The return value of the called write xxx() function. This is generally O for no error and
a negative number for errors. This causes an immediate return from the calling write()
method with the return value that was passed back.

For example, say you wanted to ignore NaN values in your data since Excel doesn’t support them.
You could create a handler function like the following that matched against floats and which wrote
a blank cell if it was a NaN or else just returned to write() to continue as normal:

def ignore nan(worksheet, row, col, number, format=None):
if math.isnan(number):
return worksheet.write blank(row, col, None, format)
else:
Return control to the calling write() method.
return None

If you wanted to just drop the NaN values completely and not add any formatting to the cell you
could just return 0, for no error:

def ignore nan(worksheet, row, col, number, format=None):
if math.isnan(number):
return 0
else:
Return control to the calling write() method.
return None

14.6.4 Write handler examples

See the following, more complete, examples of handling user data types:

208 Chapter 14. Working with and Writing Data

Creating Excel files with Python and XlsxWriter, Release 3.1.9

» Example: Writing User Defined Types (1)
» Example: Writing User Defined Types (2)
» Example: Writing User Defined types (3)

14.6. Writing user defined types 209

Creating Excel files with Python and XisxWriter, Release 3.1.9

210 Chapter 14. Working with and Writing Data

CHAPTER
FIFTEEN

WORKING WITH FORMULAS

In general a formula in Excel can be used directly in the write formula() method:

worksheet.write formula('Al', '=10*Bl1 + C1')
. & write_formula.xlsx
| # Home | Layout . Tables | Charts | SmartArt |}}. v $Fv
A1 LD fx| =10"B1 + C1 |+
| A | B | C [D [E [[=]
51 5 1
2 Sheetl | +
EEE BT
Mormal View Ready 4 |” i

However, there are a few potential issues and differences that the user should be aware of. These
are explained in the following sections.

15.1 Non US Excel functions and syntax

Excel stores formulas in the format of the US English version, regardless of the language or locale
of the end-user’s version of Excel. Therefore all formula function names written using XlsxWriter
must be in English:

worksheet.write formula('Al', '=SUM(1, 2, 3)"') # 0K
worksheet.write formula('A2', '=SOMME(1, 2, 3)') # French. Error on Lload.

Also, formulas must be written with the US style separator/range operator which is a comma (not
semi-colon). Therefore a formula with multiple values should be written as follows:

worksheet.write formula('Al', '=SUM(1, 2, 3)") # OK
worksheet.write formula('A2', '=SUM(1; 2; 3)"') # Semi-colon. Error on load.

211

Creating Excel files with Python and XisxWriter, Release 3.1.9

If you have a non-English version of Excel you can use the following multi-lingual formula translator
to help you convert the formula. It can also replace semi-colons with commas.

15.2 Formula Results

XlsxWriter doesn’t calculate the result of a formula and instead stores the value 0 as the formula
result. It then sets a global flag in the XLSX file to say that all formulas and functions should be
recalculated when the file is opened.

This is the method recommended in the Excel documentation and in general it works fine with
spreadsheet applications. However, applications that don’t have a facility to calculate formulas will
only display the 0 results. Examples of such applications are Excel Viewer, PDF Converters, and
some mobile device applications.

If required, it is also possible to specify the calculated result of the formula using the optional
value parameter forwrite formula():

worksheet.write formula('Al', '=2+2', num format, 4)

The value parameter can be a number, a string, a bool or one of the following Excel error codes:

It is also possible to specify the calculated result of an array formula created with
write array formula():

worksheet.write array formula('Al:Al', '{=SUM(B1:C1*B2:C2)}', cell format, 2005)

However, using this parameter only writes a single value to the upper left cell in the result array. For
a multi-cell array formula where the results are required, the other result values can be specified
by using write number() to write to the appropriate cell:

worksheet.write array formula('Al1:A3', '{=TREND(C1:C3,B1:B3)}', cell format, 15)
worksheet.write number('A2', 12, cell format)
worksheet.write number('A3', 14, cell format)

15.3 Dynamic Array support

Excel introduced the concept of “Dynamic Arrays” and new functions that use them in Office 365.
The new functions are:

« BYCOL()
* BYROW()

212 Chapter 15. Working with Formulas

https://en.excel-translator.de/language/

Creating Excel files with Python and XlsxWriter, Release 3.1.9

« CHOOSECOLS()
« CHOOSEROWS ()
» DROP()
« EXPAND()
« FILTER()
« HSTACK()
* MAKEARRAY ()
« MAP()
« RANDARRAY ()
» REDUCE()
« SCAN()
« SEQUENCE()
* SORT()
* SORTBY ()
« SWITCH()
» TAKE()
« TEXTSPLIT()
« TOCOL()
« TOROW()
+ UNIQUE()
« VSTACK()
« WRAPCOLS()
« WRAPROWS ()
« XLOOKUP ()
The following special case functions were also added with Dynamic Arrays:
» SINGLE() - Explained below in Dynamic Arrays - The Implicit Intersection Operator “@”.
« ANCHORARRAY () - Explained below in Dynamic Arrays - The Spilled Range Operator “#”.
* LAMBDA() and LET () - Explained below in The Excel 365 LAMBDA() function.

Dynamic arrays are ranges of return values that can change in size based on the results. For
example, a function such as FILTER() returns an array of values that can vary in size depending
on the filter results. This is shown in the snippet below from Example: Dynamic array formulas:

worksheetl.write('F2', '=FILTER(A1:D17,C1:C17=K2)")

15.3. Dynamic Array support 213

Creating Excel files with Python and XisxWriter, Release 3.1.9

Which gives the results shown in the image below. The dynamic range here is “F2:15” but it could
be different based on the filter criteria.

B dynamic_arrays

Home Insert Draw 'D Tell me 1= Share L] Comments
F2 . fx =FILTER(A1:D17,C1:C17=K2) v
A B C D E F G H I J

|l Region Sales Rep Product Units

2 |East Tom Apple 6380
3 West Fred Grape 5619
4 North Amy Pear 4565
5 South Sal Banana 5323
6 East Fritz Apple 4354
7 West Sravan Grape 7195
8 MNorth Xi Pear 5231
9 South Hector Banana 2427

3 Filter Unigue Sort Sortby Xlo +
Ready LT B o - + 125%

It is also possible to get dynamic array behavior with older Excel functions. For example, the Excel
function =LEN (A1) applies to a single cell and returns a single value but it is also possible to apply
it to a range of cells and return a range of values using an array formula like {=LEN(A1:A3) }. This
type of “static” array behavior is called a CSE (Ctrl+Shift+Enter) formula. With the introduction of
dynamic arrays in Excel 365 you can now write this function as =LEN (A1:A3) and get a dynamic
range of return values. In XisxWriter you can use the write array formula() worksheet
method to get a static/CSE range and write dynamic array formula() to get a dynamic
range. For example:

worksheet.write dynamic array formula('B1:B3', '=LEN(A1:A3)")

Which gives the following result:

214 Chapter 15. Working with Formulas

Creating Excel files with Python and XlsxWriter, Release 3.1.9

B function_new

Home Insert Draw O Tell me = Share] Comments
B1 . frx =LEN(A1:A3) v
A B C D E F

1 |Foo 3
2 |Food 4
3 |Frood 5

Sheet +
Ready 1T £ 1 —— C + 125%

The difference between the two types of array functions is explained in the Microsoft documenta-
tion on Dynamic array formulas vs. legacy CSE array formulas. Note the use of the word “legacy”
here. This, and the documentation itself, is a clear indication of the future importance of dynamic
arrays in Excel.

For a wider and more general introduction to dynamic arrays see the following: Dynamic array
formulas in Excel.

15.4 Dynamic Arrays - The Implicit Intersection Operator “@”

The Implicit Intersection Operator, “@”, is used by Excel 365 to indicate a position in a formula
that is implicitly returning a single value when a range or an array could be returned.

We can see how this operator works in practice by considering the formula we used in the last
section: =LEN(A1:A3). In Excel versions without support for dynamic arrays, i.e. prior to Excel
365, this formula would operate on a single value from the input range and return a single value,
like this:

15.4. Dynamic Arrays - The Implicit Intersection Operator “@” 215

https://support.microsoft.com/en-us/office/dynamic-array-formulas-vs-legacy-cse-array-formulas-ca421f1b-fbb2-4c99-9924-df571bd4f1b4
https://exceljet.net/articles/dynamic-array-formulas-in-excel
https://exceljet.net/articles/dynamic-array-formulas-in-excel

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NN [function_old.xlsx
| A Home | Layout | Tables | Charts | SmartArt |})|v £~
B1 i 0 @ (- fx| =LEN(AL:A3) | >
4 A 3 C | D | E =]
Foo
Z2 |Food
3 |Frood
4
ERRCE ETvEY I

Mormal View Ready e

There is an implicit conversion here of the range of input values, “A1:A3”, to a single value “A1”.
Since this was the default behavior of older versions of Excel this conversion isn’t highlighted in
any way. But if you open the same file in Excel 365 it will appear as follows:

B function_old

Home Insert Draw ¢ Tell me 1 Share [J Comments
Bl - fx =LEN(@A1:A3) v
A B C D E F
1 |Foo | 3_|
2 Food
3 |Frood
4
Sheett +
Ready :J E — e — 125%

The result of the formula is the same (this is important to note) and it still operates on, and returns,
a single value. However the formula now contains a “@” operator to show that it is implicitly using
a single value from the given range.

Finally, if you entered this formula in Excel 365, or with write dynamic array formula() in
XlsxWriter, it would operate on the entire range and return an array of values:

216 Chapter 15. Working with Formulas

Creating Excel files with Python and XlsxWriter, Release 3.1.9

B function_new

Home Insert Draw O Tell me = Share] Comments
B1 . frx =LEN(A1:A3) v
A B C D E F

1 |Foo 3
2 |Food 4
3 |Frood 5

Sheet +
Ready 1T £ 1 —— C + 125%

If you are encountering the Implicit Intersection Operator “@” for the first time then it is prob-
ably from a point of view of “why is Excel/XIsxWriter putting @s in my formulas”. In practical
terms if you encounter this operator, and you don’t intend it to be there, then you should prob-
ably write the formula as a CSE or dynamic array function using write array formula() or
write dynamic array formula() (see the previous section on Dynamic Array support).

A full explanation of this operator is shown in the Microsoft documentation on the Implicit intersec-
tion operator: @.

One important thing to note is that the “@” operator isn’t stored with the formula. It is just displayed
by Excel 365 when reading “legacy” formulas. However, it is possible to write it to a formula,
if necessary, using SINGLE() or x1fn.SINGLE(). The unusual cases where this may be
necessary are shown in the linked document in the previous paragraph.

15.5 Dynamic Arrays - The Spilled Range Operator “#”

In the section above on Dynamic Array support we saw that dynamic array formulas can return
variable sized ranges of results. The Excel documentation refers to this as a “Spilled” range/array
from the idea that the results spill into the required number of cells. This is explained in the
Microsoft documentation on Dynamic array formulas and spilled array behavior.

Since a spilled range is variable in size a new operator is required to refer to the range. This
operator is the Spilled range operator and it is represented by “#”. For example, the range F2# in
the image below is used to refer to a dynamic array returned by UNIQUE () in the cell F2. This
example is taken from the XlsxWriter program Example: Dynamic array formulas.

15.5. Dynamic Arrays - The Spilled Range Operator “#” 217

https://support.microsoft.com/en-us/office/implicit-intersection-operator-ce3be07b-0101-4450-a24e-c1c999be2b34?ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/implicit-intersection-operator-ce3be07b-0101-4450-a24e-c1c999be2b34?ui=en-us&rs=en-us&ad=us
https://support.microsoft.com/en-us/office/dynamic-array-formulas-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.microsoft.com/en-us/office/spilled-range-operator-3dd5899f-bca2-4b9d-a172-3eae9ac22efd

Creating Excel files with Python and XisxWriter, Release 3.1.9

B dynamic_arrays

Home Insert Draw O Tell me = Share] Comments
TEXT | X fx =COUNTA(F2#) v
E F G H I] K L M1
1 NN BT I
2 | |Tom Tom F24) 1

3 Fred Fred
4 Army Arrry
5 Sal Sal
6 Fritz Fritz
7 Sravan Sravan
8 Xi Xi
9 Hector Hector
LKl —
4 suence Spill ranges Older functions +
Edit 1T H o - + 125%

Unfortunately, Excel doesn’t store the formula like this and in XisxWriter you need to use the
explicit function ANCHORARRAY () to refer to a spilled range. The example in the image above was
generated using the following:

worksheet9.write('J2"', '=COUNTA(ANCHORARRAY(F2))') # Same as '=COUNTA(F2#)' in Excel

15.6 The Excel 365 LAMBDA() function

Recent versions of Excel 365 have introduced a powerful new function/feature called LAMBDA().
This is similar to the lambda function in Python (and other languages).

Consider the following Excel example which converts the variable temp from Fahrenheit to Cel-
sius:

LAMBDA(temp, (5/9) * (temp-32))

This could be called in Excel with an argument:

=LAMBDA (temp, (5/9) * (temp-32))(212)

Or assigned to a defined name and called as a user defined function:

218 Chapter 15. Working with Formulas

https://docs.python.org/3/howto/functional.html#small-functions-and-the-lambda-expression

Creating Excel files with Python and XlsxWriter, Release 3.1.9

=ToCelsius(212)

This is similar to this example in Python:

>>> to celsius = lambda temp: (5.0/9.0) * (temp-32)
>>> to _celsius(212)
100.0

A XlsxWriter program that replicates the Excel is shown in Example: Excel 365 LAMBDA() func-
tion.

The formula is written as follows:

worksheet.write('A2', '=LAMBDA(xlpm.temp, (5/9) * (xlpm.temp-32))(32)")

Note, that the parameters in the LAMBDA () function must have a “_xlpm.” prefix for compatibility
with how the formulas are stored in Excel. These prefixes won’t show up in the formula, as shown
in the image.

+} lambda
Home Insert Draw 'D Tell me = Share L] Comments
Al . fx =LAMBDA(temp, (5/9) * (temp-32))(32) v
A B C D E F G
1 | II'J.I
2 100
3
4
5
B
7
8
9
Sheetl +

The LET () function is often used in conjunction with LAMBDA () to assign names to calculation
results.

15.6. The Excel 365 LAMBDA() function 219

Creating Excel files with Python and XisxWriter, Release 3.1.9

15.7 Formulas added in Excel 2010 and later

Excel 2010 and later added functions which weren’t defined in the original file specification. These
functions are referred to by Microsoft as future functions. Examples of these functions are ACOT,
CHISQ.DIST.RT, CONFIDENCE.NORM, STDEV.P, STDEV.S and WORKDAY . INTL.

When written using write formula() these functions need to be fully qualified with a x1fn.
(or other) prefix as they are shown the list below. For example:

worksheet.write formula('Al', '= x1fn.STDEV.S(B1:B10)")

These functions will appear without the prefix in Excel:

@@ write_formula.xlsx
| # Home | Layout _ Tables | Charts | SmartArt | ¥ v -
A2 = fx| =STDEV.S(B1:B10) -
_| | B C D E
2 0.9660918 5
3 1 4
[« <+ »i | Sheet1 /+]
Mormal View Ready i

Alternatively, you can enable the use future functions option inthe Workbook () construc-
tor, which will add the prefix as required:

workbook = Workbook('write formula.xlsx', {'use future functions': True})
...

worksheet.write formula('Al', '=STDEV.S(B1:B10O)")

If the formula already contains a _x1fn. prefix, on any function, then the formula will be ignored
and won’t be expanded any further.

Note: Enabling the use_future_functions option adds an overhead to all formula processing in
XlsxWriter. If your application has a lot of formulas or is performance sensitive then it is best to

use the explicit x1fn. prefix instead.

The following list is taken from MS XLSX extensions documentation on future functions.
« X1fn.ACOTH
« xLlfn.ACOT
+ Xx1fn.AGGREGATE

220 Chapter 15. Working with Formulas

https://learn.microsoft.com/en-us/openspecs/office_standards/ms-xlsx/5d1b6d44-6fc1-4ecd-8fef-0b27406cc2bf

Creating Excel files with Python and XlsxWriter, Release 3.1.9

« x1lfn.ARABIC

« x1fn.ARRAYTOTEXT

« xL1fn.BASE

« x1lfn.BETA.DIST

« x1lfn.BETA.INV

« X1fn.BINOM.DIST.RANGE
« x1fn.BINOM.DIST

« Xx1fn.BINOM.INV

« x1fn.BITAND

¢ xUfn.BITLSHIFT

« x1lfn.BITOR

« xUfn.BITRSHIFT

« x1fn.BITXOR

« x1lfn.CEILING.MATH
« X1fn.CEILING.PRECISE
+ XLfn.CHISQ.DIST.RT
« x1lfn.CHISQ.DIST

« X1fn.CHISQ.INV.RT
« xLlfn.CHISQ.INV

« xlfn.CHISQ.TEST

« x1fn.COMBINA

« xLlfn.CONCAT

« x1fn.CONFIDENCE.NORM
« XL1fn.CONFIDENCE.T
« xLlfn.COTH

« xlfn.COT

« Xx1fn.COVARIANCE.P
« XxL1fn.COVARIANCE.S
« xlfn.CSCH

« xlfn.CSC

« XxL1fn.DAYS

« xlfn.DECIMAL

15.7. Formulas added in Excel 2010 and later 221

Creating Excel files with Python and XisxWriter, Release 3.1.9

ECMA.CEILING

_xlfn.
_x1fn.
~xlfn.
~xlfn.
_x1fn.
_xlfn.
~xlfn.
_x1fn.
_x1fn.
~xlfn.
_x1fn.
_x1fn.
~xlfn.
_x1fn.
_x1fn.
~xlfn.
_x1fn.
_x1fn
~xlfn
_x1fn
_x1fn
~xlfn
_xlfn.
_x1fn.
_x1fn.
~xlfn.
_x1fn.
_xlfn.
~xlfn.
_x1fn.
_x1fn.

ERF.PRECISE
ERFC.PRECISE
EXPON.DIST

F.DIST.RT

F.DIST

F.INV.RT

F.INV

F.TEST

FILTERXML

FLOOR.MATH
FLOOR.PRECISE
FORECAST.ETS.CONFINT
FORECAST.ETS.SEASONALITY
FORECAST.ETS.STAT
FORECAST.ETS
FORECAST.LINEAR
FORMULATEXT

.GAMMA.DIST
.GAMMA. INV

. GAMMALN. PRECISE
. GAMMA

. GAUSS

HYPGEOM.DIST
IFNA

IFS

IMAGE

IMCOSH

IMCOT

IMCSCH

IMCSC

IMSECH

222

Chapter 15. Working with Formulas

Creating Excel files with Python and XlsxWriter, Release 3.1.9

+ xlfn.
« xlfn.
« xlfn.
+ xlfn.
« xlfn
+ xlfn.
« xlfn.
« xlfn.
« xlfn
« xlfn
« xlfn
« xlfn
« xlfn
« xlfn
« xlfn.

+ xlfn.
« xlfn
« xlfn.
« xlfn.
« xlfn.
« xlfn
+ xlfn.
« xlfn.
« xlfn.
« xlfn.
« xlfn
« xlfn.
« xlfn.
« xlfn
« xlfn
« xlfn

IMSEC
IMSINH
IMTAN
ISFORMULA

.ISOMITTED

ISOWEEKNUM
LET
LOGNORM.DIST

.LOGNORM. INV
.MAXIFS
.MINIFS
.MODE.MULT
.MODE . SNGL
.MUNIT

NEGBINOM.DIST

NETWORKDAYS.INTL

NORM.DIST

.NORM. INV

NORM.S.DIST
NORM.S.INV
NUMBERVALUE

.PDURATION

PERCENTILE.EXC
PERCENTILE.INC
PERCENTRANK . EXC
PERCENTRANK. INC

.PERMUTATIONA

PHI
POISSON.DIST

.QUARTILE.EXC
.QUARTILE.INC
.QUERYSTRING

15.7. Formulas added in Excel 2010 and later

223

Creating Excel files with Python and XisxWriter, Release 3.1.9

+ xlfn.
« xlfn.
« xlfn.
+ xlfn.
« xlfn.
+ xlfn.
« xlfn.
« xlfn.

« xlfn

« xlfn
« xlfn
« xlfn

« xlfn
« xlfn
« xlfn
« xlfn
« xlfn

RANK.AVG
RANK. EQ
RRI

SECH

SEC
SHEETS
SHEET
SKEW.P

.STDEV.P
« xlfn.
« xlfn.
« xlfn.
« xlfn.
+ xlfn.
« xlfn.
« xlfn.
. TEXTAFTER
. TEXTBEFORE
.TEXTJOIN

« xlfn.
« xlfn.

STDEV.S
.DIST.2T
.DIST.RT
.DIST
JINV.2T
.INV

T
T
T
T
T
T.TEST

UNICHAR
UNICODE

.VALUETOTEXT
.VAR.P

.VAR.S
.WEBSERVICE
.WEIBULL.DIST
WORKDAY . INTL
_x1fn.
_xlfn.
« xlfn.

XMATCH
XOR
Z.TEST

The dynamic array functions shown in the Dynamic Array support section above are also future

functions:

224

Chapter 15. Working with Formulas

Creating Excel files with Python and XlsxWriter, Release 3.1.9

+ xLfn.ANCHORARRAY
« xlfn.BYCOL

« xLlfn.BYROW

+ xLlfn.CHOOSECOLS
« Xx1fn.CHOOSEROWS
« XxLfn.DROP

« XxLfn.EXPAND

« xlfn. xlws.FILTER
« X1fn.HSTACK

+ xLlfn.LAMBDA

+ xLfn.MAKEARRAY
« xlfn.MAP

« xLfn.RANDARRAY
+ xLlfn.REDUCE

« xLlfn.SCAN

+ XxLfn.SINGLE

« x1lfn.SEQUENCE

« xlfn. xlws.SORT
« xLfn.SORTBY

+ xLfn.SWITCH

« x1fn.TAKE

e XLUfn.TEXTSPLIT
+ xLlfn.TOCOL

« xLlfn.TOROW

« x1fn.UNIQUE

+ xLfn.VSTACK

« xlfn.WRAPCOLS

« XL1fn.WRAPROWS

+ XxLfn.XLOOKUP

However, since these functions are part of a powerful new feature in Excel, and likely to be very
important to end users, they are converted automatically from their shorter version to the explicit
future function version by XisxWriter, even without the use future function option. If you

15.7. Formulas added in Excel 2010 and later 225

Creating Excel files with Python and XisxWriter, Release 3.1.9

need to override the automatic conversion you can use the explicit versions with the prefixes
shown above.

15.8 Using Tables in Formulas

Worksheet tables can be added with XlIsxWriter using the add table () method:

worksheet.add table('B3:F7', {options})

By default tables are named Tablel, Table2, etc., in the order that they are added. However it
can also be set by the user using the name parameter:

worksheet.add table('B3:F7', {'name': 'SalesData'})

When used in a formula a table name such as TableX should be referred to as TableX[] (like a
Python list):

worksheet.write formula('A5', '=VLOOKUP("Sales", Tablel[], 2, FALSE")

15.9 Dealing with formula errors

If there is an error in the syntax of a formula it is usually displayed in Excel as #NAME?. Alternatively
you may get a warning from Excel when the file is loaded. If you encounter an error like this you
can debug it as follows:

1. Ensure the formula is valid in Excel by copying and pasting it into a cell. Note, this should be
done in Excel and not other applications such as OpenOffice or LibreOffice since they may
have slightly different syntax.

2. Ensure the formula is using comma separators instead of semi-colons, see Non US Excel
functions and syntax above.

3. Ensure the formula is in English, see Non US Excel functions and syntax above.

4. Ensure that the formula doesn’t contain an Excel 2010+ future function as listed above (For-
mulas added in Excel 2010 and later). If it does then ensure that the correct prefix is used.

5. If the function loads in Excel but appears with one or more @ symbols added then it
is probably an array function and should be written using write array formula() or
write dynamic array formula() (see the sections above on Dynamic Array support
and Dynamic Arrays - The Implicit Intersection Operator “‘@”).

Finally if you have completed all the previous steps and still get a #NAME? error you can examine
a valid Excel file to see what the correct syntax should be. To do this you should create a valid
formula in Excel and save the file. You can then examine the XML in the unzipped file.

The following shows how to do that using Linux unzip and libxml’s xmllint to format the XML for
clarity:

$ unzip myfile.xlsx -d myfile
$ xmllint --format myfile/xl/worksheets/sheetl.xml | grep '</f>'

226 Chapter 15. Working with Formulas

https://gnome.pages.gitlab.gnome.org/libxml2/xmllint.html

Creating Excel files with Python and XlsxWriter, Release 3.1.9

<f>SUM(1, 2, 3)</f>

15.9. Dealing with formula errors 227

Creating Excel files with Python and XisxWriter, Release 3.1.9

228 Chapter 15. Working with Formulas

CHAPTER
SIXTEEN

WORKING WITH DATES AND TIME

Dates and times in Excel are represented by real numbers, for example “Jan 1 2013 12:00 PM” is
represented by the number 41275.5.

The integer part of the number stores the number of days since the epoch and the fractional part
stores the percentage of the day.

A date or time in Excel is just like any other number. To display the number as a date you must
apply an Excel number format to it. Here are some examples:

import xlsxwriter

workbook = xlsxwriter.Workbook('date examples.xlsx")
worksheet = workbook.add worksheet()

Widen column A for extra visibility.
worksheet.set column('A:A', 30)

A number to convert to a date.
number = 41333.5

Write it as a number without formatting.
worksheet.write('Al', number) # 41333.5

format2 = workbook.add format({'num format': 'dd/mm/yy'})
worksheet.write('A2', number, format2) # 28/02/13

format3 = workbook.add format({'num format': 'mm/dd/yy'})
worksheet.write('A3', number, format3) # 02/28/13

format4 = workbook.add format({'num format': 'd-m-yyyy'})
worksheet.write('A4', number, format4) # 28-2-2013

format5 = workbook.add format({'num format': 'dd/mm/yy hh:mm'})
worksheet.write('A5', number, format5) # 28/02/13 12:00

format6 = workbook.add format({'num format': 'd mmm yyyy'})
worksheet.write('A6', number, format6) # 28 Feb 2013

format7 = workbook.add format({'num format': '‘mmm d yyyy hh:mm AM/PM'})
worksheet.write('A7', number, format7) # Feb 28 2013 12:00 PM

229

Creating Excel files with Python and XisxWriter, Release 3.1.9

workbook.close()

e 00 || date_examples.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 I -
A7 @ @ (- fx| 28/02/2013 12:00:00 v

e .U, B8 . .. cC | D=
413335

28/02/13

02/28/13

28-2-2013

28/02/13 12:00

28 Feb 2013

Feb 28 2012 12:00 PMJ‘

mmHmm.hme

10
11
12

13
gyl snee /N [

Mormal View Rieady e

To make working with dates and times a little easier the XlsxWriter module provides a
write datetime() method to write dates in standard library datetime format.

Specifically it supports datetime objects of type datetime.datetime, datetime.date, date-
time.time and datetime.timedelta.

There are many way to create datetime objects, for example the date-
time.datetime.strptime() method:

date time = datetime.datetime.strptime('2013-01-23", 'SY-%m-%d")

See the datetime documentation for other date/time creation methods.

As explained above you also need to create and apply a number format to format the date/time:

date format = workbook.add format({'num format': 'd mmmm yyyy'})
worksheet.write datetime('Al', date time, date format)

Displays "23 January 2013"

Here is a longer example that displays the same date in a several different formats:

230 Chapter 16. Working with Dates and Time

https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#module-datetime

Creating Excel files with Python and XlsxWriter, Release 3.1.9

from datetime import datetime
import xlsxwriter

Create a workbook and add a worksheet.
workbook = xlsxwriter.Workbook('datetimes.xlsx")
worksheet = workbook.add worksheet()

bold = workbook.add format({'bold': True})

Expand the first columns so that the dates are visible.
worksheet.set column('A:B', 30)

Write the column headers.
worksheet.write('Al', 'Formatted date', bold)
worksheet.write('Bl1', 'Format', bold)

Create a datetime object to use in the examples.

date time = datetime.strptime('2013-01-23 12:30:05.123",
"%Y-%M-%0d %H:%M:%S.%f")

Examples date and time formats.
date formats = (
'dd/mm/yy",
'mm/dd/yy",
‘dd m yy',
‘d mm yy',
'd mmm yy',
'd mmmm yy',
'd mmmm yyy',
‘d mmmm yyyy',
‘dd/mm/yy hh:mm',
‘dd/mm/yy hh:mm:ss"',
‘dd/mm/yy hh:mm:ss.000',
"hh:mm',
"hh:mm:ss"',
"hh:mm:ss.000",
)

Start from first row after headers.
row = 1

Write the same date and time using each of the above formats.
for date format str in date formats:

Create a format for the date or time.
date format = workbook.add format({'num format': date format str,
'align': 'left'})

Write the same date using different formats.
worksheet.write datetime(row, 0, date time, date format)

Also write the format string for comparison.
worksheet.write string(row, 1, date format str)

231

Creating Excel files with Python and XisxWriter, Release 3.1.9

row += 1

workbook.close()

.8 00 | datetimes.xlsx |
Home I Layout | Tables I Charts I SmartArt I 3| v Lt~
AlS

4175

Formatted date Format
23/01/13 dd/mm/yy
01/23/13 mm,/dd fyy
23113 ded m vy
230113 d mm yy

23 Jan 13 d mmm yy

23 lanuary 13 d mmmm yy
23 lanuary 2013 d mmmm yyy

23 lanuary 2013 d mmmm yyyy

23/01/13 12:30 dd/mm/yy hh:mm
23/01/13 12:30:05 dd/mm/yy hh:mm:ss
23/01/13 12:30:05.123 dd/mm/yy hh:mm:ss.000

1 0 @& (= fx -

Mormal View

16.1 Default Date Formatting

In certain circumstances you may wish to apply a default date format when writing datetime ob-
jects, for example, when handling a row of data with write row().

In these cases it is possible to specify a default date format string using the Workbook () con-
structor default date format option:

workbook = xlsxwriter.Workbook('datetimes.xlsx', {'default date format':

worksheet
date time

'dd/mm/yy'})

workbook.add worksheet()
datetime.now()

worksheet.write datetime(0, 0, date time) # Formatted as 'dd/mm/yy'’

workbook.close()

232

Chapter 16. Working with Dates and Time

Creating Excel files with Python and XlsxWriter, Release 3.1.9

16.2 Timezone Handling

Excel doesn’t support timezones in datetimes/times so there isn’t any fail-safe way that XlsxWriter
can map a Python timezone aware datetime into an Excel datetime. As such the user should
handle the timezones in some way that makes sense according to their requirements. Usually this
will require some conversion to a timezone adjusted time and the removal of the tzinfo from the
datetime object so that it can be passed to write datetime():

utc datetime = datetime(2016, 9, 23, 14, 13, 21, tzinfo=utc)
naive datetime = utc_datetime.replace(tzinfo=None)

worksheet.write datetime(row, 0, naive datetime, date format)

Alternatively the Workbook () constructor option remove timezone can be used to strip the
timezone from datetime values passed to write datetime(). The defaultis False. To enable
this option use:

workbook = xlsxwriter.Workbook(filename, {'remove timezone': True})

When Working with Pandas and XlsxWriter you can pass the argument as follows:

writer = pd.ExcelWriter('pandas example.xlsx"',
engine='xlsxwriter',
options={'remove timezone': True})

16.2. Timezone Handling 233

Creating Excel files with Python and XisxWriter, Release 3.1.9

234 Chapter 16. Working with Dates and Time

CHAPTER
SEVENTEEN

WORKING WITH COLORS

Throughout XIsxWriter colors are specified using a Html style #RRGGBB value. For example with
a Format object:

cell format.set font color('#FFOO00")

For backward compatibility a limited number of color names are supported:

cell format.set font color('red")

The color names and corresponding #RRGGBB value are shown below:

Color name | RGB color code
black #000000
blue #0O000FF
brown #800000
cyan #OOFFFF
gray #808080
green #008000
lime #OOFFOO
magenta #FFOOFF
navy #000080
orange #FF0600
pink #FFOOFF
purple #800080
red #FFOOO0O
silver #COCOCOo
white #FFFFFF
yellow #FFFFOO

235

Creating Excel files with Python and XisxWriter, Release 3.1.9

236 Chapter 17. Working with Colors

CHAPTER
EIGHTEEN

WORKING WITH CHARTS

This section explains how to work with some of the options and features of The Chart Class.
The majority of the examples in this section are based on a variation of the following program:

import xlsxwriter

workbook = xlsxwriter.Workbook('chart line.xlsx")
worksheet = workbook.add worksheet()

Add the worksheet data to be plotted.
data = [10, 40, 50, 20, 10, 50]
worksheet.write column('Al', data)

Create a new chart object.
chart = workbook.add chart({'type': 'line'})

Add a series to the chart.
chart.add series({'values': '=Sheetl!A1:$A%$6"'})

Insert the chart into the worksheet.
worksheet.insert chart('Cl', chart)

workbook. close()

237

Creating Excel files with Python and XisxWriter, Release 3.1.9

1T R < 111 W 1111 O
Home | Layout | Tables | Charts | Smartart | » v fE
Al 110 & (= f 10 |-

- : P S < RS NUU OO NSO -SR-S N - —— -
10 | e

P 40
3 50
4 0
5 10
6 50
7

8

4 4 Sh!!tl_ Il
— l (+] | |

Mormal View Ready o

See also Chart Examples.

18.1 Chart Value and Category Axes

When working with charts it is important to understand how Excel differentiates between a chart
axis that is used for series categories and a chart axis that is used for series values.

In the majority of Excel charts the X axis is the category axis and each of the values is evenly
spaced and sequential. The Y axis is the value axis and points are displayed according to their
value:

238 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

16
14
12
10

o N B o 0

1 2

4

3
Category Axis

Excel treats these two types of axis differently and exposes different properties for each. For
example, here are the properties for a category axis:

18.1. Chart Value and Category Axes 239

Creating Excel files with Python and XisxWriter, Release 3.1.9

Format Axis

Scale

Mumber Horizontal axis type
L. Ticks -
Jag Font o Automatic | Text | | Date
[TE Text Box
& Fill Herizontal axis scale
\ Line . i
l_J Shadow Vertical axis crosses at category number: |1

() Glow & Soft Edges Interval between labels:

Interval between tick marks:
Label distance from axis: 100

Vertical axis crosses between categories
|| Categories in reverse order

[Vertical axis crosses at maximum categeory

Here are properties for a value axis:

240 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Format Axis
Scale
Wumber Vertical axis scale
| Ticks Auto
/@ Font Minimum: 0.0
|TE| Text Box
i Mazximum: 16.0
[
“ Line Major unit: 2.0
|| Shadow Minor unit: 0.4
[_] Glow & Soft Edges
Horizontal
= 0.0
9 axis crosses at:

Display units: Mone B Show display units label on chart

~| Logarithmic scale Base: 10.0

| Values in reverse order

| Horizental axis crosses at maximum value

As such, some of the XisxWriter axis properties can be set for a value axis, some can be set for
a category axis and some properties can be set for both. For example reverse can be set for
either category or value axes while the min and max properties can only be set for value axes
(and Date Axes). The documentation calls out the type of axis to which properties apply.

For a Bar chart the Category and Value axes are reversed:

18.1. Chart Value and Category Axes 241

Creating Excel files with Python and XisxWriter, Release 3.1.9

5
4
a

0 5 10

Category Axis

A Scatter chart (but not a Line chart) has 2 value axes:

242 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

s

0 T T T T
0 1 2 3 4

Date Category Axes are a special type of category axis that give them some of the properties of
values axes such as min and max when used with date or time values.

18.2 Chart Series Options

This following sections detail the more complex options of the add series() Chart method:

marker
trendline

y error _bars
X_error_bars
data labels
points
smooth

18.2. Chart Series Options 243

Creating Excel files with Python and XisxWriter, Release 3.1.9

18.3 Chart series option: Marker

The marker format specifies the properties of the markers used to distinguish series on a chart. In
general only Line and Scatter chart types and trendlines use markers.

The following properties can be set for marker formats in a chart:

type
size
border
fill
pattern
gradient

The type property sets the type of marker that is used with a series:

chart.add series({
'values': '=Sheetl!A1:$A%6',
‘marker': {'type': 'diamond'},

}

60
50 A ' 4

. N\ /

30 / \ / ==Series1
| ~J
10 /

The following type properties can be set for marker formats in a chart. These are shown in the
same order as in the Excel format dialog:

automatic
none
square
diamond
triangle
X

star
short _dash
long dash
circle
plus

The automatic type is a special case which turns on a marker using the default marker style for

244 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

the particular series number:

chart.add series({
'values': '=Sheetl!A1:$A%6",
'marker': {'type': 'automatic'},

})
If automatic is on then other marker properties such as size, border or fill cannot be set.
The size property sets the size of the marker and is generally used in conjunction with type:
chart.add series({
'values': '"=Sheetl!A1:$A%$6"',

'marker': {'type': 'diamond', 'size': 7},

}

Nested border and fill properties can also be set for a marker:

chart.add series({

'values': '=Sheetl!A1:$A%$6"',
'marker': {

"type': 'square',

'size': 8,

'border': {'color': 'black'},

fill': {'color': 'red'},
}

60

. [
. NS
/ [

20
10 —/

18.4 Chart series option: Trendline

A trendline can be added to a chart series to indicate trends in the data such as a moving average
or a polynomial fit.

The following properties can be set for trendlines in a chart series:

18.4. Chart series option: Trendline 245

Creating Excel files with Python and XisxWriter, Release 3.1.9

type

order (for polynomial trends)

period (for moving average)

forward (for all except moving average)

backward (for all except moving average)

name

line

intercept (for exponential, linear and polynomial only)
display equation (for all except moving average)

display r squared (for all except moving average)

The type property sets the type of trendline in the series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'trendline': {'type': 'linear'},

})

The available trendline types are:

exponential
linear

log

moving average
polynomial
power

A polynomial trendline can also specify the order of the polynomial. The default value is 2:

chart.add series({
'values': '=Sheetl!A1:$A%$6"',
"trendline': {
"type': 'polynomial’,
‘order': 3,
b
})

60

o 2\ /
/SR /|
\ }/ N/

10 1

Series1

—Poly. (Seriesl)

246 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

A moving average trendline can also specify the period of the moving average. The default

value is 2:

chart.add series({

}

'values':

"trendline': {
'moving average',
'period': 2,

}

"type':

'=Sheetl!A1:%A%6",

60

50

/

40

A
YN

30

//

\

20

/

\ /
NS

10

=y

Seriesl

— 2 per. Mov. Avg. (Seriesl)

The forward and backward properties set the forecast period of the trendline:

chart.add series({

}

'values':

"trendline': {

}

"type':
'order':

'polynomial’,

2,

"forward': ,
'"backward': 0.5,

0.5

'=Sheetl!A1:A6",

The name property sets an optional name for the trendline that will appear in the chart legend.
If it isn’t specified the Excel default name will be displayed. This is usually a combination of the
trendline type and the series name:

chart.add series({

}

'values':

"trendline': {

}

"type':
"name':
'order':

'polynomial’,
'My trend name',

2,

'=Sheetl!A1:$A%6",

18.4. Chart series option: Trendline

247

Creating Excel files with Python and XisxWriter, Release 3.1.9

The intercept property sets the point where the trendline crosses the Y (value) axis:

chart.add series({
'values': '=Sheetl!B1:B6"',
"trendline': {'type': 'linear',
"intercept': 0.8,
3
})

The display equation property displays the trendline equation on the chart:

chart.add series({
'values': '=Sheetl!B1:$B%$6"',
"trendline': {'type': 'linear’,
'display equation': True,
b
})

The display r squared property displays the R squared value of the trendline on the chart:

chart.add series({
'values': '=Sheetl!B1:B6"',
"trendline': {'type': 'linear',
'display r squared': True,
¥
})

Several of these properties can be set in one go:

chart.add series({
'values': '=Sheetl!A1:$A%6",
"trendline': {
"type': 'polynomial',
‘name': 'My trend name',
'order': 2,
"forward': 0.5,
'"backward': 0.5,
'display equation': True,
'line': {
'color': 'red',
'width': 1,
‘dash _type': 'long dash',
}

248 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

60

50

40 y=-0.5357x2 + 6.0357x + 17

P I A Satu—) s Series1
— — =~ My trend name
20

10

1 2 3 4 5 6

Trendlines cannot be added to series in a stacked chart or pie chart, doughnut chart, radar chart
or (when implemented) to 3D or surface charts.

18.5 Chart series option: Error Bars

Error bars can be added to a chart series to indicate error bounds in the data. The error bars can
be vertical y _error_bars (the most common type) or horizontal Xx_error_bars (for Bar and
Scatter charts only).

The following properties can be set for error bars in a chart series:

type

value (for all types except standard error and custom)
plus values (for custom only)

minus values (for custom only)

direction

end style

line

The type property sets the type of error bars in the series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'y error bars': {'type': 'standard error'},

}

18.5. Chart series option: Error Bars 249

Creating Excel files with Python and XisxWriter, Release 3.1.9

70

: |
o LI\ //l

ol /
Y Ny

m——Seriesl

The available error bars types are available:

fixed

percentage
standard_deviation
standard error
custom

All error bar types, except for standard _error and custom must also have a value associated
with it for the error bounds:

chart.add series({

'values': '=Sheetl!A1:$A%6",
'y error bars': {
"type': 'percentage',
'value': 5,
3

}

The custom error bar type must specify plus values and minus values which should either
by a Sheetl!A1:A6 type range formula or a list of values:

chart.add series({

'categories': '=Sheetl!A1:$A%6",
'values': '=Sheetl1!B1:$B%$6"',
'y error bars': {
"type': ‘custom',
'plus values': '=Sheetl!C1:C6',
'minus values': '=Sheetl!D1:D6',
}
})
or

chart.add series({
'categories': '=Sheetl!A1:$A%6",

250 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

'values': '=Sheetl1!B1:$B%$6"',
'y error bars': {
"type': ‘custom',

‘plus values': [1, 1, 1, 1, 1],
'minus values': [2, 2, 2, 2, 2],
b
})

Note, as in Excel the items in the minus values do not need to be negative.
The direction property sets the direction of the error bars. It should be one of the following:

plus # Positive direction only.
minus # Negative direction only.
both # Plus and minus directions, The default.

The end style property sets the style of the error bar end cap. The options are 1 (the default)
or 0 (for no end cap):

chart.add series({
'values': '=Sheetl!A1:$A%6",
'y error bars': {
"type': 'fixed',
'value': 2,
'end style': 0O,
'direction': 'minus'

60

) N\ /
A — A
S/ ~/

10 1 1

18.6 Chart series option: Data Labels

Data labels can be added to a chart series to indicate the values of the plotted data points.

The following properties can be set for data labels formats in a chart:

18.6. Chart series option: Data Labels 251

Creating Excel files with Python and XisxWriter, Release 3.1.9

value
category
series name
position
leader lines
percentage
separator
legend key
num_format
font

border

fill
pattern
gradient
custom

The value property turns on the Value data label for a series:

60

50

40

30

20

10

chart.add series({

'values':

‘data labels': {'value': True},

}

40

10

1 2

3

50

'=Sheetl!A1:$A%6",

4

5

10

6

50

=—8—=Seriesl

By default data labels are displayed in Excel with only the values shown. However, it is possible to

configure other display options, as shown below.

252

Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Format Data Labels

Murnber Label contains

/@ Font — .

P Series name

Text Box

& Fill [Category name

\ Lime

|| Shadow Ll

[; Glow & Soft Edges Label options

} 3-D Format
Label position: | Right
Separator: , [comma} -

| Show legend key next to label

The category property turns on the Category Name data label for a series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
‘data labels': {'category': True},
})

The series name property turns on the Series Name data label for a series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'data labels': {'series name': True},

}

Here is an example with all three data label types shown:

18.6. Chart series option: Data Labels 253

Creating Excel files with Python and XisxWriter, Release 3.1.9

60

50 fest; 3; iesl, 6, 50

30

40 / Seriest, 2, 4\1\
20 /
10 '#ﬁ?&h 1,10

—8-=Seriesl

The position property is used to position the data label for a series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'data labels': {'series name': True,

}

'position': 'above'},

60

) 0\ /

. /

1/
of

10 A

—®—Seriesl

In Excel the allowable data label positions vary for different chart types. The allowable positions

are:

254

Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Position Line, Scatter, Stock | Bar, Column | Pie, Doughnut | Area, Radar
center Yes Yes Yes Yes*

right Yes*

left Yes

above Yes

below Yes

inside_base Yes

inside_end Yes Yes

outside_end Yes* Yes

best_fit Yes*

Note: The * indicates the default position for each chart type in Excel, if a position isn’t specified
by the user.

The percentage property is used to turn on the display of data labels as a Percentage for a
series. In Excel the percentage data label option is only available for Pie and Doughnut chart
variants:

chart.add series({
'values': '=Sheetl1!A1:$A%$6",
'data labels': {'percentage': True},

}

The leader lines property is used to turn on Leader Lines for the data label of a series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'data labels': {'value': True, 'leader lines': True},

}

Note: Even when leader lines are turned on they aren’t automatically visible in Excel or XlI-
sxWriter. Due to an Excel limitation (or design) leader lines only appear if the data label is moved

manually or if the data labels are very close and need to be adjusted automatically.

The separator property is used to change the separator between multiple data label items:

18.6. Chart series option: Data Labels 255

Creating Excel files with Python and XisxWriter, Release 3.1.9

chart.add series({

'values': '=Sheetl!A1:$A%$6",
'data labels': {'value': True, 'category': True,
'series name': True, 'separator': "\n"},
})
60
Seriesl Seriesl
50 3 ' o 6
21 50 50

40 2
/ 40 \ /
30 —®=Series1
Seriesl
20 4
Afriesl \M\/Serie‘f’1

10 b T 4 5
10 10

The separator value must be one of the following strings:

[
’
[
’
[
1

1

\n'

The legend key property is used to turn on the Legend Key for the data label of a series:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'data labels': {'value': True, 'legend key': True},

}

256 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

60

al /TN /

30

—8-=Seriesl

20

10 010

The num_format property is used to set the number format for the data labels of a series:

chart.add series({

'values': '=Sheetl!A1:$A%$6",

'data labels': {'value': True, 'num format': '#,##0.00'},
1)

60

50 Au.uu / $50.00
40 / $40.00 \ /
30
/ \ / —®—Series1

10 @-510.00 ©—$10:00

The number format is similar to the Worksheet Cell Format num _format apart from the fact that
a format index cannot be used. An explicit format string must be used as shown above. See
set num format() for more information.

The font property is used to set the font of the data labels of a series:

chart.add series({
'values': '=Sheetl!A1:$A%6",
‘data_labels': {
'value': True,
"font': {'name': 'Consolas', 'color': 'red'}

}

18.6. Chart series option: Data Labels 257

Creating Excel files with Python and XisxWriter, Release 3.1.9

}

60

. <\ /

) / \ /[

L/ . /
/ ~

10 16 16

The font property is also used to rotate the data labels of a series:

chart.add series({

'values': '=Sheetl!A1:$A%$6",
'data labels': {
'value': True,
"font': {'rotation': 45}
3
})

See Chart Fonts.
Standard chart formatting such as border and fill can also be added to the data labels:

chart.add series({

'values': '=Sheetl!A1:$A%$6",

'data labels': {'value': True,
'border': {'color': 'red'},
fill': {'color': 'yellow'}},

258 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

60

50

40

30

—&—=Seriesl

20

10

The custom property is used to set properties for individual data labels. This is explained in detalil
in the next section.

18.7 Chart series option: Custom Data Labels

The custom data label property is used to set the properties of individual data labels in a series.
The most common use for this is to set custom text or number labels:

custom labels = [

{'value': 'Jan'},
{'value': 'Feb'},
{'value': 'Mar'},

{'value': 'Apr'},
{'value': 'May'},
{'value': '"Jun'},

]

chart.add series({
'values': '=Sheetl!A1:$A%$6"',
‘data labels': {'value': True, 'custom': custom labels},

}

18.7. Chart series option: Custom Data Labels 259

Creating Excel files with Python and XisxWriter, Release 3.1.9

60

50 Adl / Jun
40 F

30 / \ / ==Seriesl
20 / w
10 Jan

May

As shown in the previous examples th custom property should be a list of dicts. Any property dict
that is set to None or not included in the list will be assigned the default data label value:

custom labels = [

None,
{'value': 'Feb'},
{'value': 'Mar'},

{'value': 'Apr'},
]

chart.add series({
'values': '=Sheetl!A1:$A%$6"',
‘data labels': {'value': True, 'custom': custom labels},

}

60

50 Adl / 50
40 F

L/ \, / = —™
ol 2, N/,

The property elements of the custom lists should be dicts with the following allowable keys/sub-
properties:

260 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

value
font
delete

The value property should be a string, number or formula string that refers to a cell from which
the value will be taken:

custom labels = [

{'value': '=Sheetl1!C1'},
{'value': '=Sheetl1!C2'},
{'value': '=Sheetl!C3'},
{'value': '=Sheetl!C4'},
{'value': '=Sheetl!C5'},
{'value': '=Sheetl1!C6'},

]

The font property is used to set the font of the custom data label of a series:

custom labels = [

{'value': '=Sheetl1!C1', 'font': {'color': 'red'}},
{'value': '=Sheetl1!C2', 'font': {'color': 'red'}},
{'value': '=Sheetl!C3', 'font': {'color': 'red'}},
{'value': '=Sheetl!C4', 'font': {'color': 'red'}},
{'value': '=Sheetl!C5', 'font': {'color': 'red'}},
{'value': '=Sheetl1!C6', 'font': {'color': 'red'}},

]

chart.add series({
'values': '=Sheetl!A1:$A%6",
‘data labels': {'value': True, 'custom': custom labels},

}

See Chart Fonts for details on the available font properties.

60
50 Sep Bec
40 Aug

30 ==Seriesl

20 Oct

10 tut Nov

The delete property can be used to delete labels in a series. This can be useful if you want to
highlight one or more cells in the series, for example the maximum and the minimum:

18.7. Chart series option: Custom Data Labels 261

Creating Excel files with Python and XisxWriter, Release 3.1.9

custom_ labels = [
None,
{'delete': True},
{'delete': True},
{'delete': True},
{'delete': True},
None,

]

chart.add series({
'values': '=Sheetl!A1:$A%6",
‘data labels': {'value': True, 'custom': custom labels},

}

60
) /\ /)
40

L/ N/ ™
N ~/

Standard chart formatting such as border and fill can also be added to the custom data labels:

custom labels = [

{'value': 'Jan', 'border': {'color': 'blue'}},
{'value': 'Feb'},
{'value': 'Mar'},

{'value': 'Apr'},
{'value': 'May'},
{'value': 'Jun', 'fill': {'color': 'green'}},

]

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'marker': {'type': 'circle'},
'data labels': {'value': True,
"custom': custom labels,
'border': {'color': 'red'},
fill': {'color': 'yellow'}},

262 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

60

50

40

30

20

10

—&—=Seriesl

18.8 Chart series option: Points

In general formatting is applied to an entire series in a chart. However, it is occasionally required
to format individual points in a series. In particular this is required for Pie/Doughnut charts where

each segment is represented by a point.

In these cases it is possible to use the points property of add series():

import xlsxwriter

workbook = xlsxwriter.Workbook('chart pie.xlsx")

worksheet = workbook.add worksheet()

chart = workbook.add chart({'type': 'pie'})

data = [
['Pass', 'Fail'l,
[90, 10],

]

worksheet.write column('Al', data[0])
worksheet.write column('B1l', data[l])

chart.add series({

'categories': '=Sheetl!A1:$A%$2',
'values': '=Sheetl1!B1:B2"',
'points': [

{'fill': {'color': 'green'}},
{'fill': {'color': 'red'}},
1,
})

worksheet.insert chart('C3', chart)

workbook.close()

18.8. Chart series option: Points

263

Creating Excel files with Python and XisxWriter, Release 3.1.9

W Pass

HFail

The points property takes a list of format options (see the “Chart Formatting” section below). To
assign default properties to points in a series pass None values in the array ref:

Format point 3 of 3 only.
chart.add series({
'values': '=Sheetl!Al:A3',
'points': [
None,
None,
{'fill': {'color': '#990000'}},
]I
})

Format point 1 of 3 only.
chart.add series({
'values': '=Sheetl!Al:A3',
'points': [
{'fill': {'color': '#990000'}},
1,
})

18.9 Chart series option: Smooth

The smooth option is used to set the smooth property of a line series. It is only applicable to the
line and scatter chart types:

chart.add series({

'categories': '=Sheetl!A1:$A%6",
'values': '=Sheetl!B1:$B%$6"',
'smooth': True,

}

264 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

18.10 Chart Formatting

The following chart formatting properties can be set for any chart object that they apply to (and
that are supported by XlsxWriter) such as chart lines, column fill areas, plot area borders, markers,

gridlines and other chart elements:

line
border
fill
pattern
gradient

Chart formatting properties are generally set using dicts:

chart.add series({
'values': '=Sheetl!A1:$A%$6"',
'line': {'color': 'red'},

}

60

) N\

NV /

L/ N/

o Seriesl

./ ~/

10

In some cases the format properties can be nested. For example a marker may contain border

and fill sub-properties:

chart.add series({

'values': '=Sheetl!A1:$A%$6"',
'line': {'color': 'blue'},
‘marker': {'type': 'square',
'size,': 5,
"border': {'color':
"fill': {'color':
b

'red'},
'yellow'}

18.10. Chart Formatting

265

Creating Excel files with Python and XisxWriter, Release 3.1.9

) N\ /
/ 0\ /

o/ N/ T
/ ~/

10 L T

18.11 Chart formatting: Line

The line format is used to specify properties of line objects that appear in a chart such as a plotted
line on a chart or a border.

The following properties can be set for Line formats in a chart:

none
color

width

dash type
transparency

The none property is used to turn the Line off (it is always on by default except in Scatter charts).
This is useful if you wish to plot a series with markers but without a line:

chart.add series({

'values': '=Sheetl!A1:A6',
‘line': {'none': True},
'marker': {'type': 'automatic'},

}

266 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

60

*
*

50

*

40

30 # Seriesl

L 4

20

L 4
L 4

10

The color property sets the color of the Line:

chart.add series({
'values': '=Sheetl!A1:$A%6",
'line': {'color': 'red'},

}

The available colors are shown in the main XisxWriter documentation. It is also possible to set the
color of a line with a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors:

chart.add series({

'values': '=Sheetl!A1:$A%6",
'line': {'color': '#FF9900'},
b
60
50 —
40
30 Seriesl
20
10
0
1 2 3 4 5 6

The width property sets the width of the Line. It should be specified in increments of 0.25 of a
point as in Excel:

18.11. Chart formatting: Line 267

Creating Excel files with Python and XisxWriter, Release 3.1.9

chart.add series({
'values': '=Sheetl!A1:A6',
‘line': {'width': 3.25},

})

The dash_type property sets the dash style of the line:

chart.add series({

'values': '=Sheetl!A1:$A%$6"',
'line': {'dash type': 'dash dot'},
})
60
50 e
7 : /
40 -~ \. I.
. \ .
30 -/ '\ .I =+ *Series1
20 7 ~ 7
‘o .
10 / ‘J
0 T
1 2 3 4 5 6

The following dash type values are available. They are shown in the order that they appear in
the Excel dialog:

solid

round dot

square dot

dash

dash_dot

long dash

long dash dot
long dash dot dot

The default line style is solid.

The transparency property sets the transparency of the line color in the integer range 1 - 100.
The color must be set for transparency to work, it doesn’t work with an automatic/default color:

chart.add series({
'values': '=Sheetl!A1:$A%$6"',
'line': {'color': 'yellow', 'transparency': 50},

}

More than one line property can be specified at a time:

268 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart.add series({

'values': '=Sheetl!A1:$A%$6"',
'line': {

‘color': 'red',

'width': 1.25,

'dash _type': 'square dot',
b
})

18.12 Chart formatting: Border

The border property is a synonym for Line.

It can be used as a descriptive substitute for Line in chart types such as Bar and Column that
have a border and fill style rather than a line style. In general chart objects with a border property
will also have a fill property.

18.13 Chart formatting: Solid Fill

The solid fill format is used to specify filled areas of chart objects such as the interior of a column
or the background of the chart itself.

The following properties can be set for fill formats in a chart:

none
color
transparency

The none property is used to turn the Til1l property off (it is generally on by default):

chart.add series({
'values': '=Sheetl!A1:A6"',
"fill': {'none': True},
'border': {'color': 'black'}
})

18.12. Chart formatting: Border 269

Creating Excel files with Python and XisxWriter, Release 3.1.9

60

50

40

30 OSeriesl

20

10

The color property sets the color of the fill area:

chart.add series({
'values': '=Sheetl!A1:$A%6",
Fill': {'color': 'red'}

})

The available colors are shown in the main XisxWriter documentation. It is also possible to set the
color of a fill with a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors:

chart.add series({

'values': '=Sheetl!A1:$A%6",
Fill': {'color': '#FF9900'}
})
60
50 —
40 —
30 o Series1
20 —
10 —
0
1 2 3 4 5 6

The transparency property sets the transparency of the solid fill color in the integer range 1
- 100. The color must be set for transparency to work, it doesn’t work with an automatic/default
color:

270 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart.set chartarea({'fill': {'color': 'yellow', 'transparency': 50}})

60

50

40 -

30 B Seriesl

20 —

10 —

The fill format is generally used in conjunction with a border format which has the same
properties as a Line format:

chart.add series({
'values': '=Sheetl!A1:$A%6",
fill': {'color': 'red'},
'border': {'color': 'black'}
})

60

50

40

30

20
i -:. I .
0 - : : . . .
2 3 4 5 6

1

B Seriesl

18.14 Chart formatting: Pattern Fill

The pattern fill format is used to specify pattern filled areas of chart objects such as the interior of
a column or the background of the chart itself.

18.14. Chart formatting: Pattern Fill 271

Creating Excel files with Python and XisxWriter, Release 3.1.9

Cladding types

Number of houses

EShingle

EBrick

Region

The following properties can be set for pattern fill formats in a chart:

pattern: the pattern to be applied (required)
fg color: the foreground color of the pattern (required)
bg color: the background color (optional, defaults to white)

For example:

chart.set plotarea({

'pattern': {

'pattern’

: 'percent 5',

'fg color': 'red',
'bg color': 'yellow',

}

The following patterns can be applied:

percent 5

percent 10
percent 20
percent 25
percent 30
percent 40
percent 50
percent 60
percent 70
percent 75
percent 80

272

Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

* percent 90

« light downward diagonal
« light upward diagonal
« dark downward diagonal
« dark upward diagonal

» wide downward diagonal
» wide upward diagonal

« light vertical

« light horizontal

* narrow_vertical

* narrow horizontal

« dark vertical

« dark horizontal

» dashed downward diagonal
» dashed upward diagonal
» dashed horizontal

» dashed vertical

« small confetti

« large confetti

« zigzag

* wave

« diagonal brick

* horizontal brick

* weave

» plaid

» divot

« dotted grid

» dotted diamond

« shingle

* trellis

* sphere

« small grid

18.14. Chart formatting: Pattern Fill 273

Creating Excel files with Python and XisxWriter, Release 3.1.9

large grid

small check

large check

outlined diamond

solid diamond

The foreground color, fg color, is a required parameter and can be a Html style #RRGGBB string
or a limited number of named colors, see Working with Colors.

The background color, bg color, is optional and defaults to white.

If a pattern fill is used on a chart object it overrides the solid fill properties of the object.

18.15 Chart formatting: Gradient Fill

The gradient fill format is used to specify gradient filled areas of chart objects such as the interior
of a column or the background of the chart itself.

80

~
o

o

o

Sample length (mm)
o

NoOw bR U O
(=]

o

=
o
I

)l 1L

o

2 3 4 5 6 7

Test number

The following properties can be set for gradient fill formats in a chart:

colors: a list of colors

positions: an optional list of positions for the colors
type: the optional type of gradient fill

angle: the optional angle of the linear fill

The colors property sets a list of colors that define the gradient:

chart.set plotarea({
‘gradient': {'colors': ['#FFEFD1', '#FOEBD5', '#B69F66']}
})

Excel allows between 2 and 10 colors in a gradient but it is unlikely that you will require more than
2o0r3.

274 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

As with solid or pattern fill it is also possible to set the colors of a gradient with a Html style
#RRGGBB string or a limited number of named colors, see Working with Colors:

chart.add series({
'values': '=Sheetl!A1:$A%$6",
'gradient': {'colors': ['red', 'green'l]}

}

The positions defines an optional list of positions, between 0 and 100, of where the colors in
the gradient are located. Default values are provided for colors lists of between 2 and 4 but they
can be specified if required:

chart.add series({

'values': '=Sheetl!A1:$A%$6"',
'gradient': {
‘colors': ['#DDEBCF', '#156B13'],
'positions': [10, 90171,
}

}

The type property can have one of the following values:

linear (the default)
radial

rectangular

path

For example:
chart.add series({
'values': '=Sheetl!A1:$A%$6"',
‘gradient': {
‘colors': ['#DDEBCF', '#9CB86E', '#156B13'],
'type': 'radial'
})

If type isn’t specified it defaults to Linear.
For a Linear fill the angle of the gradient can also be specified:

chart.add series({

'values': '=Sheetl!A1:$A%$6"',
'gradient': {'colors': ['#DDEBCF', '#9CB86E', '#156B13'],
'angle': 45}

}

The default angle is 90 degrees.

If gradient fill is used on a chart object it overrides the solid fill and pattern fill properties of the
object.

18.15. Chart formatting: Gradient Fill 275

Creating Excel files with Python and XisxWriter, Release 3.1.9

18.16 Chart Fonts

The following font properties can be set for any chart object that they apply to (and that are sup-
ported by XisxWriter) such as chart titles, axis labels, axis numbering and data labels:

name
size

bold
italic
underline
rotation
color

These properties correspond to the equivalent Worksheet cell Format object properties. See the
The Format Class section for more details about Format properties and how to set them.

The following explains the available font properties:

* name: Set the font name:

chart.set x axis({'num font': {'name': 'Arial'}})

size: Set the font size:

chart.set x axis({'num font': {'name': 'Arial', 'size': 9}})

bold: Set the font bold property:

chart.set x axis({'num font': {'bold': True}})

italic: Set the font italic property:

chart.set x axis({'num font': {'italic': True}})

underline: Set the font underline property:
chart.set x axis({'num font': {'underline': True}})
rotation: Set the font rotation, angle, property in the integer range -90 to 90 deg, and
270-271 deg:
chart.set x axis({'num font': {'rotation': 45}})
The font rotation angle is useful for displaying axis data such as dates in a more compact
format.
There are 2 special case angles outside the range -90 to 90:
— 270: Stacked text, where the text runs from top to bottom.
— 271: A special variant of stacked text for East Asian fonts.

color: Set the font color property. Can be a color index, a color name or HTML style RGB
color:

276

Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart.set x_axis({'num font': {'color': 'red' }})
chart.set y axis({'num font': {'color': '#92D050'}})

Here is an example of Font formatting in a Chart program:

chart.set title({

'name': 'Test Results',
'name font': {
'name': 'Calibri',
‘color': 'blue',
3
})
chart.set x axis({
'name': 'Month',
"name_font': {
'name': 'Courier New',
'color': '#92D050'
}
"num font': {
'name': 'Arial’',
'color': '#0OBOFO',
3
})
chart.set y axis({
'name': 'Units’',
‘name_font': {
‘name': 'Century’,
‘color': 'red'
}
‘num_font': {
'bold': True,

"italic': True,
'underline': True,
'color': '#7030A0',
3
})

chart.set legend({'font': {'bold': 1, 'italic':

11h)

18.16. Chart Fonts

277

Creating Excel files with Python and XisxWriter, Release 3.1.9

[
(= I~]

40

30

Units
|

20

s |

(=]

Test Results

w—Seriesl

18.17 Chart Layout

The position of the chart in the worksheet is controlled by the set size() method.

It is also possible to change the layout of the following chart sub-objects:

plotarea
legend

title

X_axis caption
y axis caption

Here are some examples:

chart.set plotarea({

"layout': {
'x': 0.13,
'y' 0.26,
'width': 0.73,
"height': 0.57,
}
})
chart.set legend({
'layout': {
'X': 0.80,
'y': 0.37,
'width': 0.12,
"height': 0.25,
}
})
chart.set title({
"name’: 'Title',

'overlay': True,

278

Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

'"layout': {
'x': 0.42,
'y': 0.14,
}
})
chart.set x axis({
"'name': 'X axis',
‘name_layout': {
'xX': 0.34,
'y': 0.85,
}

}

See set plotarea(), set legend(),set title() and set x axis(),

Note: It is only possible to change the width and height for the plotarea and legend objects.
For the other text based objects the width and height are changed by the font dimensions.

The layout units must be a float in the range @ < x <= 1 and are expressed as a percentage of
the chart dimensions as shown below:

Jb
‘ ‘ | H
w

el L
w

From this the layout units are calculated as follows:

layout:
X =a /W
y =b /H
width =w / W
height = h / H

These units are cumbersome and can vary depending on other elements in the chart such as text
lengths. However, these are the units that are required by Excel to allow relative positioning. Some
trial and error is generally required.

Note: The plotarea origin is the top left corner in the plotarea itself and does not take into

18.17. Chart Layout 279

Creating Excel files with Python and XisxWriter, Release 3.1.9

account the axes.

18.18 Date Category Axes

Date Category Axes are category axes that display time or date information. In XlsxWriter Date
Category Axes are set using the date _axis optionin set x axis() orset y axis():

chart.set x axis({'date axis': True})

In general you should also specify a number format for a date axis although Excel will usually
default to the same format as the data being plotted:

chart.set x axis({

'date axis': True,

‘num format': 'dd/mm/yyyy',
})

Excel doesn’t normally allow minimum and maximum values to be set for category axes. However,
date axes are an exception. The min and max values should be set as Excel times or dates:

chart.set x axis({
'date axis': True,
'min': date(2013, 1, 2),
'max': date(2013, 1, 9),
‘num_format': 'dd/mm/yyyy‘,
})

For date axes it is also possible to set the type of the major and minor units:

chart.set x axis({

‘date axis': True,

'minor unit': 4,

‘minor _unit type': 'months’,
'major unit': 1,

‘major _unit type': 'years',
‘num_format': "dd/mm/yyyy',

}

See Example: Date Axis Chart.

18.19 Chart Secondary Axes

It is possible to add a secondary axis of the same type to a chart by setting the y2 axis or
X2_axis property of the series:

import xlsxwriter

workbook = xlsxwriter.Workbook('chart secondary axis.xlsx')
worksheet = workbook.add worksheet()

data = [

280 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[2, 3, 4, 5, 6, 71,
[10, 40, 50, 20, 10, 50],
]

worksheet.write column('A2', data[0])
worksheet.write column('B2', data[l])

chart = workbook.add chart({'type': 'line'})

Configure a series with a secondary axis.
chart.add series({

'values': '=Sheetl!A2:A7"',

'y2 axis': True,
})
Configure a primary (default) Axis.
chart.add series({

'values': '=Sheetl!B2:B7"',
})

chart.set legend({'position': 'none'})

chart.set y axis({'name': 'Primary Y axis'})
chart.set y2 axis({'name': 'Secondary Y axis'})

worksheet.insert chart('D2', chart)

workbook.close()

L]
o
o

o 7

,z””ﬂ\\ ",f”//’ [°

/S >)
/" N_ [/ L
7

(%3}
o

=y
[=]

Primary Y axis
w
<

Secondary Y axis

]
(=]

. .

=
(=]

o
o

It is also possible to have a secondary, combined, chart either with a shared or secondary axis,
see below.

18.19. Chart Secondary Axes 281

Creating Excel files with Python and XisxWriter, Release 3.1.9

18.20 Combined Charts

It is also possible to combine two different chart types, for example a column and line chart to
create a Pareto chart using the Chart combine () method:

Reasons for lateness

/’ “ 100.0%

[80.0%

=
]
o

[y
o
o

80
[60.0%

. /
 40.0%
,l,.,--t

40

T

Respondents (number)

20.0%

20 A

r 0.0%
Traffic Child care Public Weather Overslept Emergency
Transport

The combined charts can share the same Y axis like the following example:

Usual setup to create workbook and add data...

Create a new column chart. This will use this as the primary chart.
column_chart = workbook.add chart({'type': 'column'})

Configure the data series for the primary chart.
column_chart.add series({

"name' : '=Sheetl!Bl"',
'categories': '=Sheetl!A2:A7',
'values': '=Sheetl!B2:B7"',

}

Create a new column chart. This will use this as the secondary chart.
line chart = workbook.add chart({'type': 'line'})

Configure the data series for the secondary chart.
line chart.add series({

"name’ : '=Sheetl!Cl"',
'categories': '=Sheetl!A2:A7',
'values': '=Sheetl1!C2:C7"',

}

Combine the charts.
column_chart.combine(line chart)

Add a chart title and some axis labels. Note, this is done via the
primary chart.

column_chart.set title({ 'name': 'Combined chart - same Y axis'})
column_chart.set x axis({'name': 'Test number'})

282

Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

column_chart.set y axis({'name': 'Sample length (mm)"'})

Insert the chart into the worksheet
worksheet.insert chart('E2', column chart)

Combined chart - same Y axis

£ —\
£ 50 / N

S 40

2 B Batch 1
2 30

[=3

€ 20 = Batch 2

A ke
2 3 4 5 6

Test number

The secondary chart can also be placed on a secondary axis using the methods shown in the
previous section.

In this case it is just necessary to add a y2 axis parameter to the series and, if required, add a
title using set y2 axis(). The following are the additions to the previous example to place the
secondary chart on the secondary axis:

...
line chart.add series({
"name"’: '=Sheetl!Cl’',
'categories': '=Sheetl!A2:A7',
'values': '=Sheetl1!C2:C7"',
'y2 axis': True,
})
Add a chart title and some axis labels.
#

column _chart.set y2 axis({'name': 'Target length (mm)"'})

18.20. Combined Charts 283

Creating Excel files with Python and XisxWriter, Release 3.1.9

Combine chart - secondary Y axis

2]
o

80
- 70
60
~ 50
40
- 30
r 20
10
]

o

o

. Batch 1

(=]

Batch 2

Sample length (mm)
= [g B 1%

o
Target length (mm)

2 3 4 5 6 7

Test number

o
!

The examples above use the concept of a primary and secondary chart. The primary chart is the
chart that defines the primary X and Y axis. It is also used for setting all chart properties apart
from the secondary data series. For example the chart title and axes properties should be set via
the primary chart.

See also Example: Combined Chart and Example: Pareto Chart for more detailed examples.
There are some limitations on combined charts:

* Only two charts can be combined.

 Pie charts cannot currently be combined.

+ Scatter charts cannot currently be used as a primary chart but they can be used as a sec-
ondary chart.

» Bar charts can only combined secondary charts on a secondary axis. This is an Excel
limitation.

18.21 Chartsheets

The examples shown above and in general the most common type of charts in Excel are embed-
ded charts.

However, it is also possible to create “Chartsheets” which are worksheets that are comprised of a
single chart:

284 Chapter 18. Working with Charts

Creating Excel files with Python and XlsxWriter, Release 3.1.9

|71 chartsheet.xlsx

2] 0 @ (= fx|

Results of sample analysis

-

-

|
%
-
Eq

- l Shutl_i Chartl|

Mormal View

See The Chartsheet Class for details.

18.22 Charts from Worksheet Tables

Charts can by created from Worksheet Tables. However, Excel has a limitation where the data

series name, if specified, must refer to a cell within the table (usually one of the headers).

To workaround this Excel limitation you can specify a user defined name in the table and refer to

that from the chart:

import xlsxwriter
workbook = xlsxwriter.Workbook('chart pie.xlsx")
worksheet = workbook.add worksheet()

data = [
['Apple', 60],
['Cherry', 301,
['Pecan', 10],
]

worksheet.add table('Al:B4', {'data': data,

"columns': [{'header':

'Types'},

18.22. Charts from Worksheet Tables

285

Creating Excel files with Python and XisxWriter, Release 3.1.9

{'header': 'Number'}]}
)

chart = workbook.add chart({'type': 'pie'})

chart.add series({

"name' : '=Sheetl!A1"',
'categories': '=Sheetl!A2:$A%4',
'values': '=Sheetl1!B2:$B%$4"',

}

worksheet.insert chart('D2', chart)

workbook.close()

18.23 Chart Limitations

The following chart features aren’t supported in XlsxWriter:

» 3D charts and controls.

» Bubble, Surface or other chart types not listed in The Chart Class.

18.24 Chart Examples

See Chart Examples.

286 Chapter 18. Working with Charts

CHAPTER
NINETEEN

WORKING WITH OBJECT POSITIONING

XlsxWriter positions worksheet objects such as images, charts and textboxes in worksheets by
calculating precise coordinates based on the object size, it's DPI (for images) and any scaling that
the user specifies. It also takes into account the heights and widths of the rows and columns that
the object crosses. In this way objects maintain their original sizes even if the rows or columns
underneath change size or are hidden.

For example:

import xlsxwriter

workbook = xlsxwriter.Workbook('image.xlsx")
worksheet = workbook.add worksheet()
worksheet.insert image('B2', 'logo.png"')
worksheet.insert image('E8', 'logo.png')

worksheet.set column('F:F', 2)

worksheet.set row(9, None, None, {'hidden': True})

workbook. close()

287

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NN ™ image. xlsx

| # Home | Layout = Tables | Charts | SmartArt |}}| v -
A20 110 & (= fx Ad

= A W N W [N —"_—

1

2 |

= python

5 powered

6 |

| 7]

8

5N @, Python

11

17 | pf}wered

13

14

15 |

16 |

17 |

i
b

EEEED EVEY) I

Mormal View Ready A

As can be seen the inserted image sizes are the same even though the second image crosses
changed rows and columns.

However, there are two cases where the image scale may change with row or columns changes.
These are explained in the next two sections.

19.1 Object scaling due to automatic row height adjustment

The scaling of a image may be affected if is crosses a row that has its default height changed due
to a font that is larger than the default font size or that has text wrapping turned on. In these cases
Excel will automatically calculate a row height based on the text when it loads the file. Since this
row height isn’t available to XlsxWriter when it creates the file the object may appear as if it is sized
incorrectly. For example:

import xlsxwriter

workbook = xlsxwriter.Workbook('image.xlsx")

worksheet = workbook.add worksheet()

wrap _format = workbook.add format({'text wrap': True})

worksheet.write('A9', 'Some text that wraps', wrap format)

worksheet.insert image('B2', 'logo.png')

288 Chapter 19. Working with Object Positioning

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.insert image('B8"',

workbook.close()

[image.xlsx

'logo.png')

Home | Layout Tables | Charts | SmartArt | 3 v L~

A20 1 0 @ (= fx |
| S B | C | D [E [F [G [H][=
1
: python
: powered
17
7
S thon

Some text
o :uhlztps pq
10 powered
11
12
13
14
— [< » i] sheers [+ I I
Ehlurmalvlaw | Ready

As can be seen the second inserted image is distorted, compared to the first, due to the row being

scaled automatically. To avoid this you should explicitly set the height of the row using set _row()
if it crosses an inserted object.

19.2 Object Positioning with Cell Moving and Sizing

Excel supports three options for “Object Positioning” within a worksheet:

19.2. Object Positioning with Cell Moving and Sizing

289

Creating Excel files with Python and XisxWriter, Release 3.1.9

Format Picture

S Fill
'4\ Line Object positioning
|| Shadow ' Move and size with cells
| Glow & Soft Edges O Move but don't size with cells
Reflection Don't move or size with cells
| 3-D Format
'@ 3-D Rotation
Adjust Picture Print object
[Artistic Filters Locked
&l crop Lock text
|T5| Text Box
|«” Size . . ;
. Lecking objects has no effect unless the sheet is protected. To protect the sheet,
choose Protection from the Tools menu, and then choose Protect Sheet. A password is
i) Alt Text optional.
Cancel

Image, chart and textbox objects in XisxWriter emulate these options using the ob-
ject position parameter:

worksheet.insert image('B3', 'python.png', {'object position': 1})
Where object position has one of the following allowable values:
1. Move and size with cells.
2. Move but don't size with cells.
3. Don’t move or size with cells.
4

. Same as Option 1 to “move and size with cells” except XlsxWriter applies hidden cells after
the object is inserted.

Option 4 appears in Excel as Option 1. However, the worksheet object is sized to take hidden

290 Chapter 19. Working with Object Positioning

Creating Excel files with Python and XlsxWriter, Release 3.1.9

rows or columns into account. This allows the user to hide an image in a cell, possibly as part of
an autofilter. For example:

import xlsxwriter

workbook = xlsxwriter.Workbook('image.xlsx")
worksheet = workbook.add worksheet()

worksheet.insert image('B2', 'logo.png')
worksheet.insert image('B9', 'logo.png', {'object position': 4})

Hide some rows.
for row in range(1, 13):
worksheet.set row(row, None, None, {'hidden': True})

workbook.close()

[NN [image.xlsx
| # Home | Layout | Tables | Charts | SmartArt | »| v L~
A3 110 @& (=~ & |~

A R N - N— T ——— -

1
14

15 pl:]thDﬂ
= powered
18
19
20
21
22
23
24
25
26
27
28

[« < > ri JJ sheets [+ I I

Mormal View Ready S

In this example the first inserted image is visible over the hidden rows whilst the second image is
hidden with the rows. Unhiding the rows in Excel would reveal the second image.

19.3 Image sizing and DPI

When an image is imported into Excel the DPI (dots per inch) resolution of the image is taken
into account. Excel sizes the image according to a base DPI of 96. Therefore an image with a

19.3. Image sizing and DPI 291

Creating Excel files with Python and XisxWriter, Release 3.1.9

DPI of 72 may appear slightly larger when imported into Excel while an image with a DPI of 200
may appear twice as small. XIsxWriter also reads the DPI of the images that the user inserts
into a worksheet and stores the image dimensions in the same way that Excel does. If it cannot
determine the DPI of the image it uses a default of 96.

19.4 Reporting issues with image insertion

A lot of work has gone into ensuring that XlsxWriter inserts images into worksheets in exactly the
same way that Excel does, even though the required calculations and units are arcane. There
are over 80 test cases that check image insertion against files created in Excel to ensure that
XlsxWriter's handling of images is correct.

As such, before reporting any issues with image handling in XlsxWriter please check how the
same image is handled in Excel (not OpenOffice, LibreOffice or other third party applications). If
you do report an issue please use the XisxWriter Issue tracker is on GitHub and attach the image
that demonstrates the issue.

292 Chapter 19. Working with Object Positioning

https://github.com/jmcnamara/XlsxWriter/issues

CHAPTER
TWENTY

WORKING WITH AUTOFILTERS

An autofilter in Excel is a way of filtering a 2D range of data based on some simple criteria.

8 00 | autofilter.xlsx
Home | Layout | Tables | Charts | SmartArt | | v Lt~
Al | € & (- fx| Region |+
4 B | C | D -
Region ¥ | ltem |E|'Jolume |E| Month |E|
2 |East Apple 9000 July
3 |East Apple 5000 July
4 |South Orange 9000 September
5 |MNorth Apple 2000 November
B |West Apple 9000 November
7 |South Pear 7000 October
8 |Morth Pear 9000 Aupust
9 |West Orange 1000 December
10 West Grape 1000 November
11 (South Pear 10000 April
12 |\West Grape 6000 January
[l

PR ._ ihutli Sheat?_i Shettii_
— Mormal View Rieady

20.1 Applying an autofilter

The first step is to apply an autofilter to a cell range in a worksheet using the autofilter()

method:

worksheet.autofilter('A1:D11")

As usual you can also use Row-Column notation:

293

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.autofilter(0, 0, 10, 3) # Same as above.

20.2 Filter data in an autofilter

The autofilter() defines the cell range that the filter applies to and creates drop-down se-
lectors in the heading row. In order to filter out data it is necessary to apply some criteria to the
columns using either the filter column() or filter column list() methods.

The filter column method is used to filter columns in a autofilter range based on simple crite-
ria:

worksheet.filter column('A', 'x > 2000")
worksheet.filter column('B', 'x > 2000 and x < 5000")

It isn’t sufficient to just specify the filter condition. You must also hide any rows that don’t match the
filter condition. Rows are hidden using the set row() hidden parameter. XlsxWriter cannot
filter rows automatically since this isn’t part of the file format.

The following is an example of how you might filter a data range to match an autofilter criteria:

Set the autofilter.
worksheet.autofilter('A1:D51")

Add the filter criteria. The placeholder "Region" in the filter is
ignored and can be any string that adds clarity to the expression.
worksheet.filter column(0, 'Region == East')

Hide the rows that don't match the filter criteria.
row = 1
for row data in (data):

region = row data[0]

Check for rows that match the filter.

if region == 'East':
Row matches the filter, display the row as normal.
pass

else:

We need to hide rows that don't match the filter.
worksheet.set row(row, options={'hidden': True})

worksheet.write row(row, 0, row data)
Move on to the next worksheet row.
row += 1

20.3 Setting a filter criteria for a column

The filter column() method can be used to filter columns in a autofilter range based on
simple conditions:

294 Chapter 20. Working with Autofilters

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.filter column('A', 'x > 2000")
The column parameter can either be a zero indexed column number or a string column name.

The following operators are available for setting the filter criteria:

Operator

>=
<=

and
or

An expression can comprise a single statement or two statements separated by the and and or
operators. For example:

'X < 2000
'X > 2000
'x == 2000
'Xx > 2000 and x < 5000
'X == 2000 or x == 5000

Filtering of blank or non-blank data can be achieved by using a value of Blanks or NonBlanks
in the expression:

'x == Blanks'
'X == NonBlanks'

Excel also allows some simple string matching operations:

'X == b*' # begins with b

‘X 1= pb*' # doesn't begin with b
'X == *p' # ends with b

'x = *p' # doesn't end with b
'x == kp*! # contains b

"X = *p*! # doesn't contain b

You can also use '*’ to match any character or number and ’'?’ to match any single character
or number. No other regular expression quantifier is supported by Excel’s filters. Excel’s regular
expression characters can be escaped using '~"'.

The placeholder variable x in the above examples can be replaced by any simple string. The
actual placeholder name is ignored internally so the following are all equivalent:

'X < 2000
'col < 2000’
'Price < 2000'

A filter condition can only be applied to a column in a range specified by the autofilter()
method.

20.3. Setting a filter criteria for a column 295

Creating Excel files with Python and XisxWriter, Release 3.1.9

20.4 Setting a column list filter

Prior to Excel 2007 it was only possible to have either 1 or 2 filter conditions such as the ones
shown above in the filter column() method.

Excel 2007 introduced a new list style filter where it is possible to specify 1 or more ‘or’ style
criteria. For example if your column contained data for the months of the year you could filter the
data based on certain months:

[] Maonith
Sort

24 Ascending 2} Descending

By colour:
Filter
By colour:
Choose One a M
[Q
B (Select All)
@ April
August
December
February
January
July
June
March
May
Movember
October
September

Auto Apply

Clear Filter

The filter column Llist() method can be used to represent these types of filters:

worksheet.filter column list('A‘,

One or more criteria can be selected:

worksheet.filter column list('A"',
worksheet.filter column list('B’',

['March', 'April', 'May'l])
['March'])
[160, 110, 120, 130])

296

Chapter 20. Working with Autofilters

Creating Excel files with Python and XlsxWriter, Release 3.1.9

To filter blanks as part of the list use Blanks as a list item:

worksheet.filter column list('A', ['March', 'April', 'May', 'Blanks'])

As explained above, it isn’t sufficient to just specify filters. You must also hide any rows that don’t
match the filter condition.

20.5 Example

See Example: Applying Autofilters for a full example of all these features.

20.5. Example 297

Creating Excel files with Python and XisxWriter, Release 3.1.9

298 Chapter 20. Working with Autofilters

CHAPTER
TWENTYONE

WORKING WITH DATA VALIDATION

Data validation is a feature of Excel which allows you to restrict the data that a user enters in a cell
and to display associated help and warning messages. It also allows you to restrict input to values
in a dropdown list.

A typical use case might be to restrict data in a cell to integer values in a certain range, to provide
a help message to indicate the required value and to issue a warning if the input data doesn’t meet
the stated criteria. In XlsxWriter we could do that as follows:

worksheet.data validation('B25', {'validate': 'integer',
'criteria': 'between',
'minimum': 1,
'maximum': 100,
"input title': 'Enter an integer:',
"input message': 'between 1 and 100'})

299

Creating Excel files with Python and XisxWriter, Release 3.1.9

|80 0 __ data validate.xIsx

Home Layout | Tables Charts Smartart » v fE

B3 11 0 & (= f| 7
A

Enter values in

Some examples of data validation in XlsxWriter this column

Enter an integer between 1 and 10 j?

Enter an integer that is not between 1 and 10 (using cell references)

Enter an integer greater than 0

Enter an integer less than 10

Enter a decimal between 0.1 and 0.5

------ RS EY

Mormal View

If the user inputs a value that doesn’t match the specified criteria an error message is displayed:

300 Chapter 21. Working with Data Validation

Creating Excel files with Python and XlsxWriter, Release 3.1.9

® @9 data_validate.xlsx
| # Home | Layout | Tables | Charts SmartArt | 3w E e R
B3 | @ (= fx| 12 -
_J A -3 | —
Enter values in
Some examples of data validation in XlsxWriter
this column
Enter an integer between 1 and 10 | 12)
|

The value to be entered must be a whole
number between 1 and 10.

EEIMPREFRIN .

Cancel Retry

For more information on data validation see the Microsoft support article “Description and exam-
ples of data validation in Excel”: https://support.microsoft.com/en-us/office/apply-data-validation-
to-cells-29fecbcc-d1b9-42¢1-9d76-eff3ce5f7249.

The following sections describe how to use the data validation() method and its various
options.

21.1 data_validation()

The data validation() method is used to construct an Excel data validation.

The data validation can be applied to a single cell or a range of cells. As usual you can use A1 or
Row/Column notation, see Working with Cell Notation.

With Row/Column notation you must specify all four cells in the range: (first row,
first col, last row, last col). If you need to refer to a single cell set the /ast_val-
ues equal to the first_values. With A1 notation you can refer to a single cell or a range of cells:

worksheet.data validation(0, 0, 4, 1, {...})
worksheet.data validation('Bl"', {...})
worksheet.data validation('CLl:E5"', {...})

The options parameter in data_ validation() must be a dictionary containing the parameters
that describe the type and style of the data validation. The main parameters are:

21.1. data_validation() 301

https://support.microsoft.com/en-us/office/apply-data-validation-to-cells-29fecbcc-d1b9-42c1-9d76-eff3ce5f7249
https://support.microsoft.com/en-us/office/apply-data-validation-to-cells-29fecbcc-d1b9-42c1-9d76-eff3ce5f7249

Creating Excel files with Python and XisxWriter, Release 3.1.9

validate
criteria
value minimum | source
maximum
ignore blank
dropdown
input title
input message
show input
error_title
error_message
error_type
show error
multi range

These parameters are explained in the following sections. Most of the parameters are optional,
however, you will generally require the three main options validate, criteria and value:

worksheet.data validation('Al', {'validate': 'integer',

'criteria': '>',
'value': 100})

21.1.1 validate
The validate parameter is used to set the type of data that you wish to validate:

worksheet.data validation('Al', {'validate': 'integer',

'criteria': '>"',
'value': 100})

It is always required and it has no default value. Allowable values are:

integer
decimal
list
date
time
length
custom
any

* integer: restricts the cell to integer values. Excel refers to this as ‘whole number’.
» decimal: restricts the cell to decimal values.

« list: restricts the cell to a set of user specified values. These can be passed in a Python list
or as an Excel cell range.

+ date: restricts the cell to date values specified as a datetime object as shown in Working
with Dates and Time or a date formula.

« time: restricts the cell to time values specified as a datetime object as shown in Working
with Dates and Time or a time formula.

302 Chapter 21. Working with Data Validation

Creating Excel files with Python and XlsxWriter, Release 3.1.9

* length: restricts the cell data based on an integer string length. Excel refers to this as ‘Text
length’.

» custom: restricts the cell based on an external Excel formula that returns a TRUE/FALSE
value.

* any: is used to specify that the type of data is unrestricted. It is mainly used for specifying
cell input messages without a data validation.

21.1.2 criteria

The criteria parameter is used to set the criteria by which the data in the cell is validated. It is
almost always required except for the List, custom and any validate options. It has no default
value:

worksheet.data validation('Al', {'validate': 'integer',
'criteria': '>
'value': 100})

1
’

Allowable values are:

between

not between

equal to ==
not equal to =
greater than >
less than <
greater than or equal to | >=
less than or equal to <=

You can either use Excel’s textual description strings, in the first column above, or the more com-
mon symbolic alternatives. The following are equivalent:

worksheet.data validation('Al', {'validate': 'integer',
'criteria': '>',
'value': 100})

worksheet.data validation('Al', {'validate': 'integer',
‘criteria': 'greater than',
'value': 100})

The list, custom and any validate options don'’t require a criteria. If you specify one it will
be ignored:

worksheet.data validation('B13', {'validate': 'list’',

'source': ['open', 'high', 'close']})
worksheet.data validation('B23', {'validate': 'custom',
'value': '=AND(F5=50,G5=60)"'})

21.1. data_validation() 303

Creating Excel files with Python and XisxWriter, Release 3.1.9

21.1.3 value, minimum, source

The value parameter is used to set the limiting value to which the criteria is applied. It is
always required and it has no default value. You can also use the synonyms minimum or source
to make the validation a little clearer and closer to Excel’s description of the parameter:

Using 'value'.

worksheet.data validation('Al', {'validate': 'integer',
'criteria': 'greater than',
'value': 100})

Using 'minimum’.

worksheet.data validation('B11', {'validate': 'decimal',
'criteria': 'between',
'minimum': 0.1,
"'maximum': 0.5})

Using 'source'.
worksheet.data validation('B10', {'validate': 'list’',
‘source': '=E4:G4'})

Using 'source' with a string list.
worksheet.data validation('B13', {'validate': 'list"',
'source': ['open', 'high', 'close'l})

Note, when using the list validation with a list of strings, like in the last example above, Excel
stores the strings internally as a Comma Separated Variable string. The total length for this string,
including commas, cannot exceed the Excel limit of 255 characters. For longer sets of data you
should use a range reference like the prior example above. Also any double quotes in strings like
""Hello"’ must be double quoted like this ' ""Hello""".

21.1.4 maximum

The maximum parameter is used to set the upper limiting value when the criteria is either
"between’ or 'not between’:

worksheet.data validation('B11', {'validate': ‘'decimal',
'criteria': 'between',
'minimum': 0.1,
"'maximum': 0.5})

21.1.5 ignore_blank

The ignore blank parameter is used to toggle on and off the ‘Ignore blank’ option in the Excel
data validation dialog. When the option is on the data validation is not applied to blank data in the
cell. It is on by default:

worksheet.data validation('B5', {'validate': 'integer',
'criteria': 'between',
'minimum': 1,
"'maximum': 10,
"ignore blank': False,

})

304 Chapter 21. Working with Data Validation

Creating Excel files with Python and XlsxWriter, Release 3.1.9

21.1.6 dropdown

The dropdown parameter is used to toggle on and off the ‘In-cell dropdown’ option in the Excel
data validation dialog. When the option is on a dropdown list will be shown for 1ist validations. It
is on by default.

21.1.7 input_title

The input title parameter is used to set the title of the input message that is displayed when
a cell is entered. It has no default value and is only displayed if the input message is displayed.
See the input message parameter below.

The maximum title length is 32 characters.

21.1.8 input_message

The input message parameter is used to set the input message that is displayed when a cell is
entered. It has no default value:

worksheet.data validation('B25', {'validate': 'integer',
'criteria': 'between',
'minimum': 1,
"'maximum': 100,
"input title': 'Enter an integer:',
"input message': 'between 1 and 100'})

The input message generated from the above example is:

21.1. data_validation() 305

Creating Excel files with Python and XisxWriter, Release 3.1.9

@@ data_validate.xlsx

Home | Layout _ Tables | Charts | SmartArt | » v B

B25 s fx| 55 -

_] B | C D E F
22
23
24

25 | 551

26
Enter an integer:
27 between 1 and 100

28
29
30
31
32
33

m —1 Sheellu

Mormal View Rieacy e

The message can be split over several lines using newlines. The maximum message length is 255
characters.

21.1.9 show_input

The show input parameter is used to toggle on and off the ‘Show input message when cell is
selected’ option in the Excel data validation dialog. When the option is off an input message is not
displayed even if it has been set using input message. It is on by default.

21.1.10 error _title

The error title parameter is used to set the title of the error message that is displayed when
the data validation criteria is not met. The default error title is ‘Microsoft Excel’. The maximum title
length is 32 characters.

21.1.11 error_message

The error_message parameter is used to set the error message that is displayed when a cell is
entered. The default error message is “The value you entered is not valid. A user has restricted
values that can be entered into the cell.”. A non-default error message can be displayed as follows:

worksheet.data validation('B27', {'validate': 'integer',
'criteria': 'between',

306 Chapter 21. Working with Data Validation

Creating Excel files with Python and XlsxWriter, Release 3.1.9

'minimum': 1,
"'maximum': 100,

"input title': 'Enter an integer:',

"input message': 'between 1 and 100°',
'error_title': 'Input value not valid!',
'error_message': 'It should be an integer between 1

Which give the following message:

Input value is not valid!

It should be an integer between 1 and 100

Cancel | L

The message can be split over several lines using newlines. The maximum message length is 255
characters.

21.1.12 error_type

The error_type parameter is used to specify the type of error dialog that is displayed. There
are 3 options:

‘stop'

‘warning’
"information'

The defaultis "stop’.

21.1.13 show_error

The show_error parameter is used to toggle on and off the ‘Show error alert after invalid data is
entered’ option in the Excel data validation dialog. When the option is off an error message is not
displayed even if it has been set using error_message. It is on by default.

21.1.14 multi_range

The multi range option is used to extend a data validation over non-contiguous ranges.

It is possible to apply the data validation to different cell ranges in a worksheet using multiple calls
to data validation(). However, as a minor optimization it is also possible in Excel to apply
the same data validation to different non-contiguous cell ranges.

21.1. data_validation() 307

Creating Excel files with Python and XisxWriter, Release 3.1.9

This is replicated in data validation() using the multi range option. The range must
contain the primary range for the data validation and any others separated by spaces.

For example to apply one data validation to two ranges, 'B3:K6’ and 'B9:K12":

worksheet.data validation('B3:K6', {'validate': 'integer',
'criteria': 'between',
'minimum': 1,
"'maximum': 100,
'multi range': 'B3:K6 B9:K12'})

21.2 Data Validation Examples

Example 1. Limiting input to an integer greater than a fixed value:

worksheet.data validation('Al', {'validate': 'integer',
'criteria': '>"',
'value': 0,
})

Example 2. Limiting input to an integer greater than a fixed value where the value is referenced
from a cell:

worksheet.data validation('A2', {'validate': 'integer',
'criteria': '>"',
'value': '=E3',
1)

Example 3. Limiting input to a decimal in a fixed range:

worksheet.data validation('A3', {'validate': 'decimal',
'criteria': 'between',
'minimum': 0.1,
"'maximum': 0.5,

b

Example 4. Limiting input to a value in a dropdown list:

worksheet.data validation('A4', {'validate': 'list"',
'source': ['open', 'high', 'close'l],
})

Example 5. Limiting input to a value in a dropdown list where the list is specified as a cell range:

worksheet.data validation('A5', {'validate': 'list"',
'source': '=E4:$G%$4"',
)

Example 6. Limiting input to a date in a fixed range:

from datetime import date

worksheet.data validation('A6', {'validate': 'date',

308 Chapter 21. Working with Data Validation

Creating Excel files with Python and XlsxWriter, Release 3.1.9

'criteria': 'between',
'minimum': date(2013, 1, 1),
"'maximum': date(2013, 12, 12),
1)

Example 7. Displaying a message when the cell is selected:

worksheet.data validation('A7', {'validate': 'integer',
'criteria': 'between',
'minimum': 1,
"'maximum': 100,

"input title': 'Enter an integer:',
"input message': 'between 1 and 100',
})

See also Example: Data Validation and Drop Down Lists.

21.2. Data Validation Examples 309

Creating Excel files with Python and XisxWriter, Release 3.1.9

310 Chapter 21. Working with Data Validation

CHAPTER
TWENTYTWO

WORKING WITH CONDITIONAL FORMATTING

Conditional formatting is a feature of Excel which allows you to apply a format to a cell or a range
of cells based on certain criteria.

For example the following rules are used to highlight cells in the conditional format.py example:

worksheet.conditional format('B3:K12', {'type': 'cell!',
'criteria': '>=',
'value': 50,
"format': formatl})

worksheet.conditional format('B3:K12', {'type': 'cell',
'criteria': '<',
'value': 50,
"format': format2})

Which gives criteria like this:

311

Creating Excel files with Python and XisxWriter, Release 3.1.9

Manage =
Show formatting rules for: [Current Selection =] Change rule order: |E|
Rule (applied in order shown) Format Applies to Stop if true
Cell Value >= 50 AaBbCcYyZz ISheetl!!B$3:$K5 12 I LJ
Cell Value < 50 AaBbCcYyZz Sheet11SBS3:5KS12 BE O

+ o= |Edit Rule... Cancel] E—OH

And output which looks like this:

312 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Cells with values >= 50 are in light red. Values < 50 are in light green.

34

B
28
27
BB
24

&
52

RRREESREEG

70

PR l Sheetl | Sheet2 | Sheet3 | Sheetd | €=
Mormal View

It is also possible to create color scales and data bars:

313

Creating Excel files with Python and XisxWriter, Release 3.1.9

e 00 " conditional_format.xlsx
Home | Layout | Tables | Charts | SmartArt | » v fE
A22 0 & (- K |~
T AW N U U YU U SO N
1 |Examples of color scales and data bars. Default colors.
2 2 Color Scale 3 Color Scale Data Bars
; -
4 I 2
5 3 I 3
6 4 i 4
7 5 5 i 5
8 6 6 i 6
9 7 7 I 7
10 8 8 I 8
11 9]] g
12 10 10 [10
13 Ll EE] | -4
hlli 4 .h-l J Sheatii She:tﬁ_i ih!!t?i Sheztaii-‘ [l
ormal View Ready o

22.1 The conditional format() method

The conditional format() worksheet method is used to apply formatting based on user de-
fined criteria to an XlsxWriter file.

The conditional format can be applied to a single cell or a range of cells. As usual you can use A1
or Row/Column notation (Working with Cell Notation).

With Row/Column notation you must specify all four cells in the range: (first row,
first col, last row, last col). If you need to refer to a single cell set the last *
values equal to the first * values. With A1 notation you can refer to a single cell or a range of
cells:

worksheet.conditional format(0, 0, 4, 1, {...})
worksheet.conditional format('Bl"', {...})
worksheet.conditional format('Cl:E5"', {...})

The options parameter in conditional format() must be a dictionary containing the param-
eters that describe the type and style of the conditional format. The main parameters are:

* type
« format

314 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

« Ccriteria
* value
e minimum
* maximum
Other, less commonly used parameters are:
* min_type
- mid type
* max_type
e min_value
+ mid value
« max value
« min_color
« mid color
* max _color
» bar color
« bar_only
* bar solid
« bar negative color
» bar border _color
* bar negative border color
« bar negative color same
» bar negative border color_ same
* bar no border
* bar direction
» bar_axis position
* bar_axis color
- data bar 2010
- icon_style
« icons
e reverse icons
- icons_only

« stop if true

22.1. The conditional_format() method 315

Creating Excel files with Python and XisxWriter, Release 3.1.9

« multi range

22.2 Conditional Format Options

The conditional format options that can be used with conditional format() are explained in
the following sections.

22.2.1 type

The type option is a required parameter and it has no default value. Allowable type values and
their associated parameters are:

Type Parameters
cell criteria
value
minimum
maximum
format
date criteria
value
minimum
maximum
format
time_period criteria
format
text criteria
value
format
average criteria
format
duplicate format
unique format
top criteria
value
format
bottom criteria
value
format
blanks format
no_blanks format
errors format
no_errors format
formula criteria
format
2 color_scale | min_type
max_type
min_value
Continued on next page

316 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Table 22.1 — continued from previous page
Type Parameters
max_value
min_color
max_color
3_color_scale | min_type
mid_type
max_type
min_value
mid_value
max_value
min_color
mid_color
max_color
data_bar min_type
max_type
min_value
max_value
bar_only
bar_color
bar_solid*
bar_negative_color*
bar_border_color*
bar_negative_border_color*
bar_negative_color_same*
bar_negative_border_color_same*
bar_no_border*
bar_direction*
bar_axis_position*
bar_axis_color*
data_bar_2010*
icon_set icon_style
reverse_icons
icons
icons_only

Note: Data bar parameters marked with (*) are only available in Excel 2010 and later. Files that
use these properties can still be opened in Excel 2007 but the data bars will be displayed without

them.

22.2.2 type: cell

This is the most common conditional formatting type. It is used when a format is applied to a cell
based on a simple criterion.

For example using a single cell and the greater than criteria:

22.2. Conditional Format Options 317

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.conditional format('Al', {'type': 'cell!',
'criteria': 'greater than',
'value': 5,
‘format': red format})

Or, using a range and the between criteria:

worksheet.conditional format('Cl:C4', {'type': 'cell!',
'criteria': 'between',
'minimum': 20,
"'maximum': 30,
'format': green format})

Other types are shown below, after the other main options.

22.2.3 criteria:

The criteria parameter is used to set the criteria by which the cell data will be evaluated. It has

no default value. The most common criteria as applied to {'type’: ’cell’} are:
between

not between

equal to ==

not equal to =

greater than >

less than <

greater than or equal to | >=

less than or equal to <=

You can either use Excel’s textual description strings, in the first column above, or the more com-
mon symbolic alternatives.

Additional criteria which are specific to other conditional format types are shown in the relevant
sections below.
22.2.4 value:

The value is generally used along with the criteria parameter to set the rule by which the cell
data will be evaluated:

worksheet.conditional format('Al', {'type': 'cell!',
'criteria': 'equal to',
'value': 5,
‘format': red format})

If the type is cell and the value is a string then it should be double quoted, as required by
Excel:

worksheet.conditional format('Al', {'type': 'cell',
'criteria': 'equal to',
'value': ""Failed"',
'format': red format})

318 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

The value property can also be an cell reference:

worksheet.conditional format('Al', {'type': 'cell',
'criteria': 'equal to',
‘value': "C1',
'format': red format})

Note: In general any value property that refers to a cell reference should use an absolute
reference, especially if the conditional formatting is applied to a range of values. Without an

absolute cell reference the conditional format will not be applied correctly by Excel, apart from the
first cell in the formatted range.

22.2.5 format:

The format parameter is used to specify the format that will be applied to the cell when the
conditional formatting criterion is met. The format is created using the add format () method in
the same way as cell formats:

formatl = workbook.add format({'bold': 1, 'italic': 1})

worksheet.conditional format('Al', {'type': 'cell!',
'criteria': '>"',
'value': 5,
'format': formatl})

Note: In Excel, a conditional format is superimposed over the existing cell format and not all cell
format properties can be modified. Properties that cannot be modified in a conditional format are

font name, font size, superscript and subscript, diagonal borders, all alignment properties and all
protection properties.

Excel specifies some default formats to be used with conditional formatting. These can be repli-
cated using the following XlsxWriter formats:

Light red fill with dark red text.
formatl = workbook.add format({'bg color"': "#FFC7CE",
"font color': '#9C0006'})

Light yellow fill with dark yellow text.
format2 = workbook.add format({'bg color': "#FFEBOC',
"font color': '#9C6500'})

Green fill with dark green text.

format3 = workbook.add format({'bg color': "#C6EFCE"',
‘font color': '#006100'})

See also The Format Class.

22.2. Conditional Format Options 319

Creating Excel files with Python and XisxWriter, Release 3.1.9

22.2.6 minimum:

The minimum parameter is used to set the lower limiting value when the criteria is either
"between’ or 'not between’:

worksheet.conditional format('Al', {'type': 'cell!',
'criteria': 'between',
'minimum': 2,
"'maximum': 6,
'format': formatl,
})

22.2.7 maximum:

The maximum parameter is used to set the upper limiting value when the criteria is either
"between’ or 'not between’. See the previous example.

22.2.8 type: date

The date type is similar the cell type and uses the same criteria and values. However, the
value, minimum and maximum properties are specified as a datetime object as shown in Working
with Dates and Time:

date = datetime.datetime.strptime('2011-01-01", "SY-%m-%d")

worksheet.conditional format('Al:A4', {'type': 'date’,
'criteria': 'greater than',
'value': date,
"format': formatl})

22.2.9 type: time_period

The time period type is used to specify Excel’s “Dates Occurring” style conditional format:

worksheet.conditional format('Al:A4', {'type': "time period',
'criteria': 'yesterday',
"format': formatl})

The period is set in the criteria and can have one of the following values:

'criteria': 'yesterday',
'criteria': 'today',
'criteria': 'last 7 days',
'criteria': 'last week',
'criteria': 'this week',
'criteria': 'next week',
'criteria': 'last month',
'criteria': 'this month',
'criteria': 'next month'

320 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

22.2.10 type: text

The text type is used to specify Excel’s “Specific Text” style conditional format. It is used to do
simple string matching using the criteria and value parameters:

worksheet.conditional format('Al:A4', {'type': "text',
'criteria': 'containing',
'value': 'foo',
"format': formatl})

The criteria can have one of the following values:

'criteria': 'containing',
'criteria': 'not containing',
'criteria': 'begins with',
'criteria': 'ends with',

The value parameter should be a string or single character.

22.2.11 type: average

The average type is used to specify Excel's “Average” style conditional format:

worksheet.conditional format('Al:A4', {'type': 'average',
'criteria': 'above',
"format': formatl})

The type of average for the conditional format range is specified by the criteria:

'criteria': 'above',

'criteria': 'below',

'criteria': 'equal or above',
'criteria': 'equal or below',
'criteria': 'l std dev above',
'criteria': 'l std dev below',
'criteria': '2 std dev above',
'criteria': '2 std dev below',
'criteria': '3 std dev above',
'criteria': '3 std dev below',

22.2.12 type: duplicate
The duplicate type is used to highlight duplicate cells in a range:

worksheet.conditional format('Al:A4', {'type': "duplicate’,
"format': formatl})

22.2.13 type: unique
The unique type is used to highlight unique cells in a range:

worksheet.conditional format('Al:A4', {'type': 'unique',
"format': formatl})

22.2. Conditional Format Options 321

Creating Excel files with Python and XisxWriter, Release 3.1.9

22.2.14 type: top
The top type is used to specify the top n values by number or percentage in a range:
worksheet.conditional format('Al:A4', {'type': "top',

'value': 10,
"format': formatl})

The criteria can be used to indicate that a percentage condition is required:

worksheet.conditional format('Al:A4', {'type': "top',
'value': 10,
'criteria': '%"',
'format': formatl})

22.2.15 type: bottom
The bottom type is used to specify the bottom n values by number or percentage in a range.

It takes the same parameters as top, see above.

22.2.16 type: blanks
The blanks type is used to highlight blank cells in a range:

worksheet.conditional format('Al:A4', {'type': 'blanks"',
"format': formatl})

22.2.17 type: no_blanks
The no_blanks type is used to highlight non blank cells in a range:

worksheet.conditional format('Al:A4', {'type': 'no blanks',
"format': formatl})

22.2.18 type: errors
The errors type is used to highlight error cells in a range:

worksheet.conditional format('Al:A4', {'type': 'errors’',
"format': formatl})

22.2.19 type: no_errors
The no_errors type is used to highlight non error cells in a range:

worksheet.conditional format('Al:A4', {'type': 'no_errors',
'"format': formatl})

22.2.20 type: formula

The formula type is used to specify a conditional format based on a user defined formula:

322 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.conditional format('Al:A4', {'type': "formula',
'criteria': '=A1>5"',
"format': formatl})

The formula is specified in the criteria.

Formulas must be written with the US style separator/range operator which is a comma (not semi-
colon) and should follow the same rules as write formula(). See Non US Excel functions and
syntax for a full explanation:

This formula will cause an Excel error on load due to
non-English language and use of semi-colons.
worksheet.conditional format('A2:C9' ,

{'type": 'formula',
'criteria': '=0DER($B2<$C2;UND($B2="";$C2>HEUTE()))",
'format': formatl

})

This is the correct syntax.
worksheet.conditional format('A2:C9' ,

{'type': 'formula',
'criteria': '=0R($B2<$C2,AND($B2="",$C2>TODAY()))"',
"format': formatl

1)

Also, any cell or range references in the formula should be absolute references if they are applied
to the full range of the conditional format. See the note in the value section above.

22.2.21 type: 2_color_scale

The 2_color _scale type is used to specify Excel's “2 Color Scale” style conditional format:

worksheet.conditional format('Al:A12', {'type': '2 color scale'})

22.2. Conditional Format Options 323

Creating Excel files with Python and XisxWriter, Release 3.1.9

e 00 " conditional_format.xlsx
Home | Layout | Tables | Charts | SmartArt | ¥ W fFv
c12 10 @ (-~ K |~
& VNN W WU F— N — -
2 2 Color Scale 3 Color Scale Data Bars
; - ——
4 I 2
5 3 I 3
6 4 4 I 4
SR | Sheetl | Sheet2 Shutsl - “Ti
— Mormal View Ready o

This conditional type can be modified with min_type, max_type, min value, max_value,
min color and max_color, see below.

22.2.22 type: 3_color_scale

The 3_color_scale type is used to specify Excel’'s “3 Color Scale” style conditional format:
worksheet.conditional format('Al1:A12', {'type': '3 color scale'})

This conditional type can be modified with min_ type, mid type, max type, min value,

mid value, max value,min color,mid color and max color, see below.

22.2.23 type: data_bar

The data_bar type is used to specify Excel’s “Data Bar” style conditional format:

worksheet.conditional format('Al:A12', {'type': 'data bar'})

This conditional type can be modified with the following parameters, which are explained in the
sections below. These properties were available in the original xlsx file specification used in Excel
2007:

min_ type
max_type
min_value
max_value
bar color
bar only

In Excel 2010 additional data bar properties were added such as solid (non-gradient) bars and
control over how negative values are displayed. These properties can be set using the following
parameters:

324 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

bar solid

bar negative color

bar border color

bar negative border color
bar negative color same
bar negative border color same
bar no _border

bar direction

bar axis position

bar _axis color
data bar 2010

0@ conditional_format.xlsx
[A Home | Layout | Tables | Charts | SmartArt | »| v &
121 110 & (~ & |~
6] H B J [T K] L [|mMm] N |J © [BH=
1
P Solid bars Right to left Excel 2010 style Megative same as positive
3] 1 i O -1 O -1
4 [] 2 @ m -z O -2
5 || 3 [| O -3 o -3
6 || 4] o -z = -z
7 Bm s A I -1 I 1
8 [= 10)
9 L [O O
10 I s [|_F] ¥
11 . s [|| [
12] [Iz 12
13 I [o1 o1
14] [g 10
44 b B J ShE!tEJ Sheat?J ihutaJ_ [
Mormal View Ready i

Files that use these Excel 2010 properties can still be opened in Excel 2007 but the data bars will
be displayed without them.
22.2.24 type: icon_set

The icon_set type is used to specify a conditional format with a set of icons such as traffic lights
or arrows:

worksheet.conditional format('Al:Cl', {'type': 'icon set',
"icon style': '3 traffic lights'})

The icon set style is specified by the icon_style parameter. Valid options are:

22.2. Conditional Format Options 325

Creating Excel files with Python and XisxWriter, Release 3.1.9

3 arrows

3 arrows_gray

3 flags

3 signs

3 symbols

3 symbols circled

3 traffic lights

3 traffic_lights rimmed

4 arrows

4 arrows_gray

4 ratings

4 red to black
4 traffic lights

5 arrows
5 arrows_gray
5 quarters
5 ratings
0@ conditional_format.xlsx
| A Home | layout | Tables | Charts | SmartArt | 3 v £~
A19 10 & (= fx| A
4 A YU T =N N YO U S - _—
1 |Examples of conditional formats with icon sets.
2
3 @ 10 2@ 3
4 @ 10 2@ 3
> @ @ @
6 3 1= 2 4 3
7 3 1/8y 2| A 34 4
8 3 1%y 2 A 34 4 4 5
9 -:-[I“[l 1 l|]|][| 2 lll][l 3 lll[l 4 IIII 5
10
11
12
13
o 44 b B J Sheuu Sher_tS_i Sher_tﬁ_i_ [

Mormal View Rieady o

The criteria, type and value of each icon can be specified using the icon array of dicts with
optional criteria, type and value parameters:

326

Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.conditional format(

"Al:D1',
{'type': 'icon set',
‘icon _style': '4 red to black',
'icons': [{'criteria': '>=', 'type': 'number', 'value': 90},

{'criteria': '<', ‘'type': 'percentile', 'value': 50},
{'criteria': '<=', 'type': 'percent', 'value': 25}1}

)

» The icons criteria parameter should be either >= or <. The default criteriais >=.

» The icons type parameter should be one of the following values:

number
percentile
percent
formula

The default type is percent.

» The icons value parameter can be a value or formula:

worksheet.conditional format('Al:D1°',
{'type': 'icon set',
'icon style': '4 red to black',
'icons': [{'value': 90},
{'value': 50},
{'value': 253}1})

Note: The icons parameters should start with the highest value and with each subsequent one
being lower. The default valueis (n * 100) / number of icons. The lowest number icon
in an icon set has properties defined by Excel. Therefore in a n icon set, there is no n-1 hash of
parameters.

The order of the icons can be reversed using the reverse icons parameter:

worksheet.conditional format('Al:C1',
{'type': 'icon set',
'icon style': '3 arrows',
'reverse icons': True})

The icons can be displayed without the cell value using the icons only parameter:

worksheet.conditional format('Al:C1',
{'type': 'icon set',
'icon style': '3 flags',
"icons only': True})

22.2.25 min_type:

The min type and max_ type properties are available when the conditional formatting
type is 2 color scale, 3 color scale or data bar. The mid type is available for
3 color_scale. The properties are used as follows:

22.2. Conditional Format Options 327

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.conditional format('Al:A12', {'type': '2 color scale',
'min type': 'percent',
'max_type': 'percent'})

The available min/mid/max types are:

min (for min_type only)
num

percent

percentile

formula

max (for max_type only)

22.2.26 mid_type:

Used for 3 color scale. Same as min_ type, see above.

22.2.27 max_type:

Same as min_type, see above.

22.2.28 min_value:

The min value and max value properties are available when the conditional formatting
type is 2 _color scale, 3 color _scale or data bar. The mid value is available for
3 color_scale. The properties are used as follows:

worksheet.conditional format('Al:A12', {'type': '2 color scale',

'min_value': 10,
'max_value': 90})

22.2.29 mid_value:

Used for 3 _color scale. Same as min_value, see above.

22.2.30 max_value:

Same as min_value, see above.

22.2.31 min_color:

The min _color and max color properties are available when the conditional formatting
type is 2 color scale, 3 color scale or data bar. The mid color is available for
3 color_scale. The properties are used as follows:

worksheet.conditional format('Al:A12', {'type': '2 color _scale',
'min color': '#C5D9F1',
'max_color': '#538ED5'})

The color can be a Html style #RRGGBB string or a limited number named colors, see Working with
Colors.

328 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

22.2.32 mid_color:

Used for 3_color _scale. Same asmin_color, see above.

22.2.33 max_color:

Same as min_color, see above.

22.2.34 bar_color:
The bar_color parameter sets the fill color for data bars:

worksheet.conditional format('F3:F14', {'type': 'data bar',
"bar color': '#63C384'})

| NN " conditional_format.xlsx
Home | Layout Tables | Charts | SmartArt | 3 v %~
B30 0 & (~ fx v
A [E c [b [EJ] F [G[H [1=
1 |Examples of data bars.
2 Default data bars | Bars only With user caler Solid bars
3 I 1 I 1] 1
4 I F L F [] 2
5 I 3 I 3 || 3
[i 4 i I 4 [] 4
i B 5 B | 5 [] 5
8 K G K I G m s
] K 7 | ! 7 Il -
10 E g K | g s
11 K g E I g . s
12 E 10 K I 10 o
13 K 11 [| 11 |
14 | 12 | I 12 [
15
16
44 » » J Sher_tEJ Sher_t?_l ih!!m_i_” |||
Mormal View Ready i

The color can be a Html style #RRGGBB string or a limited number named colors, see Working with
Colors.

22.2.35 bar_only:
The bar_only property displays a bar data but not the data in the cells:

worksheet.conditional format('D3:D14', {'type': 'data bar',
"bar only': True})

22.2. Conditional Format Options 329

Creating Excel files with Python and XisxWriter, Release 3.1.9

See the image above.

22.2.36 bar_solid:
The bar_solid property turns on a solid (non-gradient) fill for data bars:

worksheet.conditional format('H3:H14', {'type': 'data bar',
'bar solid': True})

See the image above.

Note, this property is only visible in Excel 2010 and later.

22.2.37 bar_negative_color:
The bar_negative color property sets the color fill for the negative portion of a data bar:

worksheet.conditional format('F3:F14', {'type': 'data bar',
'bar negative color': '#63C384'})

The color can be a Html style #RRGGBB string or a limited number named colors, see Working with
Colors.

Note, this property is only visible in Excel 2010 and later.

22.2.38 bar_border_color:
The bar_border color property sets the color for the border line of a data bar:

worksheet.conditional format('F3:F14', {'type': 'data bar',
'bar border color': '#63C384'})

The color can be a Html style #RRGGBB string or a limited number named colors, see Working with
Colors.

Note, this property is only visible in Excel 2010 and later.

22.2.39 bar_negative_border_color:

The bar negative border color property sets the color for the border of the negative por-
tion of a data bar:

worksheet.conditional format('F3:F14', {'type': 'data bar',
'bar negative border color': '#63C384'})

The color can be a Html style #RRGGBB string or a limited number named colors, see Working with
Colors.

Note, this property is only visible in Excel 2010 and later.

22.2.40 bar_negative_color_same:

The bar _negative color_same property sets the fill color for the negative portion of a data
bar to be the same as the fill color for the positive portion of the data bar:

330 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.conditional format('F3:F14', {'type': 'data bar',
'bar negative color same': True})

e @ conditional_format.xlsx
| # Home | Layout | Tables | Charts | SmartArt | 3 v i~
121 10 o (- i |
G H |—.—|_J [K | L [M | N | o | P=
1
2 Solid bars Right to left Excel 2010 style Megative same as positive
3 | 1 i m -1 B
4 [] 2 & O -2 o -2
5 || 3 I | R -3 O -3
[|| 4 4 e -z B -z
7 mm s] m -1 B
] s | |0 .0
9 Il - [01 O
10 I s [| ¥ |
11 . A [[| 3
12 Ly [2)
13 I [I 1 I
14 [] [Lo o
15
16
= 44 bk J SheatEJ Sheat?J ihutﬂi_ [l
Mormal ¥iew Ready o

Note, this property is only visible in Excel 2010 and later.

22.2.41 bar_negative_border_color_same:

The bar negative border color same property sets the border color for the negative por-
tion of a data bar to be the same as the border color for the positive portion of the data bar:

worksheet.conditional format('F3:F14', {'type': 'data bar',
'bar negative border color same': True})

See the image above.

Note, this property is only visible in Excel 2010 and later.

22.2.42 bar_no_border:
The bar_no_border property turns off the border for data bars:

worksheet.conditional format('F3:F14', {'type': 'data bar',
'bar no border': True})

22.2. Conditional Format Options 331

Creating Excel files with Python and XisxWriter, Release 3.1.9

Note, this property is only visible in Excel 2010 and later, however the default in Excel 2007 is to
not have a border.
22.2.43 bar_direction:

The bar_direction property sets the direction for data bars. This property can be either left
for left-to-right or right for right-to-left. If the property isn’t set then Excel will adjust the position
automatically based on the context:

worksheet.conditional format('J3:J14', {'type': 'data bar',

'bar direction': 'right'})
| NN conditional_format.xlsx
| A Home | Layout | Tables | Charts | SmartArt | »| v L
121 10O (- & |~
G| H |) K L M N[O P=
1
2 Solid bars Right to left Excel 2010 style Megative same as positive
3 | 1 i o O -1
4 [] 2 7] o -z om -z
5 [| 3 [| R -3 O -3
[] 4 [| o -2 = -2
7 s | o O -1
] s = |0 |0
g [[g1 b1
10 I s [| v | .
11 e s o 3 3
12 | o o 12 2
13 I [LI 1
14 I - o 1o

14« » »i | Sheet6 | Sheet7 | Sheet8 | [
Mormal View Ready e

Note, this property is only visible in Excel 2010 and later.

22.2.44 bar_axis_position:

The bar_axis position property sets the position within the cells for the axis that is shown in
data bars when there are negative values to display. The property can be either middle or none.
If the property isn’t set then Excel will position the axis based on the range of positive and negative
values:

worksheet.conditional format('J3:J14', {'type': 'data bar"',
'bar axis position': 'middle'})

332 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Note, this property is only visible in Excel 2010 and later.

22.2.45 bar_axis_color:

The bar _axis color property sets the color for the axis that is shown in data bars when there
are negative values to display:

worksheet.conditional format('J3:J14', {'type': 'data bar',
'bar_axis color': '#0070C0'})

Note, this property is only visible in Excel 2010 and later.

22.2.46 data bar 2010:

The data bar 2010 property sets Excel 2010 style data bars even when Excel 2010 specific
properties aren’t used. This can be used for consistency across all the data bar formatting in a
worksheet:

worksheet.conditional format('L3:L14', {'type': 'data bar',
‘data bar 2010': True})

22.2.47 stop_if _true

The stop_if true parameter can be used to set the “stop if true” feature of a conditional for-
matting rule when more than one rule is applied to a cell or a range of cells. When this parameter
is set then subsequent rules are not evaluated if the current rule is true:

worksheet.conditional format('Al"',
{'type': 'cell',
"format': cell format,
'criteria': '>"',
'value': 20,
'stop if true': True

b

22.2.48 multi_range:
The multi range option is used to extend a conditional format over non-contiguous ranges.

It is possible to apply the conditional format to different cell ranges in a worksheet using multiple
calls to conditional format(). However, as a minor optimization it is also possible in Excel
to apply the same conditional format to different non-contiguous cell ranges.

This is replicated in conditional format() using the multi range option. The range must
contain the primary range for the conditional format and any others separated by spaces.

For example to apply one conditional format to two ranges, 'B3:K6' and 'B9:K12":

worksheet.conditional format('B3:K6', {'type': 'cell"',
'criteria': '>=
'value': 50,
"format': formatl,
'multi range': 'B3:K6 B9:K12'})

1
’

22.2. Conditional Format Options 333

Creating Excel files with Python and XisxWriter, Release 3.1.9

22.3 Conditional Formatting Examples

Highlight cells greater than an integer value:

worksheet.conditional format('Al:F10', {'type': 'cell!',
'criteria': 'greater than',
'value': 5,
'format': formatl})

Highlight cells greater than a value in a reference cell:

worksheet.conditional format('Al:F10', {'type': 'cell!',
'criteria': 'greater than',
'value': "H1',
'format': formatl})

Highlight cells more recent (greater) than a certain date:

date = datetime.datetime.strptime('2011-01-01"', "S%Y-%m-%d")

worksheet.conditional format('Al:F10', {'type': 'date’,
‘criteria': 'greater than',
'value': date,
"format': formatl})

Highlight cells with a date in the last seven days:

worksheet.conditional format('Al:F10', {'type': "time period’,
‘criteria': 'last 7 days',
"format': formatl})

Highlight cells with strings starting with the letter b:

worksheet.conditional format('Al:F10', {'type': "text"',
‘criteria': 'begins with',
'value': 'b',
"format': formatl})

Highlight cells that are 1 standard deviation above the average for the range:

worksheet.conditional format('Al:F10', {'type': 'average',
"format': formatl})

Highlight duplicate cells in a range:

worksheet.conditional format('Al:F10', {'type': "duplicate’,
"format': formatl})

Highlight unique cells in a range:

worksheet.conditional format('Al:F10', {'type': "unique',
'format': formatl})

Highlight the top 10 cells:

334 Chapter 22. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.conditional format('Al:F10', {'type': "top',
'value': 10,

"format': formatl})

Highlight blank cells:

worksheet.conditional format('Al:F10', {'type': 'blanks’',
"format': formatl})

Set traffic light icons in 3 cells:

worksheet.conditional format('B3:D3', {'type': 'icon set',
'icon style': '3 traffic lights'})

See also Example: Conditional Formatting.

22.3. Conditional Formatting Examples 335

Creating Excel files with Python and XisxWriter, Release 3.1.9

336 Chapter 22. Working with Conditional Formatting

CHAPTER
TWENTYTHREE

WORKING WITH WORKSHEET TABLES

Tables in Excel are a way of grouping a range of cells into a single entity that has common format-
ting or that can be referenced from formulas. Tables can have column headers, autofilters, total
rows, column formulas and default formatting.

8 00 [tables.xlsx
Home | Layout | Tables | Charts | SmartArt | M| v R~
A20] 0 @ (= fx| A
', JO NSV N S N » WOV NS SN SO N U WO B =
1 Table with column formats.
2
QM Product_Ed Quarter 182 Quarter 269 Quarter 350 Quarter 452 Year |4
4 Apples 510,000 56,000 429,000
] Pears 52,000 $3,ﬂﬂ!] S4,l]ﬂl] 55,000 514,000
B Bananas 56,000 56,000 56,500 56,000 524,500
7 Oranges 5500 5300 5200 5700 51,700
(Bl Totls | 518500 $14300| $18,700] $17,700] $65,200
9
10
11
12
,:‘ s _-| i Sheet? J Sheet8 J Sheetd J SheetlD J Sheetll i Sheetl2 I
ormal View Ready =

For more information see An Overview of Excel Tables in the Microsoft Office documentation.

Note: Tables aren’'t available in XlsxWriter when Workbook() ’'constant memory’ mode is
enabled.

337

https://support.microsoft.com/en-us/office/overview-of-excel-tables-7ab0bb7d-3a9e-4b56-a3c9-6c94334e492c

Creating Excel files with Python and XisxWriter, Release 3.1.9

23.1 add_table()

Tables are added to a worksheet using the add table() method:

worksheet.add table('B3:F7', {options})

The data range can be specified in ‘A1’ or ‘Row/Column’ notation (see Working with Cell Notation):

worksheet.add table('B3:F7")
Same as:
worksheet.add table(2, 1, 6, 5)

I TN = L S —
Home | Layout | Tables | Charts | SmartArt | }}|1-' %
A20 1 0 ® (- £ Ad
D Y P s el Comnsrnsnnss D s e F sl s Bl Gl =
1 Default table with no data.
2
RN column1 B3 column2 B3 column3 B3 Columna B3 Columns B3|
4
]
6
? ol
8
9
10
11
12
I:- “ > -H l Sheetl i Sheet2 J Sheet3 J Sheetd J Sheets J Sheets J Sheet7 |||
ormal View Ready p:

The options parameter should be a dict containing the parameters that describe the table options
and data. The available options are:

338 Chapter 23. Working with Worksheet Tables

Creating Excel files with Python and XlsxWriter, Release 3.1.9

data
autofilter
header _row
banded_columns
banded_rows
first_column
last_column
style
total_row
columns
name

These options are explained below. There are no required parameters and the options parameter
is itself optional if no options are specified (as shown above).

23.2 data

The data parameter can be used to specify the data in the cells of the table:

data = [

['Apples', 10000, 5000, 8000, 6000],

['Pears',

2000, 3000, 4000, 500017,

['Bananas', 6000, 6000, 6500, 600017,

['Oranges’',

]

500, 300, 200, 70017,

worksheet.add table('B3:F7', {'data': data})

23.2. data

339

Creating Excel files with Python and XisxWriter, Release 3.1.9

e 00 [tables.xlsx
#A Home | Layout | Tables | Charts | SmartArt | » v $E
A20 10O (- f& |~
VYol e C o D el s B el wmly —
1 Default table with data.
2
EJ M Column1 B3 Column2 BJ Column3 9 Column4 B3 Columns B3|
4 | Apples 10000 5000 8000 6000
5 Pears 2000 3000 4000 5000
6 Bananas 6000 6000 6500 6000
7 Oranges 500 300 200 700,
B
9
10
11
12
PR -H l Shutl_J_ Sh!!tzi Sher_ti_i Shezt-t_i Sher_tS_i Sher_tﬁ_i Sheeti ||
Mormal View Ready &

Table data can also be written separately, as an array or individual cells:

These statements are the same as the single statement above.

worksheet.add table('B3:F7"')

worksheet.write row('B4', datal[0])
worksheet.write row('B5', data[l])
worksheet.write row('B6', datal[2])
worksheet.write row('B7', datal[3])

Writing the cell data separately is occasionally required when you need to control the write ()

methods used to populate the cells or if you wish to modify individual cell formatting.

The data structure should be an list of lists holding row data as shown above.

23.3 header_row

The header row parameter can be used to turn on or off the header row in the table. It is on by

default:

Turn off the header row.
worksheet.add table('B4:F7', {'header row': False})

340 Chapter 23. Working with Worksheet Tables

Creating Excel files with Python and XlsxWriter, Release 3.1.9

W N3N ;T £ 1] 1 S m—
Home | Layout | Tables | Charts | SmartArt | » v $E
A20 10O (- f& |~

A JRNR RO S RS N WU S S OSSN - N _—

Table without default header row.

Apples

Pears
Bananas
Oranges

44 »pl l Sheuli Shmzi Sheui_l 5h!!t4_i Shmsi Sheuﬁi Sheeti ||
Mormal View

The header row will contain default captions such as Column 1, Column 2, etc. These captions
can be overridden using the columns parameter below.

23.4 autofilter

The autofilter parameter can be used to turn on or off the autofilter in the header row. It is on
by default:

Turn off the default autofilter.
worksheet.add table('B3:F7', {'autofilter': False})

23.4. autofilter 341

Creating Excel files with Python and XisxWriter, Release 3.1.9

BN W 2 i} = |- SROR—— ——
Home | Layout | Tables | Charts | SmartArt | » v $E
A20 10O (- f& |~

A JRN RO S RS N 5 WU S SN S -2 N _—

Table without default autofilter.

10000
2000
6000

500

Apples

Pears
Bananas
Oranges

Column1__|Column2__|Column3 _|Column4 _|ColumnS _|
5000 8000 6000

4000
6500
200

5000
6000

700G,

3000
6000
300

44 »pl l Sheuli sm:luzJr Shutj-li Sheu-ti Shmsi Sheuﬁi Sheeti ||

Mormal View

The autofilter is only shown if the header row is on. Filter conditions within the table are

not supported.

23.5 banded _rows

The banded rows parameter can be used to
by default:

Turn off banded rows.

create rows of alternating color in the table. It is on

worksheet.add table('B3:F7', {'banded rows': False})

342

Chapter 23. Working with Worksheet Tables

Creating Excel files with Python and XlsxWriter, Release 3.1.9

800 [tables.xlsx
Home | Layout | Tables | Charts | SmartArt | » v $E
A20 0 O (- f B
P P s C o e Dot e F o et B snstonG s =
1 Table with banded columns but without default banded rows.
2
3 Column. £ Column2 [Column3 [Column4 5 Columns (|
4 | Apples 10000 5000 8000 6000
3 Pears 2000 3000 4000 5000
B Bananas 6000 6000 6500 6000
7 | Oranges 500 300 200 700,
g
9
10
11
12
hlli P -H l Shutl_i Sher_tzi Sher_ti_i Shezt-t_i Sher_tS_l Sheetf J Sher_tﬂlu
ormal View Ready i

23.6 banded columns

The banded columns parameter can be used to used to create columns of alternating color in
the table. It is off by default:

Turn on banded columns.
worksheet.add table('B3:F7', {'banded columns': True})

See the above image.

23.7 first_column

The first column parameter can be used to highlight the first column of the table. The type of
highlighting will depend on the style of the table. It may be bold text or a different color. It is off
by default:

Turn on highlighting for the first column in the table.
worksheet.add table('B3:F7', {'first column': True})

23.6. banded_columns 343

Creating Excel files with Python and XisxWriter, Release 3.1.9

- ME N3 N—— RN 1 [0 S— —
Home | Layout | Tables | Charts | SmartArt | » v $E
A20 0 @ (~ K |~
2/ [N S N T U - WO =
1 Default table with "First Column” and "Last Column” options.
2
3
4
3
6
7
B
9
10
11
12
p:q - r -h-l l Sheuli Shmzi Sheuii Shmu-ur Sh!!ti_i Sheuﬁi Sheeti ||
ormal View Ready &

23.8 last_column

The last column parameter can be used to highlight the last column of the table. The type of
highlighting will depend on the style of the table. It may be bold text or a different color. It is off
by default:

Turn on highlighting for the last column in the table.
worksheet.add table('B3:F7', {'last column': True})

See the above image.

23.9 style

The style parameter can be used to set the style of the table. Standard Excel table format names
should be used (with matching capitalization):

worksheet.add table('B3:F7', {'data': data,
'style': 'Table Style Light 11'})

344 Chapter 23. Working with Worksheet Tables

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Table with alternative Excel style.

Product B Quarter 1E3 Quarter 2[5 Quarter 3£ Quarter 4] Year - |

8000

Apples 10000

5000

6000

29000

Pears 2000

3000

4000

5000

14000

Bananas 6000

6000

6500

6000

24500

Oranges s0o0

300

200 700

1700

Totals 18500

14300

18700

69200,

Mormal View

The default table style is ‘Table Style Medium 9'.

You can also turn the table style off by setting it to None:

worksheet.add table('B3:F7', {'data':

data,

'style': None})

[P i Shutﬁi Shut?i Shutﬂi Shmgi Shmlﬂl Sheet1l J Sheet! |||

23.9. style

345

Creating Excel files with Python and XisxWriter, Release 3.1.9

| NON tables.xlsx

| # Home | Layout | Tables | Charts | SmartArt | » v -
AZ0 110 & (~ fx |-

T W SRSN [UNN <SNUNSR FSNN YORUUE S -JU S - -
1 | Table with Excel style removed. .
2 i
;Z Product Eﬂuar‘ter lEﬂuar'ter EEﬂuar'ter aEﬂuar‘terilEYear E '
4 | Apples 10000 5000 8000 6000 29000 | |
5 | Pears 2000 3000 4000 5000 14000 | |
6 | Bananas 6000 6000 6500 6000 24500 | |
7 | Oranges 500 300 200 700 1700 | |
8 | Totals 18500 14300 18700 17700 69200, | |
[9|
11
14 4 » +i [Sheetll]| Sheet12 | Sheet13 | + I] |

Mormal View Ready A

23.10 name

By default tables are named Tablel, Table2, etc. The name parameter can be used to set the
name of the table:

worksheet.add table('B3:F7', {'name': 'SalesData'})

If you override the table name you must ensure that it doesn’t clash with an existing table name
and that it follows Excel’'s requirements for table names, see the Microsoft Office documentation.

23.11 total_row

The total row parameter can be used to turn on the total row in the last row of a table. It is
distinguished from the other rows by a different formatting and also with dropdown SUBTOTAL
functions:

worksheet.add table('B3:F7', {'total row': True})

346 Chapter 23. Working with Worksheet Tables

https://support.microsoft.com/en-us/office/rename-an-excel-table-fbf49a4f-82a3-43eb-8ba2-44d21233b114

Creating Excel files with Python and XlsxWriter, Release 3.1.9

S S T—— RO ¥ T | T L mm— T —
Home | Layout | Tables Charts | SmartArt » v $E
A20 110 © (= f&|

e e P e T e e s e Gy

Table with totals row {but no caption or totals).

Product 3 Quarter 153 Quarter 263 Quarter 363 Quarter 4B Year __E2
10000 5000 8000 6000 29000

Pr
Apples

Pears 2000 3000 4000 5000 14000
Bananas 6000 6000 6500 6000 24500
Oranges 500 300 200 700 1700

144 &kl i Shut-i-_i Shuti_i Shutﬁ_i Shm?i Shutﬂ_i Sheetd J Shutlﬂ|||

Mormal View Ready

The default total row doesn’t have any captions or functions. These must by specified via the
columns parameter below.

23.12 columns

The columns parameter can be used to set properties for columns within the table.

23.12. columns 347

Creating Excel files with Python and XisxWriter, Release 3.1.9

e 00 [tables.xlsx
#A Home | Layout | Tables | Charts | SmartArt | » v $E
A20 0 @ (~ K |~
B s cnnlC s s Do P o o Ens el nnls| =
1 Table with user defined column headers
2
3
4 | Apples 10000 5000 8000 6000
5 Pears 2000 3000 4000 5000
6 Bananas 6000 6000 6500 6000
7 Oranges 500 300 200 700,
B
9
10
11
12
,.: n:.,arw:; d She;ti f Sheet3 | Sheetd | Sheets | Sheet6 | Sheet7 /| Sheets |||
¥ P

The sub-properties that can be set are:

header
header_format
formula
total_string
total_function
total_value
format

The column data must be specified as a list of dicts. For example to override the default ‘Column
n’ style table headers:

worksheet.add table('B3:F7', {'data': data,
"columns': [{'header': 'Product'},
{'header': 'Quarter 1'},
{'header': 'Quarter 2'},
{'header': 'Quarter 3'},
{'header': 'Quarter 4'},
1)

See the resulting image above.

If you don’t wish to specify properties for a specific column you pass an empty hash ref and the
defaults will be applied:

348 Chapter 23. Working with Worksheet Tables

Creating Excel files with Python and XlsxWriter, Release 3.1.9

columns, [
{header, 'Product'},
{header, 'Quarter 1'},
{}, # Defaults to 'Column 3'.
{header, 'Quarter 3'},
{header, 'Quarter 4'},

Column formulas can by applied using the column formula property:

formula = '=SUM(Table8[@[Quarter 1]:[Quarter 4]1])'

worksheet.add table('B3:G7', {'data': data,
‘columns': [{'header': 'Product'},
{'header': 'Quarter 1'},
{'header': 'Quarter 2'},
{'header': 'Quarter 3'},
{'header': 'Quarter 4'},
{'header': 'Year',
'formula : formula},

1)

W25 S T—— R——— tables.xlsx T—
Home | Layout | Tables Charts | SmartArt IR+ R

c4 (4 @ & (- fx| =sUM(Tables[@[Quarter 1]:[Quarter 4]]) |~

JAl B [€ [b [E | F -

1 Table with user defined column headers

M quarer 4ﬂ Year

Apples
Pears Zﬂﬂﬂ Eﬂﬂl‘.} 4[.'![.'![} SUI‘.}I‘.}
Bananas 6000 6000 6500
Oranges 500 300 200

144 & »l J Shmﬁi Sheaat?_Jr ihuta_i Shum_i Shutlu_i Shutll_i Shut”u
Mormal View

23.12. columns 349

Creating Excel files with Python and XisxWriter, Release 3.1.9

The Excel 2007 style [#This Row] and Excel 2010 style @ structural references are supported
within the formula. However, other Excel 2010 additions to structural references aren’t supported
and formulas should conform to Excel 2007 style formulas. See the Microsoft documentation on
Using structured references with Excel tables for details.

As stated above the total row table parameter turns on the “Total” row in the table but it doesn’t
populate it with any defaults. Total captions and functions must be specified via the columns
property and the total stringand total function sub properties:

options = {'data': data,
"total row': 1,

‘columns': [{'header': 'Product', 'total string': 'Totals'},

{'header': 'Quarter 1', 'total function': 'sum'},
{'header': 'Quarter 2', 'total function': 'sum'},
{'header': 'Quarter 3', 'total function': 'sum'},
{'header': 'Quarter 4', 'total function': 'sum'},
{'header': 'Year',

"formula': '=SUM(TablelO[@[Quarter 1]:[Quarter 4]]1)',

"total function': 'sum'

b
1}

Add a table to the worksheet.
worksheet.add table('B3:G8', options)

The supported totals row SUBTOTAL functions are:

average
count_nums
count

max

min

std_dev
sum

var

User defined functions or formulas can also be added.

It is also possible to set a calculated value for the total function using the total value
sub property. This is only necessary when creating workbooks for applications that cannot calcu-
late the value of formulas automatically. This is similar to setting the value optional property in
write formula():

options = {'data’': data,
"total row': 1,
‘columns': [{'total string': 'Totals'},
{'total function': 'sum', 'total value': 150},
{'total function': 'sum', 'total value': 200},
{'total function': 'sum', 'total value': 333},
{'total function': ‘'sum', 'total value': 124},
{'formula': '=SUM(TablelO[@[Quarter 1]:[Quarter 411)"',
"total function': 'sum',
"total value': 807}1}

350 Chapter 23. Working with Worksheet Tables

https://support.microsoft.com/en-us/office/using-structured-references-with-excel-tables-f5ed2452-2337-4f71-bed3-c8ae6d2b276e

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Formatting can also be applied to columns, to the column data using format and to the header
using header format:

currency format
wrap_format

workbook.add format({'num format': '$#,##0'})
workbook.add format({'text wrap': 1})

worksheet.add table('B3:D8', {'data': data,

"total row': 1,

"columns': [{'header': 'Product'},
{'header': 'Quarter 1°',
"total function': 'sum',

"format': currency format},

{'header': 'Quarter 2',

"header format': wrap format,

"total function': 'sum',

"format': currency format}]})

8 00 [tables.xlsx

Home | Layout | Tables | Charts | SmartArt | 5 I - B
A20 (0o (- K

</ [N Y U N e, s+ WA E=

1 Table with column formats.

2

EJIM Product K3 Quarter 153 Quarter 23 Quarter 3E3 Quarter 4E3 Year 3|

4 | Apples $10,000 5,000 $6,000 $29,000

5 Pears 52,000 53,000 54,!]!]!] 55,000 514,000

B Bananas 56,000 56,000 56,500 56,000 524,500

7 Oranges 5500 5300 5200 5700 51,700

Qi Totsls | $18500 $14,300] $18,700] $17.700] _$69,200

9

10

11

12

13

PR i Sheet? J Sheetd J Sheetd J Sheetl0 J Sheetll i Sheet12

Mormal View Ready

Standard XIsxWriter Format object objects are used for this formatting. However, they should be
limited to numerical formats for the columns and simple formatting like text wrap for the headers.
Overriding other table formatting may produce inconsistent results.

23.12. columns

351

Creating Excel files with Python and XisxWriter, Release 3.1.9

23.13 Example

All of the images shown above are taken from Example: Worksheet Tables.

352 Chapter 23. Working with Worksheet Tables

CHAPTER
TWENTYFOUR

WORKING WITH TEXTBOXES

This section explains how to work with some of the options and features of textboxes in XlsxWriter:

import xlsxwriter

workbook = xlsxwriter.Workbook('textbox.xlsx")
worksheet = workbook.add worksheet()

text = 'Formatted textbox'

options = {
'width': 256,
"height': 100,
'x offset': 10,
'y offset': 10,

"font': {'color': 'red',
'size': 14},
‘align': {'vertical': 'middle’,
"horizontal': 'center'
}
'gradient': {'colors': ['#DDEBCF',
"#9CB86E "',
"#156B13'1},

}
worksheet.insert textbox('B2', text, options)

workbook. close()

353

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NN [textbox.xlsx
Home | Layout Tables | Charts | SmartArt | 2| v L~

A25 1] O & (= fx| -
R e e T e e e L =

A
1
2
3
4
5
b
7
8
g

10

11

12

12

== | ELDYEY [
ormal View Ready i

See also Example: Insert Textboxes into a Worksheet.

24.1 Textbox options

This Worksheet insert textbox() method is used to insert a textbox into a worksheet:

worksheet.insert textbox('B2', 'A simple textbox with some text')

A simple textbox with some text

The text can contain newlines to wrap the text:

354 Chapter 24. Working with Textboxes

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.insert textbox('B2', 'Line 1\nLine 2\n\nMore text')

Line 1
Line 2

More text

This insert textbox() takes an optional dict parameter that can be used to control the size,
positioning and format of the textbox:

worksheet.insert textbox('B2', 'Some text', {'width': 256, 'height': 100})

The available options are:

Size and position
width

height

x_scale

y scale

x_offset

y offset

object position

Formatting
line

border

fill

gradient

font

align

text rotation

Links
textlink
url

tip

Accessibility
description
decorative

These options are explained in the sections below. They are similar or identical to position and
formatting parameters used in charts.

24.2 Textbox size and positioning

The insert textbox() options to control the size and positioning of a textbox are:

width
height
X _scale

24.2. Textbox size and positioning 355

Creating Excel files with Python and XisxWriter, Release 3.1.9

y scale
x_offset
y offset
object position

The width and height are in pixels. The default textbox size is 192 x 120 pixels (or equivalent
to 3 default columns x 6 default rows).

| NON [textbox.xlsx
A Home Layout Tables | Charts | SmartArt | 3 v &~
110 & (~ fx| v
B e (e D e e E L =
Default size

E;tp:n-q v b n:paL_
o
(| =]

[
i

[
[

L
5]

RNl ELCIYEY | I

Mormal View Ready s

The size of the textbox can be modified by setting the width and height or by setting the
X scaleandy scale:

worksheet.insert textbox('B2', 'Size adjusted textbox',
{'width': 288, 'height': 30})

or ...
worksheet.insert textbox('B2', 'Size adjusted textbox',
{'x scale': 1.5, 'y scale': 0.25})

356 Chapter 24. Working with Textboxes

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[NN [textbox.xlsx
Home | Layout Tables | Charts | SmartArt | 2| v L~
110 & (= f |~

R e e T e e e L =

Size adjusted textbox

W[oo|~| | v bWl K| -
-
=
/(K3

10

11

12

12

T — [
ormal View Ready s

The x_offsetandy offset position the top left corner of the textbox in the cell that it is inserted
into.

24.2. Textbox size and positioning 357

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NN [textbox.xlsx
| # Home | Layout Tables | Charts | SmartArt | 3| v £~
A30 110 O (~ fx |~

R e e T e e e L =

Offset textbox

Emmqmm.hwnu-ni:

(=
i

[
[

b
]

— Mormal View Ready i

The object position parameter can be used to control the object positioning of the image:
worksheet.insert textbox('B2', "Don't move or size with cells",
{'object position': 3})
Where object position has the following allowable values:
1. Move and size with cells (the default).
2. Move but don't size with cells.
3. Don’t move or size with cells.

See Working with Object Positioning for more detailed information about the positioning and scal-
ing of images within a worksheet.

24.3 Textbox Formatting

The following formatting properties can be set for textbox objects:

line
border
fill

358 Chapter 24. Working with Textboxes

Creating Excel files with Python and XlsxWriter, Release 3.1.9

gradient

font

align

text rotation

Textbox formatting properties are set using the options dict:

worksheet.insert textbox('B2', 'A textbox with a color text',
{'font': {'color': 'green'}})

A textbox with a color text

In some cases the format properties can be nested:

worksheet.insert textbox('B2', 'Some text in a textbox with formatting',
{'font': {'color': 'white'},
'align': {'vertical': 'middle’,
"horizontal': 'center'
b
‘gradient': {'colors': ['green', 'white']}})

24.4 Textbox formatting: Line

The line format is used to specify properties of the border in a textbox. The following properties
can be set for Line formats in a textbox:

none
color
width
dash_type

The none property is used to turn the Line off (it is always on by default):

worksheet.insert textbox('B2', 'A textbox with no border line',
{'line': {'none': True}})

The color property sets the color of the Line:

worksheet.insert textbox('B2', 'A textbox with a color border',
{'line': {'color': 'red'}})

24.4. Textbox formatting: Line 359

Creating Excel files with Python and XisxWriter, Release 3.1.9

A textbox with a color border

The available colors are shown in the main XisxWriter documentation. It is also possible to set the
color of a line with a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors:

worksheet.insert textbox('B2', 'A textbox with a color border',
{'line': {'color': '#FF9900'}})

A textbox with a color border

The width property sets the width of the 1ine. It should be specified in increments of 0.25 of a
point as in Excel:

worksheet.insert textbox('B2', 'A textbox with larger border',
{'line': {'width': 3.25}})

A textbox with larger border

The dash_type property sets the dash style of the line:

worksheet.insert textbox('B2', 'A textbox a dash border',
{'line': {'dash type': 'dash dot'}})

A textbox a dash border

The following dash_type values are available. They are shown in the order that they appear in
the Excel dialog:

solid

round dot
square_dot

dash

dash dot

long dash

long dash dot
long dash dot dot

360 Chapter 24. Working with Textboxes

Creating Excel files with Python and XlsxWriter, Release 3.1.9

The default line style is solid.

More than one line property can be specified at a time:

worksheet.insert textbox('B2', 'A textbox with border formatting',
{'line': {'color': 'red',
'width': 1.25,

'dash type': 'square dot'}})

i
By
3

D &
o
3 g
>

oa

=
£
=
o
[s]
g
o
1]
8

24.5 Textbox formatting: Border

The border property is a synonym for Line.

Excel uses a common dialog for setting object formatting but depending on context it may refer to
a line or a border. For formatting these can be used interchangeably.

24.6 Textbox formatting: Solid Fill

The solid fill format is used to specify a fill for a textbox object.
The following properties can be set for fill formats in a textbox:

none
color

The none property is used to turn the Til1l property off (to make the textbox transparent):

worksheet.insert textbox('B2', 'A textbox with no fill"',
{'fill': {'none': True}})

24.5. Textbox formatting: Border 361

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NN | | textbox.xlsx
Home | Layout Tables | Charts | SmartArt | 2| v L~
A8 10 & (~ & -
I e e T e e L] = |

A textbox with no fill

mmﬂmthMHE

10

11

12

12

== W shee [SN [
ormal View Ready i

The color property sets the color of the fill area:

worksheet.insert textbox('B2', 'A textbox with color fill',
{'fill': {'color': '#FF9900'}})

The available colors are shown in the main XlsxWriter documentation. It is also possible to set the
color of a fill with a Html style #RRGGBB string or a limited number of named colors, see Working

with Colors:

worksheet.insert textbox('B2', 'A textbox with color fill',
{'fill': {'color': 'red'}})
24.7 Textbox formatting: Gradient Fill

The gradient fill format is used to specify a gradient fill for a textbox. The following properties can
be set for gradient fill formats in a textbox:

362 Chapter 24. Working with Textboxes

Creating Excel files with Python and XlsxWriter, Release 3.1.9

colors: a list of colors

positions: an optional list of positions for the colors
type: the optional type of gradient fill

angle: the optional angle of the linear fill

If gradient fill is used on a textbox object it overrides the solid fill properties of the object.
The colors property sets a list of colors that define the gradient:

worksheet.insert textbox('B2', 'A textbox with gradient fill"',
{'gradient': {'colors': ['gray', 'white']}})

Excel allows between 2 and 10 colors in a gradient but it is unlikely that you will require more than
2o0r3.

As with solid fill it is also possible to set the colors of a gradient with a Html style #RRGGBB string
or a limited number of named colors, see Working with Colors:

worksheet.insert textbox('B2', 'A textbox with gradient fill"',
{'gradient': {'colors': ['#DDEBCF',
'#9CB86E ',
'#156B13'1}})

A textbox with gradient fill

The positions defines an optional list of positions, between 0 and 100, of where the colors in
the gradient are located. Default values are provided for colors lists of between 2 and 4 but they
can be specified if required:

worksheet.insert textbox('B2', 'A textbox with gradient fill"',
{'gradient': {'colors': ['#DDEBCF', '#156B13'],
'positions': [10, 90]1}})

The type property can have one of the following values:

linear (the default)
radial

rectangular

path

For example:

24.7. Textbox formatting: Gradient Fill 363

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.insert textbox('B2', 'A textbox with gradient fill',
{'gradient': {'colors': ['#DDEBCF', '#9CB86E', '#156B13'],
"type': 'radial'}})

| gradient

If type isn’t specified it defaults to Linear.

For a Linear fill the angle of the gradient can also be specified (the default angle is 90 degrees):

worksheet.insert textbox('B2', 'A textbox with angle gradient',
{'gradient': {'colors': ['#DDEBCF', '#9CB86E', '#156B13'],
'angle': 45}})

24.8 Textbox formatting: Fonts

The following font properties can be set for the entire textbox:
name
size
bold
italic
underline
color

These properties correspond to the equivalent Worksheet cell Format object properties. See the
The Format Class section for more details about Format properties and how to set them.

The font properties are:
* name: Set the font name:
{'font': {'name': 'Arial'}}

Font name: Arial

« size: Set the font size:
{'font': {'name': 'Arial', 'size': 7}}

Font name: Arial, size 7

364 Chapter 24. Working with Textboxes

Creating Excel files with Python and XlsxWriter, Release 3.1.9

* bold: Set the font bold property:
{'font': {'bold': True}}

Font properties: bold

« italic: Set the font italic property:

{'font': {'italic': True}}

Font properties: Italic

» underline: Set the font underline property:

{'font': {'underline': True}}

Font properties: Underline

« color: Set the font color property. Can be a color index, a color name or HTML style RGB
color:

{'font': {'color': 'red' }}
{'font': {'color': '#92D050'}}

Here is an example of Font formatting in a textbox:

worksheet.insert textbox('B2', 'Some font formatting',
{'font': {'bold': True,
"italic': True,
'underline': True,

'name': 'Arial’,
‘color': 'red',
'size': 14}})

Some font formatting

24.8. Textbox formatting: Fonts 365

Creating Excel files with Python and XisxWriter, Release 3.1.9

24.9 Textbox formatting: Align

The align property is used to set the text alignment for the entire textbox:

worksheet.insert textbox('B2', 'Alignment: middle - center',
{'align': {'vertical': 'middle’,
"horizontal': 'center'}})

Alignment: middle - center

The alignment properties that can be set in Excel for a textbox are:

{'align': {'vertical': 'top'}} # Default
{'align': {'vertical': 'middle'}}
{'align': {'vertical': 'bottom'}}

{'align': {'horizontal': 'left'}} # Default
{'align': {'horizontal': 'center'}}

{'align': {'text': 'left'}} # Default
{'align': {'text': 'center'}}
{'align': {'text': 'right'}}

The vertical and horizontal alignments set the layout for the text area within the textbox.
The text alignment sets the layout for the text within that text area:

worksheet.insert textbox('H2',
'Long text line that wraps and is centered',
{'align': {'vertical': 'middle’,
"horizontal': 'center',
"text': 'center'}})

Long text line that wraps and is

centered
The default textbox alignment is:
worksheet.insert textbox('B2', 'Default alignment',
{'align': {'vertical': 'top',
"horizontal': 'left',

"text': 'left'}})

Same as this:
worksheet.insert textbox('B2', 'Default alignment')

366 Chapter 24. Working with Textboxes

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Default alignment

24.10 Textbox formatting: Text Rotation

The text rotation option can be used to set the text rotation for the entire textbox:

worksheet.insert textbox('B2', 'Text rotated up',
{'text rotation': 90})

Text rotated up

Textboxes in Excel only support a limited number of rotation options. These are:

90: Rotate text up

-90: Rotate text down

270: Vertical text (stacked)

271: Vertical text (stacked) - for East Asian fonts

24.11 Textbox Textlink

The textlink property is used to link/get the text for a textbox from a cell in the worksheet. When
you use this option the actual text in the textbox can be left blank or set to None:

worksheet.insert textbox('Al', '', {'textlink': '=A1'})

The reference can also be to a cell in another worksheet:

worksheet.insert textbox('A2', None, {'textlink': '=Sheet2!Al'})

Text in a cell

24.12 Textbox Hyperlink

The url parameter can used to add a hyperlink/url to a textbox:

worksheet.insert textbox('Al', 'This is some text',
{'url': 'https://github.com/jmcnamara'})

24.10. Textbox formatting: Text Rotation 367

Creating Excel files with Python and XisxWriter, Release 3.1.9

The tip parameter adds an optional mouseover tooltip:
worksheet.insert textbox('Al', 'This is some text',
{'url': 'https://github.com/jmcnamara’,
"tip': 'GitHub'})

See alsowrite url() for details on supported URlIs.

24.13 Textbox Description

The description property can be used to specify a description or “alt text” string for the textbox.
In general this would be used to provide a text description of the textbox to help accessibility. It is
an optional parameter and has no default. It can be used as follows:

worksheet.insert textbox('Al', 'This is some text',
{'description': 'Textbox showing data input instructions'})

Alt Text (]

How would you describe this object and its context to
someone who is blind?

(1-2 detailed sentences recommended)

Textbox showing data input instructions

Mark as decorative

24.14 Textbox Decorative

The optional decorative property is also used to help accessibility. It is used to mark the object
as decorative, and thus uninformative, for automated screen readers. As in Excel, if this parameter
is in use the description field isn’t written. It is used as follows:

worksheet.insert textbox('Al', 'This is some text', {'decorative': True})

368 Chapter 24. Working with Textboxes

CHAPTER
TWENTYFIVE

WORKING WITH SPARKLINES

Sparklines are a feature of Excel 2010+ which allows you to add small charts to worksheet cells.
These are useful for showing visual trends in data in a compact format.

@00 sparklines1.xlsx
Home | Layout | Tables | Charts | Smartart | » v fE
A23 10 O (- & |~

WM s | c [b [E F -
1 -2 2 3 -1 0 — "~

2 30 20 33 20 15 -

3 1 -1 -1 1 S R T

4

5

6

7

8

9

10

11

Y l5hm1| I

;
B

Mormal View Ready o

Sparklines were invented by Edward Tufte: https://en.wikipedia.org/wiki/Sparklines

25.1 The add_sparkline() method

The add sparkline() worksheet method is used to add sparklines to a cell or a range of cells:

369

https://en.wikipedia.org/wiki/Sparklines

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.add sparkline(0, 5, {'range':

'Sheetl!Al:E1'})

Both row-column and A1 style notation are supported. See Working with Cell Notation for more

details.

The parameters to add sparkline() must be passed in a dictionary. The main sparkline pa-

rameters are:

range (required)
type

style

markers
negative_points
axis

reverse

Other, less commonly used parameters are:

location
high_point
low_point
first_point
last_point

max

min
empty_cells
show_hidden
date_axis
weight
series_color
negative_color
markers_color
first_color
last_color
high_color
low_color

370

Chapter 25. Working with Sparklines

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e 00 | sparklines2.xlsx
Home | Layout | Tables | Charts Smartirt | » v fE

A4B 1 0 @ (= R

Sparkline Description

—~—_———— Adefault "line" sparkline.

[T P — A default "column" sparkline.
= A default "win/loss" sparkline.

= Line with markers.

—*—"—— Line with high and low points.
- Line with first and last point markers.
+~—————— Line with negative point markers.

10 | —=———=——— Line with axis.

mmumm.thHL
|
]
|
|
]
|
|
|
]

11

12 el — Column with default style (1).

13 melme - Column with style 2.

14 Bl ——m Column with style 3.

15 maleme - Column with style 4.

16 BmBme - Column with style 5.

17 Bmlme me Column with style 6.

18 (Wemme Column with a user defined colour.
19

20 | == mm= === Awin/loss sparkline.
21 | == = ===_ Awin/loss sparkline with negative point

22

23 A left to right column (the default).
24 A right to left column.

25 |Growth Sparkline and text in one cell.

26

27 | «#* -+ Agrouped sparkline. Changes are applie
28 | e
29 | e At

PRE—— l shmu Sher_tz_i;l-.l i

Mormal View Ready o

25.1. The add_sparkline() method 371

Creating Excel files with Python and XisxWriter, Release 3.1.9

These parameters are explained in the sections below.

Note: Sparklines are a feature of Excel 2010+ only. You can write them to an XLSX file that can
be read by Excel 2007 but they won'’t be displayed.

25.2 range

The range specifier is the only non-optional parameter.
It specifies the cell data range that the sparkline will plot:

worksheet.add sparkline('F1', {'range': 'Al:E1'})

The range should be a 2D array. (For 3D arrays of cells see “Grouped Sparklines” below).

If range is not on the same worksheet you can specify its location using the usual Excel notation:

worksheet.add sparkline('F1', {'range': 'Sheet2!Al1:E1'})

If the worksheet contains spaces or special characters you should quote the worksheet name in
the same way that Excel does:

worksheet.add sparkline('F1', {'range': "'Monthly Data'!Al:E1"})

25.3 type

Specifies the type of sparkline. There are 3 available sparkline types:

line (default)
column
win_loss

For example:

worksheet.add sparkline('F2', {'range': 'A2:E2°',
"type': 'column'})

25.4 style

Excel provides 36 built-in Sparkline styles in 6 groups of 6. The style parameter can be used to
replicate these and should be a corresponding number from 1 .. 36:

worksheet.add sparkline('F2', {'range': 'A2:E2°',
"type': 'column',
'style': 12})

The style number starts in the top left of the style grid and runs left to right. The default style is 1.
It is possible to override color elements of the sparklines using the color parameters below.

372 Chapter 25. Working with Sparklines

Creating Excel files with Python and XlsxWriter, Release 3.1.9

25.5 markers

Turn on the markers for Line style sparklines:

worksheet.add sparkline('A6', {'range': 'Sheet2!Al:]J1"',
'markers': True})

Markers aren’t shown in Excel for column and win_loss sparklines.

25.6 negative_points

Highlight negative values in a sparkline range. This is usually required with win_ loss sparklines:

worksheet.add sparkline('A9', {'range': 'Sheet2!Al:J1"',
'negative points': True})

25.7 axis

Display a horizontal axis in the sparkline:

worksheet.add sparkline('Al0', {'range': 'Sheet2!Al:J1°',
"axis': True})

25.8 reverse

Plot the data from right-to-left instead of the default left-to-right:
worksheet.add sparkline('A24', {'range': 'Sheet2!A4:34",
"type': 'column',
'style': 20,
'reverse': True})

25.9 weight

Adjust the default line weight (thickness) for Line style sparklines:

worksheet.add sparkline('F2', {'range': 'A2:E2',
'weight': 0.25})

The weight value should be one of the following values allowed by Excel:

0.25, 0.5, 0.75, 1, 1.25, 2.25, 3, 4.25, 6

25.10 high_point, low_point, first_point, last_point

Highlight points in a sparkline range:

25.5. markers 373

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.add sparkline('A7', {'range': 'Sheet2!Al:J1"',
"high point': True,
"low_point': True,
'first point': True})

25.11 max, min

Specify the maximum and minimum vertical axis values:
worksheet.add sparkline('Fl1', {'range': 'Al:E1"',
'max': 0.5,
'min': -0.5})

As a special case you can set the maximum and minimum to be for a group of sparklines rather
than one:

'max': ‘'group'’

See “Grouped Sparklines” below.

25.12 empty_cells

Define how empty cells are handled in a sparkline:

worksheet.add sparkline('Fl', {'range': 'Al:E1l"',
‘empty cells': 'zero'})

The available options are:
» gaps: show empty cells as gaps (the default).
» zero: plot empty cells as 0.

» connect: Connect points with a line (“line” type sparklines only).

25.13 show hidden

Plot data in hidden rows and columns:

worksheet.add sparkline('F3', {'range': 'A3:E3',
‘show hidden': True})

Note, this option is off by default.

25.14 date_ axis

Specify an alternative date axis for the sparkline. This is useful if the data being plotted isn’t at
fixed width intervals:

374 Chapter 25. Working with Sparklines

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.add sparkline('F3', {'range': 'A3:E3"',
'date axis': 'A4:E4'})

The number of cells in the date range should correspond to the number of cells in the data range.

25.15 series_color

It is possible to override the color of a sparkline style using the following parameters:

series color
negative color
markers color
first color
last color
high color

low color

The color should be specified as a HTML style #rrggbb hex value:

worksheet.add sparkline('A18', {'range': 'Sheet2!A2:]2"',
"type': 'column',
'series color': '#E965E0'})

25.16 location

By default the sparkline location is specified by row and col in add sparkline(). However,
for grouped sparklines it is necessary to specify more than one cell location. The location
parameter is used to specify a list of cells. See “Grouped Sparklines” below.

25.17 Grouped Sparklines

The add sparkline() worksheet method can be used multiple times to write as many
sparklines as are required in a worksheet.

However, it is sometimes necessary to group contiguous sparklines so that changes that are
applied to one are applied to all. In Excel this is achieved by selecting a 3D range of cells for
the data range and a 2D range of cells for the Location.

In XlsxWriter, you can simulate this by passing an array refs of values to Location and range:

worksheet.add sparkline('A27', {'location': ['A27"', "A28', 'A29'],
"range’': ['A5:35"', 'A6:J6', 'A7:37'1})

25.18 Sparkline examples

See Example: Sparklines (Simple) and Example: Sparklines (Advanced).

25.15. series_color 375

Creating Excel files with Python and XisxWriter, Release 3.1.9

376 Chapter 25. Working with Sparklines

CHAPTER
TWENTYSIX

WORKING WITH CELL COMMENTS

Cell comments are a way of adding notation to cells in Excel. For example:

worksheet.write('Al', 'Hello')

worksheet.write comment('Al', 'This is a comment')
NN IO N ;.2 K1 .11 — .
Home | Layout | Tables | Charts | Smartart | M| v Lt~
Al 110 & (= fx| Hello |-
VYN B | C | D | E | F ||[=
Hello This is a comment
2
3
4
5
6
i
8
9
10
11
12
1

= << > ri) sheet [V SN [

Mormal View Cell Al commented by o

26.1 Setting Comment Properties

The properties of the cell comment can be modified by passing an optional dictionary of key/value
pairs to control the format of the comment. For example:

377

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.write comment('C3', 'Hello', {'x scale': 1.2, 'y scale': 0.8})

The following options are available:

author
visible
Xx_scale
width

y scale
height
color
font _name
font size
start_cell
start row
start _col
x _offset
y offset

The options are explained in detail below:

« author: This option is used to indicate who is the author of the cell comment. Excel displays

the author of the comment in the status bar at the bottom of the worksheet. This is usually of
interest in corporate environments where several people might review and provide comments
to a workbook:

worksheet.write comment('C3', 'Atonement', {'author': 'Ian McEwan'})

The default author for all cell comments in a worksheet can be set using the
set comments author() method:

worksheet.set comments author('John Smith")

visible: This option is used to make a cell comment visible when the worksheet is opened.
The default behavior in Excel is that comments are initially hidden. However, it is also pos-
sible in Excel to make individual comments or all comments visible. In XlsxWriter individual
comments can be made visible as follows:

worksheet.write comment('C3', 'Hello', {'visible': True})

It is possible to make all comments in a worksheet visible using the show comments ()
worksheet method. Alternatively, if all of the cell comments have been made visible you can
hide individual comments:

worksheet.write comment('C3', 'Hello', {'visible': False})

x_scale: This option is used to set the width of the cell comment box as a factor of the
default width:

worksheet.write comment('C3', 'Hello', {'x scale': 2 })
worksheet.write comment('C4', 'Hello', {'x scale': 4.2})

« width: This option is used to set the width of the cell comment box explicitly in pixels:

378

Chapter 26. Working with Cell Comments

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.write comment('C3', 'Hello', {'width': 200})

« y scale: This option is used to set the height of the cell comment box as a factor of the

default height:
worksheet.write comment('C3', 'Hello', {'y scale': 2 })
worksheet.write comment('C4', 'Hello', {'y scale': 4.2})

* height: This option is used to set the height of the cell comment box explicitly in pixels:

worksheet.write comment('C3', 'Hello', {'height': 200})

« color: This option is used to set the background color of cell comment box. You can use
one of the named colors recognized by XlsxWriter or a Html color. See Working with Colors:

worksheet.write comment('C3', 'Hello', {'color': 'green' })
worksheet.write comment('C4', 'Hello', {'color': '#CCFFCC'})

« font_name: This option is used to set the font for the comment:

worksheet.write comment('C3', 'Hello', {'font name': 'Courier'})

The default font is ‘Tahoma’.
« font size: This option is used to set the font size for the comment:

worksheet.write comment('C3', 'Hello', {'font size': 10})

The default font size is 8.

« start cell: This option is used to set the cell in which the comment will appear. By
default Excel displays comments one cell to the right and one cell above the cell to which
the comment relates. However, you can change this behavior if you wish. In the following
example the comment which would appear by default in cell D2 is moved to E2:

worksheet.write comment('C3', 'Hello', {'start cell': 'E2'})

« start_row: This option is used to set the row in which the comment will appear. See the
start cell option above. The row is zero indexed:

worksheet.write comment('C3', 'Hello', {'start row': 0})

« start _col: This option is used to set the column in which the comment will appear. See
the start cell option above. The column is zero indexed:

worksheet.write comment('C3', 'Hello', {'start col': 4})

« x_offset: This option is used to change the x offset, in pixels, of a comment within a cell:

worksheet.write comment('C3', comment, {'x offset': 30})

« y offset: This option is used to change the y offset, in pixels, of a comment within a cell:

26.1. Setting Comment Properties 379

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.write comment('C3', comment, {'y offset': 30})

You can apply as many of these options as you require. For a working example of these options
in use see Example: Adding Cell Comments to Worksheets (Advanced).

Note: Excel only displays offset cell comments when they are displayed as visible. Excel
does not display hidden cells as displaced when you mouse over them. Please note this when

using options that adjust the position of the cell comment such as start cell, start row,
start col, x offsetandy offset.

Note: Row height and comments. If you specify the height of a row that contains a comment
then XisxWriter will adjust the height of the comment to maintain the default or user specified

dimensions. However, the height of a row can also be adjusted automatically by Excel if the text
wrap property is set or large fonts are used in the cell. This means that the height of the row is
unknown to the module at run time and thus the comment box is stretched with the row. Use the
set row() method to specify the row height explicitly and avoid this problem. See example 8 of
Example: Adding Cell Comments to Worksheets (Advanced).

380 Chapter 26. Working with Cell Comments

CHAPTER
TWENTYSEVEN

WORKING WITH OUTLINES AND GROUPING

Excel allows you to group rows or columns so that they can be hidden or displayed with a single
mouse click. This feature is referred to as outlines and grouping.

Outlines can reduce complex data down to a few salient sub-totals or summaries. For example
the following is a worksheet with three outlines.

(CHSNS outline.xlsx
Home | Layout | Tahles | Charts | SmartArt | ¥ W fEv
A28 1108 & (= fx |~
215] A e e e e | = |
1 |Region Sales
Nl 2 |North 1000
3 |Morth 1200
4 |MNorth 900
. 5 |North 1200
[=] 6 |Morth Total 4300
- | 7 |South 400
g |[South 600
9 |South 500
South 600
South Total 2100
Grand Total 6400
PR l Outlined Rows_‘[Collapsed F II
Mormal View Ready i

Rows 2 to 11 are grouped at level 1 and rows 2to 5 and 7 to 10 are grouped at level 2. The lines at
the left hand side are called “outline level” bars and the level is shown by the small numeral above

the outline.
Clicking the minus sign on each of the level 2 outlines will collapse and hide the data as shown

381

Creating Excel files with Python and XisxWriter, Release 3.1.9

below.

e 00

| | outline.x|sx

Home | Layout | Tables | Charts | SmartArt | }}|‘-' E e R

A37 .

06 (- & E

(L1213

-

1

| Y- B | C | D | =

Region

6

11

12

13

14

15

16

17

18

19

20

Morth Total 4300
South Total 2100
Grand Total 6400

<< » i 1] Outlined Rows | Collapsed F| I

Sales

Mormal View

Ready e

The minus sign changes to a plus sign to indicate that the data in the outline is hidden. This shows
the usefulness of outlines: with 2 mouse clicks we have reduced the amount of visual data down
to 2 sub-totals and the overall total.

Finally, clicking on the minus sign on the level 1 outline will collapse the remaining rows as follows:

382

Chapter 27. Working with Outlines and Grouping

Creating Excel files with Python and XlsxWriter, Release 3.1.9

® 00 ~ outline.xlsx
Home | Layout | Tables | Charts | SmartArt | » v fE
A37 0 & (- K |~
wipici AT B [T R NS 5 T S
1 |Region Sales
[+ 12 Grand Total 6400
13
14
15
16
17
18
19
20
21
22

<<« » »i [T Outlined Rows | Collapsed [l

[e===]
3] 3]
Bl 0 Mormal View Ready o

27.1 Outlines and Grouping in XlsxWriter

Grouping in XlsxWriter is achieved by setting the outline level via the set row() and
set column() worksheet methods:

worksheet.set row(row, height, cell format, options)
worksheet.set column(first col, last col, width, cell format, options)

Adjacent row or columns with the same outline level are grouped together into a single outline.
The "options’ parameter is a dictionary with the following possible keys:

« "hidden’

« "level’

« "collapsed’
Options can be set as follows:

worksheet.set row(0, 20, cell format, {'hidden': True})

Or use defaults for other properties and set the options only.
worksheet.set row(0, None, None, {'hidden': True})

27.1. Outlines and Grouping in XIsxWriter 383

Creating Excel files with Python and XisxWriter, Release 3.1.9

The following example sets an outline level of 1 for rows 1 to 4 (zero-indexed) and columns B to
G. The parameters height and cell format are assigned default values:

worksheet. ()

.set row(2, None, None, {'level': 1})
()
(

worksheet

worksheet.
worksheet.

worksheet.

set row(1l, None, None, {'level': 1}

set row(3, None, None, {'level': 1}
set row(4, None, None, {'level': 1})

set column('B:G', None, None, {'level': 1})

[NN | outline.xlsx
| # Home | Layout | Tables | Charts | SmartArt | »| v L5
A15 10 & (= fx |-
3 o
|
oy ... B |l C D L F l ElG l H.
1 |Month Jan Feb Mar Apr May Jun Total
2 |Morth 50 20 15 25 65 80 255
3 |South 10 20 30 50 50 50 210
4 |East 45 75 50 15 75 100 360
- 5 |West 15 15 55 35 20 50 130
[=] 7] 1015
7
B
9
PR l ﬂutllnu_| II
Mormal View Ready i

Rows and columns can be collapsed by setting the hidden flag for the hidden rows/columns and
setting the collapsed flag for the row/column that has the collapsed '+’ symbol:

worksheet.
worksheet.

worksheet

worksheet.
worksheet.

worksheet.
worksheet.

set _row(l, None, None, {'level': 1, 'hidden': True})
set row(2, None, None, {'level': 1, 'hidden': True})
.set row(3, None, None, {'level': 1, 'hidden': True})
set row(4, None, None, {'level': 1, 'hidden': True})
set row(5, None, None, {'collapsed': True})

set _column(

'B:G', None, None, {'level': 1, 'hidden': True})
set column('H:H",

None, None, {'collapsed': True})

384

Chapter 27. Working with Outlines and Grouping

Creating Excel files with Python and XlsxWriter, Release 3.1.9

®_® | outline.xlsx

i< <+ v] outiines [+ I s

Mormal ¥iew Ready

Excel allows up to 7 outline levels. Therefore the Level parameter should be in the range 0 <=
level <= 7.

27.1. Outlines and Grouping in XIsxWriter 385

Creating Excel files with Python and XisxWriter, Release 3.1.9

1213415161718

For a more complete examples see Example: Outline and Grouping and Example: Collapsed
Outline and Grouping.

Some additional outline properties can be set via the outline settings() worksheet method.

386 Chapter 27. Working with Outlines and Grouping

CHAPTER
TWENTYEIGHT

WORKING WITH MEMORY AND PERFORMANCE

By default XlsxWriter holds all cell data in memory. This is to allow future features when formatting
is applied separately from the data.

The effect of this is that XlsxWriter can consume a lot of memory and it is possible to run out of
memory when creating large files.

Fortunately, this memory usage can be reduced almost completely by using the Workbook ()
"constant _memory’ property:

workbook = xlsxwriter.Workbook(filename, {'constant memory': True})

The optimization works by flushing each row after a subsequent row is written. In this way the
largest amount of data held in memory for a worksheet is the amount of data required to hold a
single row of data.

Since each new row flushes the previous row, data must be written in sequential row order when
"constant memory’ mode is on:

for row in range(0, row max):
for col in range(0, col max):
worksheet.write(row, col, some data)

for col in range(0, col max):
for row in range(0, row max):
worksheet.write(row, col, some data)

Another optimization that is used to reduce memory usage is that cell strings aren’t stored in an
Excel structure call “shared strings” and instead are written “in-line”. This is a documented Excel
feature that is supported by most spreadsheet applications.

The trade-off when using ' constant _memory’ mode is that you won'’t be able to take advantage
of any new features that manipulate cell data after it is written. Currently the add table()
method doesn’t work in this mode and merge range() and set row() only work for the current
row.

387

Creating Excel files with Python and XisxWriter, Release 3.1.9

28.1 Performance Figures

The performance figures below show execution time and memory usage for worksheets of size N
rows x 50 columns with a 50/50 mixture of strings and numbers. The figures are taken from an
arbitrary, mid-range, machine. Specific figures will vary from machine to machine but the trends

should be the same.

XlsxWriter in normal operation mode: the execution time and memory usage increase more of
less linearly with the number of rows:

Rows | Columns | Time (s) | Memory (bytes)
200 50 0.43 2346728

400 50 0.84 4670904

800 50 1.68 8325928

1600 | 50 3.39 17855192

3200 | 50 6.82 32279672

6400 | 50 13.66 64862232
12800 | 50 27.60 128851880

XlsxWriter in constant_memory mode: the execution time still increases linearly with the number
of rows but the memory usage remains small and constant:

Rows | Columns | Time (s) | Memory (bytes)
200 50 0.37 62208
400 50 0.74 62208
800 50 1.46 62208
1600 | 50 2.93 62208
3200 | 50 5.90 62208
6400 | 50 11.84 62208
12800 | 50 23.63 62208

In constant _memory mode the performance should be approximately the same as normal mode.

These figures were generated using programs in the dev/performance directory of the XI-
sxWriter repo.

388

Chapter 28. Working with Memory and Performance

CHAPTER
TWENTYNINE

WORKING WITH VBA MACROS

This section explains how to add a VBA file containing functions or macros to an XlsxWriter file.

®_® ¥ macros.xlsm
| # Home | Layout | Tables | Charts | SmartArt |}}|v £~
A19 1 0 @ (~ & v

A A | B | e T —|
1

2

3 |Press the button to say hello. Press Me

4

5

7]

Fi

a8

9 -

1? * Hello from Python!

29.1 The Excel XLSM file format

An Excel x1lsm file is exactly the same as an x1lsx file except that is contains an additional
vbaProject.bin file which contains functions and/or macros. Excel uses a different exten-
sion to differentiate between the two file formats since files containing macros are usually subject
to additional security checks.

389

Creating Excel files with Python and XisxWriter, Release 3.1.9

29.2 How VBA macros are included in XisxWriter

The vbaProject.bin file is a binary OLE COM container. This was the format used in older
x1s versions of Excel prior to Excel 2007. Unlike all of the other components of an xIsx/xlsm file
the data isn’t stored in XML format. Instead the functions and macros as stored as a pre-parsed
binary format. As such it wouldn’t be feasible to define macros and create a vbaProject.bin
file from scratch (at least not in the remaining lifespan and interest levels of the author).

Instead a workaround is used to extract vbaProject.bin files from existing xlsm files and then
add these to XIsxWriter files.

29.3 The vba_extract.py utility

The vba extract. py utility is used to extract the vbaProject.bin binary from an Excel 2007+
xlsm file. The utility is included in the XlsxWriter examples directory and is also installed as a
standalone executable file:

$ vba extract.py macro file.xlsm
Extracted: vbaProject.bin

If the VBA project is signed, vba extract. py also extracts the vbaProjectSignature.bin
file from the xIsm file.

29.4 Adding the VBA macros to a XisxWriter file

Once the vbaProject.bin file has been extracted it can be added to the XlsxWriter workbook
using the add vba project() method:

workbook.add vba project('./vbaProject.bin')

If the VBA file contains functions you can then refer to them in calculations using
write formula():

worksheet.write formula('Al', '=MyMortgageCalc(200000, 25)")

Excel files that contain functions and macros should use an x1sm extension or else Excel will
complain and possibly not open the file:

workbook = xlsxwriter.Workbook('macros.xlsm"')

It is also possible to assign a macro to a button that is inserted into a worksheet using the in-
sert button() method:

import xlsxwriter

Note the file extension should be .x1lsm.
workbook = xlsxwriter.Workbook('macros.xlsm"')
worksheet = workbook.add worksheet()

worksheet.set column('A:A', 30)

390 Chapter 29. Working with VBA Macros

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Add the VBA project binary.
workbook.add vba project('./vbaProject.bin')

Show text for the end user.
worksheet.write('A3', 'Press the button to say hello.')

Add a button tied to a macro in the VBA project.

worksheet.insert button('B3', {'macro': 'say hello',
‘caption': 'Press Me',
'width': 80,

"height': 30})
workbook.close()

It may be necessary to specify a more explicit macro name prefixed by the workbook VBA name
as follows:

worksheet.insert button('B3', {'macro': 'ThisWorkbook.say hello'})

See Example: Adding a VBA macro to a Workbook from the examples directory for a working
example.

Note: Button is the only VBA Control supported by Xlsxwriter. Due to the large effort in imple-
mentation (1+ man months) it is unlikely that any other form elements will be added in the future.

29.5 Setting the VBA codenames

VBA macros generally refer to workbook and worksheet objects. |If the VBA codenames aren’t
specified then XlsxWriter will use the Excel defaults of ThisWorkbook and Sheetl, Sheet2 etc.

If the macro uses other codenames you can set them using the workbook and worksheet
set _vba name() methods as follows:

Note: set codename for workbook and any worksheets.
workbook.set vba name('MyWorkbook")
worksheetl.set vba name('MySheetl')
worksheet2.set vba name('MySheet2')

You can find the names that are used in the VBA editor or by unzipping the x1sm file and grepping
the files. The following shows how to do that using libxml’s xmllint to format the XML for clarity:

$ unzip myfile.xlsm -d myfile
$ xmllint --format ~find myfile -name "*.xml" | xargs™ | grep "Pr.*codeName"

<workbookPr codeName="MyWorkbook" defaultThemeVersion="124226"/>
<sheetPr codeName="MySheet"/>

Note: This step is particularly important for macros created with non-English versions of Excel.

29.5. Setting the VBA codenames 391

https://gnome.pages.gitlab.gnome.org/libxml2/xmllint.html

Creating Excel files with Python and XisxWriter, Release 3.1.9

29.6 Adding a VBA macro signature file to an XisxWriter file

VBA macros can be signed in Excel to allow for blocking execution of unsigned macros in certain
environments.

The vba extract.py utility can be used to extract the vbaProject.bin and vbaPro-
jectSignature.bin files from an existing xIsm file with signed macros.

To add these files to the XlsxWriter workbook using the add _signed vba project() method:

workbook.add signed vba project("./vbaProject.bin", "./vbaProjectSignature.bin");

29.7 What to do if it doesn’t work

The XlsxWriter test suite contains several tests to ensure that this feature works and there is a
working example as shown above. However, there is no guarantee that it will work in all cases.
Some effort may be required and some knowledge of VBA will certainly help. If things don’t work
out here are some things to try:

1. Start with a simple macro file, ensure that it works and then add complexity.

2. Check the code names that macros use to refer to the workbook and worksheets (see the
previous section above). In general VBA uses a code name of ThisWorkbook to refer to
the current workbook and the sheet name (such as Sheet1l) to refer to the worksheets.
These are the defaults used by XisxWriter. If the macro uses other names, or the macro was
extracted from an non-English language version of Excel, then you can specify these using
the workbook and worksheet set vba name () methods:

workbook.set vba name('MyWorkbook")
worksheetl.set vba name('MySheetl')
worksheet2.set vba name('MySheet2')

3. Try to extract the macros from an Excel 2007 file. The method should work with macros from
later versions (it was also tested with Excel 2010 macros). However there may be features
in the macro files of more recent version of Excel that aren’t backward compatible.

392 Chapter 29. Working with VBA Macros

CHAPTER
THIRTY

WORKING WITH PANDAS AND XLSXWRITER

Python Pandas is a Python data analysis library. It can read, filter and re-arrange small and large
data sets and output them in a range of formats including Excel.

Pandas writes Excel xIsx files using either openpyx! or XlsxWriter.

30.1 Using XisxWriter with Pandas
To use XlsxWriter with Pandas you specify it as the Excel writer engine:
import pandas as pd

Create a Pandas dataframe from the data.
df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]})

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter('pandas simple.xlsx', engine='xlsxwriter")

Convert the dataframe to an XlsxWriter Excel object.
df.to_excel(writer, sheet name='Sheetl')

Close the Pandas Excel writer and output the Excel file.
writer.close()

The output from this would look like the following:

393

https://pandas.pydata.org/
https://pypi.org/project/openpyxl/

Creating Excel files with Python and XisxWriter, Release 3.1.9

®_® [% pandas_simple.xlsx
| # Home | Layout Tables | Charts | SmartArt | 3 v £~
At 10 O (- & K

4 . B o e B e B e e | =
li I Data

2 0 10

3 1 20

4 2 30

5 3 20

6 a 15

7 5 30

8 6 45

9

10

11

12
<< v Psheer [+ i

Mormal View Ready i

See the full example at Example: Pandas Excel example.

30.2 Accessing XilsxWriter from Pandas

In order to apply XlsxWriter features such as Charts, Conditional Formatting and Column Format-
ting to the Pandas output we need to access the underlying workbook and worksheet objects.
After that we can treat them as normal XlsxWriter objects.

Continuing on from the above example we do that as follows:

import pandas as pd

Create a Pandas dataframe from the data.
df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]})

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter('pandas simple.xlsx', engine='xlsxwriter"')

Convert the dataframe to an XlsxWriter Excel object.
df.to _excel(writer, sheet name='Sheetl')

Get the xlsxwriter objects from the dataframe writer object.

394

Chapter 30. Working with Pandas and XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

writer.book
writer.sheets['Sheetl']

workbook
worksheet

This is equivalent to the following code when using XlsxWriter on its own:

workbook
worksheet

xlsxwriter.Workbook('filename.xlsx")
workbook.add worksheet()

The Workbook and Worksheet objects can then be used to access other XisxWriter features, see
below.

30.3 Adding Charts to Dataframe output

Once we have the Workbook and Worksheet objects, as shown in the previous section, we we can
use them to apply other features such as adding a chart:

Get the xlsxwriter objects from the dataframe writer object.
workbook writer.book
worksheet = writer.sheets|['Sheetl']

Create a chart object.
chart = workbook.add chart({'type': 'column'})

Get the dimensions of the dataframe.
(max_row, max_col) = df.shape

Configure the series of the chart from the dataframe data.
chart.add series({'values': ['Sheetl', 1, 1, max row, 1]})

Insert the chart into the worksheet.
worksheet.insert chart(1l, 3, chart)

The output would look like this:

30.3. Adding Charts to Dataframe output 395

Creating Excel files with Python and XisxWriter, Release 3.1.9

®_® " pandas_chart.xlsx
Home | Layout Tables | Charts | SmartArt | 2| v
Al 4] O @ (=~ fx| v
_ I B e e e e | —
o
2 0 10 ' ' ' '
3 [1 20 | 0]
4 | 2 30 40 4
5 | 3 20
6 4 15 30
7 | s 30
8 6 45 20
9
: -w L
11 0
12 1 2 3 4 5
h:.. < v JiLsheen [+ I
ormal View Ready o

See the full example at Example: Pandas Excel output with a chart.

30.4 Adding Conditional Formatting to Dataframe output

Another option is to apply a conditional format like this:

Apply a conditional format to the required cell range.
worksheet.conditional format(1l, max _col, max_row, max_col,
{'type': '3 color scale'})

Which would give:

396 Chapter 30. Working with Pandas and XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

0@ ¥ pandas_conditional.xlsx
| # Home | Layout | Tables | Charts | SmartArt | »| v L5
A 0 & (= f -
a4 B e e e e e) —
Data
2 (4]
3 1 20
4 2 30
5 3 20
6 a4 15
7 5 30
s o s
9
10
11
12
SR ETEYS [

. Mormal View Ready S

See the full example at Example: Pandas Excel output with conditional formatting and the section
of the docs on Working with Conditional Formatting.

30.5 Formatting of the Dataframe output

XlsxWriter and Pandas provide very little support for formatting the output data from a dataframe
apart from default formatting such as the header and index cells and any cells that contain dates
or datetimes. In addition it isn’t possible to format any cells that already have a default format
applied.

If you require very controlled formatting of the dataframe output then you would probably be better
off using Xlsxwriter directly with raw data taken from Pandas. However, some formatting options
are available.

For example it is possible to set the default date and datetime formats via the Pandas interface:

writer = pd.ExcelWriter("pandas datetime.xlsx",
engine='xlsxwriter',
datetime format='mmm d yyyy hh:mm:ss',
date format='mmmm dd yyyy")

Which would give:

30.5. Formatting of the Dataframe output 397

Creating Excel files with Python and XisxWriter, Release 3.1.9

®_® [% pandas_datetime.xlsx
Home | Layout Tables | Charts | SmartArt | 3 v -
Ad 0O (- K |~
_IH‘ B C L=
Date and time Dates anly
2 i) Jan 12015 11:30:55 February 01 2015
3 1 Jan 2 2015 01:20:33 February 02 2015
4 2 Jan 3 2015 11:10:00 February 03 2015
5 3 lan 4 2015 16:45:35 February 04 2015
6 4 Jlan 52015 12:10:15 February 05 2015
7
8
9
10
11
12
1
hlld A kK l ih!![ll ||I
ormal View Ready i

See the full example at Example: Pandas Excel output with datetimes.

It is possible to format any other, non date/datetime column data using set column():

Add some cell formats.
formatl = workbook.add format({'num format': '#,##0.00'})
format2 = workbook.add format({'num format': '0%'})

Set the column width and format.
worksheet.set column(1l, 1, 18, formatl)

Set the format but not the column width.
worksheet.set column(2, 2, None, format2)

398

Chapter 30. Working with Pandas and XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

0@ [% pandas_column_formats.xlsx
[A Home | Layout | Tables | Charts | SmartArt | » v -
A1 110 8 (= f E
_ I B C D A —
ﬁ Numbers Percentage
2 0 1,010.00 10%
3 1 2,020.00 20%
4 2 3,030.00 33%
5 3 2,020.00 25%
B 4 1,515.00 50%
ri 5 3,030.00 75%
8 4] 4,545.00 45%
9
10
11
12
— << Psheen [+ N i

—_ Mormal View Ready i

See the full example at Example: Pandas Excel output with column formatting.

30.6 Formatting of the Dataframe headers

Pandas writes the dataframe header with a default cell format. Since it is a cell format it cannot be
overridden using set row(). If you wish to use your own format for the headings then the best
approach is to turn off the automatic header from Pandas and write your own. For example:

Turn off the default header and skip one row to allow us to insert a
user defined header.
df.to excel(writer, sheet name='Sheetl', startrow=1, header=False)

Get the xlsxwriter workbook and worksheet objects.
workbook writer.book
worksheet = writer.sheets|['Sheetl']

Add a header format.
header format = workbook.add format({
'bold': True,
"text wrap': True,
'valign': 'top',
'fg color': '#D7E4BC',

30.6. Formatting of the Dataframe headers 399

Creating Excel files with Python and XisxWriter, Release 3.1.9

"border': 1})

Write the column headers with the defined format.
for col num, value in enumerate(df.columns.values):
worksheet.write(0, col num + 1, value, header format)

[NON [* pandas_header_format.xlsx
. A Home | Layout Tables | Charts | SmartArt | 3 v i~
BA1 0 & (- K |~
A 3 C D s e sl —
Heading |Longer
heading
that
should be
1 wrapped
2 0 10 10
3 1 20 20
4 2 30 30
3 3 40 40
b 4 50 50
i 5 60 60
B
a
= 4 4 & ¥ l_ Sh!![l |||
Mormal View Reacy i

See the full example at Example: Pandas Excel output with user defined header format.

30.7 Adding a Dataframe to a Worksheet Table

As explained in Working with Worksheet Tables, tables in Excel are a way of grouping a range of
cells into a single entity, like this:

400 Chapter 30. Working with Pandas and XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[NON | [pandas_table.xlsx
| # Home | Layout | Tables | Charts SmartArt | ¥ v -
A20 1 08 & (= fx| B
_ - B C D | E |=
1 I LA Co . LA Pop 0 -
2 1 China 1404338840
3 2 India 1366938189
4 3 United States 330267887
5 4 Indonesia 269603400,
6
Fid
8
g
[14 < »i] sheets [+ I I

Mormal View Ready A

The way to do this with a Pandas dataframe is to first write the data without the index or header,
and by starting 1 row forward to allow space for the table header:

df.to_excel(writer, sheet name='Sheetl’,
startrow=1, header=False, index=False)

We then create a list of headers to use in add_table():

column settings = [{'header': column} for column in df.columns]

Finally we add the Excel table structure, based on the dataframe shape and with the column
headers we generated from the dataframe columns:

(max_row, max col) = df.shape
worksheet.add table(0, 0, max _row, max col - 1, {'columns': column_settings})

See the full example at Example: Pandas Excel output with a worksheet table.

30.8 Adding an autofilter to a Dataframe output

As explained in Working with Autofilters, autofilters in Excel are a way of filtering a 2d range of
data to only display rows that match a user defined criteria.

30.8. Adding an autofilter to a Dataframe output 401

Creating Excel files with Python and XisxWriter, Release 3.1.9

The way to do this with a Pandas dataframe is to first write the data without the index (unless you
want to include it in the filtered data):

df.to excel(writer, sheet name='Sheetl', index=False)

We then get the dataframe shape and add the autofilter:

worksheet.autofilter(0, 0, max row, max col - 1)

@00 I autofilter.xlsx
Home | Layout | Tables | Charts | SmartArt | ¥ W fFv
Al | @ & (= fx| Region v
4 : B | C | D —
Region | Item Evnlume E iMlonth E
2 |East Apple 9000 July
3 |East Apple 5000 July
4 |South Orange 9000 September
5 |Morth Apple 2000 MNovember
B |West Apple 9000 Movember
7 |South Pear 7000 October
2 |MNorth Pear 9000 August
9 |West Orange 1000 December
10 |\West Grape 1000 November
11 |South Pear 10000 April
12 West Grape 6000 January
P l Shutl‘[Sheet:z_‘[Shut3_i: I
Mormal View Ready o

We can also add an optional filter criteria. The placeholder “Region” in the filter is ignored and can
be any string that adds clarity to the expression:

worksheet.filter column(0, 'Region == East')

However, it isn’'t enough to just apply the criteria. The rows that don’t match must also be hidden.
We use Pandas to figure our which rows to hide:

for row num in (df.index[(df['Region'] != 'East')].tolist()):
worksheet.set row(row num + 1, options={'hidden': True})

This gives us a filtered worksheet like this:

402 Chapter 30. Working with Pandas and XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[NON | ¥ pandas_autofilter.xlsx
| # Home | Layout | Tables | Charts SmartArt | »| v -
ABO 00 (- A& v
A ' B C D =
1 Region |.7| ltem |= Volume |~ Month |~
2 |East Apple 9000 July
3 |East Apple 5000 July
17 |East Grape 8000 February
21 |East Grape 7000 December
23 |East Pear 8000 February
32 |East Orange 1000 Movernber
33 |East Orange 4000 October
35 |East Apple 1000 December
37 |East Grape 7000 October
39 East Grape 10000 October
44 |East Apple 5000 April
DR B 2 [
Mormal ¥iew Filter Mode A

See the full example at Example: Pandas Excel output with an autofilter.

30.9 Handling multiple Pandas Dataframes

It is possible to write more than one dataframe to a worksheet or to several worksheets. For
example to write multiple dataframes to multiple worksheets:

Write each dataframe to a different worksheet.
dfl.to excel(writer, sheet name='Sheetl')
df2.to excel(writer, sheet name='Sheet2')
df3.to excel(writer, sheet name='Sheet3')

See the full example at Example: Pandas Excel with multiple dataframes.

It is also possible to position multiple dataframes within the same worksheet:

Position the dataframes in the worksheet.
dfl.to excel(writer, sheet name='Sheetl')
df2.to excel(writer, sheet name='Sheetl',
df3.to excel(writer, sheet name='Sheetl', startrow=6)

Default position, cell Al.

startcol=3)

Write the dataframe without the header and index.
df4.to_excel(writer, sheet name='Sheetl’,
startcol=4, header=False, index=False)

startrow=7,

30.9. Handling multiple Pandas Dataframes

403

Creating Excel files with Python and XisxWriter, Release 3.1.9

@ ™ pandas_positioning.xlsx
| # Home | Layout | Tables | Charts SmartArt | »| v L~
, Al 18 @& (- K -
, Ji_i' B D E S— -
Data Data
2 0 11 0 21
3 1 12 1 22
4 2 13 2 23
5 3 14 3 24
7]
7 Data
8 0 31 41
9 1 3z a2
10 2 33 43
11 3 34 44
FREE-— l Sh!!tl_ |||
Mormal ¥iew Ready A

See the full example at Example: Pandas Excel dataframe positioning.

30.10 Passing XlsxWriter constructor options to Pandas

XlIsxWriter supports several Workbook () constructor options such as strings to urls().
These can also be applied to the Workbook object created by Pandas using the engine kwargs
keyword:

writer = pd.ExcelWriter('pandas example.xlsx"',

engine='xlsxwriter',
engine kwargs={'options': {'strings to numbers': True}})

Note, versions of Pandas prior to 1.3.0 used this syntax:
writer = pd.ExcelWriter('pandas example.xlsx"',
engine='xlsxwriter',
options={'strings to numbers': True})

30.11 Saving the Dataframe output to a string

It is also possible to write the Pandas XlsxWriter DataFrame output to a byte array:

404 Chapter 30. Working with Pandas and XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

import pandas as pd
import io

Create a Pandas dataframe from the data.
df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]})

output = io.BytesIO()

Use the BytesIO object as the filehandle.
writer = pd.ExcelWriter(output, engine='xlsxwriter")

Write the data frame to the BytesIO object.
df.to excel(writer, sheet name='Sheetl')

writer.close()
xlsx data = output.getvalue()

Do something with the data...

Note: This feature requires Pandas >= 0.17.

30.12 Additional Pandas and Excel Information

Here are some additional resources in relation to Pandas, Excel and XlsxWriter.

The XIsxWriter Pandas examples later in the document: Pandas with XlsxWriter Examples.

The Pandas documentation on the pandas.DataFrame.to_excel() method.

A more detailed tutorial on Using Pandas and XlsxWriter to create Excel charts.

The series of articles on the “Practical Business Python” website about Using Pandas and

Excel.

30.12. Additional Pandas and Excel Information

405

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_excel.html
https://pandas-xlsxwriter-charts.readthedocs.io/
https://pbpython.com/tag/excel.html
https://pbpython.com/tag/excel.html

Creating Excel files with Python and XisxWriter, Release 3.1.9

406 Chapter 30. Working with Pandas and XlsxWriter

CHAPTER
THIRTYONE

WORKING WITH POLARS AND XLSXWRITER

Polars is a fast dataframe library for Rust and Python.

Polars provides very tight integration of XlsxWriter and supports a lot of features such as con-
ditional formats, tables, autofilters, autofit and others without having to use the external library
directly. At the same time it allows use of native XlsxWriter workbook and worksheets objects to
take advantage of any features that it doesn’t support.

Creating an Excel file from a dataframe with Polars is straightforward and doesn’t require any
direct invocation of XlsxWriter. All that is required is to use the write excel() method with a
Polars dataframe:

import polars as pl
df = pl.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})

df.write excel(workbook="polars simple.xlsx")

This is a complete example and the output from this would look like the following:

407

https://www.pola.rs

Creating Excel files with Python and XisxWriter, Release 3.1.9

B polars_simple

Home Insert Draw O Tell me] Comments |2 Share
Al . fx Data v
A B C D E F G
1 |Data t_
2 10
3 20
4 30
5 20
6 15
7 30
8 a5,
9
Sheetl +

The write_excel() APl is explained in detail in the Polars documentation.

One interesting aspect of the Polars output is that it writes the dataframe as an Excel Data Table.
We will discuss this and other XlsxWriter features that are available from write excel() inthe
sections below.

31.1 Sharing XlsxWriter workbooks with Polars

In a majority of use cases you will be able to control the output workbook and worksheets via the
write_excel() APls but there may be some situations you may wish to start a normal XlsxWriter
workbook and then add Polars data to it.

To do this you can create a workbook object and pass it to the workbook parameter of Polars
write excel():

import xlsxwriter
import polars as pl

df = pl.DataFrame({"Data": [10, 20, 30, 20, 15]})

with xlsxwriter.Workbook("polars xlsxwriter.xlsx") as workbook:
df.write excel(workbook=workbook)

Output:

408 Chapter 31. Working with Polars and XlsxWriter

https://pola-rs.github.io/polars/py-polars/html/reference/api/polars.DataFrame.write_excel.html#polars.DataFrame.write_excel
https://pola-rs.github.io/polars/py-polars/html/reference/api/polars.DataFrame.write_excel.html#polars.DataFrame.write_excel

Creating Excel files with Python and XlsxWriter, Release 3.1.9

B polars_xIsxwriter

Home Insert Draw O Tell me] Comments |2 Share
Al . fx Data v
A B C D E F G
1 |Data E_
2 10
3 20
4 30
5 20
6 15
7 30
8 a5,
9
Sheetl +

As can be seen from the image, Polars creates a new worksheet and adds the data to it. However,
you can also add Polars data to a worksheet created from XlsxWriter:

import xlsxwriter
import polars as pl

df = pl.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})
with xlsxwriter.Workbook("polars xlsxwriter.xlsx") as workbook:
Create a new worksheet.

worksheet = workbook.add worksheet()

Do something with the worksheet.
worksheet.write("Al", "The data below is added by Polars")

Write the Polars data to the worksheet created above, at an offset to
avoid overwriting the previous text.
df.write excel(workbook=workbook, worksheet="Sheetl", position="A2")

Output:

31.1. Sharing XlsxWriter workbooks with Polars 409

Creating Excel files with Python and XisxWriter, Release 3.1.9

B polars_xIsxwriter

Home Insert Draw O Tell me [] Comments = Share
Ik . fx v
A B C D E F G
1 |The data below is added by Polars
2 Data E
3 10
4 20
5 30
6 20
7 15
a8 30
9 45,
Sheet1 +

(See the example at Example: Polars integration with XlsxWriter.)

31.2 Adding Charts to Dataframe output

With the techniques shown above we can get access to the Workbook and Worksheet objects and
then use them to apply other features such as adding a chart:

import xlsxwriter
import polars as pl

df = pl.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]1})

with xlsxwriter.Workbook("polars chart.xlsx") as workbook:
Create the worksheet so we can reuse it later.
worksheet = workbook.add worksheet()

Write the Polars data to the worksheet created above.
df.write excel(workbook=workbook, worksheet="Sheetl")

Create a chart object.
chart = workbook.add chart({"type": "column"})

Get the dimensions of the dataframe.
(max_row, max _col) = df.shape

410 Chapter 31. Working with Polars and XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Configure the series of the chart from the dataframe data.
chart.add series({"values": ["Sheetl", 1, max col - 1, max row, max col - 1]1})

Insert the chart into the worksheet.
worksheet.insert chart(1l, 3, chart)

The output would look like this:

B polars_chart

Home Insert Draw Page Layout ¢ Tell me L] Comments > Share
ik
Chart1 4 =SERIES[,, Sheet15A$2:5A58,1) v
A B C D E F G H [| K
1 Data v/ o .
2 10 50
3 20 45
4 30 a0
5 20
5 15 a5
7 30 30
8 45,
9 1 L 2" B Seriesl
20
3 15
11
12 10
13 5
14]
15 1 2 3 4 5 & 7
16 L |
Sheet1 +

(See the example at Example: Polars Excel output with a chart.)

31.3 Adding Conditional Formatting to Dataframe output

Following on from the technique shown in the previous sections we could also add a conditional
format to the dataframe data like this:

import xlsxwriter
import polars as pl

31.3. Adding Conditional Formatting to Dataframe output 411

Creating Excel files with Python and XisxWriter, Release 3.1.9

with xlsxwriter.Workbook("polars conditional.xlsx") as workbook:
df = pl.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})

worksheet = workbook.add worksheet()

Write the Polars data to the worksheet created above.
df .write excel(workbook=workbook, worksheet="Sheetl")

Get the dimensions of the dataframe.
(max_row, max_col) = df.shape

Apply a conditional format to the required cell range.
worksheet.conditional format(1l, max col - 1, max row, max col - 1,
{"type": "3 color _scale"})

However, this can also be done directly and more succinctly using the Polars write excel()
APls:

import polars as pl
df = pl.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})
df.write excel(

workbook="pandas conditional.xlsx",

conditional formats={"Data": {"type": "3 color scale"}},

)

Which would give:

412 Chapter 31. Working with Polars and XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

B polars_conditional

Home Insert Draw O Tell me] Comments |2 Share

Al . fx Data v
A B C D E F G

1 |Data t

2

3 20

4 30

5 20

6 15

7 30

s NS

9

Sheet1 +

See the full example at Example: Polars Excel output with conditional formatting and the section
of the docs on Working with Conditional Formatting.

31.4 Handling multiple Polars Dataframes

It is possible to write more than one dataframe to a worksheet or to several worksheets. For
example to write multiple dataframes to multiple worksheets:

with xlsxwriter.Workbook("polars multiple.xlsx") as workbook:
dfl.write excel(workbook=workbook)
df2.write excel(workbook=workbook)
df3.write excel(workbook=workbook)

(See the full example at Example: Polars Excel with multiple dataframes.)

It is also possible to position multiple dataframes within the same worksheet:

with xlsxwriter.Workbook("polars positioning.xlsx") as workbook:
Write the dataframe to the default worksheet and position: Sheetl!Al.
dfl.write excel(workbook=workbook)

Write the dataframe using a cell string position.
df2.write excel(workbook=workbook, worksheet="Sheetl", position="C1l")

31.4. Handling multiple Polars Dataframes 413

Creating Excel files with Python and XisxWriter, Release 3.1.9

Write the dataframe using a (row, col) tuple position.
df3.write excel(workbook=workbook, worksheet="Sheetl", position=(6, 0))

Write the dataframe without the header.
df4.write excel(
workbook=workbook,
worksheet="Sheetl",
position="C8",
has_header=False)

Output:

Home Insert Draw ¢ Tell me] Comments & Share
Al . fx Data ¥
A B C D E F s H |
1 |Data |v_ Data |w
2 11 21
1 12 22
1 13 23
5 14, 24,
6
7 Data |*|
8 31 a1
3 P! a2
10 13 43
11 34, a4,
12
Sheetl +

(See the full example at Example: Polars Excel dataframe positioning.)

31.5 Formatting the dataframe output

Polars uses some sensible default formatting for different data types. For example consider this
dataframe comprised of dates, strings and positive and negative numbers:

from datetime import date
import polars as pl

df = pl.DataFrame(

414 Chapter 31. Working with Polars and XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

{
"Dates": [date(2023, 1, 1), date(2023, 1, 2), date(2023, 1, 3)],
"Strings": ["Alice", "Bob", "Carol"],
"Numbers": [0.12345, 100, -99.523],

}

)

df .write excel(workbook="polars format default.xlsx", autofit=True)

B polars_format_default

Home Insert Draw ¢ Tell me] Comments |2 Share
Al . fx Dates v
A B C D E F G
1 |Date5 t_lStrings E| Numbers E|
2 2023-01-01 Alice 0.123
3 2023-01-02 Bob 100.000
4 2023-01-03 Carol -99.523,
5
&
7
a8
9
Sheet1 +

(See the full example at Example: Polars default format example).

As can be seen the dates are formatted with a "yyyy-mm-dd" style format and the numbers
are formatted to 3 decimal places with negative numbers shown in red (using the number format
"#,##0.000; [Red] -#,##0.000"). We also used the autofit parameter in this example to
autofit the column widths.

One thing to note from the previous examples is that the Polars dataframes are added to the Excel
worksheet as Excel Data Tables. This can be seen from the green corner symbol in the bottom
right of the dataframe values and from the table view:

31.5. Formatting the dataframe output 415

Creating Excel files with Python and XisxWriter, Release 3.1.9

& -+ B polars_format_default

Home Insert Draw O Tell me] Comments |2 Share
PolarsFrameTable0 : fx 01/01/2023 v

A B C D E F G
1 |Dates E|Str|'n§5 E|Numbers E
2 2023-01-01 | Alice 0.123
3 2023-01-02 Bob 10:0.000
4 2023-01-03 Carol —9‘.9.513_...
5
&
7
a8
9

Sheetl =+

Average: 1961-07-02 Count: 9 Sum: 2269-01-08

Tables are a useful Excel data representation that is analogous to a Python dataframe. We can
also use the table properties as well as some of the Polars write excel() options to add some
more formatting to the previous example:

from datetime import date
import polars as pl

Create a Pandas dataframe with some sample data.
df = pl.DataFrame(

{
"Dates": [date(2023, 1, 1), date(2023, 1, 2), date(2023, 1, 3)1,
"Strings": ["Alice", "Bob", "Carol"],
"Numbers": [0.12345, 100, -99.523],

}

)
Write the dataframe to a new Excel file with formatting options.
df .write excel(

workbook="polars format custom.xlsx",

Set an alternative table style.
table style="Table Style Medium 4",

See the floating point precision for reals.

416 Chapter 31. Working with Polars and XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

float precision=6,

Set an alternative number/date format for Polar Date types.
dtype formats={pl.Date: "yyyy mm dd;@"},

Add totals to the numeric columns.
column_totals=True,

Autofit the column widths.
autofit=True,

B - R polars_format_custom

Home Insert Draw ¢ Tell me J Comments |2 Share
A2 - fx 01/01/2023 v

A B C D E F G
"W Dates B2 Strings Ed Numbers [
2 20231 l.hline 0.123450
3 202312 Bob 100. 000000
4 202313 Carol -99.523000
5 0.600450,
&
i
)
g

Sheet1 +

(See the full example at Example: Polars custom format example).

31.6 Adding Sparklines to the output dataframe

We can also add sparklines to the dataframe output:

import polars as pl
from polars.datatypes import INTEGER DTYPES

df = pl.DataFrame(
{

31.6. Adding Sparklines to the output dataframe 417

Creating Excel files with Python and XisxWriter, Release 3.1.9

"Zone": ["North", "South", "East", "West", "Central"],
"Q1": [100, 55, -20, 0, 351,

"Q2": [30, -10, 15, 60, 207,

"Q3": [-50, 0, 40, 80, 801,

"Q4": [75, 55, 25, -10, -55],

)

Write the dataframe with sparklines and some additional formatting.
df.write excel(

workbook="polars sparklines.xlsx",

Set an alternative table style.
table style="Table Style Light 2",

Specify an Excel number format for integer types.
dtype formats={INTEGER DTYPES: "#, ##0), (#,##0)"},

Configure sparklines to the dataframe.

sparklines={
We use the default options with just the source columns.
"Trend": ["Q1", "0Q2", "03", "04"],

We also add a customized sparkline type, with a positioning directive.

"Change": {
"columns": ["Q1", "Q2", "Q3", "Q4"],
"insert after": "Zone",
"type": "win loss",

}

b
column_totals=["0Q1", "Q2", "Q3", "0Q4"1,

Hide the default gridlines on the worksheet.
hide gridlines=True,

Output:

418 Chapter 31. Working with Polars and XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

B polars_sparklines

Home Insert Draw O Tell me] Comments |2 Share

13 . fx M
A B C D F G

1 |Zone B Change E Q1 E Q2 E Q3 E Q4 E Trend E

2 |North - 100 30 (50) 75 T

3 |South - - 55 (10) 0 55 w7

4 |East - (20) 15 40 25 —

5 |West - 0 60 80 (10) —

& |Central - 35 20 80 (55) —~

7 170 115 150 20 4

8

9

Sheet1 +

(See the full example at Example: Polars Excel output with sparklines).

See also Working with Sparklines.

31.6. Adding Sparklines to the output dataframe

419

Creating Excel files with Python and XisxWriter, Release 3.1.9

420 Chapter 31. Working with Polars and XisxWriter

CHAPTER
THIRTYTWO

EXAMPLES

The following are some of the examples included in the examples directory of the XlsxWriter
distribution.

32.1 Example: Hello World

The simplest possible spreadsheet. This is a good place to start to see if the XisxWriter module is
installed correctly.

Hello world |

T shees [

Mormal View

BRI R R R R
#

421

https://github.com/jmcnamara/XlsxWriter/tree/main/examples

Creating Excel files with Python and XisxWriter, Release 3.1.9

A hello world spreadsheet using the XlsxWriter Python module.
#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

#

import xlsxwriter

workbook = xlsxwriter.Workbook("hello world.xlsx")
worksheet = workbook.add worksheet()

worksheet.write("A1", "Hello world")

workbook.close()

32.2 Example: Simple Feature Demonstration

This program is an example of writing some of the features of the XlsxWriter module.

e 0o , | demo.xlsx

&
T
A

p pgthon |

powered

Tl e

Mormal View

e e
#

A simple example of some of the features of the XlsxWriter Python module.

#

SPDX-License-Identifier: BSD-2-Clause

422 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org
#
import xlsxwriter

Create an new Excel file and add a worksheet.
workbook = xlsxwriter.Workbook("demo.xlsx")
worksheet = workbook.add worksheet()

Widen the first column to make the text clearer.
worksheet.set column("A:A", 20)

Add a bold format to use to highlight cells.
bold = workbook.add format({"bold": True})

Write some simple text.
worksheet.write("Al", "Hello")

Text with formatting.
worksheet.write("A2", "World", bold)

Write some numbers, with row/column notation.
worksheet.write(2, 0, 123)
worksheet.write(3, 0, 123.456)

Insert an image.
worksheet.insert image("B5", "logo.png")

workbook.close()

Notes:
» This example includes the use of cell formatting via the The Format Class.
+ Strings and numbers can be written with the same worksheet write () method.

+ Data can be written to cells using Row-Column notation or ‘A1’ style notation, see Working
with Cell Notation.

32.3 Example: Catch exception on closing

A simple program demonstrating a check for exceptions when closing the file.

We try to close() the file in a loop so that if there is an exception, such as if the file is open or
locked, we can ask the user to close the file, after which we can try again to overwrite it.

e e i
#

A simple program demonstrating a check for exceptions when closing the file.
#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

#

32.3. Example: Catch exception on closing 423

Creating Excel files with Python and XisxWriter, Release 3.1.9

import xlsxwriter

workbook = xlsxwriter.Workbook("check close.xlsx")
worksheet = workbook.add worksheet()

worksheet.write("Al1", "Hello world")

Try to close() the file in a loop so that if there is an exception, such as
if the file is open in Excel, we can ask the user to close the file, and
try again to overwrite it.
while True:
try:
workbook.close()
except xlsxwriter.exceptions.FileCreateError as e:
decision = input(
"Exception caught in workbook.close(): %s\n"
"Please close the file if it is open in Excel.\n"

"Try to write file again? [Y/n]: " % e
)
if decision != "n":

continue

break

32.4 Example: Dates and Times in Excel

This program is an example of writing some of the features of the XlsxWriter module. See the
Working with Dates and Time section for more details on this example.

424 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

| datetimes.xlsx

Formatted date Format
23/01/13 dd/mm/yy
01/23/13 mm,/dd/yy
23113 dd m yy
230113 d mm yy

23 lan 13 d mmm yy
23 lanuary 13 d mmmm yy

23 lanuary 2013

23 lanuary 2013
23/01/13 12:30
23/01/13 12:30:05
23/01/13 12:30:05.123

d mmmm yyy

d mmmm yyyy
dd/mm/yy hh:mm
dd/mm/yy hh:mm:ss
dd/mm/yy hh:mm:ss.000

E‘E“—.u ~ 55 Bl Sheetl

Mormal View

B e

A simple program to write some dates and times to an Excel file
using the XlsxWriter Python module.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K HHHH

from datetime import datetime
import xlsxwriter

Create a workbook and add a worksheet.
workbook = xlsxwriter.Workbook("datetimes.xlsx")
worksheet = workbook.add worksheet()

bold = workbook.add format({"bold": True})

Expand the first columns so that the dates are visible.
worksheet.set column("A:B", 30)

Write the column headers.
worksheet.write("Al", "Formatted date", bold)
worksheet.write("B1", "Format", bold)

Create a datetime object to use in the examples.

32.4. Example: Dates and Times in Excel 425

Creating Excel files with Python and XisxWriter, Release 3.1.9

date time = datetime.strptime("2013-01-23 12:30:05.123", "S%Y-%m-%d %H:%M:%S.%f")

Examples date and time formats. In the output file compare how changing
the format codes change the appearance of the date.
date formats = (

"dd/mm/yy",

"mm/dd/yy",

"dd m yy",

"d mm yy",

“d mmm yy",

"d mmmm yy",

"d mmmm yyy",

"d mmmm yyyy",

“dd/mm/yy hh:mm",

“dd/mm/yy hh:mm:ss",

"dd/mm/yy hh:mm:ss.000",

"hh:mm",

"hh:mm:ss",

"hh:mm:ss.000",
)

Start from first row after headers.
row = 1
Write the same date and time using each of the above formats.
for date format str in date formats:
Create a format for the date or time.
date format = workbook.add format({"num format": date format str, "align": "left"]

Write the same date using different formats.
worksheet.write datetime(row, 0, date time, date format)

Also write the format string for comparison.
worksheet.write string(row, 1, date format str)

row += 1

workbook.close()

32.5 Example: Adding hyperlinks

This program is an example of writing hyperlinks to a worksheet. See the write url() method
for more details.

426 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

hon.o

Mail me

http:/fwww.python.org/

44 & K l Hmrlinks|—

Mormal View

T S
i Example of how to use the XlsxWriter module to write hyperlinks

ﬁ SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

?mport xlsxwriter

Create a new workbook and add a worksheet
workbook = xlsxwriter.Workbook("hyperlink.xlsx")
worksheet = workbook.add worksheet("Hyperlinks")

Format the first column
worksheet.set column("A:A", 30)

Add a sample alternative link format.
red format = workbook.add format(

{
"font color": "red",
"bold": 1,
"underline": 1,
"font size": 12,

}

32.5. Example: Adding hyperlinks 427

Creating Excel files with Python and XisxWriter, Release 3.1.9

)

Write some hyperlinks

worksheet.
worksheet.

worksheet

worksheet.
worksheet.

Write a
worksheet

write url("Al", "http://www.python.
write url("A3", "http://www.python.
.write url("A5", "http://www.python.
write url("A7", "http://www.python.

org/") # Implicit format.
org/", string="Python Home")
org/", tip="Click here")
org/", red format)

write url("A9", "mailto:jmcnamara@cpan.org", string="Mail me")

URL that isn't a hyperlink

workbook.close()

32.6 Example: Array formulas

.write string("A11", "http://www.python.org/")

This program is an example of writing array formulas with one or more return values. See the
write array formula() method for more details.

|8 00 __ array_formula.xlsx

st oo 6

Home Layout | Tables Charts | Smartirt »| v Lt~

AL

4| @ @ (-~ fx| [=TREND(C5:C7,B5:B7)}

B oG e Do

[-

9500 500 300
10 15

T snees [

Mormal View Ready

HRHHHHHHH R R AR R R R R R R R R

#

Example of how to use Python and the XlsxWriter module to write
simple array formulas.

428

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmchamara@cpan.org
#

import xlsxwriter

Create a new workbook and add a worksheet
workbook = xlsxwriter.Workbook("array formula.xlsx")
worksheet = workbook.add worksheet()

Write some test data.
worksheet.write("B1", 500)
worksheet.write("B2", 10)
worksheet.write("B5", 1)
worksheet.write("B6", 2)
worksheet.write("B7", 3)
worksheet.write(
(
(
(
(

"Cl", 300)
worksheet.write("C2", 15)
worksheet.write("C5", 20234)
worksheet.write("C6", 21003)
worksheet.write("C7", 10000)

Write an array formula that returns a single value
worksheet.write formula("Al", "{=SUM(B1:C1*B2:C2)}")

Same as above but more verbose.
worksheet.write array formula("A2:A2", "{=SUM(B1:C1*B2:C2)}")

Write an array formula that returns a range of values
worksheet.write array formula("A5:A7", "{=TREND(C5:C7,B5:B7)}")

workbook.close()

32.7 Example: Dynamic array formulas

This program is an example of writing formulas that work with dynamic arrays us-
ing some of the new functions and functionality introduced in Excel 365. See the
write dynamic array formula() method and Dynamic Array support for more details.

32.7. Example: Dynamic array formulas 429

Creating Excel files with Python and XisxWriter, Release 3.1.9

AEHE S0 5 B dynamic_arrays

Home Insert Draw O Tell me = Share [J Comments
H2 . fx =SORT(UNIQUE(B2:B17)) v
A B C D E F G H I
1 LEEHED Sales Rep Product Units Sales Rep Sales Rep
2 |East Tom Apple 6380 Tom Amy l
3 West Fred Grape 5619 Fred Fred
4 Morth Amy Pear 4565 Amy Fritz
5 South Sal Banana 5323 Sal Hector
& East Fritz Apple 4394 Fritz Sal
7 West Sravan Grape 7195 Sravan Sravan
8 MNorth Xi Pear 5231 X Tom
9 South Hector Banana 2427 Hector Xi
3 Filter Unigjue Sort Sortby Xl 4+
Ready Calculate 1T [= - i + 125%

B e T e

An example of how to use the XlsxWriter module to write formulas and
functions that create dynamic arrays. These functions are new to Excel
365. The examples mirror the examples in the Excel documentation on these
functions.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H R HHHH

import xlsxwriter

def main():
Create a new workbook called simple.xls and add some worksheets.
workbook = xlsxwriter.Workbook("dynamic arrays.xlsx")

worksheetl = workbook.add worksheet("Filter")
worksheet2 = workbook.add worksheet("Unique")
worksheet3 = workbook.add worksheet("Sort")
worksheet4 = workbook.add worksheet("Sortby")
worksheet5 = workbook.add worksheet("Xlookup")
worksheet6 = workbook.add worksheet("Xmatch")
worksheet7 = workbook.add worksheet("Randarray")

430 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet8 = workbook.add worksheet("Sequence")
worksheet9 = workbook.add worksheet("Spill ranges")
worksheetl® = workbook.add worksheet("Older functions")

headerl = workbook.add format({"fg color": "#74ACAC", "color": "#FFFFFF"})
header2 = workbook.add format({"fg color": "#528FD3", "color": "#FFFFFF"})
#

Example of using the FILTER() function.

#

worksheetl.write("F2", "=FILTER(A1:D17,C1:C17=K2)")

Write the data the function will work on.
worksheetl.write("K1", "Product", header2)
worksheetl.write("K2", "Apple")
worksheetl.write("F1", "Region", header2)
worksheetl.write("Gl", "Sales Rep", header2)
worksheetl.write("H1", "Product", header2)
worksheetl.write("I1", "Units", header2)

write worksheet data(worksheetl, headerl)
worksheetl.set column pixels("E:E", 20)
worksheetl.set column_pixels("J:J", 20)

#
Example of using the UNIQUE() function.
#
worksheet2.write("F2", "=UNIQUE(B2:B17)")

A more complex example combining SORT and UNIQUE.
worksheet2.write("H2", "=SORT(UNIQUE(B2:B17))")

Write the data the function will work on.
worksheet2.write("F1", "Sales Rep", header2)
worksheet2.write("H1", "Sales Rep", header2)

write worksheet data(worksheet2, headerl)
worksheet2.set column pixels("E:E", 20)
worksheet2.set column_pixels("G:G", 20)

#
Example of using the SORT() function.
#
worksheet3.write("F2", "=SORT(B2:B17)")

A more complex example combining SORT and FILTER.
worksheet3.write("H2", '=SORT(FILTER(C2:D17,D2:D17>5000,""),2,1)")

Write the data the function will work on.
worksheet3.write("F1", "Sales Rep", header2)
worksheet3.write("H1", "Product", header2)
worksheet3.write("I1", "Units", header2)

32.7. Example: Dynamic array formulas 431

Creating Excel files with Python and XisxWriter, Release 3.1.9

write worksheet data(worksheet3, headerl)
worksheet3.set column pixels("E:E",
worksheet3.set column _pixels("G:G",

#

Example of using the SORTBY() function.

#
worksheet4

Write the data the function will work on.
headerl)

Example of using the XLOOKUP() function.

Write the data the function will work on.
"Country", headerl)

worksheet4.write("Al",
worksheet4.write("B1",
worksheet4.write("A2",
worksheet4.write("A3",
worksheet4.write("A4",
worksheet4 .write("A5",
worksheet4 .write("A6",
worksheet4.write("A7",
worksheet4.write("A8",
worksheet4.write("A9",
worksheet4.write("B2",
worksheet4.write("B3",
worksheet4.write("B4",
worksheet4.write("B5",
worksheet4.write("B6",
worksheet4.write("B7",
worksheet4.write("B8",
worksheet4.write("B9",
worksheet4.write("D1",
worksheet4.write("E1",
worksheet4.

#

#
worksheet5.write("F1",
worksheet5.write("Al",
worksheet5.write("B1",
worksheet5.write("C1",
worksheet5.write("A2",
worksheet5.write("A3",
worksheet5.write("A4",
worksheet5.write("A5",
worksheet5.write("A6",
worksheet5.write("A7",
worksheet5.write("A8",

.write("D2",

set column pixels("C:C",

"=SORTBY (A2:B9,B2:B9)"

"Name",

20)
20)

"Age", headerl)

"Tom")
"Fred")
"Amy")
"Sal")
"Fritz")
"Srivan")
"Xi")
"Hector")

52)
65)
22)
73)
)
39)
)
66)

"Name",

header2)

"Age", header2)

"=XLOOKUP(E1,A2:A9,C2:C9)"

20)

"Abr", headerl)

"Prefix",

"China")
"India")

headerl)

"United States")

"Indonesia")

"Brazil")
"Pakistan")
"Nigeria")

432

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet5

worksheet5.
worksheet5
worksheet5.
worksheet5.
worksheet5
worksheet5.
worksheet5.
worksheet5.

worksheet5
worksheet5
worksheet5
worksheet5
worksheet5
worksheet5
worksheet5
worksheet5

worksheet5

worksheet5.
worksheet5.

#

.write("A9",
write("B2",
.write("B3",
write("B4",
write("B5",
.write("B6",
write("B7",
write("B8",
write("B9",
.write("C2",
.write("C3",
.write("C4",
.write("C5",
.write("Ce6",
.write("C7",
.write("C8",
.write("C9",
.write("E1",

set column pixels("A:A",
set column pixels("D:D",

"Bangladesh")

"CN")
"IN")
"Us")
"ID")
"BR")
"PK")
"NG")
"BD")

86)
91)
1)
62)
5)
92)
234)
880)

"Brazil", header2)

100)
20)

Example of using the XMATCH() function.

#
worksheet6

.write("D2",

"=XMATCH(C2,A2:A6)")

Write the data the function will work on.

worksheet6

worksheet6
worksheet6
worksheet6
worksheet6
worksheet6

worksheet6
worksheet6
worksheet6

worksheet6.

#

Example of using the RANDARRAY() function.

#
worksheet?7

#

write("
.write("
.write("A4",
.write("
write("

.write("A1",

|A2|l
3II

|A5|l
6I|

.write("C1",
.write("D1",
.write("C2",

set column pixels("B:B",

.write("Al",

"Product",

"Apple")
"Grape")
"Pear")
"Banana")
"Cherry")

"Product",
"Position",
"Grape")

"=RANDARRAY (5,3,1,100, TRUE)"

headerl)

header?2)
header?2)

20)

Example of using the SEQUENCE() function.

#

)

32.7. Example: Dynamic array formulas

433

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet8.write("Al", "=SEQUENCE(4,5)")

#

Example of using the Spill range operator.
iorksheet9.write("H2“, "=ANCHORARRAY (F2)")
worksheet9.write("J2", "=COUNTA(ANCHORARRAY(F2))")

Write the data the to work on.

worksheet9.write("F2", "=UNIQUE(B2:B17)")
worksheet9.write("F1", "Unique", header2)
worksheet9.write("H1", "Spill", header2)
worksheet9.write("J1", "Spill", header2)

write worksheet data(worksheet9, headerl)
worksheet9.set column pixels("E:E", 20)
worksheet9.set column_pixels("G:G", 20)
worksheet9.set column pixels("I:I", 20)

#

Example of using dynamic ranges with older Excel functions.

#

worksheetl0@.write dynamic array formula("B1:B3", "=LEN(A1:A3)")

Write the data the to work on.
worksheetl0.write("Al1", "Foo")

worksheetl0.write("A2", "Food")
worksheetl0.write("A3", "Frood")

Close the workbook.
workbook. close()

Utility function to write the data some of the functions work on.
def write worksheet data(worksheet, header):
worksheet.write("Al", "Region", header)
worksheet.write("B1", "Sales Rep", header)
worksheet.write("C1", "Product", header)
worksheet.write("D1", "Units", header)

data = (
["East", "Tom", "Apple", 6380],
["West", "Fred", "Grape", 5619],
["North", "Amy", "Pear", 4565],
["South", "Sal", "Banana", 53231,
["East", "Fritz", "Apple", 4394],
["West", "Sravan", "Grape", 7195],
["North", "Xi", "Pear", 5231],
["South", "Hector", "Banana", 24271,
["East", "Tom", "Banana", 4213],
["West", "Fred", "Pear", 3239],
["North", "Amy", "Grape", 6520],

434 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

["South", "Sal", "Apple", 1310],

["East", "Fritz", "Banana", 62741,

["West", "Sravan", "Pear", 4894],

["North", "Xi", "Grape", 7580],

["South", "Hector", "Apple", 9814],
)

row num = 1

for row data in data:
worksheet.write row(row num, 0, row data)
row num += 1

if name == " main_ ":

main()
32.8 Example: Applying Autofilters

This program is an example of using autofilters in a worksheet. See Working with Autofilters for
more details.

Item |E| Volume Month

5000 July

7000 Decermber
4000 October
7000 October
5000 April
6000 February

44 l Sher.tl_i snmzi snmsi shmu snmsi shell ||
Mormal View Filter Mode

HHHHH AR R R R R R R R AR A
#

32.8. Example: Applying Autofilters 435

Creating Excel files with Python and XisxWriter, Release 3.1.9

An example of how to create autofilters with XlsxWriter.

An autofilter is a way of adding drop down lists to the headers of a 2D
range of worksheet data. This allows users to filter the data based on
simple criteria so that some data is shown and some is hidden.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H R HH R

import xlsxwriter
workbook = xlsxwriter.Workbook("autofilter.xlsx")

Add a worksheet for each autofilter example.

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()
worksheet3 = workbook.add worksheet()
worksheet4 = workbook.add worksheet()
worksheet5 = workbook.add worksheet()
worksheet6 = workbook.add worksheet()
worksheet7 = workbook.add worksheet()

Add a bold format for the headers.
bold = workbook.add format({"bold": 1})

Open a text file with autofilter example data.
textfile = open("autofilter data.txt")

Read the headers from the first line of the input file.
headers = textfile.readline().strip("\n").split()

Read the text file and store the field data.
data = []
for line in textfile:
Split the input data based on whitespace.
row data = line.strip("\n").split()

Convert the number data from the text file.
for i, item in enumerate(row data):
try:
row data[i] = float(item)
except ValueError:
pass

data.append(row data)

Set up several sheets with the same data.
for worksheet in workbook.worksheets():

Make the columns wider.

worksheet.set column("A:D", 12)

Make the header row larger.

436 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.set row(0, 20, bold)
Make the headers bold.
worksheet.write row("Al", headers)

S e e e R
#

Example 1. Autofilter without conditions.

#

Set the autofilter.
worksheetl.autofilter("A1:D51")

row = 1
for row data in data:
worksheetl.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

S e e e
#

#

Example 2. Autofilter with a filter condition in the first column.

#

Autofilter range using Row-Column notation.
worksheet2.autofilter(0, 0, 50, 3)

Add filter criteria. The placeholder "Region" in the filter 1is
ignored and can be any string that adds clarity to the expression.
worksheet2.filter column(0, "Region == East")

Hide the rows that don't match the filter criteria.
row = 1
for row data in data:

region = row_datal[0]

Check for rows that match the filter.

if region == "East":
Row matches the filter, no further action required.
pass

else:

We need to hide rows that don't match the filter.
worksheet2.set row(row, options={"hidden": True})

worksheet2.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

32.8. Example: Applying Autofilters 437

Creating Excel files with Python and XisxWriter, Release 3.1.9

e e e
#

#

Example 3. Autofilter with a dual filter condition in one of the columns.

#

Set the autofilter.
worksheet3.autofilter("Al1:D51")

Add filter criteria.
worksheet3.filter column("A", "x == East or x == South")

Hide the rows that don't match the filter criteria.
row = 1
for row data in data:

region = row data[0]

Check for rows that match the filter.

if region == "East" or region == "South":
Row matches the filter, no further action required.
pass

else:

We need to hide rows that don't match the filter.
worksheet3.set row(row, options={"hidden": True})

worksheet3.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

e e e R e R e e R e R R e e e e
#

#

Example 4. Autofilter with filter conditions in two columns.

#

Set the autofilter.
worksheet4.autofilter("Al1:D51")

Add filter criteria.
worksheet4.filter column("A", "x == East")
worksheet4.filter column("C", "x > 3000 and x < 8000")

Hide the rows that don't match the filter criteria.
row = 1
for row data in data:

region = row datal0]

volume = int(row datal[2])

Check for rows that match the filter.
if region == "East" and volume > 3000 and volume < 8000:
Row matches the filter, no further action required.

438 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

pass

else:
We need to hide rows that don't match the filter.
worksheet4.set row(row, options={"hidden": True})

worksheet4.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

e e
#

#

Example 5. Autofilter with a filter list condition in one of the columns.

#

Set the autofilter.
worksheet5.autofilter("A1:D51")

Add filter criteria.
worksheet5.filter column list("A", ["East", "North", "South"])

Hide the rows that don't match the filter criteria.
row = 1
for row data in data:

region = row _datal[0]

Check for rows that match the filter.

if region == "East" or region == "North" or region == "South":
Row matches the filter, no further action required.
pass

else:

We need to hide rows that don't match the filter.
worksheet5.set row(row, options={"hidden": True})

worksheet5.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

B e e e e e e e e e e e e e e
#

#

Example 6. Autofilter with filter for blanks.

#

Create a blank cell in our test data.

Set the autofilter.
worksheet6.autofilter("A1:D51")

Add filter criteria.

32.8. Example: Applying Autofilters 439

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet6.filter column("A", "x == Blanks")

Simulate a blank cell in the data.
data[5]1[0] = ""

Hide the rows that don't match the filter criteria.
row = 1
for row data in data:

region = row data[0]

Check for rows that match the filter.

if region == "":
Row matches the filter, no further action required.
pass

else:
We need to hide rows that don't match the filter.
worksheet6.set row(row, options={"hidden": True})

worksheet6.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

e e e
#

#

Example 7. Autofilter with filter for non-blanks.

#

Set the autofilter.
worksheet7.autofilter("A1:D51")

Add filter criteria.
worksheet7.filter column("A", "x == NonBlanks")

Hide the rows that don't match the filter criteria.
row = 1
for row data in data:

region = row data[0]

Check for rows that match the filter.

if region != "":
Row matches the filter, no further action required.
pass

else:
We need to hide rows that don't match the filter.
worksheet7.set row(row, options={"hidden": True})

worksheet7.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

440 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

workbook.close()

32.9 Example: Data Validation and Drop Down Lists

Example of how to add data validation and drop down lists to an XisxWriter file. Data validation is
a way of limiting user input to certain ranges or to allow a selection from a drop down list.

e A B e
Home | Layout | Tahles | Charts | SmartArt | | v -

B3 2] 0 @& (= fx| 7 A
A .

Enter values in

Some examples of data validation in XlsxWriter
this column

Enter an integer between 1 and 10 | 7

Enter an integer that is not between 1 and 10 (using cell references)

Enter an integer greater than 0

Enter an integer less than 10

Enter a decimal between 0.1 and 0.5

...... ARG ELVEY

Mormal View

HHHHHHHHHRR AR R R R R AR A

Example of how to add data validation and dropdown lists to an
XlsxWriter file.

#
#
#
#
Data validation is a feature of Excel which allows you to restrict
the data that a user enters in a cell and to display help and

warning messages. It also allows you to restrict input to values in
a drop down list.

#

#

#

#

f

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

rom datetime import date, time

32.9. Example: Data Validation and Drop Down Lists 441

Creating Excel files with Python and XisxWriter, Release 3.1.9

import xlsxwriter

workbook = xlsxwriter.Workbook("data validate.xlsx")
worksheet = workbook.add worksheet()

Add a format for the header cells.
header format = workbook.add format(

{
"border": 1,
"bg color": "#C6EFCE",
"bold": True,
“text wrap": True,
"valign": "vcenter",
"indent": 1,

}

)

Set up layout of the worksheet.
worksheet.set column("A:A", 68)
worksheet.set column("B:B", 15)
worksheet.set column("D:D", 15)
worksheet.set row(0, 36)

Write the header cells and some data that will be used in the examples.

headingl = "Some examples of data validation in XlsxWriter"
heading2 = "Enter values in this column"
heading3 = "Sample Data"

worksheet.write("Al", headingl, header format)
worksheet.write("B1", heading2, header format)
worksheet.write("D1", heading3, header format)

worksheet.write row("D3", ["Integers", 1, 10])
worksheet.write row("D4", ["List data", "open", "high", "close"])
worksheet.write row("D5", ["Formula", "=AND(F5=50,G5=60)", 50, 60])

Example 1. Limiting input to an integer in a fixed range.
#
txt = "Enter an integer between 1 and 10"

worksheet.write("A3", txt)
worksheet.data validation(

"B3", {"validate": "integer", "criteria": "between", "minimum": 1, "maximum":

)

Example 2. Limiting input to an integer outside a fixed range.
#
txt = "Enter an integer that is not between 1 and 10 (using cell references)"

worksheet.write("A5", txt)

442

Chapter 32. Examples

10}

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.data validation(

"B5",

{
"validate": "integer",
"criteria": "not between",
"minimum": "=E3",
"maximum": "=F3",

3

Example 3. Limiting input to an integer greater than a fixed value.
#
txt = "Enter an integer greater than 0"

worksheet.write("A7", txt)
worksheet.data validation("B7", {"validate": "integer", "criteria": ">", "value": 0})

Example 4. Limiting input to an integer less than a fixed value.
#
txt = "Enter an integer less than 10"

worksheet.write("A9", txt)
worksheet.data validation("B9", {"validate": "integer", "criteria": "<", "value": 10}

Example 5. Limiting input to a decimal in a fixed range.
#
txt = "Enter a decimal between 0.1 and 0.5"

worksheet.write("A11", txt)
worksheet.data validation(
IIBllII ,
{"validate": "decimal", "criteria": "between", "minimum": 0.1, "maximum": 0.5},

Example 6. Limiting input to a value in a dropdown list.
#
txt = "Select a value from a drop down list"

worksheet.write("A13", txt)
worksheet.data validation(
"B13", {"validate": "list", "source": ["open", "high", "close"]}

)

Example 7. Limiting input to a value in a dropdown list.
#
txt = "Select a value from a drop down list (using a cell range)"

worksheet.write("A15", txt)

32.9. Example: Data Validation and Drop Down Lists 443

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.data validation("B15", {"validate": "list", "source": "=E4:G4"})

Example 8. Limiting input to a date in a fixed range.
#
txt = "Enter a date between 1/1/2013 and 12/12/2013"

worksheet.write("A17", txt)
worksheet.data validation(
"B17",
{
"validate": "date",
"criteria": "between",
"minimum": date(2013, 1, 1),
"maximum": date(2013, 12, 12),

Example 9. Limiting input to a time in a fixed range.
#
txt = "Enter a time between 6:00 and 12:00"

worksheet.write("A19", txt)
worksheet.data validation(
"B19",
{
"validate": "time",
"criteria": "between",
"minimum": time(6, 0),
"maximum": time(12, 0),

Example 10. Limiting input to a string greater than a fixed length.
#
txt = "Enter a string longer than 3 characters"

worksheet.write("A21", txt)
worksheet.data validation("B21", {"validate": "length", "criteria": ">", "value": 3})

Example 11. Limiting input based on a formula.
#
txt = 'Enter a value if the following is true "=AND(F5=50,G5=60)""

worksheet.write("A23", txt)
worksheet.data validation("B23", {"validate": "custom", "value": "=AND(F5=50,G5=60)"}

Example 12. Displaying and modifying data validation messages.
#

444 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

txt = "Displays a message when you select the cell"

worksheet.write("A25", txt)
worksheet.data validation(
"B25",
{
"validate": "integer",
"criteria": "between",
"minimum": 1,
"maximum": 100,
"input title": "Enter an integer:",
"input message": "between 1 and 100",

Example 13. Displaying and modifying data validation messages.
#
txt = "Display a custom error message when integer isn't between 1 and 100"

worksheet.write("A27", txt)
worksheet.data validation(
"B27",
{
"validate": "integer",
"criteria": "between",
"minimum": 1,
"maximum": 100,

"input title": "Enter an integer:",

"input message": "between 1 and 100",

"error title": "Input value is not valid!",

"error message": "It should be an integer between 1 and 100",

b

Example 14. Displaying and modifying data validation messages.
#
txt = "Display a custom info message when integer isn't between 1 and 100"

worksheet.write("A29", txt)
worksheet.data validation(
"B29",
{
"validate": "integer",
"criteria": "between",
"minimum": 1,
"maximum": 100,

"input title": "Enter an integer:",

"input message": "between 1 and 100",

"error_title": "Input value is not valid!",

"error_message": "It should be an integer between 1 and 100",
"error_type": "information",

32.9. Example: Data Validation and Drop Down Lists 445

Creating Excel files with Python and XisxWriter, Release 3.1.9

b
)

workbook.close()

32.10 Example: Conditional Formatting

Example of how to add conditional formatting to an XlsxWriter file. Conditional formatting allows
you to apply a format to a cell or a range of cells based on certain criteria.

W2 TS S T—— conditional_format.xlsx n——
Home | Layout Tables Charts | Smartart »| v Lt~

A20 1] 0O & (- fx| |~
: R SR < NN JOSU F —
Cells with values >= 50 are in light red. Values < 50 are in light green.

PR ERBELDRE

R l shmu snsz snmsi snm4ﬂ|

Mormal View

B e e e e e e e e e e e e e
Example of how to add conditional formatting to an XlsxWriter file.

Conditional formatting allows you to apply a format to a cell or a
range of cells based on certain criteria.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H R HHHH

import xlsxwriter

workbook = xlsxwriter.Workbook("conditional format.xlsx")

446 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()
worksheet3 = workbook.add worksheet()
worksheet4 = workbook.add worksheet()
worksheet5 = workbook.add worksheet()
worksheet6 = workbook.add worksheet()
worksheet7 = workbook.add worksheet()
worksheet8 = workbook.add worksheet()
worksheet9 = workbook.add worksheet()

Add a format. Light red fill with dark red text.
formatl = workbook.add format({"bg color": "#FFC7CE", "font color": "#9C0006"})

Add a format. Green fill with dark green text.
format2 = workbook.add format({"bg color": "#CG6EFCE", "font color": "#006100"})

Some sample data to run the conditional formatting against.

data = [
[34, 72, 38, 30, 75, 48, 75, 66, 84, 86],
[6, 24, 1, 84, 54, 62, 60, 3, 26, 59],
[28, 79, 97, 13, 85, 93, 93, 22, 5, 14],
[27, 71, 40, 17, 18, 79, 90, 93, 29, 47],
[88, 25, 33, 23, 67, 1, 59, 79, 47, 36],
[24, 100, 20, 88, 29, 33, 38, 54, 54, 88],
[6, 57, 88, 28, 10, 26, 37, 7, 41, 48],
[52, 78, 1, 96, 26, 45, 47, 33, 96, 36],
[60, 54, 81, 66, 81, 90, 80, 93, 12, 55],
[706, 5, 46, 14, 71, 19, 66, 36, 41, 21],

S R R e e e e e e R e e e e e e R R e e

#

Example 1.

#

caption = "Cells with values >= 50 are in light red. Values < 50 are in light green."

Write the data.
worksheetl.write("Al", caption)

for row, row data in enumerate(data):
worksheetl.write row(row + 2, 1, row data)

Write a conditional format over a range.
worksheetl.conditional format(

"B3:K12", {"type": "cell", "criteria": ">=", "value": 50, "format": formatl}
)

Write another conditional format over the same range.
worksheetl.conditional format(

"B3:K12", {"type": "cell", "criteria": "<", "value": 50, "format": format2}
)

32.10. Example: Conditional Formatting 447

Creating Excel files with Python and XisxWriter, Release 3.1.9

B e e e e
#
Example 2.
#
caption = (
"Values between 30 and 70 are in light red. "
"Values outside that range are in light green."

)
worksheet2.write("Al", caption)

for row, row data in enumerate(data):
worksheet2.write row(row + 2, 1, row data)

worksheet2.conditional format(
"B3:K12",
{
"type": "cell",
"criteria": "between",
"minimum": 30,
"maximum": 70,
"format": formatl,
3
)

worksheet2.conditional format(

"B3:K12",

{
"type": "cell",
"criteria": "not between",
"minimum": 30,
"maximum": 70,
"format": format2,

b

S e e e e e e e e e e e e e e e e e e R e e e e e e R e e R R R R
#

Example 3.

#

caption = "Duplicate values are in light red. Unique values are in light green."

worksheet3.write("Al", caption)

for row, row data in enumerate(data):
worksheet3.write row(row + 2, 1, row data)

worksheet3.conditional format("B3:K12", {"type": "duplicate", "format": formatl})

worksheet3.conditional format("B3:K12", {"type": "unique", "format": format2})

448

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

B e e e e e
#
Example 4.
#
caption = (
"Above average values are in light red. Below average values are in light green.”
)

worksheet4.write("Al", caption)

for row, row data in enumerate(data):
worksheet4.write row(row + 2, 1, row data)

worksheet4.conditional format(
"B3:K12", {"type": "average", "criteria": "above", "format": formatl}

)

worksheet4.conditional format(
"B3:K12", {"type": "average", "criteria": "below", "format": format2}

)

B e e e e e e e e e e e e e e
#

Example 5.

#

caption = "Top 10 values are in light red. Bottom 10 values are in light green."

worksheet5.write("Al", caption)

for row, row data in enumerate(data):
worksheet5.write row(row + 2, 1, row data)

worksheet5.conditional format(
"B3:K12", {"type": "top", "value": "10", "format": formatl}
)

worksheet5.conditional format(
"B3:K12", {"type": "bottom", "value": "10", "format": format2}
)

B R R e e e R e e e e e e e e e
#
Example 6.
#
caption = (
"Cells with values >= 50 are in light red. "
"Values < 50 are in light green. Non-contiguous ranges."

)

Write the data.
worksheet6.write("Al", caption)

32.10. Example: Conditional Formatting 449

Creating Excel files with Python and XisxWriter, Release 3.1.9

for row, row data in enumerate(data):
worksheet6.write row(row + 2, 1, row data)

Write a conditional format over a range.
worksheet6.conditional format(
"B3:K6",
{
"type": "cell",
"criteria": ">=",
"value": 50,
“format": formatl,
"multi range": "B3:K6 B9:K12",
b
)

Write another conditional format over the same range.
worksheet6.conditional format(
"B3:K6",
{
Iltypell: Ilce'L'LII’
"criteria": "<",
"value": 50,
"format": format2,
"multi range": "B3:K6 B9:K12",

e e e e e e e e e e e e e e e e e s e e e e e e e e e e e e e e e e e,
#

Example 7.

#

caption = "Examples of color scales with default and user colors."

data = range(1l, 13)
worksheet7.write("Al", caption)

worksheet7.write("B2", "2 Color Scale")
worksheet7.write("D2", "2 Color Scale + user colors")

worksheet7.write("G2", "3 Color Scale")

worksheet7.write("I2", "3 Color Scale + user colors")

for row, row data in enumerate(data):
worksheet7.write(row + 2, 1, row data)
worksheet7.write(row + 2, 3, row data)
worksheet7.write(row + 2, 6, row data)
worksheet7.write(row + 2, 8, row data)

worksheet7.conditional format("B3:B14", {"type": "2 color scale"})

worksheet7.conditional format(

450 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

"D3:D14", {"type": "2 color scale", "min color": "#FFO000", "max color": "#OOFFO0O'
)

worksheet7.conditional format("G3:G14", {"type": "3 color scale"})

worksheet7.conditional format(
"I13:114",
{
"type": "3 color_scale",
"min color": "#C5D9F1",
"mid color": "#8DB4E3",
"max color": "#538ED5",

B B L e L L L L L e e S S i
#

Example 8.

#

caption = "Examples of data bars."

worksheet8.write("Al", caption)

worksheet8.write("B2", "Default data bars")
worksheet8.write("D2", "Bars only")
worksheet8.write("F2", "With user color")
worksheet8.write("H2", "Solid bars")
worksheet8.write("J2", "Right to left")
worksheet8.write("L2", "Excel 2010 style")
worksheet8.write("N2", "Negative same as positive")

data = range(l, 13)

for row, row data in enumerate(data):
worksheet8.write(row + 2, 1, row data)
worksheet8.write(row + 2, 3, row data)
worksheet8.write(row + 2, 5, row data)
worksheet8.write(row + 2, 7, row data)
worksheet8.write(row + 2, 9, row data)

data = [-1, -2, -3, -2, -1, 0, 1, 2, 3, 2, 1, 0]
for row, row data in enumerate(data):
worksheet8.write(row + 2, 11, row data)
worksheet8.write(row + 2, 13, row data)
worksheet8.conditional format("B3:B14", {"type": "data bar"})
worksheet8.conditional format("D3:D14", {"type": "data bar", "bar only": True})
worksheet8.conditional format("F3:F14", {"type": "data bar", "bar color": "#63C384"})

worksheet8.conditional format("H3:H14", {"type": "data bar", "bar solid": True})

32.10. Example: Conditional Formatting 451

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet8.conditional format("J3:J14", {"type": "data bar", "bar direction": "right"’
worksheet8.conditional format("L3:L14", {"type": "data bar", "data bar 2010": True})

worksheet8.conditional format(
"N3:N14",
{
"type": "data bar",
"bar negative color same": True,
"bar negative border color same": True,

B e o s e e et
#

Example 9.
#
caption = "Examples of conditional formats with icon sets."
data = [
(1, 2, 3],
(1, 2, 3],
[1, 2, 31,
[1, 2, 31,
[1, 2, 3, 41,
[1, 2, 3, 4, 51,
(1, 2, 3, 4, 5],

]
worksheet9.write("Al", caption)

for row, row data in enumerate(data):
worksheet9.write row(row + 2, 1, row data)

worksheet9.conditional format(
"B3:D3", {"type": "icon set", "icon style": "3 traffic lights"}
)

worksheet9.conditional format(
"B4:D4",
{"type": "icon set", "icon style": "3 traffic lights", "reverse icons": True},

)

worksheet9.conditional format(
"B5:D5", {"type": "icon set", "icon style": "3 traffic lights", "icons only": Trug
)

worksheet9.conditional format("B6:D6", {"type": "icon set", "icon style": "3 arrows"}
worksheet9.conditional format("B7:E7", {"type": "icon set", "icon style": "4 arrows"}
worksheet9.conditional format("B8:F8", {"type": "icon set", "icon style": "5 arrows"}

452

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet9.conditional format("B9:F9", {"type": "icon set", "icon style": "5 ratings":

workbook.close()

32.11 Example: Defined names/Named ranges

Example of how to create defined names (named ranges) with XisxWriter.

Defined names are used to define descriptive names to represent a value, a single cell or a range
of cells in a workbook or worksheet. See define name().

@9 * defined_name.xlsx
Home | Layout Tables | Charts | SmartArt | 3 v &~
B3 | @ @ (- fx| =Exchange_rate |+

A A -i C =
1 |This worksheet contains some defined names.
2 |See Formulas -> Name Manager above.

nExample farmula in cell B3 ->
4

5
7]
7
8
9
10
11
12
12

- l Sh!!tl_i sn:uz“| |||

Mormal View Ready i

S e e e
Example of how to create defined names with the XlsxWriter Python module.

This method is used to define a user friendly name to represent a value,
a single cell or a range of cells in a workbook.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H R HHRH

32.11. Example: Defined names/Named ranges 453

Creating Excel files with Python and XisxWriter, Release 3.1.9

import xlsxwriter

workbook = xlsxwriter.Workbook("defined name.xlsx")
worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()

Define some global/workbook names.
workbook.define name("Exchange rate", "=0.96")
workbook.define name("Sales", "=Sheetl!G1:H10")

Define a local/worksheet name. Over-rides the "Sales" name above.
workbook.define name("Sheet2!Sales", "=Sheet2!G1:G10")

Write some text in the file and one of the defined names in a formula.
for worksheet in workbook.worksheets():
worksheet.set column("A:A", 45)

worksheet.write("Al", "This worksheet contains some defined names.")
worksheet.write("A2", "See Formulas -> Name Manager above.")
worksheet.write("A3", "Example formula in cell B3 ->")
worksheet.write("B3", "=Exchange rate")

workbook.close()

32.12 Example: Merging Cells

This program is an example of merging cells in a worksheet. See the merge range() method
for more details.

454

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Merged Range

Merged Range

ol sweeus [

Mormal View Ready

R R
z A simple example of merging cells with the XlsxWriter Python module.

ﬁ SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

?mport xlsxwriter

Create an new Excel file and add a worksheet.
workbook = xlsxwriter.Workbook("mergel.xlsx")
worksheet = workbook.add worksheet()

Increase the cell size of the merged cells to highlight the formatting.
worksheet.set column("B:D", 12)

worksheet.set row(3, 30)

worksheet.set row(6, 30)

worksheet.set row(7, 30)

Create a format to use in the merged range.
merge_format = workbook.add format(

{

32.12. Example: Merging Cells 455

Creating Excel files with Python and XisxWriter, Release 3.1.9

"bold": 1,

"border": 1,
"align": "center",
"valign": "vcenter",

"fg color": "yellow",

Merge 3 cells.
worksheet.merge range("B4:D4", "Merged Range", merge format)

Merge 3 cells over two rows.
worksheet.merge range("B7:D8", "Merged Range", merge format)

workbook.close()

32.13 Example: Autofitting columns

An example of simulating autofitting column widths using the autofit () method:

autofit je

File Homi Insed Draw Page Form Data Revie View Help i [

113 - £ .

A B | C | D | E
Foo 12345 Some longer text http://ww.google.com

Food 12345678 https://oithub.com

Foody 12345

1

2

3

4 Froody
—

6

7

Sheet1 @] | O
Ready i - i + 110%

e e e e e e e e e e e e e e e e e e R e e e e e e

#

An example of using simulated autofit to automatically adjust the width of
worksheet columns based on the data in the cells.

#

456 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

#

from xlsxwriter.workbook import Workbook

workbook = Workbook("autofit.xlsx")
worksheet = workbook.add worksheet()

Write some worksheet data to demonstrate autofitting.

worksheet.write(0, 0O,
worksheet.write(1, 0,
worksheet.write(2, 0,
worksheet.write(3

worksheet.write(0, 1,
worksheet.write(1, 1,
worksheet.write(2, 1,

worksheet.write(0, 2,

worksheet.write(0,
worksheet.write(1,

w w

’
’

"Foo")
"Food")
"Foody")
"Froody")

12345)
12345678)
12345)

"Some longer text")

"http://ww.google.com")
"https://github.com")

Autofit the worksheet.

worksheet.autofit()

workbook. close()

32.14 Example: Writing “Rich” strings with multiple formats

This program is an example of writing rich strings with multiple format to a cell in a worksheet. See
thewrite rich string() method for more details.

32.14. Example: Writing “Rich” strings with multiple formats

457

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NON [rich_strings.xlsx
A Home | Layout Tables | Charts | SmartArt 3 v &~
A 4 & @ [fx| Thisis bold and this is italic |+

_l ‘ [Y-S — .]
This is bold and this is itafic

P4
3 |Thisis red and this is blue
4
5 Some bold text centered
6
= j= PILEY
8
9 | Thisis bold and this is blue
10
11
12
R EYEY | [i
ormal View Ready A

B L g e i e s e

An example of using Python and XlsxWriter to write some "rich strings",
i.e., strings with multiple formats.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K HH R H

import xlsxwriter

workbook = xlsxwriter.Workbook("rich strings.xlsx")
worksheet = workbook.add worksheet()

worksheet.set column("A:A", 30)
Set up some formats to use.

bold = workbook.add format({"bold": True})
italic = workbook.add format({"italic": True})

red = workbook.add format({"color": "red"})
blue = workbook.add format({"color": "blue"})
center = workbook.add format({"align": "center"})

superscript = workbook.add format({"font script": 1})

Write some strings with multiple formats.
worksheet.write rich string(

458 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

"Al", "This is ", bold, "bold", " and this is ", italic, "italic"
)
worksheet.write rich string("A3", "This is ", red, "red", " and this is ", blue, "blue
worksheet.write rich string("A5", "Some ", bold, "bold text", " centered", center)

worksheet.write rich string("A7", italic, "j = k", superscript, "(n-1)", center)

If you have formats and segments in a list you can add them like this:
segments = ["This is ", bold, "bold", " and this is ", blue, "blue"]
worksheet.write rich string("A9", *segments)

workbook.close()

32.15 Example: Merging Cells with a Rich String

This program is an example of merging cells that contain a rich string.

Using the standard XlsxWriter APl we can only write simple types to merged ranges so we first
write a blank string to the merged range. We then overwrite the first merged cell with a rich string.

Note that we must also pass the cell format used in the merged cells format at the end

Seethe merge range() andwrite rich string() methods for more details.

32.15. Example: Merging Cells with a Rich String 459

Creating Excel files with Python and XisxWriter, Release 3.1.9

This is red and this is blue

R ey e——
ey

Mormal View Riea

B e

#

An example of merging cells which contain a rich string using the
XlsxWriter Python module.
#
#
#

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

import xlsxwriter
Create an new Excel file and add a worksheet.
workbook = xlsxwriter.Workbook("merge rich string.xlsx")

worksheet = workbook.add worksheet()

Set up some formats to use.

red = workbook.add format({"color": "red"})
blue = workbook.add format({"color": "blue"})
cell format = workbook.add format({"align": "center", "valign": "vcenter", "border":

We can only write simple types to merged ranges so we write a blank string.
worksheet.merge range("B2:E5", "", cell format)

We then overwrite the first merged cell with a rich string. Note that we

460

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

must also pass the cell format used in the merged cells format at the end.
worksheet.write rich string(
"B2", "This is ", red, "red", " and this is ", blue, "blue", cell format

)

workbook.close()

32.16 Example: Inserting images into a worksheet

This program is an example of inserting images into a worksheet. See the insert image()
method for more details.

32.16. Example: Inserting images into a worksheet 461

Creating Excel files with Python and XisxWriter, Release 3.1.9

Insert an image in a cell:

powered

Insert an image with an offset:

python

powered

Insert a scaled image: pgthnn

A

powered

e shees

Mormal View Rieady

e e e
#

An example of inserting images into a worksheet using the XlsxWriter

Python module.

#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

462 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

#
import xlsxwriter

Create an new Excel file and add a worksheet.
workbook = xlsxwriter.Workbook("images.xlsx")
worksheet = workbook.add worksheet()

Widen the first column to make the text clearer.
worksheet.set column("A:A", 30)

Insert an image.
worksheet.write("A2", "Insert an image in a cell:")
worksheet.insert image("B2", "python.png")

Insert an image offset in the cell.
worksheet.write("Al12", "Insert an image with an offset:")
worksheet.insert image("B12", "python.png", {"x offset": 15, "y offset": 10})

Insert an image with scaling.
worksheet.write("A23", "Insert a scaled image:")
worksheet.insert image("B23", "python.png", {"x scale": 0.5, "y scale": 0.5})

workbook. close()

32.17 Example: Inserting images from a URL or byte stream into a
worksheet

This program is an example of inserting images from a Python i0.BytesIO byte stream into a
worksheet.

The example byte streams are populated from a URL and from a local file.

See the insert image () method for more details.

32.17. Example: Inserting images from a URL or byte stream into a worksheet 463

https://docs.python.org/3/library/io.html#io.BytesIO

Creating Excel files with Python and XisxWriter, Release 3.1.9

Home Layout Tables Charts SmartArt » W

L

A22 | f:a & (= .fxl R
- : [[E..| F | & | H [=
1
2
; F python
= powered
6
7
8
9
> python
3 ﬂ
12
13
14
15
= powered
= << > > [sheett [+ NN | o I
Nnnnal‘u"lewl Ready “

B e

#

An example of inserting images from a Python BytesIO byte stream into a
worksheet using the XlsxWriter module.
#
#
#

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

from io import BytesIO
from urllib.request import urlopen

import xlsxwriter

Create the workbook and add a worksheet.
workbook = xlsxwriter.Workbook("images bytesio.xlsx")
worksheet = workbook.add worksheet()

Read an image from a remote url.

url = (
"https://raw.githubusercontent.com/jmcnamara/XlsxWriter/"
+ "master/examples/logo.png"

464 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

)
image data = BytesIO(urlopen(url).read())

Write the byte stream image to a cell. Note, the filename must be
specified. In this case it will be read from url string.
worksheet.insert image("B2", url, {"image data": image data})

Read a local image file into a a byte stream. Note, the insert image()
method can do this directly. This is for illustration purposes only.
filename = "python.png"

image file = open(filename, "rb")
image data = BytesIO(image file.read())
image file.close()

Write the byte stream image to a cell. The filename must be specified.
worksheet.insert image("B8", filename, {"image data": image data})

workbook.close()

32.18 Example: Left to Right worksheets and text

Example of how to use Python and the XlsxWriter module to change the default worksheet and
cell text direction from left-to-right to right-to-left as required by some middle eastern versions of
Excel.

32.18. Example: Left to Right worksheets and text 465

Creating Excel files with Python and XisxWriter, Release 3.1.9

Home Insert Draw Page Layout = Share [J1 Comments

N8 . fx v

E D C B A

English text / 4= =3 1
Joe pal f English text 2
English text / 4= =3 3

W e~ o R

+ Sheet2 Sheetl
E -) + 125%

32.19 Example: Simple Django class

A simple Django View class to write an Excel file using the XlsxWriter module.

BRI R R R R R

#

A simple Django view class to write an Excel file using the XlsxWriter
module.

#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

#

import io

from django.http import HttpResponse
from django.views.generic import View
import xlsxwriter

def get simple table data():
Simulate a more complex table read.
return [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

466 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

class MyView(View):
def get(self, request):
Create an in-memory output file for the new workbook.
output = io.BytesIO()

Even though the final file will be in memory the module uses temp
files during assembly for efficiency. To avoid this on servers that
don't allow temp files, for example the Google APP Engine, set the
'in _memory' Workbook() constructor option as shown in the docs.
workbook = xlsxwriter.Workbook(output)

worksheet = workbook.add worksheet()

Get some data to write to the spreadsheet.
data = get simple table data()

Write some test data.
for row num, columns in enumerate(data):
for col num, cell data in enumerate(columns):
worksheet.write(row _num, col num, cell data)

Close the workbook before sending the data.
workbook.close()

Rewind the buffer.
output.seek(0)

Set up the Http response.

filename = "django simple.xlsx"
response = HttpResponse(
output,

content type="application/vnd.openxmlformats-officedocument.spreadsheetml.

)

response["Content-Disposition"] = "attachment; filename=%s" % filename

return response

32.20 Example: Simple HTTP Server

Example of using Python and XlsxWriter to create an Excel XLSX file in an in memory string
suitable for serving via SimpleHTTPRequestHandler or Django or with the Google App Engine.

Even though the final file will be in memory, via the ByteslO object, the XlsxWriter module uses
temp files during assembly for efficiency. To avoid this on servers that don’t allow temp files set
the in_memory constructor option to True

The Python 3 Runtime Environment in Google App Engine supports a filesystem with read/write
access to /tmp which means that the in_memory option isn’t required there.

A A e A e e e e e e e e e
#

Example of using Python and XlsxWriter to create an Excel XLSX file in an in
memory string suitable for serving via SimpleHTTPRequestHandler or Django or

32.20. Example: Simple HTTP Server 467

https://cloud.google.com/appengine/docs/standard/python3/runtime#filesystem
https://cloud.google.com/appengine/docs/standard/python3/runtime#filesystem

Creating Excel files with Python and XisxWriter, Release 3.1.9

with the Google App Engine.

#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org
#

import http.server
import socketserver
import io

import xlsxwriter

class Handler (http.server.SimpleHTTPRequestHandler):
def do GET(self):
Create an in-memory output file for the new workbook.
output = io.BytesIO()

Even though the final file will be in memory the module uses temp
files during assembly for efficiency. To avoid this on servers that
don't allow temp files set the 'in memory' constructor option to True.

Note: The Python 3 Runtime Environment in Google App Engine supports
a filesystem with read/write access to /tmp which means that the
"in _memory' option isn't required there and can be omitted. See:

https://cloud.google.com/appengine/docs/standard/python3/runtime#filesystem

HHEHHFHRHFHHHR

workbook = xlsxwriter.Workbook(output, {"in memory": True})
worksheet = workbook.add worksheet()

Write some test data.
worksheet.write(0, 0, "Hello, world!")

Close the workbook before streaming the data.
workbook.close()

Rewind the buffer.
output.seek(0)

Construct a server response.
self.send response(200)
self.send header("Content-Disposition", "attachment; filename=test.xlsx")
self.send header(
"Content-type",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
)
self.end headers()
self.wfile.write(output.read())
return

print("Server listening on port 8000...")

468 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

httpd = socketserver.TCPServer(("", 8000), Handler)
httpd.serve forever()
32.21 Example: Adding Headers and Footers to Worksheets

This program is an example of adding headers and footers to worksheets. See the
set header() and set footer() methods for more details.

4

Home Layout Tables Charts martart »

A1l 110 & (= &

L3l

L

P pgthon

powered

Select Print Preview to see the header and footer

FE— l Slmplel Inuqn_i Variables [
Page Layout View | Ready A

B e e e e e e e e e e e

#

This program shows several examples of how to set up headers and
footers with XlsxWriter.

#

The control characters used in the header/footer strings are:

#

Control Category Description

=== = =

&L Justification Left

&C Center

&R Right

#

&P Information Page number

&N Total number of pages

32.21. Example: Adding Headers and Footers to Worksheets 469

Creating Excel files with Python and XisxWriter, Release 3.1.9

&D Date

&T Time

&F File name

&A Worksheet name

#

&fontsize Font Font size

&"font,style” Font name and style
&U Single underline
&E Double underline
&S Strikethrough

&X Superscript

&Y Subscript

#

&[Picture] Images Image placeholder
&G Same as &[Picture]
#

&& Miscellaneous Literal ampersand &
#

See the main XlsxWriter documentation for more information.

#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

#

import xlsxwriter

workbook = xlsxwriter.Workbook("headers footers.xlsx")
preview = "Select Print Preview to see the header and footer"

S
#
A simple example to start

#
worksheetl = workbook.add worksheet("Simple")
headerl = "&CHere is some centered text."

footerl = "&LHere is some left aligned text."

worksheetl.set header(headerl)
worksheetl.set footer(footerl)

worksheetl.set column("A:A", 50)
worksheetl.write("Al", preview)

B e e e e e e T e e e
#

Insert a header image.

#

worksheet2 = workbook.add worksheet("Image")

header2 = "&L&G"

Adjust the page top margin to allow space for the header image.
worksheet2.set margins(top=1.3)

470

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet2.set header(header2, {"image left": "python-200x80.png"})

worksheet2.set column("A:A", 50)
worksheet2.write("Al", preview)

B e e e
#

This is an example of some of the header/footer variables.

#

worksheet3 = workbook.add worksheet("Variables")

header3 = "&LPage &P of &N" + "&CFilename: &F" + "&RSheetname: &A"
footer3 = "&LCurrent date: &D" + "&RCurrent time: &T"

worksheet3.set header(header3)
worksheet3.set footer(footer3)

worksheet3.set column("A:A", 50)
worksheet3.write("Al", preview)
worksheet3.write("A21", "Next sheet")
worksheet3.set h pagebreaks([20])

B e e e
#

This example shows how to use more than one font

#

worksheet4 = workbook.add worksheet("Mixed fonts")

header4 = '&C&"Courier New,Bold"Hello &"Arial,Italic"World'

footerd = '&C&"Symbol"e&"Arial" = mc&X2'

worksheet4.set header(header4)
worksheet4.set footer(footer4)

worksheet4.set column("A:A", 50)
worksheet4.write("Al", preview)

B e e e e e e L e e e e e e
#

Example of line wrapping

#

worksheet5 = workbook.add worksheet("Word wrap")

header5 = "&CHeading 1\nHeading 2"

worksheet5.set header(header5)

worksheet5.set column("A:A", 50)
worksheet5.write("Al", preview)

HHHHHHHHHHH BB BB BB BB BB BB RS
#

Example of inserting a literal ampersand &

#

worksheet6 = workbook.add worksheet("Ampersand")

32.21. Example: Adding Headers and Footers to Worksheets 471

Creating Excel files with Python and XisxWriter, Release 3.1.9

header6 = "&CCuriouser && Curiouser - Attorneys at Law"
worksheet6.set header(header6)

worksheet6.set column("A:A", 50)
worksheet6.write("Al", preview)

workbook.close()

32.22 Example: Freeze Panes and Split Panes

An example of how to create panes in a worksheet, both “freeze” panes and “split” panes. See the
freeze panes() and split panes() methods for more details.

PR lP.mes 1_4 P‘anuz_i Panes 3

Mormal View

HRBHH AR R AR AR R R R R R

Example of using Python and the XlsxWriter module to create
worksheet panes.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HOoH K H R HH

import xlsxwriter

472

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

workbook = xlsxwriter.Workbook("panes.xlsx")

worksheetl = workbook.add worksheet("Panes 1")
worksheet2 = workbook.add worksheet("Panes 2")
worksheet3 = workbook.add worksheet("Panes 3")
worksheet4 = workbook.add worksheet("Panes 4")

e e e e e e e e e O e

#
Set up some formatting and text to highlight the panes.
#
header format = workbook.add format(
{
"bold": True,
"align": "center",
"valign": "vcenter",
"fg color": "#D7E4BC",
"border": 1,
}
)
center format = workbook.add format({"align": "center"})

B e e e e
#

Example 1. Freeze pane on the top row.

#

worksheetl. freeze panes(1l, 0)

Other sheet formatting.
worksheetl.set column("A:I", 16)
worksheetl.set row(0, 20)
worksheetl.set selection("C3")

Some text to demonstrate scrolling.
for col in range(0, 9):
worksheetl.write(0, col, "Scroll down", header format)

for row in range(1l, 100):
for col in range(0, 9):
worksheetl.write(row, col, row + 1, center format)

e e
#

Example 2. Freeze pane on the left column.

#

worksheet2.freeze panes(0, 1)

Other sheet formatting.
worksheet2.set column("A:A", 16)

32.22. Example: Freeze Panes and Split Panes 473

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet2.set selection("C3")

Some text to demonstrate scrolling.
for row in range(0, 50):
worksheet2.write(row, 0, "Scroll right", header format)
for col in range(1l, 26):
worksheet2.write(row, col, col, center format)

B e e e e e e e e
#

Example 3. Freeze pane on the top row and left column.

#

worksheet3. freeze panes(1l, 1)

Other sheet formatting.

worksheet3.set column("A:Z", 16)
worksheet3.set row(0, 20)

worksheet3.set selection("C3")
worksheet3.write(0, 0, "", header format)

Some text to demonstrate scrolling.
for col in range(l, 26):
worksheet3.write(0, col, "Scroll down", header format)

for row in range(1, 50):
worksheet3.write(row, 0, "Scroll right", header format)
for col in range(1l, 26):
worksheet3.write(row, col, col, center format)

S R R R e R R R R R R R R R R
i Example 4. Split pane on the top row and left column.

z The divisions must be specified in terms of row and column dimensions.
The default row height is 15 and the default column width is 8.43
iorksheet4.split_panes(lS, 8.43)

Other sheet formatting.
worksheet4.set selection("C3")

Some text to demonstrate scrolling.
for col in range(1l, 26):
worksheet4.write(0, col, "Scroll", center format)

for row in range(1l, 50):
worksheet4.write(row, 0, "Scroll", center format)
for col in range(l, 26):
worksheet4.write(row, col, col, center format)

workbook.close()

474 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

32.23 Example: Worksheet Tables

Example of how to add tables to an XlsxWriter worksheet.

Tables in Excel are used to group rows and columns of data into a single structure that can be
referenced in a formula or formatted collectively.

See also Working with Worksheet Tables.

- M3 5 E—— W12 L T m—.—..
* Hnrna | La'fnut | Tablas | Charts | SmnrtArt | 5 I - R
A20 1] © & (= f v

A NS S <SS SO WO Y -3 SO AN S N

Table with column formats.

Product 3| Quarter 1B Quarter 23| Quarter 383 Quarter 4B3|vear E3
Apples $5000 $8,000 $6000 $29,000
Pears 52, 53,000 54,000 55,000 514,000
Bananas 56,000 56,000 56,500 56,000 524,500
Oranges 5500 5300 5200 5700 51,700

Totals | $18,500] _ $14,300) $18,700] $17,700] _ $69,200|

[P i snmri snmai ShutGJ Shutlni snmui ihutlz

Mormal View

B i
Example of how to add tables to an XlsxWriter worksheet.

Tables in Excel are used to group rows and columns of data into a single
structure that can be referenced in a formula or formatted collectively.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HOoH K H R HHRH

import xlsxwriter

workbook = xlsxwriter.Workbook("tables.xlsx")
worksheetl = workbook.add worksheet()
worksheet?2 workbook.add worksheet()

32.23. Example: Worksheet Tables 475

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet3 = workbook.add worksheet()
worksheet4 = workbook.add worksheet()
worksheet5 = workbook.add worksheet()
worksheet6 = workbook.add worksheet()
worksheet7 = workbook.add worksheet()
worksheet8 = workbook.add worksheet()
worksheet9 = workbook.add worksheet()
worksheetl® = workbook.add worksheet()
worksheetll = workbook.add worksheet()
worksheetl2 = workbook.add worksheet()
worksheet13 = workbook.add worksheet()
currency format = workbook.add format({"num format": "$#,##0"})

Some sample data for the table.

data = [
["Apples", 10000, 5000, 8000, 6000],
["Pears", 2000, 3000, 4000, 5000],
["Bananas", 6000, 6000, 6500, 6000],
["Oranges", 500, 300, 200, 700],

e e e e e e e e e e e e e e e e e e s e e e e e e e e e e e e e e e e e e
#

Example 1.

#

caption = "Default table with no data."

Set the columns widths.
worksheetl.set column("B:G", 12)

Write the caption.
worksheetl.write("B1", caption)

Add a table to the worksheet.
worksheetl.add table("B3:F7")

e R
#

Example 2.

#

caption = "Default table with data."

Set the columns widths.
worksheet2.set column("B:G", 12)

Write the caption.
worksheet2.write("B1", caption)

Add a table to the worksheet.
worksheet2.add table("B3:F7", {"data": data})

476 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e e e e e e e e e e e e e e e e e B e e s e e e e e e e e
#

Example 3.

#

caption = "Table without default autofilter."

Set the columns widths.
worksheet3.set column("B:G", 12)

Write the caption.
worksheet3.write("B1", caption)

Add a table to the worksheet.
worksheet3.add table("B3:F7", {"autofilter": 0})

Table data can also be written separately, as an array or individual cells.
worksheet3.write row("B4", datal[0])
worksheet3.write row("B5", datal[l])
worksheet3.write row("B6", datal2])
worksheet3.write row("B7", datal3])

B R R R e e e R e e e e e e e e e
#

Example 4.

#

caption = "Table without default header row."

Set the columns widths.
worksheet4.set column("B:G", 12)

Write the caption.
worksheet4.write("B1", caption)

Add a table to the worksheet.
worksheet4.add table("B4:F7", {"header row": 0})

Table data can also be written separately, as an array or individual cells.
worksheet4.write row("B4", datal[0])
worksheet4.write row("B5", data[l])
worksheet4.write row("B6", datal2])
worksheet4.write row("B7", datal3])

e s e e e e e
#

Example 5.

#

caption = 'Default table with "First Column" and "Last Column" options.'

Set the columns widths.
worksheet5.set column("B:G", 12)

32.23. Example: Worksheet Tables 477

Creating Excel files with Python and XisxWriter, Release 3.1.9

Write the caption.
worksheet5.write("B1", caption)

Add a table to the worksheet.
worksheet5.add table("B3:F7", {"first column": 1, "last column": 1})

Table data can also be written separately, as an array or individual cells.
worksheet5.write row("B4", datal[0])
worksheet5.write row("B5", datall])
worksheet5.write row("B6", datal[2])
worksheet5.write row("B7", datal3])

B e e e e e e
#

Example 6.

#

caption = "Table with banded columns but without default banded rows."

Set the columns widths.
worksheet6.set column("B:G", 12)

Write the caption.
worksheet6.write("B1", caption)

Add a table to the worksheet.
worksheet6.add table("B3:F7", {"banded rows": 0, "banded columns": 1})

Table data can also be written separately, as an array or individual cells.
worksheet6.write row("B4", datal[0])
worksheet6.write row("B5", data[l])
worksheet6.write row("B6", datal2])
worksheet6.write row("B7", data[3])

B e e e e e e e e e e e e e
#

Example 7.

#

caption = "Table with user defined column headers."

Set the columns widths.
worksheet7.set column("B:G", 12)

Write the caption.
worksheet7.write("B1", caption)

Add a table to the worksheet.
worksheet7.add table(
"B3:F7",
{
"data": data,
"columns": [

478

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

{"header": "Product"},

{"header": "Quarter 1"},
{"header": "Quarter 2"},
{"header": "Quarter 3"},
{"header": "Quarter 4"},

b

B e
#

Example 8.

#

caption = "Table with user defined column headers."

Set the columns widths.
worksheet8.set column("B:G", 12)

Write the caption.
worksheet8.write("B1", caption)

Formula to use in the table.
formula = "=SUM(Table8[@[Quarter 1]:[Quarter 4]1])"

Add a table to the worksheet.
worksheet8.add table(
"B3:G7",
{
"data": data,
"columns": [
{"header": "Product"},
{"header": "Quarter 1"},
{"header": "Quarter 2"},
{"header": "Quarter 3"},
{"header": "Quarter 4"},
{"header": "Year", "formula": formula},

b

S e e e e e e R R R R e
#

Example 9.

#

caption = "Table with totals row (but no caption or totals)."

Set the columns widths.
worksheet9.set column("B:G", 12)

Write the caption.
worksheet9.write("B1", caption)

32.23. Example: Worksheet Tables 479

Creating Excel files with Python and XisxWriter, Release 3.1.9

Formula to use in the table.
formula = "=SUM(Table9[@[Quarter 1]:[Quarter 4]1]1)"

Add a table to the worksheet.
worksheet9.add table(

"B3:G8",
{
"data": data,
“total row": 1,
"columns": [
{"header": "Product"},
{"header": "Quarter 1"},
{"header": "Quarter 2"},
{"header": "Quarter 3"},
{"header": "Quarter 4"},
{"header": "Year", "formula": formula},
I,
}

BRI R R R R R R

#

Example 10.

#

caption = "Table with totals row with user captions and functions."

Set the columns widths.
worksheetl0.set column("B:G", 12)

Write the caption.
worksheetl0.write("B1", caption)

Options to use in the table.
options = {
"data": data,
"total row": 1,
"columns": [
{"header": "Product", "total string": "Totals"},

{"header": "Quarter 1", "total function": "sum"},
{"header": "Quarter 2", "total function": "sum"},
{"header": "Quarter 3", "total function": "sum"},
{"header": "Quarter 4", "total function": "sum"},
{
"header": "Year",
"formula": "=SUM(TablelO[@[Quarter 1]:[Quarter 41])",
"total function": "sum",
3

1,
}

Add a table to the worksheet.
worksheet10.add table("B3:G8", options)

480 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

B e e e e e e e A e e R e

#

Example 11.

#

caption = "Table with alternative Excel style."

Set the columns widths.
worksheetll.set column("B:G", 12)

Write the caption.
worksheetll.write("B1", caption)

Options to use in the table.
options = {
"data": data,
"style": "Table Style Light 11",
"total row": 1,
"columns": [
{"header": "Product", "total string": "Totals"},

{"header": "Quarter 1", "total function": "sum"},
{"header": "Quarter 2", "total function": "sum"},
{"header": "Quarter 3", "total function": "sum"},
{"header": "Quarter 4", "total function": "sum"},
{
"header": "Year",
"formula": "=SUM(Tablell[@[Quarter 1]:[Quarter 41])",
"total function": "sum",
}

Add a table to the worksheet.
worksheetll.add table("B3:G8", options)

BRI R R R R R R R

#

Example 12.

#

caption = "Table with Excel style removed."

Set the columns widths.
worksheetl2.set column("B:G", 12)

Write the caption.
worksheetl2.write("B1", caption)

Options to use in the table.
options = {

"data": data,

"style": None,

32.23. Example: Worksheet Tables 481

Creating Excel files with Python and XisxWriter, Release 3.1.9

"total row": 1,
"columns": [
{"header": "Product", "total string": "Totals"},

{"header": "Quarter 1", "total function": "sum"},
{"header": "Quarter 2", "total function": "sum"},
{"header": "Quarter 3", "total function": "sum"},
{"header": "Quarter 4", "total function": "sum"},
{
"header": "Year",
"formula": "=SUM(Tablel2[@[Quarter 1]:[Quarter 41])",
"total function": "sum",
}

Add a table to the worksheet.
worksheetl12.add table("B3:G8", options)

BRHHHHHHHRHH AR R R R R R R R

#

Example 13.

#

caption = "Table with column formats."

Set the columns widths.
worksheet13.set column("B:G", 12)

Write the caption.
worksheetl3.write("B1", caption)

Options to use in the table.
options = {
"data": data,
“total row": 1,
"columns": [
{"header": "Product", "total string": "Totals"},

{
"header": "Quarter 1",
"total function": "sum",
"format": currency format,
3
{
"header": "Quarter 2",
"total function": "sum",
"format": currency format,
3
{
"header": "Quarter 3",
"total function": "sum",
"format": currency format,
3

482 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

{
"header": "Quarter 4",
"total function": "sum",
“format": currency format,
}
{
"header": "Year",
"formula": "=SUM(Tablel3[@[Quarter 1]
“total function": "sum",
“format": currency format,
3

1,
}

Add a table to the worksheet.

worksheet13.add table("B3:G8", options)

workbook.close()

32.24 Example: Writing User Defined Types (1)

:[Quarter 411)",

An example of adding support for user defined types to the XlsxWriter write () method using the

add write handler() method.

This example takes UUID data and writes it as a string by adding a callback handler to the
write() method. A UUID data type would normally raise a TypeError in XlsxWriter since it

isn’t a type that is supported by Excel.

See the Writing user defined types section for more details on how this functionality works.

32.24. Example: Writing User Defined Types (1)

483

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NON [user_types1.xlsx
Homu Yo Tables harts SmartA A
A6 3] 0 & (= fx |~
I T e
1 |G6fad59ea-eeBa-Icad-894e-db77e160355e
P4
3
4
5
B
7
8
a9
10
11
12
13
IEHIHEI FE IIEHWHIJH"IIIIIIIIHQ... I
Mormal ¥iew Ready A

B e e S

#

An example of adding support for user defined types to the XlsxWriter write()
method.

#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

#

import xlsxwriter
import uuid

Create a function that will behave like a worksheet write() method.

#
#
This function takes a UUID and writes it as as string. It should take the

parameters shown below and return the return value from the called worksheet
write *() method. In this case it changes the UUID to a string and calls

write string() to write it.

#

d

ef write uuid(worksheet, row, col, token, format=None):
return worksheet.write string(row, col, str(token), format)

Set up the workbook as usual.
workbook = xlsxwriter.Workbook("user typesl.xlsx")

484 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet = workbook.add worksheet()

Make the first column wider for clarity.
worksheet.set column("A:A", 40)

Add the write() handler/callback to the worksheet.
worksheet.add write handler(uuid.UUID, write uuid)

Create a UUID.
my uuid = uuid.uuid3(uuid.NAMESPACE DNS, "python.org")

Write the UUID. This would raise a TypeError without the handler.
worksheet.write("Al", my uuid)

workbook. close()

32.25 Example: Writing User Defined Types (2)

An example of adding support for user defined types to the XlsxWriter write () method using the
add write handler() method.

This example removes NaN (Not a Number) values from numeric data and writes a blank cell
instead. Note, another way to handle this is with the nan_inf to errors option in the Work-
book () constructor.

See the Writing user defined types section for more details on how this functionality works.

32.25. Example: Writing User Defined Types (2) 485

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NON [user_types2.xlsx
Home Tables Charts SmartArt » v -
A20 10 & (= fx| v
T A RN N SO S U P N——n
1 1 2 4 5
2
3
4
5
6
7
8
9
10
11
12
13
T s N e [
ormal View Ready A

B e e e e e e e P e e e

#

An example of adding support for user defined types to the XlsxWriter write()
method.

#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

#

import xlsxwriter
import math

Create a function that will behave like a worksheet write() method.

#
This function takes a float and if it is NaN then it writes a blank cell
instead. It should take the parameters shown below and return the return
value from the called worksheet write *() method.
#
def ignore nan(worksheet, row, col, number, format=None):

if math.isnan(number):

return worksheet.write blank(row, col, None, format)

else:
Return control to the calling write() method for any other number.

return None

486 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Set up the workbook as usual.
workbook = xlsxwriter.Workbook("user types2.xlsx")
worksheet = workbook.add worksheet()

Add the write() handler/callback to the worksheet.
worksheet.add write handler(float, ignore nan)

Create some data to write.
my data = [1, 2, float("nan"), 4, 5]

Write the data. Note that write row() calls write() so this will work as
expected. Writing NaN values would raise a TypeError without the handler.
worksheet.write row("Al", my data)

workbook. close()

32.26 Example: Writing User Defined types (3)

An example of adding support for user defined types to the XlsxWriter write () method using the
add write handler() method.

This, somewhat artificial, example shows how to use the row and col parameters to control the
logic of the callback function. It changes the worksheet write () method so that it hides/replaces
user passwords when writing string values based on their position in the worksheet.

See the Writing user defined types section for more details on how this functionality works.

32.26. Example: Writing User Defined types (3) 487

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NON [user_types3.xlsx
A Home | Layout Tables | Charts | SmartArt 3 v &~
A23 [+ & & (= fx| v
T AN NN U NN O R -
1 Name Password City
2 |Sara Al Rome
3 |Michele **** Milano
4 |Maria Haa Napoli
5 |Paclo HEwE Fano
B
i
3
9
10
11
12
12>
REas EPEY | [i
Mormal ¥iew Ready A

B e e S

An example of adding support for user defined types to the XlsxWriter write()
method.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K HH R H

import xlsxwriter

Create a function that changes the worksheet write() method so that it
hides/replaces user passwords when writing string data. The password data,
based on the sample data structure, will be data in the second column, apart
from the header row.
def hide password(worksheet, row, col, string, format=None):
if col == 1 and row > 0:
return worksheet.write string(row, col, "****" format)

else:
return worksheet.write string(row, col, string, format)

Set up the workbook as usual.
workbook = xlsxwriter.Workbook("user types3.xlsx")
worksheet = workbook.add worksheet()

488

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Make the headings in the first row bold.
bold = workbook.add format({"bold": True})
worksheet.set row(0, None, bold)

Add the write() handler/callback to the worksheet.

worksheet.add write handler(str, hide password)

Create some data to write.

my data = [
["Name", "Password", "City"],
["Sara", "$5%"6&", "Rome"l],
["Michele", "123abc", "Milano"],
["Maria", "juvexme", "Torino"],
["Paolo", "qwerty", "Fano"],

]

Write the data. Note that write row() calls write() so this will work as

expected.
for row num, row data in enumerate(my data):
worksheet.write row(row num, 0, row data)

workbook.close()

32.27 Example: Ignoring Worksheet errors and warnings

An example of ignoring Excel worksheet errors/warnings using the worksheet ignore errors()

method.

32.27. Example: Ignoring Worksheet errors and warnings

489

Creating Excel files with Python and XisxWriter, Release 3.1.9

[NON | ' ignore_errars.xlsx
A Home | Layout Tables | Charts | SmartArt 3 v &~
A16 10 & (= fx| |~
B < " N _——
Warning: 123

Warning turned off: 123

Warning: " #DIV/O!
Warning turned off: | #DIV/0!

lﬂm'dmm-hwml-li

= AR ELNVEY [

Mormal View Ready A

B e e S

An example of turning off worksheet cells errors/warnings using the
XlsxWriter Python module.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K HH R H

import xlsxwriter

workbook = xlsxwriter.Workbook("ignore errors.xlsx")
worksheet = workbook.add worksheet()

Write strings that looks like numbers. This will cause an Excel warning.
worksheet.write string("C2", "123")
worksheet.write string("C3", "123")

Write a divide by zero formula. This will also cause an Excel warning.
worksheet.write formula("C5", "=1/0")
worksheet.write formula("C6", "=1/0")

Turn off some of the warnings:
worksheet.ignore errors({"number stored as text": "C3", "eval error": "C6"})

Write some descriptions for the cells and make the column wider for clarity.

490

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.set column("B:B", 16, None)

worksheet.write("B2", "Warning:")
worksheet.write("B3", "Warning turned off:")
worksheet.write("B5", "Warning:")
worksheet.write("B6", "Warning turned off:")

workbook.close()

32.28 Example: Sparklines (Simple)

Example of how to add sparklines to a XlsxWriter worksheet.
Sparklines are small charts that fit in a single cell and are used to show trends in data.

See the Working with Sparklines method for more details.

| &80 0 ___ sparklinesLxlsx
Tables Charts SmartArt b5 I -

< et [

Mormal View

S R R R e e e e R R R R e e e R R e e e
#

Example of how to add sparklines to a Python XlsxWriter file.

#

Sparklines are small charts that fit in a single cell and are

used to show trends in data.

#

32.28. Example: Sparklines (Simple) 491

Creating Excel files with Python and XisxWriter, Release 3.1.9

See sparklines2.py for examples of more complex sparkline formatting.

#
SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

#
import xlsxwriter

workbook = xlsxwriter.Workbook("sparklinesl.xlsx")
worksheet = workbook.add worksheet()

Some sample data to plot.
data = [
[-2, 2, 3, -1, 0],
[30, 20, 33, 20, 151,
[, -1, -1, 1, -11,

Write the sample data to the worksheet.
worksheet.write row("Al", datal0])
worksheet.write row("A2", data[l])
worksheet.write row("A3", datal2])

Add a line sparkline (the default) with markers.

worksheet.add sparkline("F1", {"range": "Sheetl!Al:E1", "markers":

Add a column sparkline with non-default style.

worksheet.add sparkline("F2", {"range": "Sheetl!A2:E2", "type": "column", "style": 12

Add a win/loss sparkline with negative values highlighted.

worksheet.add sparkline(

True})

"F3", {"range": "Sheetl!A3:E3", "type": "win loss", "negative points": True}

)

workbook.close()

32.29 Example: Sparklines (Advanced)

This example shows the majority of options that can be applied to sparklines.

Sparklines are small charts that fit in a single cell and are used to show trends in data.

See the Working with Sparklines method for more details.

492

Chapter 32. Examples

;
P

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e 00 | sparklines2.xlsx
Home | Layout | Tables | Charts Smartirt | » v fE
A48 D& (- |~
B f—

Sparkline

mmumm.thHL
|
]
|
|
]
|
|
|
]

10 | —=———=———=— Line with axis.

11

12 el — Column with default style (1).

13 melme - Column with style 2.

14 Bl ——m Column with style 3.

15 maleme - Column with style 4.

16 BmBme - Column with style 5.

17 Bmlme me Column with style 6.

18 (Wemme Column with a user defined colour.
19

20 | == mm= === Awin/loss sparkline.
21 | == = ===_ Awin/loss sparkline with negative point

25 |Growth

27 | o
28 | e
29 | o e

Description

A default "line" sparkline.

A default "column" sparkline.
A default "win/loss" sparkline.

Line with markers.

Line with high and low points.

Line with first and last point markers.
Line with negative point markers.

A left to right column (the default).
Aright to left column.
Sparkline and text in one cell.

A grouped sparkline. Changes are applie

eet1 [Sheet2 | + N I

A
Mormal View

Ready

32.29. Example: Sparklines (Advanced)

493

Creating Excel files with Python and XisxWriter, Release 3.1.9

B e e e e e
Example of how to add sparklines to an XlsxWriter file with Python.
Sparklines are small charts that fit in a single cell and are

used to show trends in data. This example shows the majority of

options that can be applied to sparklines.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HHFHFHHHHHR

import xlsxwriter

workbook = xlsxwriter.Workbook("sparklines2.xlsx")
worksheetl = workbook.add worksheet()

worksheet2 = workbook.add worksheet()

bold = workbook.add format({"bold": True})

row = 1

Set the columns widths to make the output clearer.
worksheetl.set column("A:A", 14)

worksheetl.set column("B:B", 50)

worksheetl.set zoom(150)

Headings.
worksheetl.write("Al", "Sparkline", bold)
worksheetl.write("B1", "Description", bold)

R
#
text = 'A default "line" sparkline.'

worksheetl.add sparkline("A2", {"range": "Sheet2!A1:J1"})
worksheetl.write(row, 1, text)

row += 1

T
#
text = 'A default "column" sparkline.'

worksheetl.add sparkline("A3", {"range": "Sheet2!A2:J2", "type": "column"})
worksheetl.write(row, 1, text)

row += 1

B
#
text = 'A default "win/loss" sparkline.'

494

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheetl.add sparkline("A4", {"range": "Sheet2!A3:33", "type": "win loss"})

worksheetl.write(row, 1, text)
row += 2

HHHHHHH BB A
#
text = "Line with markers."

worksheetl.add sparkline("A6", {"range": "Sheet2!A1l:J1", "markers": True})

worksheetl.write(row, 1, text)
row += 1

BRI R R R R
#

text = "Line with high and low points."

worksheetl.add sparkline(
"A7", {"range": "Sheet2!Al:J1", "high point": True, "low point": True}
)

worksheetl.write(row, 1, text)
row += 1

e
#
text = "Line with first and last point markers."

worksheetl.add sparkline(
"A8", {"range": "Sheet2!Al:J1", "first point": True, "last point": True}
)

worksheetl.write(row, 1, text)
row += 1

e R e e e e e
#
text = "Line with negative point markers."

worksheetl.add sparkline("A9", {"range": "Sheet2!Al1:J1", "negative points": True})
worksheetl.write(row, 1, text)

row += 1

et I Y I st s e
#
text = "Line with axis."

32.29. Example: Sparklines (Advanced) 495

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheetl.add sparkline("A10", {"range": "Sheet2!A1l:J1", "axis": True})

worksheetl.write(row, 1, text)
row += 2

B oo o B B B B Bt Bt et et et et et e
#
text = "Column with default style (1)."

worksheetl.add sparkline("A12", {"range": "Sheet2!A2:3J2", "type": "column"})
worksheetl.write(row, 1, text)

row += 1

A R
#
text = "Column with style 2."

worksheetl.add sparkline("A13", {"range": "Sheet2!A2:J2", "type": "column", "style": :

worksheetl.write(row, 1, text)
row += 1

R
#
text = "Column with style 3."

worksheetl.add sparkline("Al4", {"range": "Sheet2!A2:J2", "type": "column", "style": :

worksheetl.write(row, 1, text)
row += 1

FHHHHHH A
fext = "Column with style 4."

worksheetl.add sparkline("A15", {"range": "Sheet2!A2:J2", "type": "column", "style":
worksheetl.write(row, 1, text)
row += 1

B

#

text = "Column with style 5."

worksheetl.add sparkline("Al6", {"range": "Sheet2!A2:J2", "type": "column", "style":

worksheetl.write(row, 1, text)

496

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

row += 1

B i
#
text = "Column with style 6."

worksheetl.add sparkline("Al17", {"range": "Sheet2!A2:J2", "type": "column", "style":

worksheetl.write(row, 1, text)
row += 1

B et e e e e e e e e e e
#
text = "Column with a user defined color."

worksheetl.add sparkline(
"A18", {"range": "Sheet2!A2:32", "type": "column", "series color": "#E965E0"}
)

worksheetl.write(row, 1, text)
row += 2

e e e e e e e b e e e e e e e e e e s e e e e e e e e e e e e e e e e e e,
#
text = "A win/loss sparkline."

worksheetl.add sparkline("A20", {"range": "Sheet2!A3:J3", "type": "win loss"})

worksheetl.write(row, 1, text)
row += 1

A R S
#
text = "A win/loss sparkline with negative points highlighted."

worksheetl.add sparkline(
"A21", {"range": "Sheet2!A3:J3", "type": "win loss", "negative points": True}
)

worksheetl.write(row, 1, text)
row += 2

e e e e e e e e e e e e e e e e e s e e e e e e e e e e e e e e e e e,
#
text = "A left to right column (the default)."

worksheetl.add sparkline(
"A23", {"range": "Sheet2!A4:3J4", "type": "column", "style": 20}

32.29. Example: Sparklines (Advanced) 497

Creating Excel files with Python and XisxWriter, Release 3.1.9

)

worksheetl.write(row, 1, text)
row += 1

B B i
#
text = "A right to left column.™

worksheetl.add sparkline(
"A24", {"range": "Sheet2!A4:3J4", "type": "column", "style": 20, "reverse": True}
)

worksheetl.write(row, 1, text)
row += 1

e R e R
#
text = "Sparkline and text in one cell."”

worksheetl.add sparkline(
"A25", {"range": "Sheet2!A4:3J4", "type": "column", "style": 20}
)

worksheetl.write(row, 0, "Growth")
worksheetl.write(row, 1, text)
row += 2

A
#
text = "A grouped sparkline. Changes are applied to all three."

worksheetl.add sparkline(
"A27",
{
"location": ["A27", "A28", "A29"],
"range": ["Sheet2!A5:15", "Sheet2!A6:J6", "Sheet2!A7:37"],
"markers": True,
I
)

worksheetl.write(row, 1, text)
row += 1

A S I
#

Create a second worksheet with data to plot.

#

worksheet2.set column("A:J", 11)

498

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

data = [
Simple line data.
[-2, 2, 3, -1, 0, -2, 3, 2, 1, 0],
Simple column data.
[30, 20, 33, 20, 15, 5, 5, 15, 10, 15],
Simple win/loss data.
(., 1, -1, -1, 1, -1, 1, 1, 1, -117,
Unbalanced histogram.
[5, 6, 7, 10, 15, 20, 30, 50, 70, 1l00],
Data for the grouped sparkline example.
[-2, 2, 3, -1, 0, -2, 3, 2, 1, 0],
[3r '1r OI '21 31 21 11 01 21 1]1
(e, -2, 3, 2,1, 0, 1, 2, 3, 1],
]

Write the sample data to the worksheet.
worksheet2.write row("Al", datal[0])
worksheet2.write row("A2", datal[l])
worksheet2.write row("A3", data[2])
worksheet2.write row("A4", data[3])
worksheet2.write row("A5", datal4])
worksheet2.write row("A6", data[5])
worksheet2.write row("A7", datal[6])

workbook.close()

32.30 Example: Adding Cell Comments to Worksheets (Simple)

A simple example of adding cell comments to a worksheet. For more details see Working with Cell
Comments.

32.30. Example: Adding Cell Comments to Worksheets (Simple) 499

Creating Excel files with Python and XisxWriter, Release 3.1.9

|$G("f¥|HE”ﬂ
T e i e

e shees [

Mormal View Cell A1 commented by

e R

An example of writing cell comments to a worksheet using Python and
XlsxWriter.

For more advanced comment options see comments2.py.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HHHHHHHHH

import xlsxwriter

workbook = xlsxwriter.Workbook("commentsl.xlsx")
worksheet = workbook.add worksheet()

worksheet.write("Al", "Hello")
worksheet.write comment("Al", "This is a comment")

workbook.close()

500 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

32.31 Example: Adding Cell Comments to Worksheets (Advanced)

Another example of adding cell comments to a worksheet. This example demonstrates most of
the available comment formatting options. For more details see Working with Cell Comments.

e 00 | comments2.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 I -
AL 10 ® (= A |~
_ > U YN O S R 2 o =
2 ello
This cell comment is visible, Hetlo.
explicitly.
3
4
= ello
This cell cormment is also visible Heto.
because of show_comments{).
6
7
[=]
— PREEr— l Sheztl_i Sheztz_l shutaiH II
Mormal View

Ready A

HHHHHHHHH R R R R R R AR A

XlsxWriter.

Copyright 2013-2023,

HoH K H R W HRH

import xlsxwriter

workbook = xlsxwriter.

worksheetl = workbook.
worksheet2 = workbook.
worksheet3 = workbook.
worksheet4 = workbook.
worksheet5 = workbook.

An example of writing cell comments to a worksheet using Python and

Each of the worksheets demonstrates different features of cell comments.

SPDX-License-Identifier: BSD-2-Clause

John McNamara, jmcnamara@cpan.org

Workbook("comments.xlsx")

add worksheet()
add worksheet ()
add worksheet ()
add worksheet ()
add worksheet()

32.31. Example: Adding Cell Comments to Worksheets (Advanced) 501

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet6 = workbook.add worksheet()
worksheet7 = workbook.add worksheet()
worksheet8 = workbook.add worksheet()

text wrap = workbook.add format({"text wrap": 1, "valign": "top"})

e B e
#

Example 1. Demonstrates a simple cell comments without formatting.

#

Set up some formatting.
worksheetl.set column("C:C", 25)
worksheetl.set row(2, 50)

Simple ASCII string.
cell text = "Hold the mouse over this cell to see the comment."

comment = "This is a comment."

worksheetl.write("C3", cell text, text wrap)
worksheetl.write comment("C3", comment)

S e e e
#

Example 2. Demonstrates visible and hidden comments.

#

Set up some formatting.
worksheet2.set column("C:C", 25)
worksheet2.set row(2, 50)
worksheet2.set row(5, 50)

cell text = "This cell comment is visible."
comment = "Hello."

worksheet2.write("C3", cell text, text wrap)
worksheet2.write comment("C3", comment, {"visible": True})

cell text = "This cell comment isn't visible (the default)."

worksheet2.write("C6", cell text, text wrap)
worksheet2.write comment("C6", comment)

FHHHHHHHH
#

Example 3. Demonstrates visible and hidden comments set at the worksheet

level.

#

502

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Set up some formatting.
worksheet3.set column("C:C", 25)
worksheet3.set row(2, 50)
worksheet3.set row(5, 50)
worksheet3.set row(8, 50)

Make all comments on the worksheet visible.
worksheet3.show comments()

cell text = "This cell comment is visible, explicitly."
comment = "Hello."

worksheet3.write("C3", cell text, text wrap)
worksheet3.write comment("C3", comment, {"visible": True})

cell text = "This cell comment is also visible because of show comments()."

worksheet3.write("C6", cell text, text wrap)
worksheet3.write comment("C6", comment)

cell text = "However, we can still override it locally."

worksheet3.write("C9", cell text, text wrap)
worksheet3.write comment("C9", comment, {"visible": False})

L e e e e e e e e e e R e e e R R R R R R
#

Example 4. Demonstrates changes to the comment box dimensions.

#

Set up some formatting.
worksheet4.set column("C:C", 25)
worksheet4.set row(2, 50)
worksheet4.set row(5, 50)
worksheet4.set row(8, 50)
worksheet4.set row(15, 50)
worksheet4.set row(18, 50)

worksheet4.show comments()

cell text = "This cell comment is default size."
comment = "Hello."

worksheet4.write("C3", cell text, text wrap)
worksheet4.write comment("C3", comment)

cell text = "This cell comment is twice as wide."

worksheet4.write("C6", cell text, text wrap)
worksheet4.write comment("C6", comment, {"x scale": 2})

cell text = "This cell comment is twice as high."

32.31. Example: Adding Cell Comments to Worksheets (Advanced) 503

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet4.write("C9", cell text, text wrap)
worksheet4.write comment("C9", comment, {"y scale": 2})

cell text = "This cell comment is scaled in both directions."

worksheet4.write("C16", cell text, text wrap)
worksheet4.write comment("C16", comment, {"x scale": 1.2, "y scale": 0.5})

cell text = "This cell comment has width and height specified in pixels."

worksheet4.write("C19", cell text, text wrap)
worksheet4.write comment("C19", comment, {"width": 200, "height": 50})

B e e e e e e e P e e e
#

Example 5. Demonstrates changes to the cell comment position.

#

worksheet5.set column("C:C", 25)

worksheet5.set row(2, 50)

worksheet5.set row(5, 50)

worksheet5.set row(8, 50)

worksheet5.set row(11l, 50)

worksheet5.show comments()

cell text = "This cell comment is in the default position.™"
comment = "Hello."

worksheet5.write("C3", cell text, text wrap)
worksheet5.write comment("C3", comment)

cell text = "This cell comment has been moved to another cell."

worksheet5.write("C6", cell text, text wrap)
worksheet5.write comment("C6", comment, {"start cell": "E4"})

cell text = "This cell comment has been moved to another cell."

worksheet5.write("C9", cell text, text wrap)
worksheet5.write comment("C9", comment, {"start row": 8, "start col": 4})

cell text = "This cell comment has been shifted within its default cell."

worksheet5.write("C12", cell text, text wrap)
worksheet5.write comment("C12", comment, {"x offset": 30, "y offset": 12})

S e e e e e e e e e e e e e e e e e R e e e e e e e e R R R R R
#

Example 6. Demonstrates changes to the comment background color.

#

worksheet6.set column("C:C", 25)

504

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet6.set row(2, 50)
worksheet6.set row(5, 50)
worksheet6.set row(8, 50)

worksheet6.show comments()

cell text = "This cell comment has a different color."
comment = "Hello."

worksheet6.write("C3", cell text, text wrap)
worksheet6.write comment("C3", comment, {"color": "green"})

cell text = "This cell comment has the default color."

worksheet6.write("C6", cell text, text wrap)
worksheet6.write comment("C6", comment)

cell text = "This cell comment has a different color."

worksheet6.write("C9", cell text, text wrap)
worksheet6.write comment("C9", comment, {"color": "#CCFFCC"})

B R R e e e e e e e e e e
#

Example 7. Demonstrates how to set the cell comment author.

#

worksheet7.set column("C:C", 30)

worksheet7.set row(2, 50)

worksheet7.set row(5, 50)

author = ""
cell = "C3"

cell text = (
"Move the mouse over this cell and you will see 'Cell commented "
"by (blank)' in the status bar at the bottom"

)

comment = "Hello."

worksheet7.write(cell, cell text, text wrap)
worksheet7.write comment(cell, comment)

author = "Python"

cell = "C6"

cell text = (
"Move the mouse over this cell and you will see 'Cell commented "
"by Python' in the status bar at the bottom"

)

worksheet7.write(cell, cell text, text wrap)
worksheet7.write comment(cell, comment, {"author": author})

32.31. Example: Adding Cell Comments to Worksheets (Advanced) 505

Creating Excel files with Python and XisxWriter, Release 3.1.9

e e e
#

Example 8. Demonstrates the need to explicitly set the row height.

#

Set up some formatting.
worksheet8.set column("C:C", 25)
worksheet8.set row(2, 80)

worksheet8.show comments()

cell text = (
"The height of this row has been adjusted explicitly using "
"set row(). The size of the comment box is adjusted "
"accordingly by XlsxWriter."

)
comment = "Hello."

worksheet8.write("C3", cell text, text wrap)
worksheet8.write comment("C3", comment)

cell text = (
"The height of this row has been adjusted by Excel due to the "
"text wrap property being set. Unfortunately this means that "
"the height of the row is unknown to XlsxWriter at run time "
"and thus the comment box is stretched as well.\n\n"
"Use set row() to specify the row height explicitly to avoid "
"this problem."

)

worksheet8.write("C6", cell text, text wrap)
worksheet8.write comment("C6", comment)

workbook.close()

32.32 Example: Insert Textboxes into a Worksheet

The following is an example of how to insert and format textboxes in a worksheet, see in-
sert textbox() and Working with Textboxes for more details.

506 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

®_® [textbox.xlsx
Home | Layout Tables | Charts | SmartArt | 2| v L~
A1 3]0 @ (= fx| |~
| S B8 [€ [Db | E [F [& [H][=
73
74
75 A textbox with a gradient fill
76 background
77
78
79
80
81
82
83
34 oSS S S SRS SRR SRR
85 EAtmhmmthauserﬂeﬁned E
86 = border line b
87 = t
a8 : .
e I sheee [N
- | :
ormal View Ready i

BRBHH AR R R AR AR R RS R R

An example of inserting textboxes into an Excel worksheet using
Python and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH R HH R H

import xlsxwriter

workbook = xlsxwriter.Workbook("textbox.xlsx")
worksheet = workbook.add worksheet()

row = 4

col =1

The examples below show different textbox options and formatting. In each
example the text describes the formatting.

Example
text = "A simple textbox with some text"
worksheet.insert textbox(row, col, text)
row += 10

32.32. Example: Insert Textboxes into a Worksheet 507

Creating Excel files with Python and XisxWriter, Release 3.1.9

Example
text = "A textbox with changed dimensions"
options = {
"width": 256,
"height": 100,
}
worksheet.insert textbox(row, col, text, options)
row += 10
Example

text = "A textbox with an offset in the cell"
options = {

"x offset": 10,

"y offset": 10,

}

worksheet.insert textbox(row, col, text, options)
row += 10

Example

text = "A textbox with scaling"

options = {
"X scale": 1.5,
"y scale": 0.8,
}
worksheet.insert textbox(row, col, text, options)
row += 10

Example

text = "A textbox with some long text that wraps around onto several lines"
worksheet.insert textbox(row, col, text)

row += 10

Example

text = "A textbox\nwith some\nnewlines\n\nand paragraphs"
worksheet.insert textbox(row, col, text)

row += 10

Example
text = "A textbox with a solid fill background"
options = {
"fill": {"color": "red"},
}

worksheet.insert textbox(row, col, text, options)
row += 10

Example
text = "A textbox with a no fill background”
options = {

"fill": {"none": True},

}
worksheet.insert textbox(row, col, text, options)
row += 10

508 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Example
text = "A textbox with a gradient fill background"
options = {
"gradient": {"colors": ["#DDEBCF", "#9CB86E", "#156B13"]},

}

worksheet.insert textbox(row, col, text, options)
row += 10

Example

text = "A textbox with a user defined border line"

options = {
"border": {"color": "red", "width": 3, "dash type": "round dot"},

}

worksheet.insert textbox(row, col, text, options)
row += 10

Example

text = "A textbox with no border line"

options = {
"border": {"none": True},
}

worksheet.insert textbox(row, col, text, options)
row += 10

Example
text = "Default alignment: top - left"
worksheet.insert textbox(row, col, text)

row += 10
Example
text = "Alignment: top - center"
options = {
"align": {"horizontal": "center"},
}
worksheet.insert textbox(row, col, text, options)
row += 10
Example
text = "Alignment: middle - center"
options = {
"align": {"vertical": "middle", "horizontal": "center"},
}
worksheet.insert textbox(row, col, text, options)
row += 10
Example
text = "Alignment: long text line that wraps and is centered"
options = {
"align": {"vertical": "middle", "horizontal": "center", "text": "center"},
}
worksheet.insert textbox(row, col, text, options)
row += 10

32.32. Example: Insert Textboxes into a Worksheet 509

Creating Excel files with Python and XisxWriter, Release 3.1.9

Example
text = "Font properties: bold"
options = {
"font": {"bold": True},
}

worksheet.insert textbox(row, col, text, options)
row += 10

Example
text = "Font properties: various”
options = {
"font": {"bold": True},
}
worksheet.insert textbox(row, col, text, options)
row += 10

Example
text = "Font properties: various"
options = {
“font": {
"bold": True,

"italic": True,
"underline": True,

"name": "Arial",
"color": "red",
"size": 12,

}
}

worksheet.insert textbox(row, col, text, options)
row += 10

Example
text = "Some text in a textbox with formatting"
options = {
"font": {"color": "white"},
"align": {"vertical": "middle", "horizontal": "center"},

"gradient": {"colors": ["red", "blue"l},

}
worksheet.insert textbox(row, col, text, options)
row += 10

Example
text = ""
options = {
"textlink": "=F185",
}
worksheet.write("F185", "Text in a cell")

worksheet.insert textbox(row, col, text, options)
row += 10

Example
text = "Text rotated up”
options = {"text rotation": 90}

510

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.insert textbox(row, col, text, options)

row += 10
Example
text = "Text rotated down"

options = {"text rotation": -90}
worksheet.insert textbox(row, col, text, options)
row += 10

Example

text = "Text rotated vertically"

options = {"text rotation": 270}
worksheet.insert textbox(row, col, text, options)
row += 10

Example

text = "Textbox with hyperlink"

options = {"url": "https://github.com/jmcnamara", "tip": "GitHub"}
worksheet.insert textbox(row, col, text, options)

row += 10

workbook.close()

32.33 Example: Outline and Grouping

Examples of how use XlsxWriter to generate Excel outlines and grouping. See also Working with
Outlines and Grouping.

32.33. Example: Outline and Grouping 511

Creating Excel files with Python and XisxWriter, Release 3.1.9

Marth
Morth
Marth
Marth
North Total

South
South
South
South
South Total
Grand Total

Mormal View

e R

Example of how use Python and XlsxWriter to generate Excel outlines and
grouping.

Excel allows you to group rows or columns so that they can be hidden or
displayed with a single mouse click. This feature is referred to as outlines.

Outlines can reduce complex data down to a few salient sub-totals or
summaries.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HHEHHFHFHRHEHRHHH

import xlsxwriter

Create a new workbook and add some worksheets
workbook = xUlsxwriter.Workbook("outline.xlsx")

worksheetl = workbook.add worksheet("Outlined Rows")

worksheet2 = workbook.add worksheet("Collapsed Rows")
worksheet3 = workbook.add worksheet("Outline Columns")
worksheet4 = workbook.add worksheet("Outline levels")

Add a general format

512

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

bold = workbook.add format({"bold": 1})

B L L g e o s T e e

Example 1: A worksheet with outlined rows. It also includes SUBTOTAL()
functions so that it looks like the type of automatic outlines that are
generated when you use the Excel Data->SubTotals menu item.

For outlines the important parameters are 'level' and 'hidden'. Rows with
the same 'level' are grouped together. The group will be collapsed if
'hidden' is enabled. The parameters 'height' and 'cell format' are assigned
default values if they are None.

HH B HHFHHHHHR

worksheetl.set row(1l, None, None, {"level": 2})
worksheetl.set row(2, None, None, {"level": 2})
worksheetl.set row(3, None, None, {"level": 2})
worksheetl.set row(4, None, None, {"level": 2})
worksheetl.set row(5, None, None, {"level": 1})

worksheetl.set row(6, None, None, {"level": 2})
worksheetl.set row(7, None, None, {"level": 2})
worksheetl.set row(8, None, None, {"level": 2})
worksheetl.set row(9, None, None, {"level": 2})
worksheetl.set row(10, None, None, {"level": 1})

Adjust the column width for clarity
worksheetl.set column("A:A", 20)

Add the data, labels and formulas

worksheetl.write("Al", "Region", bold)
worksheetl.write("A2", "North")
worksheetl.write("A3", "North")
worksheetl.write("A4", "North")
worksheetl.write("A5", "North")
worksheetl.write("A6", "North Total", bold)
worksheetl.write("B1", "Sales", bold)
worksheetl.write("B2", 1000)
worksheetl.write("B3", 1200)
worksheetl.write("B4", 900)
worksheetl.write("B5", 1200)
worksheetl.write("B6", "=SUBTOTAL(9,B2:B5)", bold)
worksheetl.write("A7", "South")
worksheetl.write("A8", "South")
worksheetl.write("A9", "South")
worksheetl.write("A10", "South")
worksheetl.write("Al11l", "South Total", bold)
worksheetl.write("B7", 400)
worksheetl.write("B8", 600)
worksheetl.write("B9", 500)

32.33. Example: Outline and Grouping

513

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheetl.write("B10", 600)
worksheetl.write("B11", "=SUBTOTAL(9,B7:B10)", bold)

worksheetl.write("A12", "Grand Total", bold)
worksheetl.write("B12", "=SUBTOTAL(9,B2:B10)", bold)

B e e e e e e e e A e e R P e R

#

Example 2: A worksheet with outlined rows. This is the same as the
previous example except that the rows are collapsed.

Note: We need to indicate the rows that contains the collapsed symbol '+'
with the optional parameter, 'collapsed'. The group will be then be
collapsed if 'hidden' is True.

#

worksheet2.set row(1l, None, None, {"level": 2, "hidden": True})
worksheet2.set row(2, None, None, {"level": 2, "hidden": True})
worksheet2.set row(3, None, None, {"level": 2, "hidden": True})
worksheet2.set row(4, None, None, {"level": 2, "hidden": True})
worksheet2.set row(5, None, None, {"level": 1, "hidden": True})
worksheet2.set row(6, None, None, {"level": 2, "hidden": True})
worksheet2.set row(7, None, None, {"level": 2, "hidden": True})
worksheet2.set row(8, None, None, {"level": 2, "hidden": True})
worksheet2.set row(9, None, None, {"level": 2, "hidden": True})
worksheet2.set row(10, None, None, {"level": 1, "hidden": True})
worksheet2.set row(11l, None, None, {"collapsed": True})

Adjust the column width for clarity
worksheet2.set column("A:A", 20)

Add the data, labels and formulas
worksheet2.write("Al", "Region", bold)
worksheet2.write("A2", "North")
worksheet2.write("A3", "North")
worksheet2.write("A4", "North")
worksheet2.write("A5", "North")
worksheet2.write("A6", "North Total", bold)

worksheet2.write("B1", "Sales", bold)

(
worksheet2.write("B2", 1000)
worksheet2.write("B3", 1200)
worksheet2.write("B4", 900)
worksheet2.write("B5", 1200)
worksheet2.write("B6", "=SUBTOTAL(9,B2:B5)", bold)

worksheet2.write("A7", "South")
worksheet2.write("A8", "South")
worksheet2.write("A9", "South")
worksheetZ.write('AlO" "South")
worksheet2.write("A11", "South Total", bold)

worksheet2.write("B7", 400)

514 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet2.write("B8", 600)

worksheet2.write("B9", 500)

worksheet2.write("B10", 600)

worksheet2.write("B11", "=SUBTOTAL(9,B7:B10)", bold)
worksheet2.write("A12", "Grand Total", bold)
worksheet2.write("B12", "=SUBTOTAL(9,B2:B10)", bold)

HRHHHHHHHRRH AR R R R R R R R R R

#

Example 3: Create a worksheet with outlined columns.
#

data = [

["Month", "Jan", "Feb", "Mar", "Apr", "May", “Jun",
["North", 50, 20, 15, 25, 65, 80, "=SUM(B2:G2)"],
["South", 10, 20, 30, 50, 50, 50, "=SUM(B3:G3)"],
["East", 45, 75, 50, 15, 75, 100, "=SUM(B4:G4)"],
["West", 15, 15, 55, 35, 20, 50, "=SUM(B5:G5)"],

"Total"],

]

Add bold format to the first row.
worksheet3.set row(0, None, bold)

Set column formatting and the outline level.
worksheet3.set column("A:A", 10, bold)
worksheet3.set column("B:G", 5, None, {"level": 1})
worksheet3.set column("H:H", 10)

Write the data and a formula
for row, data row in enumerate(data):
worksheet3.write row(row, 0, data row)

worksheet3.write("H6", "=SUM(H2:H5)", bold)

B e e e e e e e e e

#

Example 4: Show all possible outline levels.

#

levels = [
"Level
"Level
"Level
"Level
"Level
"Level
"Level
"Level
"Level
"Level
"Level
"Level

1"’
2"’
3",
4",
5"’
6"’
7"’
6",
5",
4"’
3"’
2"’

32.33. Example: Outline and Grouping 515

Creating Excel files with Python and XisxWriter, Release 3.1.9

"Level 1",

]

worksheet4.write column("Al", levels)

worksheet4.set row(0, None, None, {"level": 1})
worksheet4.set row(1l, None, None, {"level": 2})
worksheet4.set row(2, None, None, {"level": 3})
worksheet4.set row(3, None, None, {"level": 4})
worksheet4.set row(4, None, None, {"level": 5})
worksheet4.set row(5, None, None, {"level": 6})
worksheet4.set row(6, None, None, {"level": 7})
worksheet4.set row(7, None, None, {"level": 6})
worksheet4.set row(8, None, None, {"level": 5})
worksheet4.set row(9, None, None, {"level": 4})
worksheet4.set row(10, None, None, {"level": 3})
worksheet4.set row(11l, None, None, {"level": 2})
worksheet4.set row(12, None, None, {"level": 1})

workbook. close()

32.34 Example: Collapsed Outline and Grouping

Examples of how use XlsxWriter to generate Excel outlines and grouping. These examples focus
mainly on collapsed outlines. See also Working with Outlines and Grouping.

516 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

SmartArt

1] © & (= fx|
| U B
Region Sales
North Total 4300
South Total 2100
Grand Total 6400

<« »»i 7] Outlined Rows | Collapsed f_
Mormal View

e R

Example of how to use Python and XlsxWriter to generate Excel outlines and
grouping.

These examples focus mainly on collapsed outlines. See also the
outlines.py example program for more general examples.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HHFHFHHHHR

import xlsxwriter

Create a new workbook and add some worksheets
workbook = xlsxwriter.Workbook("outline collapsed.xlsx")

worksheetl = workbook.add worksheet("Outlined Rows")
worksheet2 = workbook.add worksheet("Collapsed Rows 1")
worksheet3 = workbook.add worksheet("Collapsed Rows 2")
worksheet4 = workbook.add worksheet("Collapsed Rows 3")
worksheet5 = workbook.add worksheet("Outline Columns")
worksheet6 = workbook.add worksheet("Collapsed Columns")

Add a general format
bold = workbook.add format({"bold": 1})

32.34. Example: Collapsed Outline and Grouping 517

Creating Excel files with Python and XisxWriter, Release 3.1.9

This function will generate the same data and sub-totals on each worksheet.
Used in the first 4 examples.

#

def create sub totals(worksheet):
Adjust the column width for clarity.

worksheet.

Add the
worksheet
worksheet
worksheet
worksheet
worksheet
worksheet

worksheet
worksheet
worksheet
worksheet
worksheet

worksheet
worksheet
worksheet
worksheet
worksheet

worksheet
worksheet

worksheet.
.write
.write

worksheet
worksheet

worksheet

worksheet.

.write(
write(
write(
.write("A4",
.write(
.write("

write(
write(
.write("
write(
write(
worksheet. ("

write("
write(
.write("A9",
write(
write('

.write
.write

set _column("A:A",

data,
IIAlII
11 2II
n 3II

n A5 n
6|l

IIBlII
"B2"
B3",
"B4"
"B5"
write("B6",
'A7",
"A"

n A].O"
‘Al1",

(7II
(IIB8II
write("B9",
(IIBlOII
(IIBllII

.write("A12",
write("B12",

20)

labels and formulas.

"Region", bold)
"North")

"North")

"North")

"North")

"North Total", bold)

"Sales", bold)
1000)
1200)
900)
1200)
"=SUBTOTAL(9,B2:B5)", bold)
"South")
"South")
"South")
"South")
"South Total", bold)
400)
600)
500)

600)
"=SUBTOTAL(9,B7:B10)", bold)
"Grand Total", bold)

"=SUBTOTAL(9,B2:B10)", bold)

B e e e e e e e A e e R P e

#

Example 1:
functions so that it looks like the type of automatic outlines that are
generated when you use the Excel Data->SubTotals menu item.

A worksheet with outlined rows.

It also includes SUBTOTAL()

None,
None,
None,
None,
None,

{"level":
{"level":
{"level":
{"level":
{"level":

EFNNNN
— — — — ~—

~

None, {"level":

#

worksheetl.set row(1l, None,
worksheetl.set row(2, None,
worksheetl.set row(3, None,
worksheetl.set row(4, None,
worksheetl.set row(5, None,
worksheetl.set row(6, None,
worksheetl.set row(7, None,

[N e

NN

None, {"level":

518

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheetl.set row(8, None, None, {"level": 2})
worksheetl.set row(9, None, None, {"level": 2})
worksheetl.set row(10, None, None, {"level": 1})

Write the sub-total data that is common to the row examples.
create sub totals(worksheetl)

e e e e e e e e e e e e s e e e e e e e e e e e e A
#

Example 2: Create a worksheet with collapsed outlined rows.

This is the same as the example 1 except that the all rows are collapsed.

Note: We need to indicate the rows that contains the collapsed symbol '+'
with the optional parameter, 'collapsed'.

#

worksheet2.set row(1l, None, None, {"level": 2, "hidden": True})
worksheet2.set row(2, None, None, {"level": 2, "hidden": True})
worksheet2.set row(3, None, None, {"level": 2, "hidden": True})
worksheet2.set row(4, None, None, {"level": 2, "hidden": True})
worksheet2.set row(5, None, None, {"level": 1, "hidden": True})
worksheet2.set row(6, None, None, {"level": 2, "hidden": True})
worksheet2.set row(7, None, None, {"level": 2, "hidden": True})
worksheet2.set row(8, None, None, {"level": 2, "hidden": True})
worksheet2.set row(9, None, None, {"level": 2, "hidden": True})
worksheet2.set row(10, None, None, {"level": 1, "hidden": True})
worksheet2.set row(11l, None, None, {"collapsed": True})

Write the sub-total data that is common to the row examples.
create sub totals(worksheet2)

e e e
#

Example 3: Create a worksheet with collapsed outlined rows.

Same as the example 1 except that the two sub-totals are collapsed.

#

worksheet3.set row(1l, None, None, {"level": 2, "hidden": True})
worksheet3.set row(2, None, None, {"level": 2, "hidden": True})
worksheet3.set row(3, None, None, {"level": 2, "hidden": True})
worksheet3.set row(4, None, None, {"level": 2, "hidden": True})
worksheet3.set row(5, None, None, {"level": 1, "collapsed": True})
worksheet3.set row(6, None, None, {"level": 2, "hidden": True})
worksheet3.set row(7, None, None, {"level": 2, "hidden": True})
worksheet3.set row(8, None, None, {"level": 2, "hidden": True})
worksheet3.set row(9, None, None, {"level": 2, "hidden": True})
worksheet3.set row(10, None, None, {"level": 1, "collapsed": True})

Write the sub-total data that is common to the row examples.
create sub totals(worksheet3)

32.34. Example: Collapsed Outline and Grouping 519

Creating Excel files with Python and XisxWriter, Release 3.1.9

B o L e e e e e e e e e e e e

#

Example 4: Create a worksheet with outlined rows.

Same as the example 1 except that the two sub-totals are collapsed.
#

worksheet4.set row(1l, None, None, {"level": 2, "hidden": True})
worksheet4.set row(2, None, None, {"level": 2, "hidden": True})
worksheet4.set row(3, None, None, {"level": 2, "hidden": True})
worksheet4.set row(4, None, None, {"level": 2, "hidden": True})
worksheet4.set row(5, None, None, {"level": 1, "hidden": True, "collapsed":
worksheet4.set row(6, None, None, {"level": 2, "hidden": True})
worksheet4.set row(7, None, None, {"level": 2, "hidden": True})
worksheet4.set row(8, None, None, {"level": 2, "hidden": True})
worksheet4.set row(9, None, None, {"level": 2, "hidden": True})
worksheet4.set row(10, None, None, {"level": 1, "hidden": True, "collapsed":

worksheet4.set row(11l, None, None, {"collapsed": True})

Write the sub-total data that is common to the row examples.
create sub totals(worksheet4)

True})

True})

e e e e e e e e e

#

Example 5: Create a worksheet with outlined columns.
#

data = [

["Month", "Jan", "Feb", "Mar", "Apl"", "May", "Jun", "Total"],
["North", 50, 20, 15, 25, 65, 80, "=SUM(B2:G2)"1,
["South", 10, 20, 30, 50, 50, 50, "=SUM(B3:G3)"],
["East", 45, 75, 50, 15, 75, 100, "=SUM(B4:G4)"],
["West", 15, 15, 55, 35, 20, 50, "=SUM(B5:G5)"],
]

Add bold format to the first row.
worksheet5.set row(0, None, bold)

Set column formatting and the outline level.
worksheet5.set column("A:A", 10, bold)
worksheet5.set column("B:G", 5, None, {"level": 1})
worksheet5.set column("H:H", 10)

Write the data and a formula.
for row, data row in enumerate(data):
worksheet5.write row(row, 0, data row)

worksheet5.write("H6", "=SUM(H2:H5)", bold)

B e e e e e e e e e A e R P e e P

#
Example 6: Create a worksheet with collapsed outlined columns.

520 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

This is the same as the previous example except with collapsed columns.
#

Reuse the data from the previous example.

Add bold format to the first row.
worksheet6.set row(0, None, bold)

Set column formatting and the outline level.
worksheet6.set column("A:A", 10, bold)
worksheet6.set column("B:G", 5, None, {"level": 1, "hidden": True})
worksheet6.set column("H:H", 10, None, {"collapsed": True})
Write the data and a formula.
for row, data row in enumerate(data):
worksheet6.write row(row, 0, data row)
worksheet6.write("H6", "=SUM(H2:H5)", bold)

workbook. close()

32.35 Example: Setting Document Properties

This program is an example setting document properties. See the set properties() workbook
method for more details.

32.35. Example: Setting Document Properties 521

Creating Excel files with Python and XisxWriter, Release 3.1.9

st B T Statistics | Contents | Custom]—..

Title: Ill'his is an example spreadsheet

Author: |j::-hr'| Mchamara

Manager: | Dr. Heinz Doofenshmirtz

Company: |of Wolves

Category: | Example spreadsheets

)
Subject: |With document properties |
|
|
|
|
|

Keywords: |Ep.am5:|n|||:1 Example, Properties

Comments: Created with Python and XlsxWriter

Hyperlink base:

Template:

[| Save preview picture with this document

B R b
z An example of adding document properties to a XlsxWriter file.

z SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

ﬁmport xUsxwriter

workbook = xlsxwriter.Workbook("doc properties.xlsx")
worksheet = workbook.add worksheet()

workbook.set properties(

{

522 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

"title": "This is an example spreadsheet",
"subject": "With document properties",

"author": "John McNamara",

"manager": "Dr. Heinz Doofenshmirtz",

"company": "of Wolves",

"category": "Example spreadsheets",

"keywords": "Sample, Example, Properties",
"comments": "Created with Python and XlsxWriter",
"status": "Quo",

)

worksheet.set column("A:A", 70)
worksheet.write("Al", "Select 'Workbook Properties' to see properties.")

workbook.close()

32.36 Example: Simple Unicode with Python 3

To write Unicode text in UTF-8 to a xlIsxwriter file in Python 3 you just need to encode the file as
UTF-8.

Smartart

D

370 dpa3a Ha pycckom!

ol sweeus

Mormal View

32.36. Example: Simple Unicode with Python 3 523

Creating Excel files with Python and XisxWriter, Release 3.1.9

32.37 Example: Unicode - Polish in UTF-8

This program is an example of reading in data from a UTF-8 encoded text file and converting it to
a worksheet.

The main trick is to ensure that the data read in is converted to UTF-8 within the Python program.
The XlsxWriter module will then take care of writing the encoding to the Excel file.

WS S T—— uqig_udg_pnﬁshﬁutfﬂ.:qlﬂsE — N——
Home | Layout Tables Charts | SmartArt »| v R~

Al 4 @ & [fx| WSROD NOCNEJ CISZY v

WS5ROD NOCME) CISZY

Wsrdd nocnej ciszy glos sie rozchodazi:
Wstaricie, pasterze, Bog sie nam rodzi!
Czym predzej sie wybierajcie,

Do Betlejern pospieszajcie

Przywitaé Pana.

Poszli, znaleili Dziecigtko w 2tobie
Z wszystkimi znaki danymi sobie.
Jako Bogu czesé Mu dali,

A witajac zawolali

T aaai

Mormal View

HRHHHHH AR R R AR R AR R R R R AR R R R

A simple example of converting some Unicode text to an Excel file using
the XlsxWriter Python module.

This example generates a spreadsheet with some Polish text from a file
with UTF8 encoded text.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HH B HHHHHEHHR

import xlsxwriter

Open the input file with the correct encoding.
textfile = open("unicode polish utf8.txt", mode="r", encoding="utf-8")

524 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Create an new Excel file and convert the text data.
workbook = xlsxwriter.Workbook("unicode polish utf8.xlsx")
worksheet = workbook.add worksheet()

Widen the first column to make the text clearer.
worksheet.set column("A:A", 50)

Start from the first cell.
row 0
col 0

Read the text file and write it to the worksheet.
for line in textfile:
Ignore the comments in the text file.
if line.startswith("#"):
continue

Write any other lines to the worksheet.
worksheet.write(row, col, line.rstrip("\n"))
row += 1

workbook.close()

32.38 Example: Unicode - Shift JIS

This program is an example of reading in data from a Shift JIS encoded text file and converting it
to a worksheet.

The main trick is to ensure that the data read in is converted to UTF-8 within the Python program.
The XlsxWriter module will then take care of writing the encoding to the Excel file.

The encoding of the input data shouldn’t matter once it can be converted to UTF-8 via the codecs
module.

32.38. Example: Unicode - Shift JIS 525

https://docs.python.org/3/library/codecs.html#module-codecs

Creating Excel files with Python and XisxWriter, Release 3.1.9

[b T
S el P —

Mormal View

B e

A simple example of converting some Unicode text to an Excel file using
the XlsxWriter Python module.

This example generates a spreadsheet with some Japanese text from a file
with Shift-JIS encoded text.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HHHFHIFHFHRHR

import xlsxwriter

Open the input file with the correct encoding.
textfile = open("unicode shift jis.txt", mode="r", encoding="shift jis")

Create an new Excel file and convert the text data.
workbook = xlsxwriter.Workbook("unicode shift jis.xlsx")
worksheet = workbook.add worksheet()

Widen the first column to make the text clearer.
worksheet.set column("A:A", 50)

Start from the first cell.

526

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

0
0

row
col

Read the text file and write it to the worksheet.
for line in textfile:
Ignore the comments in the text file.
if line.startswith("#"):
continue

Write any other lines to the worksheet.
worksheet.write(row, col, line.rstrip("\n"))
row += 1

workbook.close()

32.39 Example: Setting a Worksheet Watermark

This program is an example of adding a worksheet watermark image using the method recom-
mended in the Microsoft documentation: Add a watermark in Excel.

| NON [watermark.xlsx
Home | Layout Tables | Charts | SmartArt | v i+
AT 10 & (= & |~
T . - Y R R R [S T T T T T =2
B D E E G H
=
2
= 3
4
w5
B
m 7
o8
- 9
J| 10
T I sheets [[
Page Layout View | Ready A

B R b
#
An example of adding a worksheet watermark image using the XlsxWriter Python

32.39. Example: Setting a Worksheet Watermark 527

https://support.microsoft.com/en-us/office/add-a-watermark-in-excel-a372182a-d733-484e-825c-18ddf3edf009

Creating Excel files with Python and XisxWriter, Release 3.1.9

module. This is based on the method of putting an image in the worksheet
header as suggested in the Microsoft documentation:
https://support.microsoft.com/en-us/office/add-a-watermark-in-excel-a372182a-d733-4¢

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH R HH W H

import xlsxwriter

workbook = xlsxwriter.Workbook("watermark.xlsx")
worksheet = workbook.add worksheet()

Set a worksheet header with the watermark image.
worksheet.set header("&C&[Picture]™, {"image center": "watermark.png"})

workbook.close()

32.40 Example: Setting the Worksheet Background

This program is an example of setting a worksheet background image. See the
set background() method for more details.

oC® % background.xlsx
Home | Layout Tables | Charts | SmartArt 3 v &~
A74 1 0 & (= fx| |~
| Y E | € | o | E | F | & | H [=
1 pr— el e el
2 | ML NniiThoN | MM NnilithnNnnN
3 _' !J\jl..l i I- !JL_-ILI | L) B | s
1 | W 1| W I P
5 poweleu PDOWEI €U
G 1 1
i e |1 A N i el |
8 | ol [JLILTNHOI] | ool [JLILTNOIIT | .
9 | pr O e !
10 ' I'"\J'\'II.J.I"\I"“A - i"“l..l"\l..l!.l"‘l.l"!":A
11 SRS, puvwcicu
1z - -
13 m. W | I'I'lﬂ:"\ﬁ _ | I'I'lﬂﬂﬁ
14 | sl PDULU IV | sl DJULITUL
Tl s BB Nl = L , i
o — powered | = powered | |
SRR EEVEY | [i

Mormal View Ready S

528 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e e L e e e s e

An example of setting a worksheet background image with the XlsxWriter
Python module.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH R H R HH

import xlsxwriter

Create an new Excel file and add a worksheet.
workbook = xlsxwriter.Workbook("background.xlsx")
worksheet = workbook.add worksheet()

Set the background image.
worksheet.set background("logo.png")

workbook.close()

32.41 Example: Setting Worksheet Tab Colors

This program is an example of setting worksheet tab colors. See the set tab color() method
for more details.

32.41. Example: Setting Worksheet Tab Colors 529

Creating Excel files with Python and XisxWriter, Release 3.1.9

e 00 , tab_colors.xlsx .
Home Layout Tables Charts SmartArt }}| v JFv

Al 1] © & (= f| |~
| D

Py A B | [E..| [— — —— -

. — et lel : : Sheet3 | Sheetd ‘ + . I
Mormal View Ready o

e

#

Example of how to set Excel worksheet tab colors using Python
and the XlsxWriter module.
#
#
#

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

import xlsxwriter
workbook = xlsxwriter.Workbook("tab colors.xlsx")

Set up some worksheets.

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()
worksheet3 = workbook.add worksheet()
worksheet4 = workbook.add worksheet()

Set tab colors
worksheetl.set tab color("red")
worksheet2.set tab color("green")
worksheet3.set tab color("#FF9900") # Orange

worksheet4 will have the default color.

530 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

workbook.close()

32.42 Example: Diagonal borders in cells

Example of how to set diagonal borders in a cell.

o0 ® [* diag_border.xlsx
Home | Layout Tables | Charts | SmartArt 3 v i+
A22 1] 0 © (= f| |~
| BN 8 | Cc | b [E [F []5

Text—"
Tixruhhhh

Tex<_

2

3

4

5

6

7

8

9

10

11

12 Text——"
13

< i sheen [+ I

Mormal View Ready P

See set diag border(), set diag type() and set diag border() for details.

B o L e e e e e P

#
A simple formatting example that demonstrates how to add diagonal cell
borders with XlsxWriter.

#
#
#
SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org
#

import xlsxwriter

workbook = xlsxwriter.Workbook("diag border.xlsx")
worksheet = workbook.add worksheet()

workbook.add format({"diag type": 1})
workbook.add format({"diag type": 2})

formatl
format2

32.42. Example: Diagonal borders in cells 531

Creating Excel files with Python and XisxWriter, Release 3.1.9

format3

format4

{

workbook.add format({"diag type": 3})

workbook.add format(

"diag type": 3,
"diag border": 7,

"diag color": "red",
}
)
worksheet.write("B3", "Text", formatl)
worksheet.write("B6", "Text", format2)
worksheet.write("B9", "Text", format3)
worksheet.write("B12", "Text", format4)

workbook. close()

32.43 Example: Enabling Cell protection in Worksheets

This program is an example cell locking and formula hiding in an Excel worksheet using the pro-

tect () worksheet method and the Format set locked () property.

Note, that Excel’s behavior is that all cells are locked once you set the default protection. Therefore
you need to explicitly unlock cells rather than explicitly lock them.

532

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

1] © & (= fx|
A
Cell B1 is locked. It cannot be edited.
Cell B2 is unlocked. It can be edited.
Cell B3 is hidden. The formula isn't visible,

ol shees [

Mormal View Ready

S

#

Example of cell locking and formula hiding in an Excel worksheet
using Python and the XlsxWriter module.
#
#
#

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org
#

import xlsxwriter

workbook = xlsxwriter.Workbook("protection.xlsx")
worksheet = workbook.add worksheet()

Create some cell formats with protection properties.
unlocked = workbook.add format({"locked": False})
hidden = workbook.add format({"hidden": True})

Format the columns to make the text more visible.
worksheet.set column("A:A", 40)

Turn worksheet protection on.
worksheet.protect()

Write a locked, unlocked and hidden cell.

32.43. Example: Enabling Cell protection in Worksheets 533

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.write("Al", "Cell Bl is locked. It cannot be edited.")
worksheet.write("A2", "Cell B2 is unlocked. It can be edited.")

worksheet.write("A3", "Cell B3 is hidden. The formula isn't visible.")
worksheet.write formula("B1", "=1+2") # Locked by default.
worksheet.write formula("B2", "=1+2", unlocked)

worksheet.write formula("B3", "=1+2", hidden)

workbook.close()

32.44 Example: Hiding Worksheets

This program is an example of how to hide a worksheet using the hide () method.

800 || hide_sheet.xlsx

Sheet2 is hidden

R l sheet1] 5hm31:.|

Mormal View

T A
z Example of how to hide a worksheet with XlsxWriter.

ﬁ SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

?mport xlsxwriter

534 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

workbook = xlsxwriter.Workbook("hide sheet.xlsx")

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()
worksheet3 = workbook.add worksheet()

worksheetl.set column("A:A", 30)
worksheet2.set column("A:A", 30)
worksheet3.set column("A:A", 30)

Hide Sheet2. It won't be visible until it is unhidden in Excel.
worksheet2.hide()

worksheetl.write("Al", "Sheet2 is hidden")
worksheet2.write("Al1", "Now it's my turn to find you!")
worksheet3.write("Al", "Sheet2 is hidden")

Note, you can't hide the "active" worksheet, which generally is the
first worksheet, since this would cause an Excel error. So, in order to hide
the first sheet you will need to activate another worksheet:

#
worksheet2.activate()
worksheetl.hide()

workbook.close()

32.45 Example: Hiding Rows and Columns

This program is an example of how to hide rows and columns in XlsxWriter.
An individual row can be hidden using the set row() method:

worksheet.set row(0, None, None, {'hidden': True})

However, in order to hide a large number of rows, for example all the rows after row 8, we need to
use an Excel optimization to hide rows without setting each one, (of approximately 1 million rows).
To do this we use the set default row() method.

Columns don’t require this optimization and can be hidden using set column().

32.45. Example: Hiding Rows and Columns 535

Creating Excel files with Python and XisxWriter, Release 3.1.9

0o x
B C Sl

Some hidden columns.

Some hidden rows.

44 &k

Mormal View

e R

Example of how to hide rows and columns in XlsxWriter. In order to
hide rows without setting each one, (of approximately 1 million rows),
Excel uses an optimizations to hide all rows that don't have data.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HHHFEHHHHH

import xlsxwriter

workbook = xlsxwriter.Workbook("hide row col.xlsx")
worksheet = workbook.add worksheet()

Write some data.
worksheet.write("D1", "Some hidden columns.")
worksheet.write("A8", "Some hidden rows.")

Hide all rows without data.
worksheet.set default row(hide unused rows=True)

Set the height of empty rows that we do want to display even if it is
the default height.
for row in range(l, 7):

536

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet.set row(row, 15)

Columns can be hidden explicitly. This doesn't increase the file size..
worksheet.set column("G:XFD", None, None, {"hidden": True})

workbook.close()

32.46 Example: Example of subclassing the Workbook and Work-
sheet classes

Example of how to subclass the Workbook and Worksheet objects.

We also override the default worksheet.write() method to show how that is done.

[NON [inheritance 1 .xlsx
Home | Layout | Tables | Charts | SmartArt |}}|v E e B2
A25 0o (- i |~
T8 A WU N oSN U N S O ——— -
1 |olleH
2 |dirow
3 123
4 345
5
7]
7
B
9
10
11
12
12
— hlld R lih!!‘tll |||
ormal View Ready o

BRI R R R R R

Example of how to subclass the Workbook and Worksheet objects. We also
override the default worksheet.write() method to show how that is done.

SPDX-License-Identifier: BSD-2-Clause

#
#
#
#
#
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org
#

f

rom xlsxwriter.workbook import Workbook

32.46. Example: Example of subclassing the Workbook and Worksheet classes 537

Creating Excel files with Python and XisxWriter, Release 3.1.9

from xlsxwriter.worksheet import Worksheet
from xlsxwriter.worksheet import convert cell args

class MyWorksheet(Worksheet):

Subclass of the XlsxWriter Worksheet class to override the default
write() method.

@convert_cell_args
def write(self, row, col, *args):
data = args[0]

Reverse strings to demonstrate the overridden method.
if isinstance(data, str):
data = data[::-1]
return self.write string(row, col, data)
else:
Call the parent version of write() as usual for other data.
return super(MyWorksheet, self).write(row, col, *args)

class MyWorkbook(Workbook) :

Subclass of the XlsxWriter Workbook class to override the default
Worksheet class with our custom class.

def add worksheet(self, name=None):
Overwrite add worksheet() to create a MyWorksheet object.
worksheet = super(MyWorkbook, self).add worksheet(name, MyWorksheet)

return worksheet
Create a new MyWorkbook object.
workbook = MyWorkbook("inheritancel.xlsx")

The code from now on will be the same as a normal "Workbook" program.
worksheet = workbook.add worksheet()

Write some data to test the subclassing.
worksheet.write("Al", "Hello")

worksheet.write("A2", "World")
worksheet.write("A3", 123)
worksheet.write("A4", 345)

workbook.close()

538 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

32.47 Example: Advanced example of subclassing

Example of how to subclass the Workbook and Worksheet objects. See also the simpler inheri-
fance1.py example.

In this example we see an approach to implementing a simulated autofit in a user application. This
works by overriding the write string() method to track the maximum width string in each
column and then set the column widths when closing the workbook.

Some notes on this:

» This isn’t a fully functional autofit example (as shown by the longer strings in the screen
shot). It is only a proof or concept or a framework to try out solutions. See the the worksheet
autofit() method instead.

 The hard part is coming up with an accurate (or mainly accurate) excel string width()
function. One possibility is to use the PIL ImageFont() method and convert the pixel width
back to a character width.

» A more rigorous approach would have to consider font sizes, bold, italic, etc.

» The set _column() calls in close() will override any others set by the user. They also
don’t set any column formats.

* It doesn’t work for horizontal merge ranges.

» There are probably some other corner cases hiding here.

32.47. Example: Advanced example of subclassing 539

https://pillow.readthedocs.io/en/latest/reference/ImageFont.html

Creating Excel files with Python and XisxWriter, Release 3.1.9

®_® [inheritance2.xlsx
A Home | Layout Tables | Charts | SmartArt | 33 v &~
A8 1] O & (= fx| K
B | C | D [E GE
1 |F F This is a longer string Hello World 12
2 Fo
3 Foo Foo
4 Food
5
b
7
B
9
10
11
12
13
v i] sheets SO ew— i
Mormal View Ready o

HRHHH AR R R R AR R R R R R R

HHHFEHHFHRFEHIFTHRHHEHHTHR

Example of how to subclass the Workbook and Worksheet objects. See also the
simpler inheritancel.py example.

In this example we see an approach to implementing a simulated autofit in a
user application. This works by overriding the write string() method to
track the maximum width string in each column and then set the column
widths.

Note: THIS ISN'T A FULLY FUNCTIONAL AUTOFIT EXAMPLE. It is only a proof or
concept or a framework to try out solutions.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

from xlsxwriter.workbook import Workbook
from xUsxwriter.worksheet import Worksheet
from xUlsxwriter.worksheet import convert cell args

def excel string width(str):

Calculate the length of the string in Excel character units. This is only

540

Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

an example and won't give accurate results. It will need to be replaced
by something more rigorous.

string width = len(str)

if string width == 0:
return 0
else:
return string width * 1.1

class MyWorksheet (Worksheet):
Subclass of the XlsxWriter Worksheet class to override the default
write string() method.

@convert_cell_args

def write string(self, row, col, string, cell format=None):
Overridden write string() method to store the maximum string width
seen in each column.

Check that row and col are valid and store max and min values.
if self. check dimensions(row, col):
return -1

Set the min width for the cell. In some cases this might be the
default width of 8.43. In this case we use 0 and adjust for all
string widths.

min width = 0

Check if it the string is the largest we have seen for this column.
string width = excel string width(string)
if string width > min width:
max_width = self.max_column widths.get(col, min_width)
if string width > max width:
self.max_column widths[col] = string width

Now call the parent version of write string() as usual.
return super(MyWorksheet, self).write string(row, col, string, cell format)

class MyWorkbook(Workbook) :

Subclass of the XlsxWriter Workbook class to override the default
Worksheet class with our custom class.

def add worksheet(self, name=None):
Overwrite add worksheet() to create a MyWorksheet object.

32.47. Example: Advanced example of subclassing 541

Creating Excel files with Python and XisxWriter, Release 3.1.9

Also add an Worksheet attribute to store the column widths.
worksheet = super(MyWorkbook, self).add worksheet(name, MyWorksheet)
worksheet.max column widths = {}

return worksheet

def close(self):
We apply the stored column widths for each worksheet when we close
the workbook. This will override any other set column() values that
may have been applied. This could be handled in the application code
below, instead.
for worksheet in self.worksheets():
for column, width in worksheet.max column widths.items():
worksheet.set column(column, column, width)

return super(MyWorkbook, self).close()
Create a new MyWorkbook object.
workbook = MyWorkbook("inheritance2.xlsx")

The code from now on will be the same as a normal "Workbook" program.
worksheet = workbook.add worksheet()

Write some data to test column fitting.
worksheet.write("A1", "F")

worksheet.write("B3", "Foo")
worksheet.write("C1", "F")

worksheet.write("C2", "Fo")
worksheet.write("C3", "Foo")
worksheet.write("C4", "Food")
worksheet.write("D1", "This is a longer string")

Write a string in row-col notation.
worksheet.write(0, 4, "Hello World")

Write a number.
worksheet.write(0, 5, 123456)

workbook.close()

32.48 Example: Adding a VBA macro to a Workbook

This program is an example of how to add a button connected to a VBA macro to a worksheet.

See Working with VBA Macros for more details.

542 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

®_® [macros.xlsm
Home | Layout Tables | Charts | SmartArt | 2| v L~
A19 [+ O & (= fx| K
e B S & . c | D=
1
2
i Press the button to say hello. ‘ Press Me
5
6
7
8 L
9
10
11 Helle from Python!
12
1

BRBHH AR R R AR AR R RS R R

An example of adding macros to an XlsxWriter file using a VBA project
file extracted from an existing Excel xlsm file.

The vba extract.py utility supplied with XlsxWriter can be used to extract
the vbaProject.bin file.

An embedded macro is connected to a form button on the worksheet.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K HH K H R HHRH

import xlsxwriter

Note the file extension should be .xlsm.
workbook = xlsxwriter.Workbook("macros.xlsm")
worksheet = workbook.add worksheet()

worksheet.set column("A:A", 30)

Add the VBA project binary.
workbook.add vba project("./vbaProject.bin")

32.48. Example: Adding a VBA macro to a Workbook 543

Creating Excel files with Python and XisxWriter, Release 3.1.9

Show text for the end user.
worksheet.write("A3", "Press the button to say hello.")

Add a button tied to a macro in the VBA project.
worksheet.insert button(

"B3", {"macro": "say hello", "caption": "Press Me", "width": 80, "height": 30}
)

workbook.close()

32.49 Example: Excel 365 LAMBDA() function

This program is an example of using the new Excel LAMBDA() function. It demonstrates how to
create a lambda function in Excel and also how to assign a name to it so that it can be called as a
user defined function. This particular example converts from Fahrenheit to Celsius.

See the The Excel 365 LAMBDA() function section of the documentation for more details.

} lambda
Home Insert Draw Q Tell me = Share L] Ccomments
Al . frx =LAMBDA(temp, (5/9) * (temp-32))(32) v
A B C D E F G
1 | D.I
2 100
3
4
5
&
7
a8
9
Sheet1 +

B B T T
#

An example of using the new Excel LAMBDA() function with the XlsxWriter
module.

#

544 Chapter 32. Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org
#

from xlsxwriter.workbook import Workbook

workbook = Workbook("lambda.xlsx")
worksheet = workbook.add worksheet()

Write a Lambda function to convert Fahrenheit to Celsius to a cell.

#

Note that the lambda function parameters must be prefixed with

" xlpm.". These prefixes won't show up in Excel.

worksheet.write("Al", "=LAMBDA(xlpm.temp, (5/9) * (xlpm.temp-32))(32)")

Create the same formula (without an argument) as a defined name and use that
to calculate a value.

#

Note that the formula name is prefixed with " x1fn." (this is normally

converted automatically by write formula() but isn't for defined names)

and note that the lambda function parameters are prefixed with

" xlpm.". These prefixes won't show up in Excel.

workbook.define name("ToCelsius", "= xL1fn.LAMBDA(xlpm.temp, (5/9) * (xLlpm.temp-32))
The user defined name needs to be written explicitly as a dynamic array

formula.

worksheet.write dynamic array formula("A2", "=ToCelsius(212)")

workbook.close()

32.49. Example: Excel 365 LAMBDA() function 545

Creating Excel files with Python and XisxWriter, Release 3.1.9

546 Chapter 32. Examples

CHAPTER
THIRTYTHREE

CHART EXAMPLES

The following are some of the examples included in the examples directory of the XlsxWriter
distribution.

33.1 Example: Chart (Simple)

Example of a simple column chart with 3 data series:

16

14

12

10
W Seriesl

B Series2

W Series3

See the The Chart Class and Working with Charts for more details.

e e e e e e e e e e e e e e e e e s e
z An example of a simple Excel chart with Python and XlsxWriter.

ﬁ SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

ﬁmport xlsxwriter

workbook = xlsxwriter.Workbook("chart.xlsx")
worksheet = workbook.add worksheet()

Create a new Chart object.

547

https://github.com/jmcnamara/XlsxWriter/tree/main/examples

Creating Excel files with Python and XisxWriter, Release 3.1.9

chart = workbook.add chart({"type": "column"})

Write some data to add to plot on the chart.

data = [
[1, 2, 3, 4, 5],
[2, 4, 6, 8, 10],
[3, 6, 9, 12, 15],
]

worksheet.write column("Al", data[0])
worksheet.write column("B1", data[l])
worksheet.write column("C1", data[2])

Configure the charts. In simplest case we just add some data series.

chart.add series({"values": "=Sheetl!A1:A5"})
chart.add series({"values": "=Sheetl!B1:B5"})
chart.add series({"values": "=Sheetl!C1:C5"})

Insert the chart into the worksheet.
worksheet.insert chart("A7", chart)

workbook.close()

33.2 Example: Area Chart

Example of creating Excel Area charts.

Chart 1 in the following example is a default area chart:

Results of sample analysis

2 3 4 5 6

Test number

® Batch 1

¥ Batch 2

Chart 2 is a stacked area chart:

548

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Stacked Chart

100

" Batch 2

= Batch 1

Sample length (mm)

2 3 4 5 6
Test number

~

Chart 3 is a percentage stacked area chart:

Percent Stacked Chart

100%
80%
60%

40% Batch 2

¥ Batch 1

Sample length (mm)

20%

0%
2 3 4 5 6

Test number

~

T
ﬁ An example of creating Excel Area charts with Python and XlsxWriter.
z SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

ﬁmport xUsxwriter

workbook = xlsxwriter.Workbook("chart area.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Number", "Batch 1", "Batch 2"]
data = [

[2, 3, 4, 5, 6, 71,

33.2. Example: Area Chart 549

Creating Excel files with Python and XisxWriter, Release 3.1.9

[40, 40, 50, 30, 25, 50],
[30, 25, 30, 10, 5, 10],
]

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", datal[0])
worksheet.write column("B2", data[l])
worksheet.write column("C2", datal[2])

B B e g
#

Create an area chart.

#

chartl = workbook.add chart({"type": "area"})

Configure the first series.
chartl.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure a second series. Note use of alternative syntax to define ranges.
chartl.add series(

{
"name": ["Sheetl", 0, 21,
"categories": ["Sheetl", 1, 0, 6, 0],
"values": ["Sheetl", 1, 2, 6, 2],

}

)

Add a chart title and some axis labels.

chartl.set title({"name": "Results of sample analysis"})
chartl.set x axis({"name": "Test number"})
chartl.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chartl.set style(11)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D2", chartl, {"x offset": 25, "y offset": 10})

e e e e e e e e e e e e s e e e e e e e e e e e e e e e e e e
#

Create a stacked area chart sub-type.

#

chart2 = workbook.add chart({"type": "area", "subtype": "stacked"})

Configure the first series.
chart2.add series(

{

550 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

)

Configure second series.
chart2.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.
chart2.set title({"name": "Stacked Chart"})
chart2.set x_axis({"name": "Test number"})
chart2.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chart2.set style(12)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D18", chart2, {"x offset": 25, "y offset": 10})

S e e e e e e s e e e e e R R R e e e e R R R

#

Create a percent stacked area chart sub-type.

#

chart3 = workbook.add chart({"type": "area", "subtype": "percent stacked"})

Configure the first series.
chart3.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart3.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.
chart3.set title({"name": "Percent Stacked Chart"})
chart3.set x_axis({"name": "Test number"})

33.2. Example: Area Chart 551

Creating Excel files with Python and XisxWriter, Release 3.1.9

chart3.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chart3.set style(13)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D34", chart3, {"x offset": 25, "y offset": 10})

workbook.close()

33.3 Example: Bar Chart

Example of creating Excel Bar charts.

Chart 1 in the following example is a default bar chart:

Results of sample analysis
7
E
Es
=
t 5
c
% 4 ¥ Batch 2
-3
E 3 H Batch 1
w
2
0 10 20 30 40 50 60 70 80
Test number
Chart 2 is a stacked bar chart:
Stacked Chart
7 I—I
13
E6
= T [
tn 5 !]
g |
< 4 H Batch 1
s [[[
E 3 .] " Batch 2
w
2
60 80 100 120 140
Test number

552 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Chart 3 is a percentage stacked bar chart:

Percent Stacked Chart

7 | | |
LT 1 T l |
E6
. I l |
E 4 I l ! ® Batch 1
% 3 I l l Batch 2
5 T I | atc

2 T T 1

0% 20% 40% 60% 80% 100%

Test number

B e e e e e e e e e e e e
i An example of creating Excel Bar charts with Python and XlsxWriter.

z SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

fmport xlsxwriter

workbook = xlsxwriter.Workbook("chart bar.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Number", "Batch 1", "Batch 2"]
data = [
[2, 3, 4, 5, 6, 71,
[10, 40, 50, 20, 10, 501,
[30, 60, 70, 50, 40, 301,
1

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", data[0])
worksheet.write column("B2", data[l])
worksheet.write column("C2", data[2])

HHHHH R R B BB BB R BB R R R BB R R R R AR SRR R AR
#

Create a new bar chart.

#

chartl = workbook.add chart({"type": "bar"})

Configure the first series.
chartl.add series(

33.3. Example: Bar Chart 553

Creating Excel files with Python and XisxWriter, Release 3.1.9

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure a second series. Note use of alternative
chartl.add series(

{
"name": ["Sheetl", 0, 21,
"categories": ["Sheetl", 1, 0, 6, 0],
"values": ["Sheetl", 1, 2, 6, 21,

}

)

Add a chart title and some axis labels.

syntax to define ranges.

chartl.set title({"name": "Results of sample analysis"})

chartl.set x axis({"name": "Test number"})
chartl.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chartl.set style(11)

Insert the chart into the worksheet (with an offset).

worksheet.insert chart("D2", chartl, {"x offset": 25,

"y offset": 10})

B o e e e e e e e e e e et

#
Create a stacked chart sub-type.
#

chart2 = workbook.add chart({"type": "bar", "subtype": "stacked"})

Configure the first series.
chart2.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart2.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.
chart2.set title({"name": "Stacked Chart"})

554 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart2.set x_axis({"name": "Test number"})
chart2.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chart2.set style(12)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D18", chart2, {"x offset": 25, "y offset": 10})

B e

#

Create a percentage stacked chart sub-type.

#

chart3 = workbook.add chart({"type": "bar", "subtype": "percent stacked"})

Configure the first series.
chart3.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart3.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.
chart3.set title({"name": "Percent Stacked Chart"})
chart3.set x axis({"name": "Test number"})
chart3.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chart3.set style(13)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D34", chart3, {"x offset": 25, "y offset": 10})

workbook.close()

33.4 Example: Column Chart

Example of creating Excel Column charts.

Chart 1 in the following example is a default column chart:

33.4. Example: Column Chart 555

Creating Excel files with Python and XisxWriter, Release 3.1.9

Results of sample analysis

80

—E-TD

E 60
£ 50
£ 40
@30
£ 20
[y]

% 10

¥ Batch 1

“ Batch 2

Test number

Chart 2 is a stacked column chart:

Stacked Chart

Sample length

I W Batch 2

. I ® Batch 1
H B

3 5 6

4 7

Test number

Chart 3 is a percentage stacked column chart:

556

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Percent Stacked Chart

100% T i

80% T —

60% T —

|- Batch 2

40% T
=N I I I
0% T T T T
2 3 4 5 6 7

Test number

Sample length (mm)

S e e e
i An example of creating Excel Column charts with Python and XlsxWriter.
z SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

?mport xUsxwriter

workbook = xlsxwriter.Workbook("chart column.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Number", "Batch 1", "Batch 2"]
data = [
[2, 3, 4, 5, 6, 71,
[10, 40, 50, 20, 10, 50],
[30, 60, 70, 50, 40, 30],
]

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", data[0])
worksheet.write column("B2", datal[l])
worksheet.write column("C2", datal2])

B e e e e e e e e e e e e
#

Create a new column chart.

#

chartl = workbook.add chart({"type": "column"})

Configure the first series.
chartl.add series(

{
"name": "=Sheetl!B1",

33.4. Example: Column Chart 557

Creating Excel files with Python and XisxWriter, Release 3.1.9

"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

)

Configure a second series. Note use of alternative syntax to define ranges.
chartl.add series(

{
"name": ["Sheetl", 0, 2],
"categories": ["Sheetl", 1, 0, 6, 0],
"values": ["Sheetl", 1, 2, 6, 2],
}
)
Add a chart title and some axis labels.
chartl.set title({"name": "Results of sample analysis"})
chartl.set x _axis({"name": "Test number"})

chartl.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chartl.set style(11)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D2", chartl, {"x offset": 25, "y offset": 10})

FHHHH
#

Create a stacked chart sub-type.

#

chart2 = workbook.add chart({"type": "column", "subtype": "stacked"})

Configure the first series.
chart2.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart2.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.
chart2.set title({"name": "Stacked Chart"})
chart2.set x axis({"name": "Test number"})
chart2.set y axis({"name": "Sample length (mm)"})

558 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Set an Excel chart style.
chart2.set style(12)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D18", chart2, {"x offset": 25, "y offset": 10})

e e e e e e e e e e e B e s e e e e e e e e e e e e e e s e e e

#

Create a percentage stacked chart sub-type.

#

chart3 = workbook.add chart({"type": "column", "subtype": "percent stacked"})

Configure the first series.
chart3.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart3.add series(

{
"name": "=Sheetl!C1",
"“categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.
chart3.set title({"name": "Percent Stacked Chart"})
chart3.set x _axis({"name": "Test number"})
chart3.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chart3.set style(13)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D34", chart3, {"x offset": 25, "y offset": 10})

workbook.close()

33.5 Example: Line Chart

Example of creating an Excel line charts. The X axis of a line chart is a category axis with fixed
point spacing. For a line chart with arbitrary point spacing see the Scatter chart type.

Chart 1 in the following example is a default line chart:

33.5. Example: Line Chart 559

Creating Excel files with Python and XisxWriter, Release 3.1.9

Results of sample analysis

/\
| ; j : 2 sm—=Batch 1
J/ N / .
\/ Batch 2
3 4 5 6 7

Test number

Chart 2 is a stacked line chart:

140

)

Sample length (mm

= e

N OB DR O N
o © 5 o o & o

Stacked Chart
~ \,
/ N\

Batch 2

@=Batch 1

3 4 5 6 7

Test number

Chart 3 is a percentage stacked line chart:

560

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Percent Stacked Chart
100% T —
E 80%
S — 7"
s ““___!_J/' .
E 20% Batch 1
0%

2 3 4 5 6 7
Test number

HHAHH AR RH AR R R R AR
#

An example of creating Excel Line charts with Python and XlsxWriter.
#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

#

import xlsxwriter

workbook = xlsxwriter.Workbook("chart line.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Number", "Batch 1", "Batch 2"]
data = [
[2, 3, 4, 5, 6, 71,
[10, 40, 50, 20, 10, 50],
[30, 60, 70, 50, 40, 30],
]

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", datal[0])
worksheet.write column("B2", data[l])
worksheet.write column("C2", data[2])

Create a new chart object. In this case an embedded chart.
chartl = workbook.add chart({"type": "line"})

Configure the first series.
chartl.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

33.5. Example: Line Chart 561

Creating Excel files with Python and XisxWriter, Release 3.1.9

)

Configure a second series. Note use of alternative syntax to define ranges.
chartl.add series(

{
"name": ["Sheetl", 0, 21,
"categories": ["Sheetl", 1, 0, 6, 0],
"values": ["Sheetl", 1, 2, 6, 21,

}

)

Add a chart title and some axis labels.

chartl.set title({"name": "Results of sample analysis"})
chartl.set x axis({"name": "Test number"})
chartl.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style. Colors with white outline and shadow.
chartl.set style(10)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D2", chartl, {"x offset": 25, "y offset": 10})

B e e e
#

Create a stacked line chart sub-type.

#

chart2 = workbook.add chart({"type": "line", "subtype": "stacked"})

Configure the first series.
chart2.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart2.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.
chart2.set title({"name": "Stacked Chart"})
chart2.set x axis({"name": "Test number"})
chart2.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chart2.set style(12)

562 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D18", chart2, {"x offset": 25, "y offset": 10})

B e e e e e e e e e e e e e e

#

Create a percent stacked line chart sub-type.

#

chart3 = workbook.add chart({"type": "line", "subtype": "percent stacked"})

Configure the first series.
chart3.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart3.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.
chart3.set title({"name": "Percent Stacked Chart"})
chart3.set x _axis({"name": "Test number"})
chart3.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chart3.set style(13)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D34", chart3, {"x offset": 25, "y offset": 10})

workbook.close()

33.6 Example: Pie Chart

Example of creating Excel Pie charts. Chart 1 in the following example is:

33.6. Example: Pie Chart 563

Creating Excel files with Python and XisxWriter, Release 3.1.9

Popular Pie Types

" Apple
E Cherry

¥ Pecan

Chart 2 shows how to set segment colors.

It is possible to define chart colors for most types of XlsxWriter charts via the add series()
method. However, Pie charts are a special case since each segment is represented as a point
and as such it is necessary to assign formatting to each point in the series.

Pie Chart with user defined colors

¥ Apple
W Cherry

¥ Pecan

Chart 3 shows how to rotate the segments of the chart:

564 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Pie Chart with segment rotation

® Apple
M Cherry

W Pecan

e e e e e e e s e e e e e e e e e e e e e e e e e e e
An example of creating Excel Pie charts with Python and XlsxWriter.

The demo also shows how to set segment colors. It is possible to

define chart colors for most types of XlsxWriter charts

via the add series() method. However, Pie/Doughnut charts are a special
case since each segment is represented as a point so it is necessary to
assign formatting to each point in the series.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH KR H R HHHHHHH

import xlsxwriter
workbook = xlsxwriter.Workbook("chart pie.xlsx")

worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Category", "Values"]
data = [
["Apple", "Cherry", "Pecan"],
[60, 30, 10],
]

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", datal[0])
worksheet.write column("B2", data[l])

B e e e e
#

Create a new chart object.

#

chartl = workbook.add chart({"type": "pie"})

33.6. Example: Pie Chart 565

Creating Excel files with Python and XisxWriter, Release 3.1.9

Configure the series. Note the use of the list syntax to define ranges:
chartl.add series(

{
"name": "Pie sales data",
"categories": ["Sheetl", 1, 0, 3, 0],
"values": ["Sheet1l", 1, 1, 3, 11,

}

)

Add a title.
chartl.set title({"name": "Popular Pie Types"})

Set an Excel chart style. Colors with white outline and shadow.
chartl.set style(10)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("C2", chartl, {"x offset": 25, "y offset": 10})

e e
#

Create a Pie chart with user defined segment colors.

#

Create an example Pie chart like above.
chart2 = workbook.add chart({"type": "pie"})

Configure the series and add user defined segment colors.
chart2.add series(

{
"name": "Pie sales data",
"categories": "=Sheetl!A2:$A%4",
"values": "=Sheetl!B2:$B%$4",
"points": [
{"fill": {"color": "#5ABA10"}},
{"fill": {"color": "#FE110E"}},
{"fill": {"color": "#CA5C05"}},
]I
}

)

Add a title.
chart2.set title({"name": "Pie Chart with user defined colors"})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("C18", chart2, {"x offset": 25, "y offset": 10})

e
#

Create a Pie chart with rotation of the segments.

#

Create an example Pie chart like above.
chart3 = workbook.add chart({"type": "pie"})

566 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Configure the series.
chart3.add series(

{
"name": "Pie sales data",
"categories": "=Sheetl!A2:$A%$4",
"values": "=Sheetl!B2:$B%$4",

}

)

Add a title.
chart3.set title({"name": "Pie Chart with segment rotation"})

Change the angle/rotation of the first segment.
chart3.set rotation(90)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("C34", chart3, {"x offset": 25, "y offset": 10})

workbook.close()

33.7 Example: Doughnut Chart

Example of creating Excel Doughnut charts. Chart 1 in the following example is:

Popular Doughnut Types

&

¥ Glazed

B Chocolate

" Cream

Chart 4 shows how to set segment colors and other options.

It is possible to define chart colors for most types of XisxWriter charts via the add series()
method. However, Pie/Doughnut charts are a special case since each segment is represented as
a point and as such it is necessary to assign formatting to each point in the series.

33.7. Example: Doughnut Chart 567

Creating Excel files with Python and XisxWriter, Release 3.1.9

Doughnut Chart with options applied

M Glazed
H Chocolate

“ICream

S R R R e R R R e R R R R R R
An example of creating Excel Doughnut charts with Python and XlsxWriter.

The demo also shows how to set segment colors. It is possible to

define chart colors for most types of XlsxWriter charts

via the add series() method. However, Pie/Doughnut charts are a special
case since each segment is represented as a point so it is necessary to
assign formatting to each point in the series.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HHEHHFHRHFHFHHHHHR

import xlsxwriter
workbook = xlsxwriter.Workbook("chart doughnut.xlsx")

worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Category", "Values"]
data = [
["Glazed", "Chocolate", "Cream"l],
[50, 35, 151,
]

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", datal[0])
worksheet.write column("B2", datall])

T
#

Create a new chart object.

#

chartl = workbook.add chart({"type": "doughnut"})

568

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Configure the series. Note the use of the list syntax to define ranges:
chartl.add series(

{
"name": "Doughnut sales data",
"categories": ["Sheetl", 1, 0, 3, 0],
"values": ["Sheetl", 1, 1, 3, 1],

}

)

Add a title.
chartl.set title({"name": "Popular Doughnut Types"})

Set an Excel chart style. Colors with white outline and shadow.
chartl.set style(10)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("C2", chartl, {"x offset": 25, "y offset": 10})

e e
#

Create a Doughnut chart with user defined segment colors.

#

Create an example Doughnut chart like above.
chart2 = workbook.add chart({"type": "doughnut"})

Configure the series and add user defined segment colors.
chart2.add series(

{
"name": "Doughnut sales data",
"categories": "=Sheetl!A2:A4",
"values": "=Sheetl!B2:$B%$4",
"points": [
{"fill": {"color": "#FA58D0"}},
{"fill": {"color": "#61210B"}},
{"fill": {"color": "#F5F6CE"}},
]I
}

)

Add a title.
chart2.set title({"name": "Doughnut Chart with user defined colors"})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("C18", chart2, {"x offset": 25, "y offset": 10})

e
#

Create a Doughnut chart with rotation of the segments.

#

Create an example Doughnut chart like above.
chart3 = workbook.add chart({"type": "doughnut"})

33.7. Example: Doughnut Chart 569

Creating Excel files with Python and XisxWriter, Release 3.1.9

Configure the series.
chart3.add series(

{
"name": "Doughnut sales data",
"categories": "=Sheetl!A2:$A%4",
"values": "=Sheetl!B2:$B%$4",

}

)

Add a title.
chart3.set title({"name": "Doughnut Chart with segment rotation"})

Change the angle/rotation of the first segment.
chart3.set rotation(90)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("C34", chart3, {"x offset": 25, "y offset": 10})

B e e e e e e e e e e e e
#
Create a Doughnut chart with user defined hole size and other options.
#

Create an example Doughnut chart like above.
chart4 = workbook.add chart({"type": "doughnut"})

Configure the series.
chart4.add series(

{
"name": "Doughnut sales data",
"categories": "=Sheetl!A2:$A%4",
"values": "=Sheetl!B2:$B%$4",
"points": [
{"fill": {"color": "#FA58D0"}},
{"fill": {"color": "#61210B"}},
{"fill": {"color": "#F5F6CE"}},
I,
}

)

Set a 3D style.
chart4.set style(26)

Add a title.
chart4.set title({"name": "Doughnut Chart with options applied"})

Change the angle/rotation of the first segment.
chart4.set rotation(28)

Change the hole size.
chart4.set hole size(33)

570 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("C50", chart4, {"x offset": 25, "y offset": 10})

workbook. close()

33.8 Example: Scatter Chart

Example of creating Excel Scatter charts.

Chart 1 in the following example is a default scatter chart:

Results of sample analysis

80

E60
£

E‘,50
£ 40

L 4
L 4

*

®Batch 1

L 4

=%
E 20
o
“ 10

Batch 2

*
1 e

0 1 2 3 4 5 6 7 8

Test number

Chart 2 is a scatter chart with straight lines and markers:

Straight line with markers

=
- \ Il @=g==Batch 1
[
o

Test number

Chart 3 is a scatter chart with straight lines and no markers:

33.8. Example: Scatter Chart 571

Creating Excel files with Python and XisxWriter, Release 3.1.9

Straight line
80
'E 70
Ee0
£ 50 -
£ N\ 7
L / \ y e===Batch 1
%- 30
E 20 *ﬂ Batch 2
“ 10
0 T T T T T T T 1
4] 1 2 3 4 5 [7 8
Test number

Chart 4 is a scatter chart with smooth lines and markers:

Smooth line with markers

80
"E‘ 70
E 60
= -4
£
2 { \ @sfueBatch 1
22 / y 4
E 20 \ «==Batch 2
v 10 / J

0 1 2 3 4 5 6 7 8

Test number

Chart 5 is a scatter chart with smooth lines and no markers:

572 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Smooth line

o]
o

'E 70
E 60
3 N~/
% 30 / \ .’ @m==Batch 1
TE‘- 20 / \ I Batch 2
@ 10 V4 NS

0 T T T T T T T 1

0 1 2 3 4 5 6 7 8

Test number

B e
z An example of creating Excel Scatter charts with Python and XlsxWriter.
z SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

?mport xlsxwriter

workbook = xlsxwriter.Workbook("chart scatter.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Number", "Batch 1", "Batch 2"]
data = [
[2, 3, 4, 5, 6, 7],
[10, 40, 50, 20, 10, 50],
[30, 60, 70, 50, 40, 301,
]

worksheet.write row("Al1", headings, bold)
worksheet.write column("A2", data[0])
worksheet.write column("B2", data[l])
worksheet.write column("C2", data[2])

B L L 0 B L B B b L S 8 B S b
#

Create a new scatter chart.

#

chartl = workbook.add chart({"type": "scatter"})

Configure the first series.
chartl.add series(

{

33.8. Example: Scatter Chart 573

Creating Excel files with Python and XisxWriter, Release 3.1.9

"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

)

Configure second series. Note use of alternative syntax to define ranges.
chartl.add series(

{
"name": ["Sheetl", 0, 2],
"categories": ["Sheetl", 1, 0, 6, 0],
"values": ["Sheetl", 1, 2, 6, 2],

}

)

Add a chart title and some axis labels.

chartl.set title({"name": "Results of sample analysis"})
chartl.set x _axis({"name": "Test number"})
chartl.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chartl.set style(11)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D2", chartl, {"x offset": 25, "y offset": 10})

B e o o e e e e e e e e e e

#

Create a scatter chart sub-type with straight lines and markers.

#

chart2 = workbook.add chart({"type": "scatter", "subtype": "straight with markers"})

Configure the first series.
chart2.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart2.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.
chart2.set title({"name": "Straight line with markers"})
chart2.set x axis({"name": "Test number"})

574 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart2.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chart2.set style(12)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D18", chart2, {"x offset": 25, "y offset": 10})

e e
#

Create a scatter chart sub-type with straight lines and no markers.

#

chart3 = workbook.add chart({"type": "scatter", "subtype": "straight"})

Configure the first series.
chart3.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart3.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.
chart3.set title({"name": "Straight line"})
chart3.set x axis({"name": "Test number"})
chart3.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chart3.set style(13)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D34", chart3, {"x offset": 25, "y offset": 10})

A S R R R

#

Create a scatter chart sub-type with smooth lines and markers.

#

chart4 = workbook.add chart({"type": "scatter", "subtype": "smooth with markers"})

Configure the first series.
chart4.add series(

{
"name": "=Sheetl!B1",

33.8. Example: Scatter Chart 575

Creating Excel files with Python and XisxWriter, Release 3.1.9

"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

)

Configure second series.
chart4.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",
}
)
Add a chart title and some axis labels.
chart4.set title({"name": "Smooth line with markers"})
chart4.set x_axis({"name": "Test number"})

chart4.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chart4.set style(14)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D50", chart4, {"x offset": 25, "y offset": 10})

G
#

Create a scatter chart sub-type with smooth lines and no markers.

#

chart5 = workbook.add chart({"type": "scatter", "subtype": "smooth"})

Configure the first series.
chart5.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart5.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.
chart5.set title({"name": "Smooth line"})
chart5.set x axis({"name": "Test number"})
chart5.set y axis({"name": "Sample length (mm)"})

576 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Set an Excel chart style.
chart5.set style(15)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D66", chart5, {"x offset": 25, "y offset": 10})

workbook.close()

33.9 Example: Radar Chart

Example of creating Excel Column charts.

Chart 1 in the following example is a default radar chart:

Results of sample analysis

e—=Batch 1

Batch 2

Chart 2 in the following example is a radar chart with markers:

Radar Chart With Markers

s=p==Batch 1

Batch 2

Chart 3 in the following example is a filled radar chart:

33.9. Example: Radar Chart 577

Creating Excel files with Python and XisxWriter, Release 3.1.9

Filled Radar Chart

" Batch 1

Batch 2

S e e e
i An example of creating Excel Radar charts with Python and XlsxWriter.
z SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

?mport xUsxwriter

workbook = xlsxwriter.Workbook("chart radar.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Number", "Batch 1", "Batch 2"]
data = [
[2, 3, 4, 5, 6, 71,
[30, 60, 70, 50, 40, 30],
[25, 40, 50, 30, 50, 40],
]

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", data[0])
worksheet.write column("B2", datal[l])
worksheet.write column("C2", datal2])

B L B B B L L L L R R IR I IR IS IR It
#

Create a new radar chart.

#

chartl = workbook.add chart({"type": "radar"})

Configure the first series.
chartl.add series(

{
"name": "=Sheetl!B1",

578 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

)

Configure second series. Note use of alternative syntax to define ranges.
chartl.add series(

{
"name": ["Sheetl", 0, 2],
"categories": ["Sheetl", 1, 0, 6, 0],
"values": ["Sheetl", 1, 2, 6, 2],

}

)

Add a chart title.
chartl.set title({"name": "Results of sample analysis"})

Set an Excel chart style.
chartl.set style(11)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D2", chartl, {"x offset": 25, "y offset": 10})

e e
#

Create a radar chart with markers chart sub-type.

#

chart2 = workbook.add chart({"type": "radar", "subtype": "with markers"})

Configure the first series.
chart2.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart2.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title.
chart2.set title({"name": "Radar Chart With Markers"})

Set an Excel chart style.
chart2.set style(12)

33.9. Example: Radar Chart 579

Creating Excel files with Python and XisxWriter, Release 3.1.9

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D18", chart2, {"x offset": 25, "y offset": 10})

B e e e e e e e e e e e e e e e
#

Create a filled radar chart sub-type.

#

chart3 = workbook.add chart({"type": "radar", "subtype": "filled"})

Configure the first series.
chart3.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart3.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title.
chart3.set title({"name": "Filled Radar Chart"})

Set an Excel chart style.
chart3.set style(13)

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D34", chart3, {"x offset": 25, "y offset": 10})

workbook.close()

33.10 Example: Stock Chart

Example of creating and Excel HiLow-Close Stock chart.

Chart 1 in the following example is:

580 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

High-Low-Close

30
L
0 25 | |
g 20 | | 3
w 15
1=
810 Series1
w
> Series2
0 eries
A A 4 A A N :
,1530 'LQP {9 ASQ "190 Series3
I N I
N Qv & Ng &

BRI R R S S
#

An example of creating Excel Stock charts with Python and XlsxWriter.
#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

#

from datetime import datetime

import xlsxwriter

workbook = xlsxwriter.Workbook("chart stock.xlsx")
worksheet = workbook.add worksheet()

bold = workbook.add format({"bold": 1})
date format = workbook.add format({"num format": "dd/mm/yyyy"})

chart = workbook.add chart({"type": "stock"})

Add the worksheet data that the charts will refer to.
headings = ["Date", "High", "Low", "Close"]
data = [
["2007-01-01", "2007-01-02", "2007-01-03", "2007-01-04", "2007-01-05"1,
[27.2, 25.03, 19.05, 20.34, 18.5],
[23.49, 19.55, 15.12, 17.84, 16.34],
[25.45, 23.05, 17.32, 20.45, 17.34],
]

worksheet.write row("Al", headings, bold)

for row in range(5):
date = datetime.strptime(data[O][row], "SY-%m-%d")

worksheet.write(row + 1, 0, date, date format)
worksheet.write(row + 1, 1, data[l]l[row])
worksheet.write(row + 1, 2, datal[2][row])
worksheet.write(row + 1, 3, data[3][row])

33.10. Example: Stock Chart 581

Creating Excel files with Python and XisxWriter, Release 3.1.9

worksheet.set column("A:D", 11)

Add a series for each of the High-Low-Close columns.

chart.

{

Add
chart.
chart.
chart.

add_series(

"categories": "=Sheetl!A2:$A%$6",
"values": "=Sheetl!B2:B6",

add series(

"categories": "=Sheetl!A2:$A%$6",
"values": "=Sheetl!$(C$2:C6",

add series(

"categories": "=Sheetl!A2:$A%$6",
"values": "=Sheetl1l!D2:D6",

a chart title and some axis labels.
set title({"name": "High-Low-Close"})
set x axis({"name": "Date"})

set y axis({"name": "Share price"})

worksheet.insert chart("E9", chart)

workbook. close()

33.11 Example: Styles Chart

An example showing all 48 default chart styles available in Excel 2007 using the chart
set style() method.

582

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[NN ¥ chart_styles.xlsx
Home | Layout Tables | Charts | SmartArt | 3 v -
A1 10 @ (= fx |~
e «|»-|--|v|»-|d|v|-|-‘|_~«!v|v|==|-|vi

e
o
]
—m
Cu]
Cnl
]
=
=T

= .u..l;i.n..l;i.n.
J.Huuu;a|||.|;m||u.|;mHHu
|ﬂﬂnﬂf;|||.lfalll.lf5ﬂﬂn

LA AAARAAA)

Note, these styles are not the same as the styles available in Excel 2013.

B o e L e e e e e e e e e

An example showing all 48 default chart styles available in Excel 2007
using Python and XlsxWriter. Note, these styles are not the same as
the styles available in Excel 2013.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HH R HHHHR

import xlsxwriter
workbook = xlsxwriter.Workbook("chart styles.xlsx")

Show the styles for all of these chart types.
chart types = ["column", "area", "line", "pie"]

for chart type in chart types:
Add a worksheet for each chart type.
worksheet = workbook.add worksheet(chart type.title())
worksheet.set zoom(30)
style number =1

33.11. Example: Styles Chart 583

Creating Excel files with Python and XisxWriter, Release 3.1.9

Create 48 charts, each with a different style.
for row num in range(0, 90, 15):
for col num in range(0, 64, 8):

chart = workbook.add chart({"type": chart type})
chart.add series({"values": "=Data!A1:$A%$6"})
chart.set title({"name": "Style %d" % style number})
chart.set legend({"none": True})
chart.set style(style number)

worksheet.insert chart(row_num, col num, chart)
style number += 1

Create a worksheet with data for the charts.
data worksheet = workbook.add worksheet("Data")
data = [10, 40, 50, 20, 10, 50]

data worksheet.write column("Al", data)

data worksheet.hide()

workbook.close()

33.12 Example: Chart with Pattern Fills

Example of creating an Excel chart with pattern fills, in the columns.

Cladding types

=
[=2)
o

=
=~
o

[
(=2
o o

EShingle

Number of houses
o
o o

&~
o

EBrick

[
o

o

Region

S R R e R e R R R R R R e R R
i An example of an Excel chart with patterns using Python and XlsxWriter.
z SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

ﬁmport xUsxwriter

workbook = xlsxwriter.Workbook("chart pattern.xlsx")

584

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Shingle", "Brick"]
data = [
[105, 150, 130, 90],
[50, 120, 100, 110],
]

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", datal[0])
worksheet.write column("B2", datall])

Create a new Chart object.
chart = workbook.add chart({"type": "column"})

Configure the charts. Add two series with patterns. The gap is used to make
the patterns more visible.
chart.add series(

{
"name": "=Sheetl!A1",
"values": "=Sheetl!A2:A5",
"pattern": {"pattern": "shingle", "fg color": "#804000", "bg color": "#c68c53'
"border": {"color": "#804000"},
"gap": 70,
}
)
chart.add series(
{
"name": "=Sheetl!B1",
"values": "=Sheetl!B2:B5",
"pattern": {
"pattern”: "horizontal brick",
"fg color": "#b30000",
"bg color": "#ff6666",
3
"border": {"color": "#b30000"},
}

)

Add a chart title and some axis labels.
chart.set title({"name": "Cladding types"})
chart.set x axis({"name": "Region"})
chart.set y axis({"name": "Number of houses"})

Insert the chart into the worksheet.
worksheet.insert chart("D2", chart)

workbook.close()

33.12. Example: Chart with Pattern Fills 585

Creating Excel files with Python and XisxWriter, Release 3.1.9

33.13 Example: Chart with Gradient Fills

Example of creating an Excel chart with gradient fills, in the columns and in the plot area.

70
E 60
£
= 50
B
@ 40
L
= 30
E
& 20

mF —- l
0

Test number

e e e e e e e

#

An example of creating an Excel charts with gradient fills using
Python and XlsxWriter.
#
#
#

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

import xlsxwriter

workbook = xlsxwriter.Workbook("chart gradient.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Number", "Batch 1", "Batch 2"]
data = [
[2, 3, 4, 5, 6, 71,
[10, 40, 50, 20, 10, 50],
[30, 60, 70, 50, 40, 30],
1

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", datal[0])
worksheet.write column("B2", datal[l])
worksheet.write column("C2", data[2])

Create a new column chart.
chart = workbook.add chart({"type": "column"})

Configure the first series, including a gradient.

586 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart.add series(

{

"name": "=Sheetl!B1",

"categories": "=Sheetl!A2:A7",

"values": "=Sheetl!B2:B7",

"gradient": {"colors": ["#963735", "#F1DCDB"1},
}

)

Configure the second series, including a gradient.
chart.add series(

{

"name": "=Sheetl!C1",

"categories": "=Sheetl!A2:A7",

"values": "=Sheetl!C2:C7",

"gradient": {"colors": ["#E36COA", "#FCEADA"1},
}

)
Set a gradient for the plotarea.
chart.set plotarea({"gradient": {"colors": ["#FFEFD1", "#FOEBD5", "#B69F66"]1}})

Add some axis labels.
chart.set x axis({"name": "Test number"})
chart.set y axis({"name": "Sample length (mm)"})

Turn off the chart legend.
chart.set legend({"none": True})

Insert the chart into the worksheet.
worksheet.insert chart("E2", chart)

workbook.close()

33.14 Example: Secondary Axis Chart

Example of creating an Excel Line chart with a secondary axis. Note, the primary and secondary
chart type are the same. The next example shows a secondary chart of a different type.

33.14. Example: Secondary Axis Chart 587

Creating Excel files with Python and XisxWriter, Release 3.1.9

Survey results

wm
o o o
J

Humans

(=]

Aliens

=
o
1

Population
N w B
o
QO = N W kR U~ 0
Laser wounds

(=]

HRBHH AR R AR R AR R R R R

An example of creating an Excel Line chart with a secondary axis
using Python and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H W HH

import xlsxwriter

workbook = xlsxwriter.Workbook("chart secondary axis.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Aliens", "Humans"]
data = [
[2r 3r 4r 5; 6r 7]r
[10, 40, 50, 20, 10, 50],
]

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", datal[0])
worksheet.write column("B2", datal[l])

Create a new chart object. In this case an embedded chart.
chart = workbook.add chart({"type": "line"})

Configure a series with a secondary axis
chart.add series(

{
"name": "=Sheetl!A1",
"values": "=Sheetl!A2:$A%$7",
"y2 axis": 1,

}

588 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart.add series(

"name": "=Sheetl!B1",
"values": "=Sheetl!B2:B7",

chart.set legend({"position": "right"})

Add a chart title and some axis labels.

chart.set title({"name": "Survey results"})
chart.set x axis(

{

“name": "Days",

}
)
chart.set y axis({"name": "Population", "major gridlines": {"visible": 0}})
chart.set y2 axis({"name": "Laser wounds"})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D2", chart, {"x offset": 25, "y offset": 10})

workbook.close()

33.15 Example: Combined Chart

Example of creating combined Excel charts with two chart types.

In the first example we create a combined column and line chart that share the same X and Y
axes.

Combined chart - same Y axis

£ —\
£ 50 / N

. Batch 1

==Batch 2

Ak w
2 3 4 5 6

Test number

In the second example we create a similar combined column and line chart except that the sec-
ondary chart has a secondary Y axis.

33.15. Example: Combined Chart 589

Creating Excel files with Python and XisxWriter, Release 3.1.9

Combine chart - secondary Y axis

80
- 70
- 60
~ 50
- 40
- 30
- 20
10
-0

. Batch 1

Batch 2

Target length (mm)

2 3 4 5 6 7

Test number

T
i An example of a Combined chart in XlsxWriter.

z SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

ﬁrom xlsxwriter.workbook import Workbook

workbook = Workbook("chart combined.xlsx")
worksheet = workbook.add worksheet()

Add a format for the headings.
bold = workbook.add format({"bold": True})

Add the worksheet data that the charts will refer to.
headings = ["Number", "Batch 1", "Batch 2"]
data = [
[2, 3, 4, 5, 6, 7],
[10, 40, 50, 20, 10, 50],
[30, 60, 70, 50, 40, 30],
]

worksheet.write row("Al1", headings, bold)
worksheet.write column("A2", datal0])
worksheet.write column("B2", data[ll])
worksheet.write column("C2", data[2])

In the first example we will create a combined column and line chart.
They will share the same X and Y axes.

HH W H

Create a new column chart. This will use this as the primary chart.
column_chartl = workbook.add chart({"type": "column"})

590 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Configure the data series for the primary chart.
column_chartl.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Create a new column chart. This will use this as the secondary chart.
line chartl = workbook.add chart({"type": "line"})

Configure the data series for the secondary chart.
line chartl.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Combine the charts.
column_chartl.combine(line chartl)

Add a chart title and some axis labels. Note, this is done via the
primary chart.

column_chartl.set title({"name": "Combined chart - same Y axis"})
column_chartl.set x axis({"name": "Test number"})
column _chartl.set y axis({"name": "Sample length (mm)"})

Insert the chart into the worksheet
worksheet.insert chart("E2", column chartl)

#

In the second example we will create a similar combined column and line
chart except that the secondary chart will have a secondary Y axis.

#

Create a new column chart. This will use this as the primary chart.
column chart2 = workbook.add chart({"type": "column"})

Configure the data series for the primary chart.
column_chart2.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Create a new column chart. This will use this as the secondary chart.
line chart2 = workbook.add chart({"type": "line"})

33.15. Example: Combined Chart 591

Creating Excel files with Python and XisxWriter, Release 3.1.9

Configure the data series for the secondary chart. We also set a

secondary Y axis via (y2 axis). This is the only difference between
this and the first example, apart from the axis label below.

line chart2.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",
"y2 axis": True,

}

)

Combine the charts.
column_chart2.combine(line chart2)

Add a chart title and some axis labels.

column _chart2.set title({"name": "Combine chart - secondary Y axis"})
column_chart2.set x _axis({"name": "Test number"})
column_chart2.set y axis({"name": "Sample length (mm)"})

Note: the y2 properties are on the secondary chart.
line chart2.set y2 axis({"name": "Target length (mm)"})

Insert the chart into the worksheet
worksheet.insert chart("E18", column_chart2)

workbook.close()

33.16 Example: Pareto Chart

Example of creating a Pareto chart with a secondary chart and axis.

Reasons for lateness

120 / i 100.0%
émo - 80.0%
3 80
£ - 60.0%
2 60 -

5 - 40.0%
S 40 -
[
o 2 - I - 20.0%
§ H

. | | . |,

Traffic Child care Public Weather Overslept Emergency
Transport

B e e e e e e P e e O e
#

592 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

An example of creating of a Pareto chart with Python and XlsxWriter.
#

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

#

import xlsxwriter

workbook = xlsxwriter.Workbook("chart pareto.xlsx")
worksheet = workbook.add worksheet()

Formats used in the workbook.
bold = workbook.add format({"bold": True})
percent format = workbook.add format({"num format": "0.0%"})

Widen the columns for visibility.
worksheet.set column("A:A", 15)
worksheet.set column("B:C", 10)

Add the worksheet data that the charts will refer to.
headings = ["Reason", "Number", "Percentage"]

reasons = [
"Traffic",
"Child care",
"Public Transport",
"Weather",
"Overslept",
“Emergency",

]

numbers = [60, 40, 20, 15, 10, 5]
percents = [0.44, 0.667, 0.8, 0.9, 0.967, 1]

worksheet.write row("Al1", headings, bold)
worksheet.write column("A2", reasons)

worksheet.write column("B2", numbers)

worksheet.write column("C2", percents, percent format)

Create a new column chart. This will be the primary chart.
column_chart = workbook.add chart({"type": "column"})

Add a series.
column_chart.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

)

Add a chart title.
column_chart.set title({"name": "Reasons for lateness"})

33.16. Example: Pareto Chart 593

Creating Excel files with Python and XisxWriter, Release 3.1.9

Turn off the chart legend.
column chart.set legend({"position": "none"})

Set the title and scale of the Y axes. Note, the secondary axis is set from

the primary chart.

column _chart.set y axis({"name": "Respondents (number)", "min":

column chart.set y2 axis({"max": 1})

Create a new line chart. This will be the secondary chart.

line chart = workbook.add chart({"type": "line"})

Add a series, on the secondary axis.
line chart.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",
"marker": {"type": "automatic"},
"y2 axis": 1,

}

)

Combine the charts.
column chart.combine(line chart)

Insert the chart into the worksheet.
worksheet.insert chart("F2", column chart)

workbook.close()

33.17 Example: Gauge Chart

A Gauge Chart isn’'t a native chart type in Excel. It is constructed by combining a doughnut chart
and a pie chart and by using some non-filled elements. This example follows the following online
example of how to create a Gauge Chart in Excel: hitps://www.excel-easy.com/examples/gauge-

chart.html

9,

"max":

594

Chapter 33. Chart Examples

120})

https://www.excel-easy.com/examples/gauge-chart.html
https://www.excel-easy.com/examples/gauge-chart.html

Creating Excel files with Python and XlsxWriter, Release 3.1.9

®_@® || chart_gauge.xlsx
A Home | Layout Tables | Charts | SmartArt 3 v &~
Al 1] © & (= f| Ad

4 < >+ sheen [+ NN I

Mormal View Ready S

e e e
An example of creating a Gauge Chart in Excel with Python and XlsxWriter.

A Gauge Chart isn't a native chart type in Excel. It is constructed by
combining a doughnut chart and a pie chart and by using some non-filled
elements. This example follows the following online example of how to create
a Gauge Chart in Excel: https://www.excel-easy.com/examples/gauge-chart.html

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H R HHHH R

import xlsxwriter

workbook = xlsxwriter.Workbook("chart gauge.xlsx")
worksheet = workbook.add worksheet()

chart doughnut = workbook.add chart({"type": "doughnut"})
chart pie = workbook.add chart({"type": "pie"})

Add some data for the Doughnut and Pie charts. This is set up so the
gauge goes from 0-100. It is initially set at 75%.

worksheet.write column("H2", ["Donut", 25, 50, 25, 100])
worksheet.write column("I2", ["Pie", 75, 1, "=200-I4-I3"])

33.17. Example: Gauge Chart 595

Creating Excel files with Python and XisxWriter, Release 3.1.9

Configure the doughnut chart as the background for the gauge.
chart_doughnut.add series(

{
"name": "=Sheetl!H2",
"values": "=Sheetl!H3:H6",
"points": [
{"fill": {"color": "green"}},
{"fill": {"color": "yellow"}},
{"fill": {"color": "red"}},
{"fill": {"none": True}},
1,
}

)

Rotate chart so the gauge parts are above the horizontal.
chart doughnut.set rotation(270)

Turn off the chart legend.
chart doughnut.set legend({"none": True})

Turn off the chart fill and border.
chart doughnut.set chartarea(

{

"border": {"none": True},
"fill": {"none": True},

)

Configure the pie chart as the needle for the gauge.
chart pie.add series(

{
"name": "=Sheetl!$I1$2",
"values": "=Sheetl!$I1$3:$1$6",
"points": [
{"fill": {"none": True}},
{"fill": {"color": "black"}},
{"fill": {"none": True}},
I,
}

)

Rotate the pie chart/needle to align with the doughnut/gauge.
chart pie.set rotation(270)

Combine the pie and doughnut charts.
chart _doughnut.combine(chart pie)

Insert the chart into the worksheet.
worksheet.insert chart("Al", chart_doughnut)

workbook.close()

596 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

33.18 Example: Clustered Chart

Example of creating a clustered Excel chart where there are two levels of category on the X axis.

9000
8000
7000
6000
5000 A
4000
3000 A

2000 A ———
1000 - j ———
o - |

Sub Type A Sub Type B ‘ Sub Type C Sub Type D Sub Type E

Type 1 Type 2

The categories in clustered charts are 2D ranges, instead of the more normal 1D ranges. The
series are shown as formula strings for clarity but you can also use the a list syntax.

e R
z A demo of a clustered category chart in XlsxWriter.

i SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

irom xlsxwriter.workbook import Workbook

workbook = Workbook("chart clustered.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Types", "Sub Type", "Value 1", "Value 2", "Value 3"]

data = [
["Type 1", "Sub Type A", 5000, 8000, 6000],
["", "Sub Type B", 2000, 3000, 4000],
["", "Sub Type C", 250, 1000, 2000],
["Type 2", "Sub Type D", 6000, 6000, 6500],
["", "Sub Type E", 500, 300, 200],

]
worksheet.write row("Al", headings, bold)

for row num, row data in enumerate(data):
worksheet.write row(row num + 1, 0, row data)

Create a new chart object. In this case an embedded chart.

33.18. Example: Clustered Chart 597

Creating Excel files with Python and XisxWriter, Release 3.1.9

chart = workbook.add chart({"type": "column"})

Configure the series. Note, that the categories are 2D ranges (from column A
to column B). This creates the clusters. The series are shown as formula

strings for clarity but you can also use the list syntax. See the docs.
chart.add series(

{
"categories": "=Sheetl!A2:B6",
"values": "=Sheetl!C2:C6",

)

chart.add series(

{
"categories": "=Sheetl!A2:B6",
"values": "=Sheetl1!D2:D6",
}
)
chart.add series(
{
"categories": "=Sheetl!A2:B6",
"values": "=Sheetl!E2:E6",
}

)

Set the Excel chart style.
chart.set style(37)

Turn off the legend.
chart.set legend({"position": "none"})

Insert the chart into the worksheet.
worksheet.insert chart("G3", chart)

workbook.close()

33.19 Example: Date Axis Chart

Date Category Axes are a special case of Category axes in Excel which give them some of the
properties of Values axes.

For example, Excel doesn’t normally allow minimum and maximum values to be set for category
axes. However, date axes are an exception.

598 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

70

o /.

“ / .

" SN/ o~
/)~ N/

20

10

In XisxWriter Date Category Axes are set using the date axis option in set x axis() or
set y axis():

chart.set x axis({'date axis': True})
If used, the min and max values should be set as Excel times or dates.
HAHHHHH AR R

An example of creating an Excel charts with a date axis using
Python and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H R HH

from datetime import date
import xlsxwriter

workbook = xlsxwriter.Workbook("chart date axis.xlsx")

worksheet = workbook.add worksheet()
chart = workbook.add chart({"type": "line"})
date format = workbook.add format({"num format": "dd/mm/yyyy"})

Widen the first column to display the dates.
worksheet.set column("A:A", 12)

Some data to be plotted in the worksheet.

dates = [
date(2013,
date (2013,
date (2013,
date (2013,
date (2013,
date (2013,

e e

~ v~ 0~ 0~ 0~ 0~

33.19. Example: Date Axis Chart 599

Creating Excel files with Python and XisxWriter, Release 3.1.9

date
date
date
date

2013,
2013,
2013,
2013,

e
O~ — ~—
—_—- -

= O 00

]
values = [10, 30, 20, 40, 20, 60, 50, 40, 30, 30]

Write the date to the worksheet.
worksheet.write column("Al", dates, date format)
worksheet.write column("B1", values)

Add a series to the chart.
chart.add series(

{
“categories": "=Sheetl!A1:A10",
"values": "=Sheetl!B1:B10",

)

Configure the X axis as a Date axis and set the max and min limits.
chart.set x axis(

{
"date axis": True,
"min": date(2013, 1, 2),
"max": date(2013, 1, 9),
}

)

Turn off the legend.
chart.set legend({"none": True})

Insert the chart into the worksheet.
worksheet.insert chart("D2", chart)

workbook. close()

33.20 Example: Charts with Data Tables

Example of creating charts with data tables.

Chart 1 in the following example is a column chart with default data table:

600 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Chart with Data Table
_ 80
E 70
E 60
£ 50 -
B 40
g 30 -
L 20 4 M Batch 1
g 10 -
] 0 -1 [|
@ 2 3 4 5 6 7 Batch 2
Batch1| 10 40 50 20 10 50
Batch2| 30 50 70 50 40 30

Test number

Chart 2 is a column chart with default data table with legend keys:

Data Table with legend keys

80

E 0
E w0
£ 50 -
B 40 -
3 30 -
o 20
g 10
] 0
2 3 4 5 6 7
WBatch1| 10 40 50 20 10 50
MBatch2 | 30 60 70 50 40 30

Test number

HHBHH AR R AR R R R R R

An example of creating Excel Column charts with data tables using
Python and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoHOHH R HH

import xlsxwriter

workbook = xlsxwriter.Workbook("chart data table.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Number", "Batch 1", "Batch 2"]
data = [

33.20. Example: Charts with Data Tables 601

Creating Excel files with Python and XisxWriter, Release 3.1.9

[2I 3’ 4’ 5’ 6’ 7]’

[10, 40, 50, 20, 10, 50],

[30, 60, 70, 50, 40, 30],
]

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", datal[0Q])
worksheet.write column("B2", data[ll])
worksheet.write column("C2", data[2])

B B b ottt o e 2
#

Create a column chart with a data table.

#

chartl = workbook.add chart({"type": "column"})

Configure the first series.
chartl.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series. Note use of alternative syntax to define ranges.
chartl.add series(

{
"name": ["Sheetl", 0, 21,
"categories": ["Sheetl", 1, 0, 6, 0],
"values": ["Sheetl", 1, 2, 6, 2],

}

)

Add a chart title and some axis labels.
chartl.set title({"name": "Chart with Data Table"})
chartl.set x axis({"name": "Test number"})
chartl.set y axis({"name": "Sample length (mm)"})

Set a default data table on the X-Axis.
chartl.set table()

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D2", chartl, {"x offset": 25, "y offset": 10})

B e e e e e e e e e e e e
#

Create a column chart with a data table and legend keys.

#

chart2 = workbook.add chart({"type": "column"})

Configure the first series.

602 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart2.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure second series.
chart2.add series(

{
"name": "=Sheetl!C1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

}

)

Add a chart title and some axis labels.

chart2.set title({"name": "Data Table with legend keys"})
chart2.set x_axis({"name": "Test number"})
chart2.set y axis({"name": "Sample length (mm)"})

Set a data table on the X-Axis with the legend keys shown.
chart2.set table({"show keys": True})

Hide the chart legend since the keys are shown on the data table.
chart2.set legend({"position": "none"})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D18", chart2, {"x offset": 25, "y offset": 10})

workbook.close()

33.21 Example: Charts with Data Tools

A demo of an various Excel chart data tools that are available via an XisxWriter chart. These
include, Trendlines, Data Labels, Error Bars, Drop Lines, High-Low Lines and Up-Down Bars.

Chart 1 in the following example is a chart with trendlines:

33.21. Example: Charts with Data Tools 603

Creating Excel files with Python and XisxWriter, Release 3.1.9

80
70
60

50

40
30
20
10

Chart with Trendlines

——\\

w—=Seriesl

==Series2
/;/ \\ 7‘4 Poly. (Series1)
Linear (Series2)
y 4 ~_/
2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘

Chart 2 is a chart with data labels and markers:

80
70
60
50
40
30
20
10

Chart with Data Labels and Markers

— "\,

; :/ f : ; =¥—Seriesl

/S /7 AN A eries?

7 N/
Lo =Yoo

Chart 3 is a chart with error bars:

604

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Chart with Error Bars
80
w / N T
40 - ,{ F I N\, S~ ffl: ——Seriesl
30 Series2
/ N /

2V I~V
. 1 L

2 3 4 5 6 7

Chart 4 is a chart with up-down bars:

Chart with Up-Down Bars
80
70 /
60 \\
50 /]
40 / \ Seriesl
30 // \\ Series2
20 1 7
10
° 2 3 4 5 6 7

Chart 5 is a chart with hi-low lines:

33.21. Example: Charts with Data Tools 605

Creating Excel files with Python and XisxWriter, Release 3.1.9

80
70
60
50
40
30
20
10

Chart with High-Low Lines

Series1

NN

/ Series2

Chart 6 is a chart with drop lines:

80
70
60
50
40
30
20
10

Chart with Drop Lines

o——Seriesl

NN

/ Series2

B o e e e e e e e e e e

HoH oH H R OHH R HH

A demo of an various Excel chart data tools that are available via

an XlsxWriter chart.

These include, Trendlines, Data Labels, Error Bars, Drop Lines,

High-Low Lines and Up-Down Bars.

SPDX-License-Identifier: BSD-2-Clause

Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

import xlsxwriter

workbook = xlsxwriter.Workbook("chart data tools.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

606

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Add the worksheet data that the charts will refer to.
headings = ["Number", "Data 1", "Data 2"]
data = [
[2, 3, 4, 5, 6, 71,
[10, 40, 50, 20, 10, 501,
[30, 60, 70, 50, 40, 301,
1

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", data[0])
worksheet.write column("B2", data[l])
worksheet.write column("C2", data[2])

B e e e e e e
#

Trendline example.

#

Create a Line chart.

chartl = workbook.add chart({"type": "line"})

Configure the first series with a polynomial trendline.
chartl.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",
"trendline": {
"type": "polynomial",
"order": 3,
3
}

)

Configure the second series with a moving average trendline.
chartl.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",
"trendline": {"type": "linear"},

}

)

Add a chart title.
chartl.set title({"name": "Chart with Trendlines"})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D2", chartl, {"x offset": 25, "y offset": 10})

e e e e e e e et e i
#

Data Labels and Markers example.

#

Create a Line chart.

33.21. Example: Charts with Data Tools 607

Creating Excel files with Python and XisxWriter, Release 3.1.9

chart2 = workbook.add chart({"type": "line"})

Configure the first series.
chart2.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",
"data labels": {"value": 1},
"marker": {"type": "automatic"},

}

)

Configure the second series.
chart2.add series(
{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

)

Add a chart title.
chart2.set title({"name": "Chart with Data Labels and Markers"})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D18", chart2, {"x offset": 25, "y offset": 10})

e e e e e e e e i
#

Error Bars example.

#

Create a Line chart.

chart3 = workbook.add chart({"type": "line"})

Configure the first series.
chart3.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",
"y error bars": {"type": "standard error"},
}

)

Configure the second series.
chart3.add series(
{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

)

Add a chart title.
chart3.set_title({"name": "Chart with Error Bars"})

608

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D34", chart3, {"x offset": 25, "y offset": 10})

e e e L B e et e e e e o
#

Up-Down Bars example.

#

Create a Line chart.

chart4 = workbook.add chart({"type": "line"})

Add the Up-Down Bars.
chart4.set up down bars()

Configure the first series.
chart4.add series(
{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

)

Configure the second series.
chart4.add series(
{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

)

Add a chart title.
chart4.set title({"name": "Chart with Up-Down Bars"})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D50", chart4, {"x offset": 25, "y offset": 10})

B L B B L L L L Lt R IR IR IR IR IR I It o
#

High-Low Lines example.

#

Create a Line chart.

chart5 = workbook.add chart({"type": "line"})

Add the High-Low lines.
chart5.set high low lines()

Configure the first series.
chart5.add series(
{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

33.21. Example: Charts with Data Tools 609

Creating Excel files with Python and XisxWriter, Release 3.1.9

Configure the second series.
chart5.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",

)

Add a chart title.
chart5.set title({"name": "Chart with High-Low Lines"})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D66", chart5, {"x offset": 25, "y offset": 10})

HHHH R R R R R R R R R R R R R R R AR AR AR A AR A R R R R R R R R R R R R R R R
#

Drop Lines example.

#

Create a Line chart.

chart6 = workbook.add chart({"type": "line"})

Add Drop Lines.
chart6.set drop lines()

Configure the first series.
chart6.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

)

Configure the second series.
chart6.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!C2:C7",
)

Add a chart title.
chart6.set title({"name": "Chart with Drop Lines"})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D82", chart6, {"x offset": 25, "y offset": 10})

workbook.close()

33.22 Example: Charts with Data Labels

A demo of some of the Excel chart data labels options that are available via an XlsxWriter chart.
These include custom labels with user text or text taken from cells in the worksheet. See also

610 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Chart series option: Data Labels and Chart series option: Custom Data Labels.

Chart 1 in the following example is a chart with standard data labels:

Chart with standard data labels

45
40
35

30

25

20 -
15 -
10
5 -
0 -

Chart 2 is a chart with Category and Value data labels:

30

Category and Value data labels

45
40
35

6,40
5,30
30
25 4,20
20 -
15 3 10
10
s 4
0 - . ‘ .
4 5 6

Chart 3 is a chart with data labels with a user defined font:

33.22. Example: Charts with Data Labels 611

Creating Excel files with Python and XisxWriter, Release 3.1.9

45

35
30
25
20
15
10

Data labels with user defined font

o

g

©
2

D
| I
0
’ I
3 4 5

Chart 4 is a chart with standard data labels and formatting:

45

35
30
25
20
15
10

Data labels with formatting

1
=

1

20

i

1
30
1
: I
5 6

Chart 5 is a chart with custom string data labels:

612

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

45
40
35
30
25
20
15
10

Chart with custom string data labels

Il

Liv
Fay Una
Amy Eva
3 5 I
2 3 4 5 6 7

Chart 6 is a chart with custom data labels referenced from worksheet cells:

45
40
35
30
25
20
15
10

Chart with custom data labels from cells

May
Apr Jun
Jan Mar
3 : I
2 3 4 5 6 7

Chart 7 is a chart with a mix of custom and default labels. The None items will get the default

value. We also set a font for the custom items as an extra example:

33.22. Example: Charts with Data Labels

613

Creating Excel files with Python and XisxWriter, Release 3.1.9

45
40
35
30
25
20
15
10

Mixed custom and default data labels

40
Apr 30
Jan Mar
3 ’ I
2 3 4 5 6 7

Chart 8 is a chart with some deleted custom labels and defaults (set with None values). This
allows us to highlight certain values such as the minimum and maximum:

45
40
35
30
25
20
15
10

Chart with deleted data labels

Il

|I|E

Chart 9 is a chart with custom string data labels and formatting:

614

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

45

35
30
25
20
15
10

Chart with custom string and formatting

1
(1]

HHAHH AR RH AR R R R AR

HoHOHH R HH

A demo of an various Excel chart data label features that are available
via an XlsxWriter chart.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

import xlsxwriter

workbook = xlsxwriter.Workbook("chart data labels.xlsx")
worksheet = workbook.add worksheet()
bold = workbook.add format({"bold": 1})

#

Add the worksheet data that the charts will refer to.

headings = ["Number", "Data", "Text"]

data = [

]

[2, 3, 4, 5, 6, 7],
[20, 10, 20, 30, 40, 30],
["Jan", "Feb", "Mar", "Apr", "May", "Jun"],

worksheet.write row("Al", headings, bold)
worksheet.write column("A2", data[0])
worksheet.write column("B2", data[ll])
worksheet.write column("C2", data[2])

B o e L o e e e e e e e e e

#
#
#

#

Example with standard data labels.

Create a Column chart.

chartl = workbook.add chart({"type": "column"})

33.22. Example: Charts with Data Labels 615

Creating Excel files with Python and XisxWriter, Release 3.1.9

Configure the data series and add the data labels.
chartl.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",
"data labels": {"value": True},

}

)

Add a chart title.
chartl.set title({"name": "Chart with standard data labels"})

Turn off the chart legend.
chartl.set legend({"none": True})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D2", chartl, {"x offset": 25, "y offset": 10})

B R R e e e e e e e e e
#

Example with value and category data labels.

#

Create a Column chart.
chart2 = workbook.add chart({"type": "column"})

Configure the data series and add the data labels.
chart2.add series(

{

"categories": "=Sheetl!A2:A7",

"values": "=Sheetl!B2:B7",

"data labels": {"value": True, "category": True},
}

)

Add a chart title.
chart2.set title({"name": "Category and Value data labels"})

Turn off the chart legend.
chart2.set legend({"none": True})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D18", chart2, {"x offset": 25, "y offset": 10})

e
#

Example with standard data labels with different font.

#

Create a Column chart.
chart3 = workbook.add chart({"type": "column"})

Configure the data series and add the data labels.

616 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart3.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",
"data labels": {
"value": True,
"font": {"bold": True, "color": "red", "rotation": -30},
}
}

)

Add a chart title.
chart3.set title({"name": "Data labels with user defined font"})

Turn off the chart legend.
chart3.set legend({"none": True})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D34", chart3, {"x offset": 25, "y offset": 10})

S e e e e
#

Example with standard data labels and formatting.

#

Create a Column chart.
chart4 = workbook.add chart({"type": "column"})

Configure the data series and add the data labels.
chart4.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",
"data labels": {
"value": True,
"border": {"color": "red"},
"fill": {"color": "yellow"},
T
}

)

Add a chart title.
chart4.set title({"name": "Data labels with formatting"})

Turn off the chart legend.
chart4.set legend({"none": True})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D50", chart4, {"x offset": 25, "y offset": 10})

S e
#
Example with custom string data labels.

33.22. Example: Charts with Data Labels 617

Creating Excel files with Python and XisxWriter, Release 3.1.9

#

Create a Column chart.
chart5 = workbook.add chart({"type": "column"})

Some custom labels.
custom labels = [
{"value": "Amy"},

{"value": "Bea"},
{"value": "Eva"},
{"value": "Fay"},
{"value": "Liv"},
{"value": "Una"},

]

Configure the data series and add the data labels.
chart5.add series(

{

"categories": "=Sheetl!A2:A7",

"values": "=Sheetl!B2:B7",

"data labels": {"value": True, "custom": custom labels},
}

)

Add a chart title.
chart5.set title({"name": "Chart with custom string data labels"})

Turn off the chart legend.
chart5.set legend({"none": True})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D66", chart5, {"x offset": 25, "y offset": 10})

e
#

Example with custom data labels from cells.

#

Create a Column chart.
chart6 = workbook.add chart({"type": "column"})

Some custom labels.
custom labels = [

{"value": "=Sheetl1!C2"},
{"value": "=Sheetl!C3"},
{"value": "=Sheetl!C4"},
{"value": "=Sheetl!C5"},
{"value": "=Sheetl!C6"},
{"value": "=Sheetl!C7"},

]

Configure the data series and add the data labels.
chart6.add series(

618 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

{

"categories": "=Sheetl!A2:A7",

"values": "=Sheetl!B2:B7",

"data labels": {"value": True, "custom": custom labels},
}

)

Add a chart title.
chart6.set title({"name": "Chart with custom data labels from cells"})

Turn off the chart legend.
chart6.set legend({"none": True})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D82", chart6, {"x offset": 25, "y offset": 10})

R S R R
#

Example with custom and default data labels.

#

Create a Column chart.
chart7 = workbook.add chart({"type": "column"})

The following is used to get a mix of default and custom labels. The 'None’
items will get the default value. We also set a font for the custom items
as an extra example.

custom_ labels = [

{"value": "=Sheetl!C2", "font": {"color": "red"}},
None,

{"value": "=Sheetl1!C4", "font": {"color": "red"}},
{"value": "=Sheetl1!C5", "font": {"color": "red"}},

]

Configure the data series and add the data labels.
chart7.add series(

{

"categories": "=Sheetl!A2:A7",

"values": "=Sheetl!B2:B7",

"data labels": {"value": True, "custom": custom labels},
}

)

Add a chart title.
chart7.set title({"name": "Mixed custom and default data labels"})

Turn off the chart legend.
chart7.set legend({"none": True})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D98", chart7, {"x offset": 25, "y offset": 10})

33.22. Example: Charts with Data Labels 619

Creating Excel files with Python and XisxWriter, Release 3.1.9

e e e e e e

#
Example with deleted custom data labels.
#

Create a Column chart.
chart8 = workbook.add chart({"type": "column"})

Some deleted custom labels and defaults (set with None values).

us to highlight certain values

such as the minimum and maximum.

This allows

custom labels

= [

{"delete": True},
None,
{"delete": True},
{"delete": True},
None,
{"delete": True},

]

Configure the data series and add the data labels.
chart8.add series(

{

"categories": "=Sheetl!A2:A7",

"values": "=Sheetl!B2:B7",

"data labels": {"value": True, "custom": custom labels},
}

)

Add a chart title.
chart8.set title({"name": "Chart with deleted data labels"})

Turn off the chart legend.
chart8.set legend({"none": True})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D114", chart8, {"x offset":

25, "y offset": 10})

B e e s et

#
Example with custom string data labels and formatting.
#

Create a Column chart.
chart9 = workbook.add chart({"type": "column"})

Some custom labels.
custom_ labels = [

{"value": "Amy", "border": {"color": "blue"}},
{"value": "Bea"},
{"value": "Eva"},
{"value": "Fay"},
{"value": "Liv"},
{"value": "Una", "fill": {"color": "green"}},

620

Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

]

Configure the data series and add the data labels.
chart9.add series(

{
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",
"data labels": {
"value": True,
"custom": custom labels,
"border": {"color": "red"},
"fill": {"color": "yellow"},
+
}

)

Add a chart title.
chart9.set title({"name": "Chart with custom labels and formatting"})

Turn off the chart legend.
chart9.set legend({"none": True})

Insert the chart into the worksheet (with an offset).
worksheet.insert chart("D130", chart9, {"x offset": 25, "y offset": 10})

workbook.close()

33.23 Example: Chartsheet

Example of creating an Excel Bar chart on a chartsheet.

33.23. Example: Chartsheet 621

Creating Excel files with Python and XisxWriter, Release 3.1.9

ot warad

IR l Sheetl) cnml

Mormal View

e

#

An example of creating an Excel chart in a chartsheet with Python
and XlsxWriter.
#
#
#

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

import xlsxwriter
workbook = xlsxwriter.Workbook("chartsheet.xlsx")

Add a worksheet to hold the data.
worksheet = workbook.add worksheet()

Add a chartsheet. A worksheet that only holds a chart.
chartsheet = workbook.add chartsheet()

Add a format for the headings.
bold = workbook.add format({"bold": 1})

Add the worksheet data that the charts will refer to.
headings = ["Number", "Batch 1", "Batch 2"]
data = [

622 Chapter 33. Chart Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[2, 3, 4, 5, 6, 71,

[10, 40, 50, 20, 10, 50],

[30, 60, 70, 50, 40, 30],
]

worksheet.write row("Al1", headings, bold)
worksheet.write column("A2", datal[0Q])
worksheet.write column("B2", data[ll])
worksheet.write column("C2", data[2])

Create a new bar chart.
chartl = workbook.add chart({"type": "bar"})

Configure the first series.
chartl.add series(

{
"name": "=Sheetl!B1",
"categories": "=Sheetl!A2:A7",
"values": "=Sheetl!B2:B7",

}

)

Configure a second series. Note use of alternative syntax to define ranges.
chartl.add series(

{
"name": ["Sheetl", 0, 2],
"categories": ["Sheetl", 1, 0, 6, 0],
"values": ["Sheet1", 1, 2, 6, 21,

}

)

Add a chart title and some axis labels.

chartl.set title({"name": "Results of sample analysis"})
chartl.set x axis({"name": "Test number"})
chartl.set y axis({"name": "Sample length (mm)"})

Set an Excel chart style.
chartl.set style(11)

Add the chart to the chartsheet.
chartsheet.set chart(chartl)

Display the chartsheet as the active sheet when the workbook is opened.
chartsheet.activate()

workbook.close()

33.23. Example: Chartsheet 623

Creating Excel files with Python and XisxWriter, Release 3.1.9

624 Chapter 33. Chart Examples

CHAPTER
THIRTYFOUR

PANDAS WITH XLSXWRITER EXAMPLES

The following are some of the examples included in the examples directory of the XlsxWriter
distribution.

They show how to use XisxWriter with Pandas.

34.1 Example: Pandas Excel example

A simple example of converting a Pandas dataframe to an Excel file using Pandas and XIsxWriter.
See Working with Pandas and XlsxWriter for more details.

o ® [¥ pandas_simple.xlsx
[A Home | Layout | Tables | Charts | SmartArt | »| v &
Al 20 & (=~ fx| -
,Ji_.-ﬂﬁ e e B L F e | =
Data

2 0 10

3 1 20

4 2 30

> 3 20

B 4 15

i 5 30

a8 B 45

9

10

11

12

— << Psheen [+ T [

i
— Mormal View Ready i

625

https://github.com/jmcnamara/XlsxWriter/tree/master/examples
https://pandas.pydata.org/

Creating Excel files with Python and XisxWriter, Release 3.1.9

e e L e e e s e

A simple example of converting a Pandas dataframe to an xlsx file using
Pandas and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH R HHHH

import pandas as pd
Create a Pandas dataframe from some data.
df = pd.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter("pandas simple.xlsx", engine="xlsxwriter")

Convert the dataframe to an XlsxWriter Excel object.
df.to excel(writer, sheet name="Sheetl")

Close the Pandas Excel writer and output the Excel file.
writer.close()

34.2 Example: Pandas Excel with multiple dataframes

An example of writing multiple dataframes to worksheets using Pandas and XlsxWriter.

626

Chapter 34. Pandas with XisxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

0@ [pandas_multiple.xlsx
Home | Layout | Tables | Charts | SmartArt |}}| v -
A1 1 8 & (= fx| E
ﬁ B S YO SO S - I =
Data

31

32

33

34

<< » vi [sheet1] Sheet2 | Sheet3]| I
Mormal View Ready e

HRHHH AR R R R AR R R R R R R

An example of writing multiple dataframes to worksheets using Pandas and
XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H W HH

import pandas as pd

Create some Pandas dataframes from some data.
dfl = pd.DataFrame({"Data": [11, 12, 13, 14]})
df2 pd.DataFrame({"Data": [21, 22, 23, 24]})
df3 pd.DataFrame({"Data": [31, 32, 33, 341})

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter("pandas multiple.xlsx", engine="xlsxwriter")

Write each dataframe to a different worksheet.
dfl.to excel(writer, sheet name="Sheetl")
df2.to excel(writer, sheet name="Sheet2")
df3.to excel(writer, sheet name="Sheet3")

34.2. Example: Pandas Excel with multiple dataframes 627

Creating Excel files with Python and XisxWriter, Release 3.1.9

Close the Pandas Excel writer and output the Excel file.
writer.close()
34.3 Example: Pandas Excel dataframe positioning

An example of positioning dataframes in a worksheet using Pandas and XlsxWriter. It also demon-
strates how to write a dataframe without the header and index.

0@ ™ pandas_positioning.xlsx
Home Layout Tables | Charts | SmartArt | 3 v &~
AT 110 o (- A K
_IF.‘ﬂ B BN E F [=
Data Data
2 0 11 0 21
3 1 12 1 22
4 2 13 2 23
5 3 14 3 24
6
Fi Data
8 0 31 41
9 1 3z a2
10 2 33 43
11 3 34 a4
12
13
m— hll" P l Sh!!‘tl| |||
ormal View Ready A

B o e e e e e

An example of positioning dataframes in a worksheet using Pandas and
XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H R HH

import pandas as pd

Create some Pandas dataframes from some data.
dfl pd.DataFrame({"Data": [11, 12, 13, 141})
df2 pd.DataFrame({"Data": [21, 22, 23, 24]1})

628 Chapter 34. Pandas with XisxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

df3
df4

pd.DataFrame({"Data": [31, 32, 33, 34]1})
pd.DataFrame({"Data": [41, 42, 43, 44]})

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter("pandas positioning.xlsx", engine="xlsxwriter")

Position the dataframes in the worksheet.

dfl.to excel(writer, sheet name="Sheetl") # Default position, cell Al.
df2.to excel(writer, sheet name="Sheetl", startcol=3)

df3.to excel(writer, sheet name="Sheetl", startrow=6)

It is also possible to write the dataframe without the header and index.
df4.to excel(
writer, sheet name="Sheetl", startrow=7, startcol=4, header=False, index=False

)

Close the Pandas Excel writer and output the Excel file.
writer.close()
34.4 Example: Pandas Excel output with a chart

A simple example of converting a Pandas dataframe to an Excel file with a chart using Pandas
and XlsxWriter.

34.4. Example: Pandas Excel output with a chart 629

Creating Excel files with Python and XisxWriter, Release 3.1.9

®_® | pandas_chart.xlsx
Home | Layout Tables | Charts | SmartArt | 2| v
Al 1 0 @& (= fx| E
_ I e D T e e e e — |
Data

20 50 7

30
20

2

3

4 a0 -

5

6 ENVIR

7 B

8 45 20

9

: w1
11 o

12 1 2 3 4 5
12

— — '

Mormal View Read

LR - AR R =]

HRHHH AR R R R AR R R R R R R

An example of converting a Pandas dataframe to an xlsx file with a chart
using Pandas and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH R HH R H

import pandas as pd
Create a Pandas dataframe from some data.
df = pd.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter("pandas chart.xlsx", engine="xlsxwriter")

Convert the dataframe to an XlsxWriter Excel object.
df.to excel(writer, sheet name="Sheetl")

Get the xlsxwriter workbook and worksheet objects.
workbook = writer.book

630

Chapter 34. Pandas with XisxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

worksheet = writer.sheets["Sheetl"]

Create a chart object.
chart = workbook.add chart({"type": "column"})

Get the dimensions of the dataframe.
(max_row, max_col) = df.shape

Configure the series of the chart from the dataframe data.
chart.add series({"values": ["Sheetl", 1, 1, max_row, 1]})

Insert the chart into the worksheet.
worksheet.insert chart(1l, 3, chart)

Close the Pandas Excel writer and output the Excel file.
writer.close()
34.5 Example: Pandas Excel output with conditional formatting

An example of converting a Pandas dataframe to an Excel file with a conditional formatting using
Pandas and XlIsxWriter.

[NON | ¥ pandas_conditional.xlsx
Home Layout Tables | Charts | SmartArt | » v &~
Al 110 O (- & |~

B (o D e e E | =

Data

L ARG AR TR A =

IEEEEE

|
2
3
4
5
6
i
B8
]
10
11
12
13
i< > i] sheets [+ NN I

Mormal View Ready A

34.5. Example: Pandas Excel output with conditional formatting 631

Creating Excel files with Python and XisxWriter, Release 3.1.9

e e L e e e s e

An example of converting a Pandas dataframe to an xlsx file with a
conditional formatting using Pandas and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH R H R HH

import pandas as pd

Create a Pandas dataframe from some data.
df = pd.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter("pandas conditional.xlsx", engine="xlsxwriter")

Convert the dataframe to an XlsxWriter Excel object.
df.to excel(writer, sheet name="Sheetl")

Get the xlsxwriter workbook and worksheet objects.
workbook = writer.book
worksheet = writer.sheets["Sheetl"]

Get the dimensions of the dataframe.
(max_row, max col) = df.shape

Apply a conditional format to the required cell range.
worksheet.conditional format(1l, max col, max row, max col, {"type": "3 color scale"})

Close the Pandas Excel writer and output the Excel file.
writer.close()

34.6 Example: Pandas Excel output with an autofilter

An example of converting a Pandas dataframe to an Excel file with a autofilter, and filtered data,
using Pandas and XlsxWriter. See Working with Autofilters for a more detailed explanation of
autofilters.

632 Chapter 34. Pandas with XilsxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[NON ¥ pandas_autofilter.xlsx
A Home | Layout Tables | Charts | SmartArt 3 v &~
ABO 10 & (= & |~
- - B C D =]
1 Region .7 ltem |= Volume |~ Month |~
2 |East Apple 9000 July
3 |East Apple 5000 July
17 |East Grape 8000 February
21 |East Grape 7000 December
23 |East Pear 8000 February
32 |East Orange 1000 Movernber
33 |East Orange 4000 October
35 |East Apple 1000 December
37 |East Grape 7000 October
39 East Grape 10000 October
44 |East Apple 5000 April
AL | Fani - ATaTals
liilﬁ!l FEE-— i[uﬂmul |+ [
Mormal View Filter Mode A

B e e e e e e e P e e e

An example of converting a Pandas dataframe to an xlsx file with an
autofilter and filtered data. See also autofilter.py.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH R H R HH

import pandas as pd

Create a Pandas dataframe by reading some data from a space-separated file.
df = pd.read csv("autofilter data.txt", sep=r"\s+")

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter("pandas autofilter.xlsx", engine="xlsxwriter")

Convert the dataframe to an XlsxWriter Excel object. We also turn off the
index column at the left of the output dataframe.
df.to_excel(writer, sheet name="Sheetl", index=False)

Get the xlsxwriter workbook and worksheet objects.
workbook = writer.book
worksheet = writer.sheets["Sheetl"]

34.6. Example: Pandas Excel output with an autofilter 633

Creating Excel files with Python and XisxWriter, Release 3.1.9

Get the dimensions of the dataframe.
(max_row, max_col) = df.shape

Make the columns wider for clarity.
worksheet.set column(0, max col - 1, 12)

Set the autofilter.
worksheet.autofilter(0, 0, max row, max col - 1)

Add an optional filter criteria. The placeholder "Region" in the filter
is ignored and can be any string that adds clarity to the expression.
worksheet.filter column(0, "Region == East")

It isn't enough to just apply the criteria. The rows that don't match

must also be hidden. We use Pandas to figure our which rows to hide.

for row num in df.index[(df["Region"] != "East")].tolist():
worksheet.set row(row num + 1, options={"hidden": True})

Close the Pandas Excel writer and output the Excel file.
writer.close()

34.7 Example: Pandas Excel output with a worksheet table

An example of inserting a Pandas dataframe into an Excel worksheet table file using Pandas and
XlsxWriter.

634

Chapter 34. Pandas with XilsxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[NON [¥ pandas_table.xlsx
A Home | Layout Tables | Charts | SmartArt 3 v &~
A20 1] @ & (= fx| |~
| . B C D | E |=
1 H w 0 Al FOD - 0 w
P4 1 China 1404338840
3 2 India 1366938189
4 3 United States 330267887
5 4 Indonesia 269603400,
B
T
8
a9
10
11
12
12>
= [EYEY | [
ormal View Ready g

B e e S

An example of adding a dataframe to an worksheet table in an xlsx file
using Pandas and XlsxWriter.

Tables in Excel are used to group rows and columns of data into a single
structure that can be referenced in a formula or formatted collectively.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HHHHHFHHHHHR

import pandas as pd

Create a Pandas dataframe from some data.
df = pd.DataFrame(

{
"Country": ["China", "India", "United States", "Indonesia"],
"Population": [1404338840, 1366938189, 330267887, 269603400],
"Rank": [1, 2, 3, 4],

}

)

Order the columns if necessary.
df = df[["Rank", "Country", "Population"]]

34.7. Example: Pandas Excel output with a worksheet table 635

Creating Excel files with Python and XisxWriter, Release 3.1.9

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter("pandas table.xlsx", engine="xlsxwriter")

Write the dataframe data to XlsxWriter. Turn off the default header and
index and skip one row to allow us to insert a user defined header.
df.to excel(writer, sheet name="Sheetl", startrow=1, header=False, index=False)

Get the xlsxwriter workbook and worksheet objects.
workbook = writer.book
worksheet = writer.sheets["Sheetl"]

Get the dimensions of the dataframe.
(max_row, max col) = df.shape

Create a list of column headers, to use in add table().
column_settings = [{"header": column} for column in df.columns]

Add the Excel table structure. Pandas will add the data.
worksheet.add table(0, 0, max row, max col - 1, {"columns": column settings})

Make the columns wider for clarity.
worksheet.set column(0, max col - 1, 12)

Close the Pandas Excel writer and output the Excel file.
writer.close()

34.8 Example: Pandas Excel output with datetimes

An example of converting a Pandas dataframe with datetimes to an Excel file with a default date-
time and date format using Pandas and XIsxWriter.

636

Chapter 34. Pandas with XilsxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

®_® % pandas_datetime.xlsx
Home | Layout Tables | Charts | SmartArt | 2| v
A 10 & (~ & R
n_I-H B C 0=
Date and time Dates anly

i) Jan 12015 11:30:55 February 01 2015
1 Jan 2 2015 01:20:33 February 02 2015
2 Jan 3 2015 11:10:00 February 03 2015
3
a4

Jan 4 2015 16:45:35 February 04 2015

Jlan 52015 12:10:15 February 05 2015

2
3
4
5
6
7
8
9
10
11
12
12
. l S.h!!tll ||I

Mormal View Ready i

HRHHH AR R R R AR R R R R R R

An example of converting a Pandas dataframe with datetimes to an xlsx file
with a default datetime and date format using Pandas and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H W HH

import pandas as pd
from datetime import datetime, date

Create a Pandas dataframe from some datetime data.
df = pd.DataFrame(

{
"Date and time": [
datetime(2015, 1, 1, 11, 30, 55),
datetime(2015, 1, 2, 1, 20, 33),
datetime(2015, 1, 3, 11, 10),
datetime(2015, 1, 4, 16, 45, 35),
datetime(2015, 1, 5, 12, 10, 15),

1,
"Dates only": [

34.8. Example: Pandas Excel output with datetimes 637

Creating Excel files with Python and XisxWriter, Release 3.1.9

date(2015, 2, 1),
date(2015, 2, 2),
date(2015, 2, 3),
date(2015, 2, 4),
date(2015, 2, 5),

)

Create a Pandas Excel writer using XlsxWriter as the engine.
Also set the default datetime and date formats.
writer = pd.ExcelWriter(
"pandas datetime.xlsx",
engine="xlsxwriter",
datetime format="mmm d yyyy hh:mm:ss",
date format="mmmm dd yyyy",
)

Convert the dataframe to an XlsxWriter Excel object.
df.to excel(writer, sheet name="Sheetl")

Get the xlsxwriter workbook and worksheet objects in order
to set the column widths and make the dates clearer.
workbook = writer.book

worksheet = writer.sheets["Sheetl"]

Get the dimensions of the dataframe.
(max_row, max _col) = df.shape

Set the column widths, to make the dates clearer.
worksheet.set column(1l, max col, 20)

Close the Pandas Excel writer and output the Excel file.
writer.close()

34.9 Example: Pandas Excel output with column formatting

An example of converting a Pandas dataframe to an Excel file with column formats using Pandas
and XlsxWriter.

It isn’'t possible to format any cells that already have a format such as the index or headers or any
cells that contain dates or datetimes.

Note: This feature requires Pandas >= 0.16.

638 Chapter 34. Pandas with XilsxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

®_® [% pandas_column_formats.xlsx
Home | Layout Tables | Charts | SmartArt | 2| v
Al 1] © & (~ fx| E
ﬂ B c VO —J—
Numbers Percentage

i) 1,010.00 10%
1 2,020.00 20%
2 3,030.00 33%
3 2,020.00 25%
4
5
2]

1,515.00 50%

3,030.00 75%

4,545.00 45%

2
3
4
5
6
7
8
9
10
11
12
12
. l ih!!tll ||I

Mormal View Ready i

HRHHH AR R R R AR R R R R R R

An example of converting a Pandas dataframe to an xlsx file
with column formats using Pandas and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH R HH R H

import pandas as pd

Create a Pandas dataframe from some data.
df = pd.DataFrame(

{
"Numbers": [1010, 2020, 3030, 2020, 1515, 3030, 4545],

"Percentage": [0.1, 0.2, 0.33, 0.25, 0.5, 0.75, 0.45],

)

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter("pandas column formats.xlsx", engine="xlsxwriter")

Convert the dataframe to an XlsxWriter Excel object.

34.9. Example: Pandas Excel output with column formatting 639

Creating Excel files with Python and XisxWriter, Release 3.1.9

df.to excel(writer, sheet name="Sheetl")

Get the xlsxwriter workbook and worksheet objects.
workbook = writer.book
worksheet = writer.sheets["Sheetl"]

Add some cell formats.
formatl workbook.add format({"num format": "#,##0.00"})
format2 workbook.add format({"num format": "0%"})

Note: It isn't possible to format any cells that already have a format such
as the index or headers or any cells that contain dates or datetimes.

Set the column width and format.
worksheet.set column(1l, 1, 18, formatl)

Set the format but not the column width.
worksheet.set column(2, 2, None, format2)

Close the Pandas Excel writer and output the Excel file.
writer.close()

34.10 Example: Pandas Excel output with user defined header format

An example of converting a Pandas dataframe to an Excel file with a user defined header format
using Pandas and XlsxWriter.

640 Chapter 34. Pandas with XilsxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

®_® % pandas_header_format.xlsx
Home | Layout | Tables | Charts | SmartArt |}}| v
BA1 1] 8 & (= fx| E
A : [D el e | — |
Heading |Longer
heading
that
should be
wrapped
10 10
20 20
30 30
40 40
20 a0
60 60

Wb (WM =D

Iom*-lmm-hwm:-n

FEE— l ih!!tll |||

Mormal View Ready e

HRHHH AR R R R AR R R R R R R

An example of converting a Pandas dataframe to an xlsx file
with a user defined header format.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoHOHHH R H

import pandas as pd

Create a Pandas dataframe from some data.
data = [10, 20, 30, 40, 50, 60]
df = pd.DataFrame({"Heading": data, "Longer heading that should be wrapped": data})

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter("pandas header format.xlsx", engine="xlsxwriter")

Convert the dataframe to an XlsxWriter Excel object. Note that we turn off
the default header and skip one row to allow us to insert a user defined

header.

df.to excel(writer, sheet name="Sheetl", startrow=1, header=False)

Get the xlsxwriter workbook and worksheet objects.

34.10. Example: Pandas Excel output with user defined header format 641

Creating Excel files with Python and XisxWriter, Release 3.1.9

workbook = writer.book
worksheet = writer.sheets["Sheetl"]

Add a header format.
header format = workbook.add format(

{
"bold": True,
“text wrap": True,
"valign": "top",
"fg color": "#D7E4BC",
"border": 1,

}

)

Write the column headers with the defined format.
for col num, value in enumerate(df.columns.values):
worksheet.write(0, col num + 1, value, header format)

Close the Pandas Excel writer and output the Excel file.
writer.close()

34.11 Example: Pandas Excel output with percentage formatting

To create a percentage in Excel the data must be a number, must be divided by 100 and must
have a percentage number format applied.

Here is a simple example of converting some string percentage data in a Pandas dataframe to
percentage numbers in an xlsx file using XisxWriter as the Pandas excel engine:

642 Chapter 34. Pandas with XilsxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

[NON [¥ pandas_percent.xlsx
| # Home | layout | Tables | Charts | SmartArt | 3 A -
. Edit : Font g.ﬂ.llunmant : Mumber : Forr

= . élCaﬁhﬁtEndy} |~ |.|§

: . é_P&rcantaga -
pasta (B |1 |UJ(S AL wgn (BBl %] 2 | conditons

c4 1[0 & (= fx] 85% |~
4 B H D e e E =
1 Names Grade
2 0 Anna 100%
3 1 Arek 70%
Arun 85%|

=] | 1
[

- [VY] [

Mormal View Ready S

B e e S

An example of converting some string percentage data in a Pandas dataframe
to percentage numbers in an xlsx file with using XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K HH R H

import pandas as pd

Create a Pandas dataframe from some data.
df = pd.DataFrame({"Names": ["Anna", "Arek", "Arun"], "Grade": ["100%", "70%", "85%"]]

Convert the percentage strings to percentage numbers.

df["Grade"] = df["Grade"].str.replace("%", "")
df["Grade"] = df["Grade"].astype(float)
df["Grade"] = df["Grade"].div(100)

Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter("pandas percent.xlsx", engine="xlsxwriter")

Convert the dataframe to an XlsxWriter Excel object.
df.to excel(writer, sheet name="Sheetl")

34.11. Example: Pandas Excel output with percentage formatting 643

Creating Excel files with Python and XisxWriter, Release 3.1.9

Get the xlsxwriter workbook and worksheet objects.
workbook = writer.book
worksheet = writer.sheets["Sheetl"]

Add a percent number format.
percent format = workbook.add format({"num format": "0%"})

Apply the number format to Grade column.
worksheet.set column(2, 2, None, percent format)

Close the Pandas Excel writer and output the Excel file.
writer.close()
34.12 Example: Pandas Excel output with a line chart

A simple example of converting a Pandas dataframe to an Excel file with a line chart using Pandas
and XlsxWriter.

120 1

100

80 7

Node 1
60 -

Value

w====Node 2
40

Node 3

20 7 ==Node 4

——TTT—T— T T T T T T
01234546 7 8 91011121314151617181920
Index

e L e e e e s

An example of converting a Pandas dataframe to an xlsx file with a line
chart using Pandas and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K HHHH

import pandas as pd
import random

Create some sample data to plot.

categories = ["Node 1", "Node 2", "Node 3", "Node 4"]
index 1 = range(0, 21, 1)

multi iterl = {"index": index 1}

for category in categories:
multi iterl[category] = [random.randint(10, 100) for x in index 1]

644 Chapter 34. Pandas with XisxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Create a Pandas dataframe from the data.
index 2 = multi iterl.pop("index")

df = pd.DataFrame(multi iterl, index=index 2)
df = df.reindex(columns=sorted(df.columns))

Create a Pandas Excel writer using XlsxWriter as the engine.

sheet name = "Sheetl"

writer = pd.ExcelWriter("pandas chart line.xlsx", engine="xlsxwriter")
df.to excel(writer, sheet name=sheet name)

Access the XlsxWriter workbook and worksheet objects from the dataframe.
workbook = writer.book
worksheet = writer.sheets[sheet name]

Get the dimensions of the dataframe.
(max_row, max_col) = df.shape

Create a chart object.
chart = workbook.add chart({"type": "line"})

Configure the series of the chart from the dataframe data.
for i in range(len(categories)):

col =i+ 1

chart.add series(

{
"name": ["Sheetl", 0, coll],
"categories": ["Sheetl", 1, 0, max_row, O],
"values": ["Sheetl", 1, col, max_row, col],
}

)
Configure the chart axes.
chart.set x _axis({"name": "Index"})
chart.set y axis({"name": "Value", "major gridlines": {"visible": False}})

Insert the chart into the worksheet.
worksheet.insert chart(1l, 6, chart)

Close the Pandas Excel writer and output the Excel file.
writer.close()
34.13 Example: Pandas Excel output with a column chart

An example of converting a Pandas dataframe to an Excel file with a column chart using Pandas
and XlsxWriter.

34.13. Example: Pandas Excel output with a column chart 645

Creating Excel files with Python and XisxWriter, Release 3.1.9

w

-
o

50 1
45
40
35

H Apples
30 PP
25 - M Berries
20 M Corn
15
10 B Melons
5 W Squash

Farm 1 Farm 2 Farm 3 Farm 4

Total Produce

HRHHHHHH B R R R AR R R R R R R

An example of converting a Pandas dataframe to an xlsx file with a grouped
column chart using Pandas and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HOoH K H W HH

import pandas as pd

Some sample data to plot.

farm 1 = {"Apples": 10, "Berries": 32, "Squash": 21, "Melons": 13, "Corn": 18}
farm 2 = {"Apples": 15, "Berries": 43, "Squash": 17, "Melons": 10, "Corn": 22}
farm 3 = {"Apples": 6, "Berries": 24, "Squash": 22, "Melons": 16, "Corn": 30}
farm 4 = {"Apples": 12, "Berries": 30, "Squash": 15, "Melons": 9, "Corn": 15}

data = [farm_ 1, farm 2, farm 3, farm 4]
index = ["Farm 1", "Farm 2", "Farm 3", "Farm 4"]

Create a Pandas dataframe from the data.
df = pd.DataFrame(data, index=index)

Create a Pandas Excel writer using XlsxWriter as the engine.

sheet name = "Sheetl"

writer = pd.ExcelWriter("pandas chart columns.xlsx", engine="xlsxwriter")
df.to excel(writer, sheet name=sheet name)

Access the XlsxWriter workbook and worksheet objects from the dataframe.
workbook = writer.book
worksheet = writer.sheets[sheet name]

Create a chart object.
chart = workbook.add chart({"type": "column"})

Some alternative colors for the chart.
colors = ["#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00"]

Configure the series of the chart from the dataframe data.
for col num in range(1l, len(farm 1) + 1):

646

Chapter 34. Pandas with XisxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

chart.add series(

{
"name": ["Sheetl", 0, col num],
“categories": ["Sheetl", 1, 0, 4, 0],
"values": ["Sheetl", 1, col num, 4, col num],
“fill": {"color": colors[col num - 1]},
"overlap": -10,

}

)

Configure the chart axes.
chart.set x _axis({"name": "Total Produce"})
chart.set y axis({"name": "Farms", "major gridlines": {"visible": False}})

Insert the chart into the worksheet.
worksheet.insert chart(1, 5, chart)

Close the Pandas Excel writer and output the Excel file.
writer.close()

34.13. Example: Pandas Excel output with a column chart 647

Creating Excel files with Python and XisxWriter, Release 3.1.9

648 Chapter 34. Pandas with XilsxWriter Examples

CHAPTER
THIRTYFIVE

POLARS WITH XLSXWRITER EXAMPLES

The following are some of the examples included in the examples directory of the XlsxWriter
distribution.

They show how to use XlsxWriter with Polars .

35.1 Example: Polars Excel getting started example

A simple getting started example of converting a Polars dataframe to an Excel file using Polars
and XlIsxWriter. See Working with Polars and XlsxWriter for more details.

B polars_simple

Home Insert Draw ¢ Tell me] Comments |2 Share
Al . fx Data v
A B C D E F G
1 |Data t_
2 10
3 20
4 30
5 20
& 15
7 30
8 45,
9
Sheetl +

649

https://github.com/jmcnamara/XlsxWriter/tree/master/examples
https://www.pola.rs

Creating Excel files with Python and XisxWriter, Release 3.1.9

e e L e e e s e

A simple example of converting a Polars dataframe to an xlsx file using
Polars and XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH R H R HH

import polars as pl

Create a Pandas dataframe from some data.
df = pl.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})

Write the dataframe to a new Excel file.
df.write excel(workbook="polars simple.xlsx")

35.2 Example: Polars integration with XisxWriter

An example of adding a Polars dataframe to a worksheet created by XlsxWriter. See Working with
Polars and XlsxWriter for more details.

B polars_xIsxwriter

Home Insert Draw ¢ Tell me] comments 1 Share
13 . fx M
A B C D E F G
1 |The data below is added by Polars
2 |Data E|
3 10
4 20
5 30
6 20
7 15
) 30
9 45,
Sheeti +

650 Chapter 35. Polars with XIsxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e e L e e e s e
#

An example of adding a Polars dataframe to a worksheet created by XlsxWriter.
#

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org
#

import xlsxwriter
import polars as pl

with xlsxwriter.Workbook("polars xlsxwriter.xlsx") as workbook:
Create a new worksheet.
worksheet = workbook.add worksheet()

Do something with the worksheet.
worksheet.write("Al", "The data below is added by Polars")

df = pl.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})
Write the Polars data to the worksheet created above, at an offset to

avoid overwriting the previous text.
df .write excel(workbook=workbook, worksheet="Sheetl", position="A2")

35.3 Example: Polars Excel dataframe positioning
An example of positioning dataframes in a worksheet using Polars and XlsxWriter. It also demon-

strates how to write a dataframe without a header. See Working with Polars and XlsxWriter for
more details.

35.3. Example: Polars Excel dataframe positioning 651

Creating Excel files with Python and XisxWriter, Release 3.1.9

B polars_positioning

Home Insert Draw O Tell me [J Comments = Share
-

Al . fx Data M

A B C D E F G H |

1 |pata |~ Data ||

2 11 21

3 12 22

4 13 23

5 14, 24,

6

7 Data | ¥

8 31 41

3 32 42

10 3 43

11 14, a4,

12
Sheetl +

HRHHH AR R R R AR R R R R R R

An example of positioning dataframes in a worksheet using Polars and
XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H W HH

import xlsxwriter
import polars as pl

Create some Polars dataframes from some data.

dfl = pl.DataFrame({"Data": [11, 12, 13, 14]})
df2 = pl.DataFrame({"Data": [21, 22, 23, 241})
df3 = pl.DataFrame({"Data": [31, 32, 33, 341})
df4 = pl.DataFrame({"Data": [41, 42, 43, 441})

with xlsxwriter.Workbook("polars positioning.xlsx") as workbook:
Write the dataframe to the default worksheet and position: Sheetl!Al.

dfl.write excel(workbook=workbook)

Write the dataframe using a cell string position.
df2.write excel(workbook=workbook, worksheet="Sheetl", position="C1")

652

Chapter 35. Polars with XIsxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

Write the dataframe using a (row, col) tuple position.
df3.write excel(workbook=workbook, worksheet="Sheetl", position=(6, 0))

Write the dataframe without the header.
dfd4.write excel(
workbook=workbook, worksheet="Sheetl", position="C8", has header=False

)

35.4 Example: Polars Excel with multiple dataframes

An example of writing multiple dataframes to worksheets using Polars and XlsxWriter. See Work-
ing with Polars and XlsxWriter for more details.

B polars_multiple

Home Insert Draw ¢ Tell me] Comments |2 Share
=

Al . fx Data v

A B C D E F G

1 |Data E_

2 31

3 32

4 33

5 34

&

7

a

9
Sheetl Sheet2 Sheetd +

B o e e e e e e e e e e S

An example of writing multiple dataframes to worksheets using Polars and
XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H R HH

35.4. Example: Polars Excel with multiple dataframes 653

Creating Excel files with Python and XisxWriter, Release 3.1.9

import xlsxwriter
import polars as pl

Create some Polars dataframes from some data.

dfl = pl.DataFrame({"Data": [11, 12, 13, 141})
df2 = pl.DataFrame({"Data": [21, 22, 23, 24]})
df3 = pl.DataFrame({"Data": [31, 32, 33, 34]})

with xlsxwriter.Workbook("polars multiple.xlsx") as workbook:
dfl.write excel(workbook=workbook)
df2.write excel(workbook=workbook)
df3.write excel(workbook=workbook)

35.5 Example: Polars Excel output with a chart

An example of adding a Polars dataframe to a worksheet created by XlsxWriter and then adding a
chart of the data. See Working with Polars and XlsxWriter for more details.

B polars_chart

Home Insert Draw Page Layout ¢ Tell me L] Comments > Share
ik
Chartl 4 =SERIES(,,Sheet11$AS2:5A58,1) v
A B C D E F G H [| K
1 Data v/ il — ~
2 10 50
3 20 a5
4 30 0
5 20
5 15 a5
7 30 30
8 45,
9 1 L] 2" B Seriesl
20
10 1
11
12 10
13 5
14 o
15 1 2 3 4 5 & 7
16 L J
Sheet1 +

654 Chapter 35. Polars with XIsxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

e e L e e e s e

An example of adding a Polars dataframe to a worksheet created by XlsxWriter
and then adding a chart of the data.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH R H R HH

import xlsxwriter
import polars as pl

df = pl.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})
with xlsxwriter.Workbook("polars chart.xlsx") as workbook:
Create the worksheet so we can reuse it later.

worksheet = workbook.add worksheet()

Write the Polars data to the worksheet created above.
df.write excel(workbook=workbook, worksheet="Sheetl")

Create a chart object.
chart = workbook.add chart({"type": "column"})

Get the dimensions of the dataframe.
(max_row, max_col) = df.shape

Configure the series of the chart from the dataframe data.
chart.add series({"values": ["Sheetl", 1, max col - 1, max_row, max col - 1]})

Insert the chart into the worksheet.
worksheet.insert chart(1l, 3, chart)

35.6 Example: Polars Excel output with conditional formatting

An example of adding a dataframe with conditional formatting to a worksheet using Polars and
XlsxWriter. See Working with Polars and XlsxWeriter for more details.

35.6. Example: Polars Excel output with conditional formatting 655

Creating Excel files with Python and XisxWriter, Release 3.1.9

B polars_conditional

Home Insert Draw O Tell me] Comments |2 Share

Al . fe Data A
A B C D E F G

1 |Data E

2

3 20

4 30

5 20

6 15

7 30

s [N

9

Sheet1 +

HRHHH AR R R R AR R R R R R R

An example of adding a Polars dataframe to a worksheet with a conditional
format.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnhamara@cpan.org

HoH K H W HH

import polars as pl
df = pl.DataFrame({"Data": [10, 20, 30, 20, 15, 30, 45]})
df.write excel(

workbook="pandas conditional.xlsx",
conditional formats={"Data": {"type": "3 color scale"}},

35.7 Example: Polars default format example

A simple example of converting a Polars dataframe to an xIsx file with default formatting. See
Working with Polars and XlsxWriter for more details.

656 Chapter 35. Polars with XIsxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

& -+ B polars_format_default

Home Insert Draw O Tell me] Comments |2 Share
Al . fx Dates v

A B C D E F G
1 |Dates t_lStrings E Numbers E
2 2023-01-01 Alice 0.123
3 2023-01-02 Bob 100.000
4 2023-01-03 Carol -958.523,
5
6
7
8
9

Sheetl +

HRHHH AR R R R AR R R R R R R

A simple example of converting a Polars dataframe to an xlsx file with
default formatting.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H W HH

from datetime import date
import polars as pl

Create a Pandas dataframe with some sample data.
df = pl.DataFrame(

{
"Dates": [date(2023, 1, 1), date(2023, 1, 2), date(2023, 1, 3)1,
"Strings": ["Alice", "Bob", "Carol"],
"Numbers": [0.12345, 100, -99.523],

}

)

Write the dataframe to a new Excel file with autofit on.
df.write excel(workbook="polars format default.xlsx", autofit=True)

35.7. Example: Polars default format example 657

Creating Excel files with Python and XisxWriter, Release 3.1.9

35.8 Example: Polars custom format example

A simple example of converting a Polars dataframe to an xIsx file with custom formatting of the
worksheet table. See Working with Polars and XlsxWriter for more details.

B B polars_format_custom

Home Insert Draw ¢ Tell me J Comments & Share
A2 . fx 01/01/2023 v

A B C D E F G
il Dates Bl strings £ Numbers EJ
2 20231 1.A.Ii|:e 0.123450
3 202312 Bob 100. 000000
4 202313 Carol -99.523000
5 0.600450,
&
Fi
)
9

Sheetl +

B e o e e e e e S e

A simple example of converting a Polars dataframe to an xlsx file with
custom formatting of the worksheet table.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH K H R HH

from datetime import date
import polars as pl

Create a Pandas dataframe with some sample data.
df = pl.DataFrame(

{
"Dates": [date(2023, 1, 1), date(2023, 1, 2), date(2023, 1, 3)1,
"Strings": ["Alice", "Bob", "Carol"],
"Numbers": [0.12345, 100, -99.523],

}

658 Chapter 35. Polars with XIsxWriter Examples

Creating Excel files with Python and XlsxWriter, Release 3.1.9

)

Write the dataframe to a new Excel file with formatting options.
df.write excel(

workbook="polars format custom.xlsx",

Set an alternative table style.

table style="Table Style Medium 4",

See the floating point precision for reals.

float precision=6,

Set an alternative number/date format for Polar Date types.

dtype formats={pl.Date: "yyyy mm dd;@"},

Add totals to the numeric columns.

column_totals=True,

Autofit the column widths.

autofit=True,

35.9 Example: Polars Excel output with sparklines

An example of adding a sparklines to the output of a Polars dataframe. See Working with Polars
and XlsxWriter for more details.

113 . fx v

A B C D E F G
1 |Zone Bthangeanl E|D.2 E|D.3 E|D.4 E|Trend E
2 |North - 100 30 (50) 75 T
3 |South - ™ 55 (10) 0 55 e
4 |East — (20) 15 40 25 _—
5 |West - 0 60 80 (10) —
& |Central -——— 35 20 B0 (585) —
7 170 115 150 80 5
a8
9

Sheet1 +

35.9. Example: Polars Excel output with sparklines 659

Creating Excel files with Python and XisxWriter, Release 3.1.9

e e L e e e s e

An example of writing multiple dataframes to worksheets using Polars and
XlsxWriter.

SPDX-License-Identifier: BSD-2-Clause
Copyright 2013-2023, John McNamara, jmcnamara@cpan.org

HoH R HHHH

import polars as pl
from polars.datatypes import INTEGER DTYPES

df = pl.DataFrame(

{
"Zone": ["North", "South", "East", "West", "Central"],
"Q1": [100, 55, -20, 0, 351,
"Q2": [30, -10, 15, 60, 201,
"Q3": [-50, 0, 40, 80, 80],
"Q4": [75, 55, 25, -10, -55],
}

)

Write the dataframe with sparklines and some additional formatting.
df.write excel(
workbook="polars sparklines.xlsx",
Set an alternative table style.
table style="Table Style Light 2",
Specify an Excel number format for integer types.
dtype formats={INTEGER DTYPES: "#, ##0), (#,##0)"},
Configure sparklines to the dataframe.
sparklines={
We use the default options with just the source columns.
"Trend": ["Q1", "Q2", "Q3", "Q4"],
We also add a customized sparkline type, with a positioning directive.

"Change": {
"columns": ["Q1", "Q2", "Q3", "Q4"],
"insert after": "Zone",
"type": "win loss",

b

b

column_totals=["Q1", "Q2", "Q3", "Q4"],

Hide the default gridlines on the worksheet.
hide gridlines=True,

660 Chapter 35. Polars with XIsxWriter Examples

CHAPTER
THIRTYSIX

ALTERNATIVE MODULES FOR HANDLING EXCEL FILES

The following are some Python alternatives to XlsxWriter.

36.1 OpenPyXL

From the openpyx| documentation:

openpyxl is a Python library to read/write Excel 2010 xIsx/xlsm/xltx/xItm files.

36.2 Xlwings

From the xlwings webpage:

Leverage Python’s scientific stack for interactive data analysis using Jupyter Note-
books, NumPy, Pandas, scikit-learn etc. As such, xlwings is a free alternative to tools
like Power Bl or Tableau (Windows & Mac).

36.3 XLWT

From the xlwt documentation:

xlwt is a library for writing data and formatting information to older Excel files (ie: .xls)

36.4 XLRD

From the xlrd documentation:

xlrd is a library for reading data and formatting information from Excel files, whether
they are .xIs or .xIsx files.

661

https://openpyxl.readthedocs.io/en/stable/
https://www.xlwings.org/
https://xlwt.readthedocs.io/en/latest/
https://xlrd.readthedocs.io/en/latest/

Creating Excel files with Python and XisxWriter, Release 3.1.9

662 Chapter 36. Alternative modules for handling Excel files

CHAPTER
THIRTYSEVEN

LIBRARIES THAT USE OR ENHANCE XLSXWRITER

The following are some libraries or applications that wrap or extend XlsxWriter.

37.1 Pandas

Python Pandas is a Python data analysis library. It can read, filter and re-arrange small and large
data sets and output them in a range of formats including Excel.

XlsxWriter is available as an Excel output engine in Pandas. See also See Working with Pandas
and XlsxWriter.

37.2 XlsxPandasFormatter

XlsxPandasFormatter is a helper class that wraps the worksheet, workbook and dataframe ob-
jects written by Pandas to excel() method using the xLsxwriter engine to allow consistent
formatting of cells.

663

https://pandas.pydata.org/
https://github.com/webermarcolivier/xlsxpandasformatter

Creating Excel files with Python and XisxWriter, Release 3.1.9

664 Chapter 37. Libraries that use or enhance XisxWriter

CHAPTER
THIRTYEIGHT

KNOWN ISSUES AND BUGS

This section lists known issues and bugs and gives some information on how to submit bug reports.

38.1 “Content is Unreadable. Open and Repair”

You may occasionally see an Excel warning when opening an XlsxWriter file like:

Excel could not open file.xlsx because some content is unreadable. Do you want to
open and repair this workbook.

This ominous sounding message is Excel’s default warning for any validation error in the XML
used for the components of the XLSX file.

The error message and the actual file aren’t helpful in debugging issues like this. If you do en-
counter this warning you should open an issue on GitHub with a program to replicate it (see
Reporting Bugs).

38.2 “Exception caught in workbook destructor. Explicit close() may
be required”

The following exception, or similar, can occur if the close () method isn’t used at the end of the
program:

Exception Exception: Exception('Exception caught in workbook destructor.
Explicit close() may be required for workbook.',)

in <bound method Workbook. del of <xlsxwriter.workbook.Workbookobject
at 0x103297d50>>

Note, it is possible that this exception will also be raised as part of another exception that occurs
during workbook destruction. In either case ensure that there is an explicit workbook. close()
in the program.

38.3 Formulas displayed as #NAME? until edited

There are a few reasons why a formula written by XlsxWriter would generate a #NAME? error in
Excel:

* Invalid formula syntax.

665

Creating Excel files with Python and XisxWriter, Release 3.1.9

* Non-English function names.
» Semi-colon separators instead of commas.
» Use of Excel 2010 and later functions without a prefix.

See Working with Formulas and Dealing with formula errors for a more details and a explanation
of how to debug the issue.

38.4 Formula results displaying as zero in non-Excel applications

Due to wide range of possible formulas and interdependencies between them XlsxWriter doesn't,
and realistically cannot, calculate the result of a formula when it is written to an XLSX file. Instead,
it stores the value 0 as the formula result. It then sets a global flag in the XLSX file to say that all
formulas and functions should be recalculated when the file is opened.

This is the method recommended in the Excel documentation and in general it works fine with
spreadsheet applications. However, applications that don’t have a facility to calculate formulas,
such as Excel Viewer, or several mobile applications, will only display the 0 results.

See Formula Results for more details and a workaround.

38.5 Images not displayed correctly in Excel 2001 for Mac and non-
Excel applications
Images inserted into worksheets via insert image() may not display correctly in Excel 2011

for Mac and non-Excel applications such as OpenOffice and LibreOffice. Specifically the images
may looked stretched or squashed.

This is not specifically an XlsxWriter issue. It also occurs with files created in Excel 2007 and
Excel 2010.

38.6 Charts series created from Worksheet Tables cannot have user
defined names
In Excel, charts created from Worksheet Tables have a limitation where the data series name, if

specified, must refer to a cell within the table.

To workaround this Excel limitation you can specify a user defined name in the table and refer to
that from the chart. See Charts from Worksheet Tables.

666 Chapter 38. Known Issues and Bugs

CHAPTER
THIRTYNINE

REPORTING BUGS

Here are some tips on reporting bugs in XisxWriter.

39.1 Upgrade to the latest version of the module

The bug you are reporting may already be fixed in the latest version of the module. You can check
which version of XIsxWriter that you are using as follows:

python -c "import xlsxwriter; print(xlsxwriter. version)"

Check the Changes in XlsxWriter section to see what has changed in the latest versions.

39.2 Read the documentation

Read or search the XIlsxWriter documentation to see if the issue you are encountering is already
explained.

39.3 Look at the example programs

There are many Examples in the distribution. Try to identify an example program that corresponds
to your query and adapt it to use as a bug report.

39.4 Use the official XIlsxWriter Issue tracker on GitHub

The official XlsxWriter Issue tracker is on GitHub.

39.5 Pointers for submitting a bug report

1. Describe the problem as clearly and as concisely as possible.

2. Include a sample program. This is probably the most important step. It is generally easier to
describe a problem in code than in written prose.

3. The sample program should be as small as possible to demonstrate the problem. Don’t copy
and paste large non-relevant sections of your program.

667

https://github.com/jmcnamara/XlsxWriter/issues

Creating Excel files with Python and XisxWriter, Release 3.1.9

A sample bug report is shown below. This format helps to analyze and respond to the bug report
more quickly.

Issue with SOMETHING
I am using XlsxWriter to do SOMETHING but it appears to do SOMETHING ELSE.

I am using Python version X.Y.Z and XlsxWriter x.y.z.

Here is some code that demonstrates the problem:

import xlsxwriter

workbook = xlsxwriter.Workbook('hello.xlsx")
worksheet = workbook.add worksheet()

worksheet.write('Al', 'Hello world')

workbook.close()

668 Chapter 39. Reporting Bugs

CHAPTER
FORTY

FREQUENTLY ASKED QUESTIONS

The section outlines some answers to frequently asked questions.

40.1 Q. Can XlsxWriter use an existing Excel file as a template?
No.

XlsxWriter is designed only as a file writer. It cannot read or modify an existing Excel file.

40.2 Q. Why do my formulas show a zero result in some, non-Excel
applications?

Due to a wide range of possible formulas and the interdependencies between them XlsxWriter
doesn’t, and realistically cannot, calculate the result of a formula when it is written to an XLSX file.
Instead, it stores the value 0 as the formula result. It then sets a global flag in the XLSX file to say
that all formulas and functions should be recalculated when the file is opened.

This is the method recommended in the Excel documentation and in general it works fine with
spreadsheet applications. However, applications that don’t have a facility to calculate formulas,
such as Excel Viewer, or several mobile applications, will only display the 0 results.

If required, it is also possible to specify the calculated result of the formula using the optional
value parameterinwrite formula():

worksheet.write formula('Al', '=2+2', None, 4)

See also Formula Results.

Note: LibreOffice doesn’t recalculate Excel formulas that reference other cells by default, in which
case you will get the default XIsxWriter value of 0. You can work around this by setting the “LibreOf-
fice Preferences -> LibreOffice Calc -> Formula -> Recalculation on File Load” option to “Always
recalculate” (see the LibreOffice documentation). Or, you can set a blank result in the formula,
which will also force recalculation:

worksheet.write formula('Al', '=Sheetl!A1', None, '')

669

https://help.libreoffice.org/6.4/en-US/text/scalc/01/06080000.html

Creating Excel files with Python and XisxWriter, Release 3.1.9

40.3 Q. Why do my formulas have a @ in them?

Microsoft refers to the @ in formulas as the Implicit Intersection Operator. It indicates that an input
range is being reduced from multiple values to a single value. In some cases it is just a warning
indicator and doesn’t affect the calculation or result. However, in practical terms it generally means
that your formula should be written as an array formula using either write array formulaf()
orwrite dynamic array formula().

For more details see the Dynamic Array support and Dynamic Arrays - The Implicit Intersection
Operator “@” sections of the XlsxWriter documentation.

40.4 Q. Can | apply a format to a range of cells in one go?

Currently no. However, it is a planned features to allow cell formats and data to be written sepa-
rately.

40.5 Q. Is feature X supported or will it be supported?

All supported features are documented. Future features are on the Roadmap.

40.6 Q. Can | password protect an XisxWriter xIsx file

Although it is possible to password protect a worksheet using the Worksheet protect () method
it isn’t possible to password protect the entire workbook/file using XlsxWriter.

The reason for this is that a protected/encrypted xIsx file is in a different format from an ordinary
xlsx file. This would require a lot of additional work, and testing, and isn’t something that is on the
XlsxWriter roadmap.

However, it is possible to password protect an XlsxWriter generated file using a third party open
source tool called msoffice-crypt. This works for macOS, Linux and Windows:

msoffice-crypt.exe -e -p password clear.xlsx encrypted.xlsx

40.7 Q. Do people actually ask these questions frequently, or at all?

Apart from this question, yes.

670 Chapter 40. Frequently Asked Questions

https://support.microsoft.com/en-us/office/implicit-intersection-operator-ce3be07b-0101-4450-a24e-c1c999be2b34?ui=en-us&rs=en-us&ad=us
https://github.com/jmcnamara/XlsxWriter/issues/653
https://github.com/herumi/msoffice

CHAPTER
FORTYONE

CHANGES IN XLSXWRITER

This section shows changes and bug fixes in the XlsxWriter module.

41.1 Release 3.1.9 - October 19 2023

+ Add fix for errant XML tag in chart leader lines for non-Pie charts.

sissue : 1019 and Feature Request #1012.

41.2 Release 3.1.8 - October 15 2023

» Add support for formatting the data label in chart trendlines.

Feature Request #750.

41.3 Release 3.1.7 - October 9 2023

« Addthe very hidden () method to hide a worksheet. This is similar to the hide () method
except that the worksheet cannot be unhidden in the the Excel user interface. The Excel
worksheet “xISheetVeryHidden” option can only be unset programmatically via VBA.

Feature Request #947.

» Added fixes for column formulas in tables that were overridden by table data and which also
didn’t take future functions into account.

Issue #1015.

41.4 Release 3.1.6 - October 1 2023

» Added support for chart leader lines for chart types other than Pie and Doughnut.

Feature Request #1012.

41.5 Release 3.1.5 - September 24 2023

* Added support for adding signed VBA macros to workbooks via the via the
add signed vba project() method. See Working with VBA Macros.

671

https://github.com/jmcnamara/XlsxWriter/issues/1012
https://github.com/jmcnamara/XlsxWriter/issues/750
https://github.com/jmcnamara/XlsxWriter/issues/947
https://github.com/jmcnamara/XlsxWriter/issues/1015
https://github.com/jmcnamara/XlsxWriter/issues/1012
https://xlsxwriter.readthedocs.io/working_with_macros.html

Creating Excel files with Python and XisxWriter, Release 3.1.9

Feature Request #1008.

41.6 Release 3.1.4 - September 18 2023

» Added support for enabling the Excel “Show #N/A as an empty cell” chart option via the
show na as empty cell() method.

Feature Request #1008.

41.7 Release 3.1.3 - September 8 2023

» Added support for custom total formulas to worksheet tables.

Feature Request #982.

41.8 Release 3.1.2 - May 28 2023

» Added worksheet page break preview mode via set pagebreak view().

41.9 Release 3.1.1 - May 21 2023

» Add support for new Excel dynamic functions added in 2023.
Issue #984.

» Added support for adding a color to the invert_if _negative chart option.
Feature Request #854.

41.10 Release 3.1.0 - April 13 2023

» Minor fix for cell color issue.

41.11 Release 3.0.9 - March 10 2023

» Add documentation and examples on Working with Polars and XlsxWriter to demonstrate
new Polars integration of XlsxWriter in write_excel().

 Add fix for rare issue with duplicate number formats.

41.12 Release 3.0.8 - February 3 2023

» Fix forautofit() exception when user defined column width was None.

41.13 Release 3.0.7 - January 14 2023

* Improved autofit() algorithm to account for the additional width of autofilter and table
dropdowns.

672 Chapter 41. Changes in XisxWriter

https://github.com/jmcnamara/XlsxWriter/issues/1008
https://github.com/jmcnamara/XlsxWriter/issues/1008
https://github.com/jmcnamara/XlsxWriter/issues/982
https://github.com/jmcnamara/XlsxWriter/issues/984
https://github.com/jmcnamara/XlsxWriter/issues/854
https://www.pola.rs
https://pola-rs.github.io/polars/py-polars/html/reference/api/polars.DataFrame.write_excel.html#polars.DataFrame.write_excel

Creating Excel files with Python and XlsxWriter, Release 3.1.9

* Improved autofit () take user defined column widths into account.

Autofit will now only update the width for an existing column if it is greater than the user
defined value. This allows the user to pre-load a minimum column width.

Feature Request #936.

41.14 Release 3.0.6 - January 5 2023

» Added simulated worksheet autofit () method.

Feature Request #936.

41.15 Release 3.0.5 - January 1 2023

» Added OverlappingRange exception which is raised during Worksheet add table() or
merge range () if the range overlaps an existing worksheet table or merge range. This is
a file corruption error in Excel. See The Exceptions Class.

Issue #848

41.16 Release 3.0.4 - December 28 2022

* Roll up release of several minor fixes.

» Drop support for EOL Python 3.4 and 3.5.

41.17 Release 3.0.3 - February 27 2022

« Added print black and white() worksheet method to set “Black and White” print op-
tions.

Feature Request #862.

41.18 Release 3.0.2 - October 31 2021

» Added set top left cell() worksheet method to position the first visible cell in a work-
sheet.

Feature Request #837.

41.19 Release 3.0.1 - August 10 2021

» Add python_requires version to setup.py to help pip find the correct matching version for
Python 2 and 3.

41.14. Release 3.0.6 - January 5 2023 673

https://github.com/jmcnamara/XlsxWriter/issues/936
https://github.com/jmcnamara/XlsxWriter/issues/936
https://github.com/jmcnamara/XlsxWriter/issues/848
https://github.com/jmcnamara/XlsxWriter/issues/862
https://github.com/jmcnamara/XlsxWriter/issues/837

Creating Excel files with Python and XisxWriter, Release 3.1.9

41.20 Release 3.0.0 - August 10 2021

 This is the first Python 3 only version of XisxWriter. It is approximately 10-15% faster than
the Python2/3 version.

Python 2 users should use XlsxWriter version 2.0.0, see below.

41.21 Release 2.0.0 - August 9 2021

 This is the last XlsxWriter release to support Python 2. From now bug fixes and new features
will only be available for Python 3. The deprecation notice for Python 2 support in XlsxWriter
has been in place since May 2020 and the Python community support for Python 2 ended
in January 2020. Downloads of XlsxWriter for Python 2 is currently less than 6% of all
downloads of the library, and decreasing month by month.

Python 2 users should still be able to install versions of XlsxWriter up to this release but not
any releases afterwards.

Feature Request #720.

41.22 Release 1.4.5 - July 29 2021

» Added Description/Alt Text and Decorative accessibility options for charts, textboxes and
buttons. These options were already available for images.

41.23 Release 1.4.4 - July 4 2021

» Added some performance improvements. Performance for larger files should be 5-10% bet-
ter.

41.24 Release 1.4.3 - May 12 2021

» Added support for background images in worksheets. See set background() and Ex-
ample: Setting the Worksheet Background.

41.25 Release 1.4.2 - May 7 2021

» Added support for GIF image files (and in Excel 365, animated GIF files).

41.26 Release 1.4.1 - May 6 2021

* Added support for dynamic arrays and new Excel 365 functions like UNIQUE and FIL-
TER. See write dynamic array formula(), Dynamic Array support and Example:
Dynamic array formulas.

» Added constructor option “use_future_functions” to enable newer Excel “future” functions in
Formulas. See Formulas added in Excel 2010 and later, and the Workbook () constructor.

674 Chapter 41. Changes in XisxWriter

https://github.com/jmcnamara/XlsxWriter/issues/720

Creating Excel files with Python and XlsxWriter, Release 3.1.9

41.27 Release 1.4.0 - April 23 2021

Added fix for issue for where a y_axis font rotation of 0 was ignored.

41.28 Release 1.3.9 - April 15 2021

Added option to set row heights and column widths in pixels via the set row pixels()
and set column pixels() methods.

41.29 Release 1.3.8 - March 29 2021

Added ability to add accessibility options “description” and “decorative” to images via in-
sert image(). Feature Request #768.

Added fix for datetime.timedelta values that exceed the Excel 1900 leap day (timedeltas
greater than 59 days, in hours). This is a backward incompatible change. Issue #731.

Added the worksheet read only recommended() method to set the Excel “Read-only
Recommended” option that is available when saving a file. Feature Request #784.

Fixed issue where temp files used in constant_memory mode weren’t closed/deleted if the
workbook object was garbage collected. Issue #764.

Fixed issue where pattern formats without colors were given a default black fill color. Issue
#790.

Added option to set a chart crossing to ‘min’ as well as the existing ‘max’ option. The ‘min’
option isn’t available in the Excel interface but can be enabled via VBA. Feature Request
#773.

41.30 Release 1.3.7 - October 13 2020

Fixed issue where custom chart data labels didn’t inherit the position of the data labels in the
series. Issue #754.

Added text alignment for textboxes. The existing options allowed the text area to be aligned
but didn’t offer control over the text within that area.

Added Python 3.9 to the test matrix.

41.31 Release 1.3.6 - September 23 2020

Added the worksheet unprotect range() method to allow ranges within a protected
worksheet to be unprotected. Feature Request #507.

There are now over 1500 test cases in the test suite, including 900 tests that compare the
output from XlsxWriter, byte for byte, against test files created in Excel. This is to ensure the
maximum possible compatibility with Excel.

41.27. Release 1.4.0 - April 23 2021 675

https://github.com/jmcnamara/XlsxWriter/issues/768
https://github.com/jmcnamara/XlsxWriter/issues/731
https://github.com/jmcnamara/XlsxWriter/issues/784
https://github.com/jmcnamara/XlsxWriter/issues/764
https://github.com/jmcnamara/XlsxWriter/issues/790
https://github.com/jmcnamara/XlsxWriter/issues/790
https://github.com/jmcnamara/XlsxWriter/issues/773
https://github.com/jmcnamara/XlsxWriter/issues/773
https://github.com/jmcnamara/XlsxWriter/issues/754
https://github.com/jmcnamara/XlsxWriter/issues/507

Creating Excel files with Python and XisxWriter, Release 3.1.9

41.32 Release 1.3.5 - September 21 2020

+ Fixed issue where relative url links in images didn’t work. Issue #751.
» Added use zip64 as a constructor option. Issue #745.

» Added check, and warning, for worksheet tables with no data row. Either with or without a
header row. Issue #715 and Issue #679.

* Add a warning when the string length in write rich string() exceeds Excel’s limit.
Issue #372.

41.33 Release 1.3.4 - September 16 2020

» Replaced internal MD5 digest used to check for duplicate images with a SHA256 digest to
avoid issues on operating systems such as Red Hat in FIPS mode which don’t support MD5
for security reasons. Issue #749.

41.34 Release 1.3.3 - August 13 2020

* Added ignore errors() worksheet method to to allow Excel worksheet errors/warnings
to be ignored in user defined ranges. See also Example: Ignoring Worksheet errors and
warnings. Feature Request #678.

» Added warning when closing a file more than once via close () to help avoid errors where
a file is closed within a loop or at the wrong scope level.

41.35 Release 1.3.2 - August 6 2020

» Added Border, Fill, Pattern and Gradient formatting to chart data labels and chart custom
data labels. See Chart series option: Data Labels and Chart series option: Custom Data
Labels.

41.36 Release 1.3.1 - August 3 2020

» Fix for issue where array formulas weren’'t included in the output file for certain
ranges/conditions. Issue #735.

41.37 Release 1.3.0 - July 30 2020

» Added support for chart custom data labels. Feature Request #343.

41.38 Release 1.2.9 - May 29 2020

+ Added support for stacked and percent stacked Line charts.

676 Chapter 41. Changes in XisxWriter

https://github.com/jmcnamara/XlsxWriter/issues/751
https://github.com/jmcnamara/XlsxWriter/issues/745
https://github.com/jmcnamara/XlsxWriter/issues/715
https://github.com/jmcnamara/XlsxWriter/issues/679
https://github.com/jmcnamara/XlsxWriter/issues/372
https://github.com/jmcnamara/XlsxWriter/issues/749
https://github.com/jmcnamara/XlsxWriter/issues/678
https://github.com/jmcnamara/XlsxWriter/issues/735
https://github.com/jmcnamara/XlsxWriter/issues/343

Creating Excel files with Python and XlsxWriter, Release 3.1.9

41.39 Release 1.2.8 - February 22 2020

« Fix for issue where duplicate images with hyperlinks weren’t handled correctly. Issue #686.

+ Removed ReservedWorksheetName exception which was used with the reserved work-
sheet name “History” since this name is allowed in some Excel variants. Issue #688.

* Fix for worksheet objects (charts, images and textboxes) that are inserted with an offset that
starts in a hidden cell. Issue #676.

+ Fix to allow handling of NoneType in add write handler(). Issue #677.

41.40 Release 1.2.7 - December 23 2019

+ Fix for duplicate images being copied to an XlsxWriter file. Excel uses an optimization where
it only stores one copy of a repeated/duplicate image in a workbook. XlsxWriter didn’t do
this which meant that the file size would increase when then was a large number of repeated
images. This release fixes that issue and replicates Excel’s behavior. Issue #615.

» Added documentation on Number Format Categories and Number Formats in different lo-
cales.

» Added note to protect () about how it is possible to encrypt an XlsxWriter file using a third
party, cross platform, open source tool called msoffice-crypt.

41.41 Release 1.2.6 - November 15 2019

+ Added option to remove style from worksheet tables. Feature Request #670.

41.42 Release 1.2.5 - November 10 2019

» Added option to add hyperlinks to textboxes. See Textbox Hyperlink. Feature Request #419.

41.43 Release 1.2.4 - November 9 2019

» Added option to link textbox text from a cell. See Textbox Textlink. Feature Request #516.

» Added option to rotate text in a textbox. See Textbox formatting: Text Rotation. Feature
Request #638.

41.44 Release 1.2.3 - November 7 2019

* Increased allowable worksheet url length from 255 to 2079 characters, as supported in more
recent versions of Excel. A lower or user defined limit can be set via the max_url_length
property in the Workbook () constructor.

+ Fixed several issues with hyperlinks in worksheet images.

41.39. Release 1.2.8 - February 22 2020 677

https://github.com/jmcnamara/XlsxWriter/issues/686
https://github.com/jmcnamara/XlsxWriter/issues/688
https://github.com/jmcnamara/XlsxWriter/issues/676
https://github.com/jmcnamara/XlsxWriter/issues/677
https://github.com/jmcnamara/XlsxWriter/issues/615
https://github.com/herumi/msoffice
https://github.com/jmcnamara/XlsxWriter/issues/670
https://github.com/jmcnamara/XlsxWriter/issues/419
https://github.com/jmcnamara/XlsxWriter/issues/516
https://github.com/jmcnamara/XlsxWriter/issues/638
https://github.com/jmcnamara/XlsxWriter/issues/638

Creating Excel files with Python and XisxWriter, Release 3.1.9

41.45 Release 1.2.2 - October 16 2019

+ Fixed Python 3.8.0 warnings. Issue #660.

41.46 Release 1.2.1 - September 14 2019

* Added the add write handler() method to allow user defined types to be handled by
thewrite () method. See Writing user defined types for more information. Feature Request
#631.

» Add support for East Asian vertical fonts in charts. Feature Request #648.

41.47 Release 1.2.0 - August 26 2019

+ Refactored exception handling around the workbook file close () method to allow excep-
tions to be caught and handled. See Example: Catch exception on closing. Also refactored
the code to clean up temp files in the event of an exception. :issue‘471‘ and Issue #647.

» Added the option to allow chart fonts to be rotated to 270 degrees to give a stacked orienta-
tion. See Chart Fonts. Issue #648.

41.48 Release 1.1.9 - August 19 2019

» Another fix for issues where zipfile.py raises “ZIP does not support timestamps before 1980”
exception. Issue #651.

41.49 Release 1.1.8 - May 5 2019

» Added ability to combine Doughnut and Pie charts.

» Added gauge chart example which is a combination of a Doughnut and a Pie chart. See
Example: Gauge Chart.

41.50 Release 1.1.7 - April 20 2019

» Added docs on Working with Object Positioning.

» Added fix for sizing of cell comment boxes when they cross columns/rows that have size
changes that occur after the comment is written. Issue #403 and Issue #312.

» Added fix for the sizing of worksheet objects (images, charts, textboxes) when the underlying
cell sizes have changed and the “object_position” parameter has been set to 1 “Move and
size with cells”. An additional mode 4 has been added to simulate inserting the object in
hidden rows. Issue #618.

» Added object positioning for charts and textboxes, it was already supported for images. Note,
the parameter is now called object position. The previous parameter name posi-
tioning is deprecated but still supported for images. Issue #568.

678 Chapter 41. Changes in XisxWriter

https://github.com/jmcnamara/XlsxWriter/issues/660
https://github.com/jmcnamara/XlsxWriter/issues/631
https://github.com/jmcnamara/XlsxWriter/issues/631
https://github.com/jmcnamara/XlsxWriter/issues/648
https://github.com/jmcnamara/XlsxWriter/issues/647
https://github.com/jmcnamara/XlsxWriter/issues/648
https://github.com/jmcnamara/XlsxWriter/issues/651
https://github.com/jmcnamara/XlsxWriter/issues/403
https://github.com/jmcnamara/XlsxWriter/issues/312
https://github.com/jmcnamara/XlsxWriter/issues/618
https://github.com/jmcnamara/XlsxWriter/issues/568

Creating Excel files with Python and XlsxWriter, Release 3.1.9

41.51 Release 1.1.6 - April 7 2019

» Fixed issue where images that started in hidden rows/columns weren'’t placed correctly in
the worksheet. Issue #613.

« Fixed the mime-type reported by system file(1). The mime-type reported by “file —mime-
type”/magic was incorrect for XlsxWriter files since it expected the [Content types] to be
the first file in the zip container. Issue #614.

41.52 Release 1.1.5 - February 22 2019

» This version removes support for end of life Pythons 2.5, 2.6, 3.1, 3.2 and 3.3. For older,
unsupported versions of Python use version 1.1.4 of XlsxWriter.

41.53 Release 1.1.4 - February 10 2019

* Fix for issues where zipfile.py raises “ZIP does not support timestamps before 1980” excep-
tion. Issue #535.

41.54 Release 1.1.3 - February 9 2019

* Fix handling of "num_format’: 'O’ induplicate formats. Issue #584.

41.55 Release 1.1.2 - October 20 2018

« Fix for issue where in_memory files weren’t compressed. Issue #573.
» Fixwrite() so thatit handles array formulas as documented. Issue #418.
+ Fix for issue with special characters in worksheet table functions. Issue #442.

+ Added warnings for input issues in write rich string() such as blank strings, double
formats or insufficient parameters. Issue #425.

41.56 Release 1.1.1 - September 22 2018

* Added comment font name and size options. Issue #201.

+ Fix for issue when using text boxes in the same workbook as a chartsheet. Issue #420.

41.57 Release 1.1.0 - September 2 2018
+ Added functionality to align chart category axis labels. See the label align property of
the set x axis() method.

« Added worksheet hide row col headers() method to turn off worksheet row and col-
umn headings. Issue #480.

41.51. Release 1.1.6 - April 7 2019 679

https://github.com/jmcnamara/XlsxWriter/issues/613
https://github.com/jmcnamara/XlsxWriter/issues/614
https://github.com/jmcnamara/XlsxWriter/issues/535
https://github.com/jmcnamara/XlsxWriter/issues/584
https://github.com/jmcnamara/XlsxWriter/issues/573
https://github.com/jmcnamara/XlsxWriter/issues/418
https://github.com/jmcnamara/XlsxWriter/issues/442
https://github.com/jmcnamara/XlsxWriter/issues/425
https://github.com/jmcnamara/XlsxWriter/issues/201
https://github.com/jmcnamara/XlsxWriter/issues/420
https://github.com/jmcnamara/XlsxWriter/issues/480

Creating Excel files with Python and XisxWriter, Release 3.1.9

» Added the set tab ratio() method to set the ratio between the worksheet tabs and the
horizontal slider. Issue #481.

» Fixed issue with icon conditional formats when the values were zero. Issue #565.

41.58 Release 1.0.9 - August 27 2018

 Fix for issue with formulas quoted as strings in conditional formats, introduced in version
1.0.7. Issue #564.

41.59 Release 1.0.8 - August 27 2018

+ Added named exceptions to XlsxWriter. See The Exceptions Class.

* Removed the implicit cLose () in the destructor since it wasn’t guaranteed to work correctly
and raised a confusing exception when any other exception was triggered. Note that this
is a backward incompatible change. The with context manager is a better way to close
automatically, see close().

+ Added border, fill, pattern and gradient formatting options to set legend (). Issue #545.
» Added top_ right positionto set legend(). Issue #537.

41.60 Release 1.0.7 - August 16 2018

* Fix for unicode type error in Python 3. Issue #554.

41.61 Release 1.0.6 - August 15 2018

» Added some performance improvements. Pull Request #551.

41.62 Release 1.0.5 - May 19 2018

+ Added example of how to subclass the Workbook and Worksheet objects. See Example:
Example of subclassing the Workbook and Worksheet classes and Example: Advanced
example of subclassing.

+ Added support for WMF and EMF image formats to the Worksheet add image () method.

41.63 Release 1.0.4 - April 14 2018

+ Set the xIsx internal file member datetimes to 1980-01-01 00:00:00 like Excel so that apps
can produce a consistent binary file once the workbook set properties() created date
is set. Pull Request #495.

* Fix for jpeg images that reported unknown height/width due to unusual SOF markers. Issue
#506.

» Added support for blanks in list autofilter. Issue #505.

680 Chapter 41. Changes in XisxWriter

https://github.com/jmcnamara/XlsxWriter/issues/481
https://github.com/jmcnamara/XlsxWriter/issues/565
https://github.com/jmcnamara/XlsxWriter/issues/564
https://github.com/jmcnamara/XlsxWriter/issues/545
https://github.com/jmcnamara/XlsxWriter/issues/537
https://github.com/jmcnamara/XlsxWriter/issues/554
https://github.com/jmcnamara/XlsxWriter/pull/551
https://github.com/jmcnamara/XlsxWriter/pull/495
https://github.com/jmcnamara/XlsxWriter/issues/506
https://github.com/jmcnamara/XlsxWriter/issues/506
https://github.com/jmcnamara/XlsxWriter/issues/505

Creating Excel files with Python and XlsxWriter, Release 3.1.9

41.64 Release 1.0.3 - April 10 2018

» Added Excel 2010 data bar features such as solid fills and control over the display of negative
values. See Working with Conditional Formatting and Example: Conditional Formatting.
Feature Request #502.

 Fixed set column() parameter names to match docs and other methods. Note, this is a
backward incompatible change. Issue #504.

* Fixed missing plotarea formatting in pie/doughnut charts.

41.65 Release 1.0.2 - October 14 2017

+ Fix for cases where the hyperlink style added in the previous release didn’'t work. Feature
Request #455.

41.66 Release 1.0.1 - October 14 2017

» Changed default write url() format to the Excel hyperlink style so that it changes when
the theme is changed and also so that it indicates that the link has been clicked. Feature
Request #455.

41.67 Release 1.0.0 - September 16 2017

» Added icon sets to conditional formatting. See Working with Conditional Formatting and
Example: Conditional Formatting. Feature Request #387.

41.68 Release 0.9.9 - September 5 2017

» Added stop if true parameter to conditional formatting. Feature Request #386.

41.69 Release 0.9.8 - July 1 2017

+ Fixed issue where spurious deprecation warning was raised in -Werror mode. Issue #451.

41.70 Release 0.9.7 - June 25 2017

» Minor bug and doc fixes.

41.71 Release 0.9.6 - Dec 26 2016

« Fix for table with data but without a header. Issue #405.

» Add a warning when the number of series in a chart exceeds Excel’s limit of 1. Issue #399.

41.64. Release 1.0.3 - April 10 2018 681

https://github.com/jmcnamara/XlsxWriter/issues/502
https://github.com/jmcnamara/XlsxWriter/issues/504
https://github.com/jmcnamara/XlsxWriter/issues/455
https://github.com/jmcnamara/XlsxWriter/issues/455
https://github.com/jmcnamara/XlsxWriter/issues/455
https://github.com/jmcnamara/XlsxWriter/issues/455
https://github.com/jmcnamara/XlsxWriter/issues/387
https://github.com/jmcnamara/XlsxWriter/issues/386
https://github.com/jmcnamara/XlsxWriter/issues/451
https://github.com/jmcnamara/XlsxWriter/issues/405
https://github.com/jmcnamara/XlsxWriter/issues/399

Creating Excel files with Python and XisxWriter, Release 3.1.9

41.72 Release 0.9.5 - Dec 24 2016

* Fix for missing remove_timezone option in Chart class. Pull Request #404 from Thomas
Arnhold.

41.73 Release 0.9.4 - Dec 2 2016

» Added user definable removal of timezones in datetimes. See the Workbook () constructor
option remove timezone and Timezone Handling in XlsxWriter. Issue #257.

» Fix duplicate header warning in add tab'le () when there is only one user defined header.
Issue #380.

« Fix for center_across property in add format (). Issue #381.

41.74 Release 0.9.3 - July 8 2016

» Added check to add table() to prevent duplicate header names which leads to a corrupt
Excel file. Issue #362.

41.75 Release 0.9.2 - June 13 2016

» Added workbook set size() method to set the workbook window size.

41.76 Release 0.9.1 - June 8 2016

+ Added font support to chart set table().

* Documented used of font rotation in chart data /labels. |ssue #337.

41.77 Release 0.9.0 - June 7 2016

« Added frendline properties: intercept, display equation and dis-
play r squared. Feature Request #357.

41.78 Release 0.8.9 - June 1 2016

 Fix for insert image() issue when handling images with zero dpi. Issue #356.

41.79 Release 0.8.8 - May 31 2016

» Added workbook set custom property() method to set custom document properties.
Feature Request #355.

682 Chapter 41. Changes in XisxWriter

https://github.com/jmcnamara/XlsxWriter/pull/404
https://github.com/jmcnamara/XlsxWriter/issues/257
https://github.com/jmcnamara/XlsxWriter/issues/380
https://github.com/jmcnamara/XlsxWriter/issues/381
https://github.com/jmcnamara/XlsxWriter/issues/362
https://github.com/jmcnamara/XlsxWriter/issues/337
https://github.com/jmcnamara/XlsxWriter/issues/357
https://github.com/jmcnamara/XlsxWriter/issues/356
https://github.com/jmcnamara/XlsxWriter/issues/355

Creating Excel files with Python and XlsxWriter, Release 3.1.9

41.80 Release 0.8.7 - May 13 2016

+ Fix for issue when inserting read-only images on Windows. Issue #352.

* Added get worksheet by name() method to allow the retrieval of a worksheet from a
workbook via its name.

» Fixed issue where internal file creation and modification dates were in the local timezone
instead of UTC.

41.81 Release 0.8.6 - April 27 2016

« Fix for external: urls where the target/anchor contains spaces. Issue #350.

41.82 Release 0.8.5 - April 17 2016

» Added additional documentation on Working with Pandas and XlsxWriter and Pandas with
XlsxWriter Examples.

» Added fix for set center across() format method.

41.83 Release 0.8.4 - January 16 2016

» Fixforwrite url() exception when the URL contains two # location/anchors. Note, URLs
like this aren’t strictly valid and cannot be entered manually in Excel. Issue #330.

41.84 Release 0.8.3 - January 14 2016

» Added options to configure chart axis tick placement. See set x axis().

41.85 Release 0.8.2 - January 13 2016

» Added transparency option to solid fill colors in chart areas (Chart formatting: Solid Fill).
Feature Request #298.

41.86 Release 0.8.1 - January 12 2016

» Added option to set chart tick interval. Feature Request #251.

41.87 Release 0.8.0 - January 10 2016

* Added additional documentation on Working with Formulas.

41.88 Release 0.7.9 - January 9 2016

» Added chart pattern fills, see Chart formatting: Pattern Fill and Example: Chart with Pattern
Fills. Feature Request #268.

41.80. Release 0.8.7 - May 13 2016 683

https://github.com/jmcnamara/XlsxWriter/issues/352
https://github.com/jmcnamara/XlsxWriter/issues/350
https://github.com/jmcnamara/XlsxWriter/issues/330
https://github.com/jmcnamara/XlsxWriter/issues/298
https://github.com/jmcnamara/XlsxWriter/issues/251
https://github.com/jmcnamara/XlsxWriter/issues/268

Creating Excel files with Python and XisxWriter, Release 3.1.9

41.89 Release 0.7.8 - January 6 2016

» Add checks for valid and non-duplicate worksheet table names. Issue #319.

41.90 Release 0.7.7 - October 19 2015

» Added support for table header formatting and a fix for wrapped lines in the header. Feature
Request #287.

41.91 Release 0.7.6 - October 7 2015

+ Fix for images with negative offsets. Issue #273.

41.92 Release 0.7.5 - October 4 2015

 Allow hyperlinks longer than 255 characters when the link and anchor are each less than or
equal to 255 characters.

» Added hyperlink base document property. Feature Request #306.

41.93 Release 0.7.4 - September 29 2015

» Added option to allow data validation input messages with the ‘any’ validate parameter.

+ Fixed url encoding of links to external files and directories. Issue #278.

41.94 Release 0.7.3 - May 7 2015

* Added documentation on Working with Pandas and XlsxWriter and Pandas with XlsxWriter
Examples.

» Added support for with context manager. :PR‘239".

41.95 Release 0.7.2 - March 29 2015

» Added support for textboxes in worksheets. See insert textbox() and Working with
Textboxes for more details. Feature Request #107.

41.96 Release 0.7.1 - March 23 2015

» Added gradient fills to chart objects such as the plot area of columns. See Chart formatting:
Gradient Fill and Example: Chart with Gradient Fills. Feature Request #228.

41.97 Release 0.7.0 - March 21 2015

+ Added support for display units in chart axes. See set x axis(). Feature Request #185.

684 Chapter 41. Changes in XisxWriter

https://github.com/jmcnamara/XlsxWriter/issues/319
https://github.com/jmcnamara/XlsxWriter/issues/287
https://github.com/jmcnamara/XlsxWriter/issues/287
https://github.com/jmcnamara/XlsxWriter/issues/273
https://github.com/jmcnamara/XlsxWriter/issues/306
https://github.com/jmcnamara/XlsxWriter/issues/278
https://github.com/jmcnamara/XlsxWriter/issues/107
https://github.com/jmcnamara/XlsxWriter/issues/228
https://github.com/jmcnamara/XlsxWriter/issues/185

Creating Excel files with Python and XlsxWriter, Release 3.1.9

» Added nan_inf to_errors Workbook() constructor option to allow mapping of Python
nan/inf value to Excel error formulas inwrite() and write number(). Feature Request
#150.

41.98 Release 0.6.9 - March 19 2015

» Added support for clustered category charts. See Example: Clustered Chart for details.
Feature Request #180.

* Refactored the The Format Class and formatting documentation.

41.99 Release 0.6.8 - March 17 2015

» Added option to combine two different chart types. See the Combined Charts section and
Example: Combined Chart and Example: Pareto Chart for more details. Feature Request
#72.

41.100 Release 0.6.7 - March 1 2015

+ Added option to add function value in worksheet add table(). Feature Request #216.

» Fix for A1 row/col numbers below lower bound. Issue #212.

41.101 Release 0.6.6 - January 16 2015

« Fix for incorrect shebang line in vba_extract.py packaged in wheel. Issue #211.

» Added docs and example for diagonal cell border. See Example: Diagonal borders in cells.

41.102 Release 0.6.5 - December 31 2014

» Added worksheet quoting for chart names in lists. Issue #205.

Added docs on how to find and set VBA codenames. Issue #202.

Fix Python3 issue with unused charts. Issue #200.

Enabled warning for missing category is scatter chart. Issue #197.

Fix for upper chart style limit. Increased the chart style limit from 42 to the correct 48. Issue
#192.

Raise warning if a chart is inserted more than once. Issue #184.

41.103 Release 0.6.4 - November 15 2014

+ Fix for issue where fonts applied to data labels raised exception. Issue #179.

» Added option to allow explicit text axis types for charts, similar to date axes. Feature Request
#178.

41.98. Release 0.6.9 - March 19 2015 685

https://github.com/jmcnamara/XlsxWriter/issues/150
https://github.com/jmcnamara/XlsxWriter/issues/150
https://github.com/jmcnamara/XlsxWriter/issues/180
https://github.com/jmcnamara/XlsxWriter/issues/72
https://github.com/jmcnamara/XlsxWriter/issues/72
https://github.com/jmcnamara/XlsxWriter/issues/216
https://github.com/jmcnamara/XlsxWriter/issues/212
https://github.com/jmcnamara/XlsxWriter/issues/211
https://github.com/jmcnamara/XlsxWriter/issues/205
https://github.com/jmcnamara/XlsxWriter/issues/202
https://github.com/jmcnamara/XlsxWriter/issues/200
https://github.com/jmcnamara/XlsxWriter/issues/197
https://github.com/jmcnamara/XlsxWriter/issues/192
https://github.com/jmcnamara/XlsxWriter/issues/192
https://github.com/jmcnamara/XlsxWriter/issues/184
https://github.com/jmcnamara/XlsxWriter/issues/179
https://github.com/jmcnamara/XlsxWriter/issues/178
https://github.com/jmcnamara/XlsxWriter/issues/178

Creating Excel files with Python and XisxWriter, Release 3.1.9

* Fix for issue where the bar/column chart gap and overlap weren’t applied to the secondary
axis. Issue #177.

41.104 Release 0.6.3 - November 6 2014

+ Added support for adding VBA macros to workbooks. See Working with VBA Macros. Fea-
ture Request #126.

41.105 Release 0.6.2 - November 1 2014

» Added chart axis line and fill properties. Feature Request #88.

41.106 Release 0.6.1 - October 29 2014

» Added chart specific handling of data label positions since not all positions are available for
all chart types. Issue #170.

* Added number formatting (Issue #130), font handling, separator and legend key for data
labels. See Chart series option: Data Labels

+ Fix for non-quoted worksheet names containing spaces and non-alphanumeric characters.
Issue #167.

41.107 Release 0.6.0 - October 15 2014

+ Added option to add images to headers and footers. See Example: Adding Headers and
Footers to Worksheets. Feature Request #133.

* Fixed issue where non 96dpi images weren’t scaled properly in Excel. Issue #164.

» Added option to not scale header/footer with page. See set header(). Feature Request
#134.

41.108 Release 0.5.9 - October 11 2014

» Removed egg base requirement from setup.cfg which was preventing installation on
Windows. Issue #162.

* Fix for issue where X axis title formula was overwritten by the Y axis title. Issue #161.

41.109 Release 0.5.8 - September 28 2014

* Added support for Doughnut charts. Feature Request #157.
» Added support for wheel packages. Feature Request #156.

« Made the exception handling in write() clearer for unsupported types so that it raises a
more accurate TypeError instead of a ValueError. Issue #153.

686 Chapter 41. Changes in XisxWriter

https://github.com/jmcnamara/XlsxWriter/issues/177
https://github.com/jmcnamara/XlsxWriter/issues/126
https://github.com/jmcnamara/XlsxWriter/issues/126
https://github.com/jmcnamara/XlsxWriter/issues/88
https://github.com/jmcnamara/XlsxWriter/issues/170
https://github.com/jmcnamara/XlsxWriter/issues/130
https://github.com/jmcnamara/XlsxWriter/issues/167
https://github.com/jmcnamara/XlsxWriter/issues/133
https://github.com/jmcnamara/XlsxWriter/issues/164
https://github.com/jmcnamara/XlsxWriter/issues/134
https://github.com/jmcnamara/XlsxWriter/issues/134
https://github.com/jmcnamara/XlsxWriter/issues/162
https://github.com/jmcnamara/XlsxWriter/issues/161
https://github.com/jmcnamara/XlsxWriter/issues/157
https://github.com/jmcnamara/XlsxWriter/issues/156
https://github.com/jmcnamara/XlsxWriter/issues/153

Creating Excel files with Python and XlsxWriter, Release 3.1.9

41.110 Release 0.5.7 - August 13 2014

» Added support for insert image() images from byte streams to allow images from URLs
and other sources. Feature Request #118.

* Addedwrite datetime() support for datetime.timedelta. Feature Request #128.

41.111 Release 0.5.6 - July 22 2014

« Fix for spurious exception message when close () isn’t used. Issue #131.
+ Fix for formula string values that look like numbers. Issue #122.
 Clarify print area() documentation for complete row/column ranges. Issue #139.

+ Fix for unicode strings in data validation lists. Issue #135.

41.112 Release 0.5.5 - May 6 2014

« Fix for incorrect chart offsets in insert chart() and set size().

41.113 Release 0.5.4 - May 4 2014

» Added image positioning option to insert image() to control how images are moved in
relation to surrounding cells. Feature Request #117.

« Fix for chart error_bar exceptions. Issue #115.
+ Added clearer reporting of nested exceptions in write () methods. Pull Request #108.

» Added support for inside base data label position in charts.

41.114 Release 0.5.3 - February 20 2014

» Added checks and warnings for data validation limits. Issue #89.
» Added option to add hyperlinks to images. Thanks to Paul Tax.
» Added Python 3 Http server example. Thanks to Krystian Rosinski.

» Added set calc mode() method to control automatic calculation of formulas when work-
sheet is opened. Thanks to Chris Tompkinson.

» Added use zip64() method to allow ZIP64 extensions when writing very large files.
 Fix to handle ‘0’ and other number like strings as number formats. Issue #103.

+ Fix for missing images in in_memory mode. Issue #102.

41.110. Release 0.5.7 - August 13 2014 687

https://github.com/jmcnamara/XlsxWriter/issues/118
https://github.com/jmcnamara/XlsxWriter/issues/128
https://github.com/jmcnamara/XlsxWriter/issues/131
https://github.com/jmcnamara/XlsxWriter/issues/122
https://github.com/jmcnamara/XlsxWriter/issues/139
https://github.com/jmcnamara/XlsxWriter/issues/135
https://github.com/jmcnamara/XlsxWriter/issues/117
https://github.com/jmcnamara/XlsxWriter/issues/115
https://github.com/jmcnamara/XlsxWriter/pull/108
https://github.com/jmcnamara/XlsxWriter/issues/89
https://github.com/jmcnamara/XlsxWriter/issues/103
https://github.com/jmcnamara/XlsxWriter/issues/102

Creating Excel files with Python and XisxWriter, Release 3.1.9

41.115 Release 0.5.2 - December 31 2013

» Added date axis handling to charts. See Example: Date Axis Chart. Feature Request #73.

Added support for non-contiguous chart ranges. Feature Request #44.

Fix for low byte and control characters in strings. Issue #86.

Fix for chart titles with exclamation mark. Issue #83.

Fix to remove duplicate set column() entries. Issue #82.

41.116 Release 0.5.1 - December 2 2013

» Added interval unit option for category axes. Feature Request #69.
* Fix for axis name font rotation.

« Fix for several minor issues with Pie chart legends.

41.117 Release 0.5.0 - November 17 2013

» Added Chartsheets to allow single worksheet charts. Feature Request #10.

41.118 Release 0.4.9 - November 17 2013

» Added chart object positioning and sizing to allow positioning of plotarea, legend, title and
axis names. Feature Request #66.

» Added set title() none option to turn off automatic titles.
* Improved define name() name validation.

« Fix to prevent modification of user parameters in conditional format().

41.119 Release 0.4.8 - November 13 2013

» Added in_memory Workbook () constructor option to allow XlsxWriter to work on Google
App Engine. Feature Request #28.

41.120 Release 0.4.7 - November 9 2013

» Added fix for markers on non-marker scatter charts. Issue #62.
» Added custom error bar option. Thanks to input from Alex Birmingham.
» Changed Html docs to Bootstrap theme.

» Added Example: Merging Cells with a Rich String.

688 Chapter 41. Changes in XisxWriter

https://github.com/jmcnamara/XlsxWriter/issues/73
https://github.com/jmcnamara/XlsxWriter/issues/44
https://github.com/jmcnamara/XlsxWriter/issues/86
https://github.com/jmcnamara/XlsxWriter/issues/83
https://github.com/jmcnamara/XlsxWriter/issues/82
https://github.com/jmcnamara/XlsxWriter/issues/69
https://github.com/jmcnamara/XlsxWriter/issues/10
https://github.com/jmcnamara/XlsxWriter/issues/66
https://github.com/jmcnamara/XlsxWriter/issues/28
https://github.com/jmcnamara/XlsxWriter/issues/62

Creating Excel files with Python and XlsxWriter, Release 3.1.9

41.121 Release 0.4.6 - October 23 2013

+ Added font formatting to chart legends.

41.122 Release 0.4.5 - October 21 2013

» Added position axis chart axis option.

» Added optional list handling for chart names.

41.123 Release 0.4.4 - October 16 2013

» Documented use of cell utility functions.

» Fix for tables added in non-sequential order. Closes Issue #51 reported by calfzhou.

41.124 Release 0.4.3 - September 12 2013

+ Fix for comments overlying columns with non-default width. Issue #45.

41.125 Release 0.4.2 - August 30 2013

» Added a default blue underline hyperlink format for write url().

+ Added Workbook() constructor options strings to formulas and
strings to urls to override default conversion of strings in write().

41.126 Release 0.4.1 - August 28 2013

» Fix for charts and images that cross rows and columns that are hidden or formatted but
which don’t have size changes. Issue #42 reported by Kristian Stobbe.

41.127 Release 0.4.0 - August 26 2013

» Added more generic support for JPEG files. Issue #40 reported by Simon Breuss.

* Fix for harmless Python 3 installation warning. Issue #41 reported by James Reeves.

41.128 Release 0.3.9 - August 24 2013

+ Added fix for minor issue with insert image() for images that extend over several cells.

+ Added fix to ensure formula calculation on load regardless of Excel version.

41.121. Release 0.4.6 - October 23 2013 689

https://github.com/jmcnamara/XlsxWriter/issues/51
https://github.com/jmcnamara/XlsxWriter/issues/45
https://github.com/jmcnamara/XlsxWriter/issues/42
https://github.com/jmcnamara/XlsxWriter/issues/40
https://github.com/jmcnamara/XlsxWriter/issues/41

Creating Excel files with Python and XisxWriter, Release 3.1.9

41.129 Release 0.3.8 - August 23 2013

+ Added handling for Decimal(), Fraction() and other float types to the write () function.

* Added Python 2.5 and Jython support. Thanks to Jonas Diemer for the patch.

41.130 Release 0.3.7 - August 16 2013

» Added write boolean() function to write Excel boolean values. Feature Request #37.
Also added explicit handling of Python bool values to the write () function.

» Changed Workbook () constructor option strings to numbers default option to False
so that there is no implicit conversion of numbers in strings to numbers. The previous be-
havior can be obtained by setting the constructor option to True. Note This is a backward
incompatibility.

41.131 Release 0.3.6 - July 26 2013

» Simplified import based on a suggestion from John Yeung. Feature Request #26.
* Fix for NAN/INF converted to invalid numbers in write(). Issue #30.

» Added Workbook () constructor option strings to numbers to override default conver-
sion of number strings to numbers in write().

» Added Workbook () constructor option default date format to allow a default date
format string to be set. Feature Request #5.

41.132 Release 0.3.5 - June 28 2013

» Reverted back to using codecs for file encoding (versions <= 0.3.1) to avoid numerous UTF-8
issues in Python2/3.

41.133 Release 0.3.4 - June 27 2013

» Added Chart line smoothing option. Thanks to Dieter Vandenbussche.

» Added Http Server example (Example: Simple HTTP Server). Thanks to Alexander
Afanasiev.

+ Fixed inaccurate column width calculation. Closes Issue #27 Thanks to John Yeung.

« Added chart axis font rotation.

41.134 Release 0.3.3 - June 10 2013

» Minor packaging fixes. Issue #14 and Issue #19.

* Fixed explicit UTF-8 file encoding for Python 3. Pull Request #15 from Alexandr Shadchin.

690 Chapter 41. Changes in XisxWriter

https://github.com/jmcnamara/XlsxWriter/issues/37
https://github.com/jmcnamara/XlsxWriter/issues/26
https://github.com/jmcnamara/XlsxWriter/issues/30
https://github.com/jmcnamara/XlsxWriter/issues/5
https://github.com/jmcnamara/XlsxWriter/issues/27
https://github.com/jmcnamara/XlsxWriter/issues/14
https://github.com/jmcnamara/XlsxWriter/issues/19
https://github.com/jmcnamara/XlsxWriter/pull/15

Creating Excel files with Python and XlsxWriter, Release 3.1.9

* Fixed invalid string formatting resulted in misleading stack trace. Pull Request #21 from
Andrei Korostelev.

41.135 Release 0.3.2 - May 1 2013

» Speed optimizations. The module is now 10-15% faster on average.

41.136 Release 0.3.1 - April 27 2013

» Added chart support. See the The Chart Class, Working with Charts and Chart Examples.

41.137 Release 0.3.0 - April 72013

» Added worksheet sparklines. See Working with Sparklines, Example: Sparklines (Simple)
and Example: Sparklines (Advanced)

41.138 Release 0.2.9 - April 7 2013

+ Added worksheet tables. See Working with Worksheet Tables and Example: Worksheet
Tables.

+ Tested with the new Python stable releases 2.7.4 and 3.3.1. All tests now pass in the follow-
ing versions:

— Python 2.6
— Python 2.7.2
— Python 2.7.3
— Python 2.7.4
— Python 3.1
— Python 3.2
— Python 3.3.0
— Python 3.3.1

» There are now over 700 unit tests including more than 170 tests that compare against the
output of Excel.

41.139 Release 0.2.8 - April 4 2013

» Added worksheet outlines and grouping. See Working with Outlines and Grouping.

41.140 Release 0.2.7 - April 3 2013

* Added set default row() method. See Example: Hiding Rows and Columns.

41.135. Release 0.3.2 - May 1 2013 691

https://github.com/jmcnamara/XlsxWriter/pull/21

Creating Excel files with Python and XisxWriter, Release 3.1.9

 Added hide_row_col.py, hide_sheet.py and text_indent.py examples.

41.141 Release 0.2.6 - April 1 2013

* Added freeze panes() and split panes() methods. See Example: Freeze Panes
and Split Panes .

» Added set selection() method to select worksheet cell or range of cells.

41.142 Release 0.2.5 - April 1 2013

+ Added additional Workbook () parameters 'tmpdir’ and 'date 1904°.

41.143 Release 0.2.4 - March 31 2013

» Added Workbook() "constant memory’ constructor property to minimize memory us-
age when writing large files. See Working with Memory and Performance for more details.

» Fixed bug with handling of UTF-8 strings in worksheet names (and probably some other
places as well). Reported by Josh English.

» Fixed bug where temporary directory used to create xlsx files wasn’t cleaned up after pro-
gram close.

41.144 Release 0.2.3 - March 27 2013

 Fixed bug that was killing performance for medium sized files. The module is now 10x faster
than previous versions. Reported by John Yeung.

41.145 Release 0.2.2 - March 27 2013

» Added worksheet data validation options. See the data validation() method, Working
with Data Validation and Example: Data Validation and Drop Down Lists.

» There are now over 600 unit tests including more than 130 tests that compare against the
output of Excel.

41.146 Release 0.2.1 - March 25 2013

» Added support for datetime.datetime, datetime.date and datetime.time to the
write datetime() method. Issue #3. Thanks to Eduardo (eazb) and Josh English
for the prompt.

41.147 Release 0.2.0 - March 24 2013

+ Added conditional formatting. See the conditional format() method, Working with
Conditional Formatting and Example: Conditional Formatting.

692 Chapter 41. Changes in XisxWriter

https://github.com/jmcnamara/XlsxWriter/issues/3

Creating Excel files with Python and XlsxWriter, Release 3.1.9

41.148 Release 0.1.9 - March 19 2013

» Added Python 2.6 support. All tests now pass in the following versions:
— Python 2.6

Python 2.7.2

Python 2.7.3

Python 3.1

Python 3.2

Python 3.3.0

41.149 Release 0.1.8 - March 18 2013

* Fixed Python 3 support.

41.150 Release 0.1.7 - March 18 2013

» Added the option to write cell comments to a worksheet. See write comment() and
Working with Cell Comments.

41.151 Release 0.1.6 - March 17 2013

« Added insert image() worksheet method to support inserting PNG and JPEG images
into a worksheet. See also the example program Example: Inserting images into a work-
Sheet.

» There are now over 500 unit tests including more than 100 tests that compare against the
output of Excel.

41.152 Release 0.1.5 - March 10 2013

* Added the write rich string() worksheet method to allow writing of text with multiple
formats to a cell. Also added example program: Example: Writing “Rich” strings with multiple
formats.

» Added the hide () worksheet method to hide worksheets.
* Added the set first sheet() worksheet method.

41.153 Release 0.1.4 - March 8 2013

» Added the protect () worksheet method to allow protection of cells from editing. Also
added example program: Example: Enabling Cell protection in Worksheets.

41.148. Release 0.1.9 - March 19 2013 693

Creating Excel files with Python and XisxWriter, Release 3.1.9

41.154 Release 0.1.3 - March 7 2013

* Added worksheet methods:

set zoom() for setting worksheet zoom levels.

right to left() for middle eastern versions of Excel.

hide zero() for hiding zero values in cells.

set tab color() for setting the worksheet tab color.

41.155 Release 0.1.2 - March 6 2013

» Added autofilters. See Working with Autofilters for more details.

* Added the write row() andwrite column() worksheet methods.

41.156 Release 0.1.1 - March 3 2013

» Added the write url() worksheet method for writing hyperlinks to a worksheet.

41.157 Release 0.1.0 - February 28 2013

» Added the set properties () workbook method for setting document properties.
» Added several new examples programs with documentation. The examples now include:
— array_formula.py
— cell_indentation.py
— datetimes.py
— defined_name.py

— demo.py

doc_properties.py

headers_footers.py

hello_world.py

mergel.py

tutorial1.py

— tutorial2.py

— tutorial3.py

— unicode_polish_utf8.py
— unicode_shift_jis.py

694 Chapter 41. Changes in XisxWriter

Creating Excel files with Python and XlsxWriter, Release 3.1.9

41.158 Release 0.0.9 - February 27 2013

» Added the define name () method to create defined names and ranges in a workbook or
worksheet.

» Added the worksheets () method as an accessor for the worksheets in a workbook.

41.159 Release 0.0.8 - February 26 2013

» Added the merge range () method to merge worksheet cells.

41.160 Release 0.0.7 - February 25 2013

» Added final page setup methods to complete the page setup section.
— print_area()
- fit to pages()
— set start page()
— set print scale()
— set h pagebreaks()

— set v pagebreaks()

41.161 Release 0.0.6 - February 22 2013

» Added page setup method.

— print row col headers()

41.162 Release 0.0.5 - February 21 2013

» Added page setup methods.
— repeat _rows()

— repeat columns()

41.163 Release 0.0.4 - February 20 2013

» Added Python 3 support with help from John Evans. Tested with:
Python-2.7.2

Python-2.7.3

Python-3.2

Python-3.3.0

41.158. Release 0.0.9 - February 27 2013 695

Creating Excel files with Python and XisxWriter, Release 3.1.9

» Added page setup methods.

center _horizontally()

center vertically()

set header()

set footer()

hide gridlines()

41.164 Release 0.0.3 - February 19 2013

+ Added page setup method

— set _margins()

41.165 Release 0.0.2 - February 18 2013

» Added page setup methods.

set landscape()

set portrait()

set page view()

set paper()

print across()

41.166 Release 0.0.1 - February 17 2013

* First public release

696 Chapter 41. Changes in XisxWriter

CHAPTER
FORTYTWO

AUTHOR

XlsxWriter was written by John McNamara.
* GitHub

» Mastodon: @jmcnamara@hackyderm.io

42.1 Asking questions

If you have questions about XisxWriter here are some ways to deal with them:
* Bug Reports:
See the Reporting Bugs section of the docs.
* Feature Requests:
Open a Feature Request issue on Github issues.
* Pull Requests:
See the Contributing Guide. Note, all Pull Requests must start with an Issue Tracker.
* General Questions:

General questions about how to use the module should be asked on StackOverflow. Add
the xlsxwriter tag to the question.

Questions on StackOverflow have the advantage of (usually) getting several answers and it
also leaves a searchable question for someone else.

* Email:

If none of the above apply you can contact me at jmcnamara@cpan.org.

42.2 Sponsorship and Donations

| write and maintain a series of open source libraries for creating Excel files. The most com-
monly used are XlsxWriter in Python, LibxIsxwriter in C and Excel::Writer::XLSX and Spread-
sheet::WriteExcel in Perl.

697

https://github.com/jmcnamara
https://github.com/jmcnamara/XlsxWriter/issues
https://github.com/jmcnamara/XlsxWriter/blob/main/CONTRIBUTING.md
https://stackoverflow.com/questions/tagged/xlsxwriter
mailto:jmcnamara@cpan.org

Creating Excel files with Python and XisxWriter, Release 3.1.9

My aim is to write well documented and well tested code that does what the user needs and
doesn’t get in their way. You can help make this continue, or show your appreciation for work to
date, by making a donation via PayPal.

698 Chapter 42. Author

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=RRZCPSL65X858

CHAPTER
FORTYTHREE

LICENSE

XlsxWriter is released under a BSD 2-Clause license.
BSD 2-Clause License
Copyright (c) 2013-2023, John McNamara <jmcnamara@cpan.org> All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.

699

mailto:jmcnamara@cpan.org

Creating Excel files with Python and XisxWriter, Release 3.1.9

700 Chapter 43. License

A

activate() (built-in function), 85
add_chart() (built-in function), 27
add_chartsheet() (built-in function), 28
add_format() (built-in function), 26
add_series() (built-in function), 155
add_sparkline() (built-in function), 80
add_table() (built-in function), 80
add_vba_project() (built-in function), 37
add_worksheet() (built-in function), 25
add_write_handler() (built-in function), 44
autofilter() (built-in function), 90
autofit() (built-in function), 65

C

center_horizontally() (built-in function), 107
center_vertically() (built-in function), 107
close() (built-in function), 29

combine() (built-in function), 165
conditional_format() (built-in function), 78

D

data_validation() (built-in function), 76
define_name() (built-in function), 35
DuplicateTableName, 186
DuplicateWorksheetName, 188

E
EmptyChartSeries, 186

F

FileCreateError, 184

FileSizeError, 185

filter_column() (built-in function), 91
filter_column_list() (built-in function), 92
fit_to_pages() (built-in function), 116
freeze_panes() (built-in function), 94

INDEX

G

get_default_url_format() (built-in function), 38
get_name() (built-in function), 85
get_worksheet_by name() (built-in function), 38

H

hide() (built-in function), 86

hide_gridlines() (built-in function), 114
hide_row_col_headers() (built-in function), 115
hide_zero() (built-in function), 97

ignore_errors() (built-in function), 102
insert_button() (built-in function), 74
insert_chart() (built-in function), 70
insert_image() (built-in function), 67
insert_textbox() (built-in function), 73
InvalidWorksheetName, 187

M

merge_range() (built-in function), 88

O

outline_settings() (built-in function), 101
OverlappingRange, 188

P

print_across() (built-in function), 116
print_area() (built-in function), 115
print_black_and_white() (built-in function), 118
print_row_col_headers() (built-in function), 114
protect() (built-in function), 99

R

read_only_recommended() (built-in function),
39

repeat_columns() (built-in function), 114

repeat_rows() (built-in function), 113

701

Creating Excel files with Python and XisxWriter, Release 3.1.9

right_to_left() (built-in function), 96
S

select() (built-in function), 86

set_align() (built-in function), 139
set_background() (built-in function), 97
set_bg_color() (built-in function), 146
set_bold() (built-in function), 132
set_border() (built-in function), 147
set_border_color() (built-in function), 149
set_bottom() (built-in function), 148
set_bottom_color() (built-in function), 149
set_calc_mode() (built-in function), 39
set_center_across() (built-in function), 141
set_chart() (built-in function), 180
set_chartarea() (built-in function), 170
set_column() (built-in function), 62
set_column_pixels() (built-in function), 64
set_comments_author() (built-in function), 84
set_custom_property() (built-in function), 33
set_default_row() (built-in function), 101
set_diag_border() (built-in function), 150
set_diag_color() (built-in function), 151
set_diag_type() (built-in function), 150
set_drop_lines() (built-in function), 175
set_fg_color() (built-in function), 147
set_first_sheet() (built-in function), 87
set_font_color() (built-in function), 131
set_font_name() (built-in function), 130
set_font_script() (built-in function), 135
set_font_size() (built-in function), 131
set_font_strikeout() (built-in function), 134
set_footer() (built-in function), 113
set_h_pagebreaks() (built-in function), 118
set_header() (built-in function), 108
set_hidden() (built-in function), 139
set_high_low_lines() (built-in function), 176
set_hole_size() (built-in function), 178
set_indent() (built-in function), 144
set_italic() (built-in function), 133
set_landscape() (built-in function), 105
set_left() (built-in function), 148
set_left_color() (built-in function), 149
set_legend() (built-in function), 168
set_locked() (built-in function), 138
set_margins() (built-in function), 108
set_num_format() (built-in function), 135
set_page_view() (built-in function), 105

set_pagebreak_view() (built-in function), 106
set_paper() (built-in function), 106
set_pattern() (built-in function), 146
set_plotarea() (built-in function), 171
set_portrait() (built-in function), 105
set_print_scale() (built-in function), 117
set_properties() (built-in function), 31
set_quote_prefix() (built-in function), 151
set_reading_order() (built-in function), 144
set_right() (built-in function), 148
set_right_color() (built-in function), 150
set_rotation() (built-in function), 143
set_row() (built-in function), 60
set_row_pixels() (built-in function), 61
set_selection() (built-in function), 93
set_shrink() (built-in function), 145
set_size() (built-in function), 30
set_start_page() (built-in function), 117
set_style() (built-in function), 172
set_tab_color() (built-in function), 99
set_tab_ratio() (built-in function), 30
set_table() (built-in function), 173
set_text_justlast() (built-in function), 146
set_text_wrap() (built-in function), 142
set_title() (built-in function), 166

set_top() (built-in function), 148
set_top_color() (built-in function), 149
set_top_left_cell() (built-in function), 93
set_underline() (built-in function), 133
set_up_down_bars() (built-in function), 174
set_v_pagebreaks() (built-in function), 119
set_vba_name() (built-in function), 38
set_x2_axis() (built-in function), 164
set_x_axis() (built-in function), 157
set_y2_axis() (built-in function), 165
set_y_axis() (built-in function), 164
set_zoom() (built-in function), 96
show_blanks_as() (built-in function), 177
show_comments() (built-in function), 84
show_hidden_data() (built-in function), 177

show_na_as_empty_cell() (built-in function),
177
split_panes() (built-in function), 95

U

UndefinedimageSize, 184
unprotect_range() (built-in function), 100
UnsupportedlmageFormat, 185

702

Index

Creating Excel files with Python and XlsxWriter, Release 3.1.9

use_zip64() (built-in function), 39

Vv
very_hidden() (built-in function), 87

W

Workbook() (built-in function), 21
worksheets() (built-in function), 38
write() (built-in function), 41
write_array_formula() (built-in function), 48
write_blank() (built-in function), 51
write_boolean() (built-in function), 52
write_column() (built-in function), 59
write_comment() (built-in function), 82
write_datetime() (built-in function), 52
write_dynamic_array_formula() (built-in func-
tion), 50
write_formula() (built-in function), 47
write_number() (built-in function), 46
write_rich_string() (built-in function), 56
write_row() (built-in function), 58
write_string() (built-in function), 45
write_url() (built-in function), 53

X

xl_cell_to_rowcol() (built-in function), 193
xl_col_to_name() (built-in function), 194
xI_range() (built-in function), 194
xl_range_abs() (built-in function), 194
xl_rowcol_to_cell() (built-in function), 193
XlsxFileError, 183

XlsxInputError, 184
XlsxWriterException, 183

Index

703

	Introduction
	Getting Started with XlsxWriter
	Installing XlsxWriter
	Running a sample program
	Documentation

	Tutorial 1: Create a simple XLSX file
	Tutorial 2: Adding formatting to the XLSX File
	Tutorial 3: Writing different types of data to the XLSX File
	The Workbook Class
	Constructor
	workbook.add_worksheet()
	workbook.add_format()
	workbook.add_chart()
	workbook.add_chartsheet()
	workbook.close()
	workbook.set_size()
	workbook.tab_ratio()
	workbook.set_properties()
	workbook.set_custom_property()
	workbook.define_name()
	workbook.add_vba_project()
	workbook.add_signed_vba_project()
	workbook.set_vba_name()
	workbook.worksheets()
	workbook.get_worksheet_by_name()
	workbook.get_default_url_format()
	workbook.set_calc_mode()
	workbook.use_zip64()
	workbook.read_only_recommended()

	The Worksheet Class
	worksheet.write()
	worksheet.add_write_handler()
	worksheet.write_string()
	worksheet.write_number()
	worksheet.write_formula()
	worksheet.write_array_formula()
	worksheet.write_dynamic_array_formula()
	worksheet.write_blank()
	worksheet.write_boolean()
	worksheet.write_datetime()
	worksheet.write_url()
	worksheet.write_rich_string()
	worksheet.write_row()
	worksheet.write_column()
	worksheet.set_row()
	worksheet.set_row_pixels()
	worksheet.set_column()
	worksheet.set_column_pixels()
	worksheet.autofit()
	worksheet.insert_image()
	worksheet.insert_chart()
	worksheet.insert_textbox()
	worksheet.insert_button()
	worksheet.data_validation()
	worksheet.conditional_format()
	worksheet.add_table()
	worksheet.add_sparkline()
	worksheet.write_comment()
	worksheet.show_comments()
	worksheet.set_comments_author()
	worksheet.get_name()
	worksheet.activate()
	worksheet.select()
	worksheet.hide()
	worksheet.very_hidden()
	worksheet.set_first_sheet()
	worksheet.merge_range()
	worksheet.autofilter()
	worksheet.filter_column()
	worksheet.filter_column_list()
	worksheet.set_selection()
	worksheet.set_top_left_cell()
	worksheet.freeze_panes()
	worksheet.split_panes()
	worksheet.set_zoom()
	worksheet.right_to_left()
	worksheet.hide_zero()
	worksheet.set_background()
	worksheet.set_tab_color()
	worksheet.protect()
	worksheet.unprotect_range()
	worksheet.set_default_row()
	worksheet.outline_settings()
	worksheet.set_vba_name()
	worksheet.ignore_errors()

	The Worksheet Class (Page Setup)
	worksheet.set_landscape()
	worksheet.set_portrait()
	worksheet.set_page_view()
	worksheet.set_pagebreak_view()
	worksheet.set_paper()
	worksheet.center_horizontally()
	worksheet.center_vertically()
	worksheet.set_margins()
	worksheet.set_header()
	worksheet.set_footer()
	worksheet.repeat_rows()
	worksheet.repeat_columns()
	worksheet.hide_gridlines()
	worksheet.print_row_col_headers()
	worksheet.hide_row_col_headers()
	worksheet.print_area()
	worksheet.print_across()
	worksheet.fit_to_pages()
	worksheet.set_start_page()
	worksheet.set_print_scale()
	worksheet.print_black_and_white()
	worksheet.set_h_pagebreaks()
	worksheet.set_v_pagebreaks()

	The Format Class
	Creating and using a Format object
	Format Defaults
	Modifying Formats
	Number Format Categories
	Number Formats in different locales
	Format methods and Format properties
	format.set_font_name()
	format.set_font_size()
	format.set_font_color()
	format.set_bold()
	format.set_italic()
	format.set_underline()
	format.set_font_strikeout()
	format.set_font_script()
	format.set_num_format()
	format.set_locked()
	format.set_hidden()
	format.set_align()
	format.set_center_across()
	format.set_text_wrap()
	format.set_rotation()
	format.set_reading_order()
	format.set_indent()
	format.set_shrink()
	format.set_text_justlast()
	format.set_pattern()
	format.set_bg_color()
	format.set_fg_color()
	format.set_border()
	format.set_bottom()
	format.set_top()
	format.set_left()
	format.set_right()
	format.set_border_color()
	format.set_bottom_color()
	format.set_top_color()
	format.set_left_color()
	format.set_right_color()
	format.set_diag_border()
	format.set_diag_type()
	format.set_diag_color()
	format.set_quote_prefix()

	The Chart Class
	chart.add_series()
	chart.set_x_axis()
	chart.set_y_axis()
	chart.set_x2_axis()
	chart.set_y2_axis()
	chart.combine()
	chart.set_size()
	chart.set_title()
	chart.set_legend()
	chart.set_chartarea()
	chart.set_plotarea()
	chart.set_style()
	chart.set_table()
	chart.set_up_down_bars()
	chart.set_drop_lines()
	chart.set_high_low_lines()
	chart.show_blanks_as()
	chart.show_na_as_empty_cell()
	chart.show_hidden_data()
	chart.set_rotation()
	chart.set_hole_size()

	The Chartsheet Class
	chartsheet.set_chart()
	Worksheet methods
	Chartsheet Example

	The Exceptions Class
	Exception: XlsxWriterException
	Exception: XlsxFileError
	Exception: XlsxInputError
	Exception: FileCreateError
	Exception: UndefinedImageSize
	Exception: UnsupportedImageFormat
	Exception: FileSizeError
	Exception: EmptyChartSeries
	Exception: DuplicateTableName
	Exception: InvalidWorksheetName
	Exception: DuplicateWorksheetName
	Exception: OverlappingRange

	Working with Cell Notation
	Row and Column Ranges
	Relative and Absolute cell references
	Defined Names and Named Ranges
	Cell Utility Functions

	Working with and Writing Data
	Writing data to a worksheet cell
	Writing unicode data
	Writing lists of data
	Writing dicts of data
	Writing dataframes
	Writing user defined types

	Working with Formulas
	Non US Excel functions and syntax
	Formula Results
	Dynamic Array support
	Dynamic Arrays - The Implicit Intersection Operator ``@''
	Dynamic Arrays - The Spilled Range Operator ``#''
	The Excel 365 LAMBDA() function
	Formulas added in Excel 2010 and later
	Using Tables in Formulas
	Dealing with formula errors

	Working with Dates and Time
	Default Date Formatting
	Timezone Handling

	Working with Colors
	Working with Charts
	Chart Value and Category Axes
	Chart Series Options
	Chart series option: Marker
	Chart series option: Trendline
	Chart series option: Error Bars
	Chart series option: Data Labels
	Chart series option: Custom Data Labels
	Chart series option: Points
	Chart series option: Smooth
	Chart Formatting
	Chart formatting: Line
	Chart formatting: Border
	Chart formatting: Solid Fill
	Chart formatting: Pattern Fill
	Chart formatting: Gradient Fill
	Chart Fonts
	Chart Layout
	Date Category Axes
	Chart Secondary Axes
	Combined Charts
	Chartsheets
	Charts from Worksheet Tables
	Chart Limitations
	Chart Examples

	Working with Object Positioning
	Object scaling due to automatic row height adjustment
	Object Positioning with Cell Moving and Sizing
	Image sizing and DPI
	Reporting issues with image insertion

	Working with Autofilters
	Applying an autofilter
	Filter data in an autofilter
	Setting a filter criteria for a column
	Setting a column list filter
	Example

	Working with Data Validation
	data_validation()
	Data Validation Examples

	Working with Conditional Formatting
	The conditional_format() method
	Conditional Format Options
	Conditional Formatting Examples

	Working with Worksheet Tables
	add_table()
	data
	header_row
	autofilter
	banded_rows
	banded_columns
	first_column
	last_column
	style
	name
	total_row
	columns
	Example

	Working with Textboxes
	Textbox options
	Textbox size and positioning
	Textbox Formatting
	Textbox formatting: Line
	Textbox formatting: Border
	Textbox formatting: Solid Fill
	Textbox formatting: Gradient Fill
	Textbox formatting: Fonts
	Textbox formatting: Align
	Textbox formatting: Text Rotation
	Textbox Textlink
	Textbox Hyperlink
	Textbox Description
	Textbox Decorative

	Working with Sparklines
	The add_sparkline() method
	range
	type
	style
	markers
	negative_points
	axis
	reverse
	weight
	high_point, low_point, first_point, last_point
	max, min
	empty_cells
	show_hidden
	date_axis
	series_color
	location
	Grouped Sparklines
	Sparkline examples

	Working with Cell Comments
	Setting Comment Properties

	Working with Outlines and Grouping
	Outlines and Grouping in XlsxWriter

	Working with Memory and Performance
	Performance Figures

	Working with VBA Macros
	The Excel XLSM file format
	How VBA macros are included in XlsxWriter
	The vba_extract.py utility
	Adding the VBA macros to a XlsxWriter file
	Setting the VBA codenames
	Adding a VBA macro signature file to an XlsxWriter file
	What to do if it doesn't work

	Working with Pandas and XlsxWriter
	Using XlsxWriter with Pandas
	Accessing XlsxWriter from Pandas
	Adding Charts to Dataframe output
	Adding Conditional Formatting to Dataframe output
	Formatting of the Dataframe output
	Formatting of the Dataframe headers
	Adding a Dataframe to a Worksheet Table
	Adding an autofilter to a Dataframe output
	Handling multiple Pandas Dataframes
	Passing XlsxWriter constructor options to Pandas
	Saving the Dataframe output to a string
	Additional Pandas and Excel Information

	Working with Polars and XlsxWriter
	Sharing XlsxWriter workbooks with Polars
	Adding Charts to Dataframe output
	Adding Conditional Formatting to Dataframe output
	Handling multiple Polars Dataframes
	Formatting the dataframe output
	Adding Sparklines to the output dataframe

	Examples
	Example: Hello World
	Example: Simple Feature Demonstration
	Example: Catch exception on closing
	Example: Dates and Times in Excel
	Example: Adding hyperlinks
	Example: Array formulas
	Example: Dynamic array formulas
	Example: Applying Autofilters
	Example: Data Validation and Drop Down Lists
	Example: Conditional Formatting
	Example: Defined names/Named ranges
	Example: Merging Cells
	Example: Autofitting columns
	Example: Writing ``Rich'' strings with multiple formats
	Example: Merging Cells with a Rich String
	Example: Inserting images into a worksheet
	Example: Inserting images from a URL or byte stream into a worksheet
	Example: Left to Right worksheets and text
	Example: Simple Django class
	Example: Simple HTTP Server
	Example: Adding Headers and Footers to Worksheets
	Example: Freeze Panes and Split Panes
	Example: Worksheet Tables
	Example: Writing User Defined Types (1)
	Example: Writing User Defined Types (2)
	Example: Writing User Defined types (3)
	Example: Ignoring Worksheet errors and warnings
	Example: Sparklines (Simple)
	Example: Sparklines (Advanced)
	Example: Adding Cell Comments to Worksheets (Simple)
	Example: Adding Cell Comments to Worksheets (Advanced)
	Example: Insert Textboxes into a Worksheet
	Example: Outline and Grouping
	Example: Collapsed Outline and Grouping
	Example: Setting Document Properties
	Example: Simple Unicode with Python 3
	Example: Unicode - Polish in UTF-8
	Example: Unicode - Shift JIS
	Example: Setting a Worksheet Watermark
	Example: Setting the Worksheet Background
	Example: Setting Worksheet Tab Colors
	Example: Diagonal borders in cells
	Example: Enabling Cell protection in Worksheets
	Example: Hiding Worksheets
	Example: Hiding Rows and Columns
	Example: Example of subclassing the Workbook and Worksheet classes
	Example: Advanced example of subclassing
	Example: Adding a VBA macro to a Workbook
	Example: Excel 365 LAMBDA() function

	Chart Examples
	Example: Chart (Simple)
	Example: Area Chart
	Example: Bar Chart
	Example: Column Chart
	Example: Line Chart
	Example: Pie Chart
	Example: Doughnut Chart
	Example: Scatter Chart
	Example: Radar Chart
	Example: Stock Chart
	Example: Styles Chart
	Example: Chart with Pattern Fills
	Example: Chart with Gradient Fills
	Example: Secondary Axis Chart
	Example: Combined Chart
	Example: Pareto Chart
	Example: Gauge Chart
	Example: Clustered Chart
	Example: Date Axis Chart
	Example: Charts with Data Tables
	Example: Charts with Data Tools
	Example: Charts with Data Labels
	Example: Chartsheet

	Pandas with XlsxWriter Examples
	Example: Pandas Excel example
	Example: Pandas Excel with multiple dataframes
	Example: Pandas Excel dataframe positioning
	Example: Pandas Excel output with a chart
	Example: Pandas Excel output with conditional formatting
	Example: Pandas Excel output with an autofilter
	Example: Pandas Excel output with a worksheet table
	Example: Pandas Excel output with datetimes
	Example: Pandas Excel output with column formatting
	Example: Pandas Excel output with user defined header format
	Example: Pandas Excel output with percentage formatting
	Example: Pandas Excel output with a line chart
	Example: Pandas Excel output with a column chart

	Polars with XlsxWriter Examples
	Example: Polars Excel getting started example
	Example: Polars integration with XlsxWriter
	Example: Polars Excel dataframe positioning
	Example: Polars Excel with multiple dataframes
	Example: Polars Excel output with a chart
	Example: Polars Excel output with conditional formatting
	Example: Polars default format example
	Example: Polars custom format example
	Example: Polars Excel output with sparklines

	Alternative modules for handling Excel files
	OpenPyXL
	Xlwings
	XLWT
	XLRD

	Libraries that use or enhance XlsxWriter
	Pandas
	XlsxPandasFormatter

	Known Issues and Bugs
	``Content is Unreadable. Open and Repair''
	``Exception caught in workbook destructor. Explicit close() may be required''
	Formulas displayed as #NAME? until edited
	Formula results displaying as zero in non-Excel applications
	Images not displayed correctly in Excel 2001 for Mac and non-Excel applications
	Charts series created from Worksheet Tables cannot have user defined names

	Reporting Bugs
	Upgrade to the latest version of the module
	Read the documentation
	Look at the example programs
	Use the official XlsxWriter Issue tracker on GitHub
	Pointers for submitting a bug report

	Frequently Asked Questions
	Q. Can XlsxWriter use an existing Excel file as a template?
	Q. Why do my formulas show a zero result in some, non-Excel applications?
	Q. Why do my formulas have a @ in them?
	Q. Can I apply a format to a range of cells in one go?
	Q. Is feature X supported or will it be supported?
	Q. Can I password protect an XlsxWriter xlsx file
	Q. Do people actually ask these questions frequently, or at all?

	Changes in XlsxWriter
	Release 3.1.9 - October 19 2023
	Release 3.1.8 - October 15 2023
	Release 3.1.7 - October 9 2023
	Release 3.1.6 - October 1 2023
	Release 3.1.5 - September 24 2023
	Release 3.1.4 - September 18 2023
	Release 3.1.3 - September 8 2023
	Release 3.1.2 - May 28 2023
	Release 3.1.1 - May 21 2023
	Release 3.1.0 - April 13 2023
	Release 3.0.9 - March 10 2023
	Release 3.0.8 - February 3 2023
	Release 3.0.7 - January 14 2023
	Release 3.0.6 - January 5 2023
	Release 3.0.5 - January 1 2023
	Release 3.0.4 - December 28 2022
	Release 3.0.3 - February 27 2022
	Release 3.0.2 - October 31 2021
	Release 3.0.1 - August 10 2021
	Release 3.0.0 - August 10 2021
	Release 2.0.0 - August 9 2021
	Release 1.4.5 - July 29 2021
	Release 1.4.4 - July 4 2021
	Release 1.4.3 - May 12 2021
	Release 1.4.2 - May 7 2021
	Release 1.4.1 - May 6 2021
	Release 1.4.0 - April 23 2021
	Release 1.3.9 - April 15 2021
	Release 1.3.8 - March 29 2021
	Release 1.3.7 - October 13 2020
	Release 1.3.6 - September 23 2020
	Release 1.3.5 - September 21 2020
	Release 1.3.4 - September 16 2020
	Release 1.3.3 - August 13 2020
	Release 1.3.2 - August 6 2020
	Release 1.3.1 - August 3 2020
	Release 1.3.0 - July 30 2020
	Release 1.2.9 - May 29 2020
	Release 1.2.8 - February 22 2020
	Release 1.2.7 - December 23 2019
	Release 1.2.6 - November 15 2019
	Release 1.2.5 - November 10 2019
	Release 1.2.4 - November 9 2019
	Release 1.2.3 - November 7 2019
	Release 1.2.2 - October 16 2019
	Release 1.2.1 - September 14 2019
	Release 1.2.0 - August 26 2019
	Release 1.1.9 - August 19 2019
	Release 1.1.8 - May 5 2019
	Release 1.1.7 - April 20 2019
	Release 1.1.6 - April 7 2019
	Release 1.1.5 - February 22 2019
	Release 1.1.4 - February 10 2019
	Release 1.1.3 - February 9 2019
	Release 1.1.2 - October 20 2018
	Release 1.1.1 - September 22 2018
	Release 1.1.0 - September 2 2018
	Release 1.0.9 - August 27 2018
	Release 1.0.8 - August 27 2018
	Release 1.0.7 - August 16 2018
	Release 1.0.6 - August 15 2018
	Release 1.0.5 - May 19 2018
	Release 1.0.4 - April 14 2018
	Release 1.0.3 - April 10 2018
	Release 1.0.2 - October 14 2017
	Release 1.0.1 - October 14 2017
	Release 1.0.0 - September 16 2017
	Release 0.9.9 - September 5 2017
	Release 0.9.8 - July 1 2017
	Release 0.9.7 - June 25 2017
	Release 0.9.6 - Dec 26 2016
	Release 0.9.5 - Dec 24 2016
	Release 0.9.4 - Dec 2 2016
	Release 0.9.3 - July 8 2016
	Release 0.9.2 - June 13 2016
	Release 0.9.1 - June 8 2016
	Release 0.9.0 - June 7 2016
	Release 0.8.9 - June 1 2016
	Release 0.8.8 - May 31 2016
	Release 0.8.7 - May 13 2016
	Release 0.8.6 - April 27 2016
	Release 0.8.5 - April 17 2016
	Release 0.8.4 - January 16 2016
	Release 0.8.3 - January 14 2016
	Release 0.8.2 - January 13 2016
	Release 0.8.1 - January 12 2016
	Release 0.8.0 - January 10 2016
	Release 0.7.9 - January 9 2016
	Release 0.7.8 - January 6 2016
	Release 0.7.7 - October 19 2015
	Release 0.7.6 - October 7 2015
	Release 0.7.5 - October 4 2015
	Release 0.7.4 - September 29 2015
	Release 0.7.3 - May 7 2015
	Release 0.7.2 - March 29 2015
	Release 0.7.1 - March 23 2015
	Release 0.7.0 - March 21 2015
	Release 0.6.9 - March 19 2015
	Release 0.6.8 - March 17 2015
	Release 0.6.7 - March 1 2015
	Release 0.6.6 - January 16 2015
	Release 0.6.5 - December 31 2014
	Release 0.6.4 - November 15 2014
	Release 0.6.3 - November 6 2014
	Release 0.6.2 - November 1 2014
	Release 0.6.1 - October 29 2014
	Release 0.6.0 - October 15 2014
	Release 0.5.9 - October 11 2014
	Release 0.5.8 - September 28 2014
	Release 0.5.7 - August 13 2014
	Release 0.5.6 - July 22 2014
	Release 0.5.5 - May 6 2014
	Release 0.5.4 - May 4 2014
	Release 0.5.3 - February 20 2014
	Release 0.5.2 - December 31 2013
	Release 0.5.1 - December 2 2013
	Release 0.5.0 - November 17 2013
	Release 0.4.9 - November 17 2013
	Release 0.4.8 - November 13 2013
	Release 0.4.7 - November 9 2013
	Release 0.4.6 - October 23 2013
	Release 0.4.5 - October 21 2013
	Release 0.4.4 - October 16 2013
	Release 0.4.3 - September 12 2013
	Release 0.4.2 - August 30 2013
	Release 0.4.1 - August 28 2013
	Release 0.4.0 - August 26 2013
	Release 0.3.9 - August 24 2013
	Release 0.3.8 - August 23 2013
	Release 0.3.7 - August 16 2013
	Release 0.3.6 - July 26 2013
	Release 0.3.5 - June 28 2013
	Release 0.3.4 - June 27 2013
	Release 0.3.3 - June 10 2013
	Release 0.3.2 - May 1 2013
	Release 0.3.1 - April 27 2013
	Release 0.3.0 - April 7 2013
	Release 0.2.9 - April 7 2013
	Release 0.2.8 - April 4 2013
	Release 0.2.7 - April 3 2013
	Release 0.2.6 - April 1 2013
	Release 0.2.5 - April 1 2013
	Release 0.2.4 - March 31 2013
	Release 0.2.3 - March 27 2013
	Release 0.2.2 - March 27 2013
	Release 0.2.1 - March 25 2013
	Release 0.2.0 - March 24 2013
	Release 0.1.9 - March 19 2013
	Release 0.1.8 - March 18 2013
	Release 0.1.7 - March 18 2013
	Release 0.1.6 - March 17 2013
	Release 0.1.5 - March 10 2013
	Release 0.1.4 - March 8 2013
	Release 0.1.3 - March 7 2013
	Release 0.1.2 - March 6 2013
	Release 0.1.1 - March 3 2013
	Release 0.1.0 - February 28 2013
	Release 0.0.9 - February 27 2013
	Release 0.0.8 - February 26 2013
	Release 0.0.7 - February 25 2013
	Release 0.0.6 - February 22 2013
	Release 0.0.5 - February 21 2013
	Release 0.0.4 - February 20 2013
	Release 0.0.3 - February 19 2013
	Release 0.0.2 - February 18 2013
	Release 0.0.1 - February 17 2013

	Author
	Asking questions
	Sponsorship and Donations

	License
	Index

