
C# Coding Style Guide and Naming Guidelines

C# Coding Style Guide and Naming
Guidelines.

Revision 1 (14/01/2003) – Carlos Guzmán Álvarez (carlosga@telefonica.net)

Revision 2 (15/01/2003) – Carlos Guzmán Álvarez (carlosga@telefonica.net)

Revision 3 (29/07/2003) – Carlos Guzmán Álvarez (carlosga@telefonica.net)

Note:
The Naming guidelines section is based on Microsoft C# Ecma documentation.

Some things of the Coding Style section are based on Java conventions.

C# Coding Style Guide and Naming Guidelines Page: 1

C# Coding Style Guide and Naming Guidelines

 Copyright (c) 2003 Carlos Guzmán Álvarez (carlosga@telefonica.net).
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

C# Coding Style Guide and Naming Guidelines Page: 2

C# Coding Style Guide and Naming Guidelines

A. Coding Style

A.1 Source Files.

A.1.1 Beginning header.

All source files should begin with a c-style comment that lists the class name,
version information, date, and copyright notice:

Example of license header using LGPL license:

/* One line for describe the project.
 * Copyright (C) Year name of author
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

A.2 Line Length
Consider avoiding (if possible) lines longer than 80 characters, switch on the
ruler in your editor to get that managed, wrap lines if necessary.

A.3 Wrapping lines
When an expression will not fit on a single line, break it according to these
general principles:

 Break after a comma.

 Break after an operator.

 Prefer higher-level breaks to low-level breaks.

 Align the new line with the beginning of the expression at the same
level on the previous line.

C# Coding Style Guide and Naming Guidelines Page: 3

C# Coding Style Guide and Naming Guidelines

Example of breaking method calls:

someMethod(longExpression1, longExpression2, longExpression3,
longExpression4, longExpression5);

var = someMethod1(longExpression1,
someMethod2(longExpression2,

longExpression3));

Examples of breaking an arithmetic expression. The first is preferred, since the
break occurs outside of the paranthesized expression (higher level rule).

var = a * b / (c - g + f) +
4 * z; // PREFER

var = a * b / (c - g +
f) + 4 * z; // AVOID

A.4 Comments

A.4.1 Block Comments
Use the following style for block comments:

/* Line 1
 * Line 2
 * Line 3
 */

A.4.2 Single line comments
Use this style for end of line comments:

/* Comment Line */
or

// Comment Line

A.4.3 End of Line Comments
Use this style for end of line comments:

System.Int32 intValue; // Integer value
A.4.4 Documentation comments
Place documentation comments on separate XML files and use <include ... />
for make reference to the XML documentation file.

Example:
/// <include file='Documentation.xml'path='doc/member
[@name="T:Example"]/*'/>
public sealed class Example
{

...
}

C# Coding Style Guide and Naming Guidelines Page: 4

C# Coding Style Guide and Naming Guidelines

A.5 Declarations

A.5.1 Number per line.
One declaration per line is recommended since it encourages commenting,
example:

int value;
string name; // PREFER

int value; string name; // AVOID

A.5.2 Initialization
Try to initialize local variables where they’re declared.

Example:
int value = 0;
string name = String.Empty;
bool flag = false;

A.5.3 Placement
Put declarations only at the beginning of blocks.

Example:
void myMethod()
{

int int1 = 0; // beginning of method block
if (condition)
{

int int2 = 0; // beginning of "if" block
...

}
}

A.5.4 Class and Interfaces

Use this style for end of line comments:

 No space between a method name and the parenthesis “(“ starting its
parameter list.

 Open brace “{”starts a line by itself indented to match its declaration
statement.

 Closing brace “}” starts a line by itself indented to match its
corresponding opening statement.

Example:
public class MyClass : MyBaseClass
{

public MyClass()
{

C# Coding Style Guide and Naming Guidelines Page: 5

C# Coding Style Guide and Naming Guidelines

}

public string ReadData()
{

/* Access a custom resource. */
}

}

Example of Interface:

/* C#
 * Code for the IAccount interface module.
 */
public interface IAccount
{

void PostInterest();
void DeductFees(IFeeSchedule feeSchedule);

}

A.6 Statements

A.6.1 Simple statements
Each line should contain at most one statement.

Example:

var1++; // Correct
var2++; // Correct
var1++; var2--; // AVOID!

A.6.2 Return statements
A return statement with a value should not use parentheses unless they make
the return value more obvious in some way.

Example:

return;
return var1;
return (var1 > var2 ? 0 : 1);

A.6.3 if statement
Use always the open and close bracket for if and else blocks, put an space
between the if and the open parenthesis.

Examples:

if (x > 10)
{

if (y > 20)
{

Console.WriteLine("Statement_1");
}
else

C# Coding Style Guide and Naming Guidelines Page: 6

C# Coding Style Guide and Naming Guidelines

{
Console.WriteLine("Statement_2");

}
}

if (Condition_1)
{

Console.WriteLine("Statement_1");
}
else
{

if (Condition_2)
{

Console.WriteLine("Statement_2");
}
else
{

if (Condition_3)
{

Console.WriteLine("Statement_1");
}

}
}

if (condition) // AVOID! THIS OMITS THE BRACES {}!
statement;

A.6.4 switch statement

A switch statement should have the following form:

switch (condition)
{

case 0:
case 1:
{

statements;
}
break;

case 2:
{

statements;
}
break;

case 3:
{

statements;
}
break;

default:
{

statements;
}
break;

}

C# Coding Style Guide and Naming Guidelines Page: 7

C# Coding Style Guide and Naming Guidelines

A.6.5 for statement

A for statement should have the following form:

for ([initializers]; [expression]; [iterators])
{

statements;
}

A.6.6 foreach statement

A for statement should have the following form:

foreach (type identifier in expression)
{

statements;
}

A.6.7 while and do...while statements

A while statement should have the following form:

while (expression)
{

statements;
}

A do ... while statement should have the following form:

do
{

statements;
} while (expression);

A.6.8 try...catch statements

A try ... catch statement should have the following form:

try
{

statements;
}
catch (ExceptionClass ex)
{

statements;
}

or
try
{

statements;
}
catch (ExceptionClass ex)
{

statements;
}
finally
{

C# Coding Style Guide and Naming Guidelines Page: 8

C# Coding Style Guide and Naming Guidelines

statements;
}

A.7 White space

A.7.1 Blank lines
Blank lines improve readability by setting off sections of code that are logically
related.

Two blank lines should always be used in the following circumstances:
• Between sections of a source file
• Between class and interface definitions

One blank line should always be used in the following circumstances:

• Between methods
• Between logical sections inside a method to improve readability

A.7.2 Blank spaces
Blank spaces should be used in the following circumstances:

 A keyword followed by a parenthesis should be separated by a space.
Example:

while (true)
{

...
}

Note that a blank space should not be used between a method name
and its opening parenthesis. This helps to distinguish keywords from
method calls.

 A blank space should appear after commas in argument lists.
 All binary operators except . should be separated from their operands

by spaces. Blank spaces should never separate unary operators such as
unary minus, increment (“++”), and decrement (“--”) from their
operands. Example:

a += c + d;
a = (a + b) / (c * d);
while (d++ == s++)
{

n++;
}

 The expressions in a for statement should be separated by blank spaces.
Example:

for (expr1; expr2; expr3)

C# Coding Style Guide and Naming Guidelines Page: 9

C# Coding Style Guide and Naming Guidelines

C# Coding Style Guide and Naming Guidelines Page: 10

C# Coding Style Guide and Naming Guidelines

B. Naming guidelines

B.1 Capitalization styles
The following section describes different ways of capitalizing identifiers.

B.1.1 Pascal casing
This convention capitalizes the first character of each word. For example:

Color BitConverter

B.1.2 Camel casing
This convention capitalizes the first character of each word except the first
word. For example:

backgroundColor totalValueCount

B.1.3 All uppercase
Only use all uppercase letters for an identifier if it contains an abbreviation. For
example:

System.IO
System.WinForms.UI

B.1.4 Capitalization summary
The following table summarizes the capitalization style for the different kinds of
identifiers:

Type Case Notes
Class PascalCase
Attribute Class PascalCase Has a suffix of Attribute
Exception Class PascalCase Has a suffix of Exception
Constant PascalCase
Enum type PascalCase
Enum values PascalCase
Event PascalCase
Interface PascalCase Has a prefix of I
Local variable camelCase
Method PascalCase
Namespace PascalCase
Property PascalCase
Public Instance Field PascalCase Rarely used (use a property instead)
Protected Instance
Field camelCase Rarely used (use a property instead)

Parameter camelCase

C# Coding Style Guide and Naming Guidelines Page: 11

C# Coding Style Guide and Naming Guidelines

B.2 Word choice
 Do avoid using class names duplicated in heavily used namespaces. For

example, don’t use the following for a class name.
System Collections Forms UI

 Do not use abbreviations in identifiers.

 If you must use abbreviations, do use camelCase for any abbreviation
containing more than two characters, even if this is not the usual
abbreviation.

B.3 Namespaces
The general rule for namespace naming is: CompanyName.TechnologyName.
 Do avoid the possibility of two published namespaces having the same

name, by prefixing namespace names with a company name or other
well-established brand. For example, Microsoft.Office for the Office
Automation classes provided by Microsoft.

 Do use PascalCase, and separate logical components with periods (as in
Microsoft.Office.PowerPoint). If your brand employs non-traditional
casing, do follow the casing defined by your brand, even if it deviates from
normal namespace casing (for example, NeXT.WebObjects, and
ee.cummings).

 Do use plural namespace names where appropriate. For example, use
System.Collections rather than System.Collection.Exceptions to this rule
are brand names and abbreviations. For example, use System.IO not
System.IOs.

 Do not have namespaces and classes with the same name.

B.4 Classes
 Do name classes with nouns or noun phrases.

 Do use PascalCase.

 Do use sparingly, abbreviations in class names.

 Do not use any prefix (such as “C”, for example). Where possible, avoid
starting with the letter “I”, since that is the recommended prefix for interface
names. If you must start with that letter, make sure the second character is
lowercase, as in IdentityStore.

 Do not use any underscores.
public class FileStream
{

…
}
public class Button
{

…

C# Coding Style Guide and Naming Guidelines Page: 12

C# Coding Style Guide and Naming Guidelines

}
public class String
{

…
}

B.5 Interfaces
 Do name interfaces with nouns or noun phrases, or adjectives describing

behavior. For example, IComponent (descriptive noun),
ICustomAttributeProvider (noun phrase), and IPersistable
(adjective).

 Do use PascalCase.

 Do use sparingly, abbreviations in interface names.

 Do not use any underscores.

 Do prefix interface names with the letter “I”, to indicate that the type is an
interface.

 Do use similar names when defining a class/interface pair where the class is
a standard implementation of the interface. The names should differ only
by the “I” prefix in the interface name. This approach is used for the
interface IComponent and its standard implementation, Component.

public interface IComponent
{

…
}
public class Component : IComponent
{

…
}
public interface IserviceProvider
{

…
}
public interface IFormatable
{

…
}

B.6 Enums
 Do use PascalCase for enums.

 Do use PascalCase for enum value names.

 Do use sparingly, abbreviations in enum names.

 Do not use a family-name prefix on enum.

 Do not use any “Enum” suffix on enum types.

C# Coding Style Guide and Naming Guidelines Page: 13

C# Coding Style Guide and Naming Guidelines

 Do use a singular name for enums

 Do use a plural name for bit fields

 Do define enumerated values using an enum if they are used in a
parameter or property. This gives development tools a chance at knowing
the possible values for a property or parameter.

public enum FileMode
{
 Create,
 CreateNew,
 Open,
 OpenOrCreate,
 Truncate
}

 Do use the Flags custom attribute if the numeric values are meant to be
bitwise ORed together

[Flags]
public enum Bindings
{
 CreateInstance,
 DefaultBinding,
 ExcatBinding,
 GetField,
 GetProperty,
 IgnoreCase,
 InvokeMethod,
 NonPublic,
 OABinding,
 SetField
 SetProperty,
 Static
}

 Do use int as the underlying type of an enum. (An exception to this rule is if
the enum represents flags and there are more than 32 flags, or the enum
may grow to that many flags in the future, or the type needs to be different
from int for backward compatibility.)

 Do use enums only if the value can be completely expressed as a set of bit
flags. Do not use enums for open sets (such as operating system version).

B.7 Static fields
 Do name static members with nouns, noun phrases, or abbreviations for

nouns.

 Do name static members using PascalCase.

 Do not use Hungarian-type prefixes on static member names.

B.8 Parameters
 Do use descriptive names such that a parameter’s name and type clearly

imply its meaning.

 Do name parameters using camelCase.

C# Coding Style Guide and Naming Guidelines Page: 14

C# Coding Style Guide and Naming Guidelines

 Do prefer names based on a parameter’s meaning, to names based on the
parameter’s type. It is likely that development tools will provide the
information about type in a convenient way, so the parameter name can
be put to better use describing semantics rather than type.

 Do not reserve parameters for future use. If more data is need in the next
version, a new overload can be added.

 Do not use Hungarian-type prefixes.
Type GetType(string typeName)
String Format(string format, object[] args)

B.9 Methods
 Do name methods with verbs or verb phrases.

 Do name methods with PascalCase
RemoveAll(), GetCharArray(), Invoke()

B.10Properties
 Do name properties using noun or noun phrases

 Do name properties with PascalCase.

 Consider having a property with the same as a type. When declaring a
property with the same name as a type, also make the type of the property
be that type. In other words, the following is okay

public enum Color
{

...
}
public class Control
{
 public Color Color
 {
 get {...}
 set {...}
 }
}

but this is not
public enum Color

{
//..

}
public class Control
{

public int Color
{

C# Coding Style Guide and Naming Guidelines Page: 15

C# Coding Style Guide and Naming Guidelines

get {...}
set {...}

}
}

In the latter case, it will not be possible to refer to the members of the Color
enum because Color.Xxx will be interpreted as being a member access
that first gets the value of the Color property (of type int) and then
accesses a member of that value (which would have to be an instance
member of System.Int32).

B.11Events
 Do name event handlers with the “EventHandler” suffix.

public delegate void MouseEventHandler(object sender, MouseEvent
e);

 Do use two parameters named sender and e. The sender parameter
represents the object that raised the event, and this parameter is always of
type object, even if it is possible to employ a more specific type. The state
associated with the event is encapsulated in an instance e of an event
class. Use an appropriate and specific event class for its type.

public delegate void MouseEventHandler(object sender, MouseEvent
e);

 Do name event argument classes with the “EventArgs” suffix.
public class MouseEventArgs : EventArgs
{

int x;
int y;
public MouseEventArgs(int x, int y)
{

this.x = x;
this.y = y;

}
public int X

{
get { return x; }

}
public int Y
{

get { return y; }
}

}
 Do name event names that have a concept of pre- and post-operation

using the present and past tense (do not use BeforeXxx/AfterXxx pattern).
For example, a close event that could be canceled would have a Closing
and Closed event.

C# Coding Style Guide and Naming Guidelines Page: 16

C# Coding Style Guide and Naming Guidelines

public event ControlEventHandler ControlAdded
{
 //..
}

 Consider naming events with a verb.

B.12Case sensitivity
 Don’t use names that require case sensitivity. Components might need to

be usable from both case-sensitive and case-insensitive languages. Since
case-insensitive languages cannot distinguish between two names within
the same context that differ only by case, components must avoid this
situation.

Examples of what not to do:

 Don’t have two namespaces whose names differ only by case.
namespace ee.cummings;
namespace Ee.Cummings;

 Don’t have a method with two parameters whose names differ only by
case.

void F(string a, string A)
 Don’t have a namespace with two types whose names differ only by case.

System.WinForms.Point p;
System.WinForms.POINT pp;

 Don’t have a type with two properties whose names differ only by case.
int F {get, set};
int F {get, set}

 Don’t have a type with two methods whose names differ only by case.
void f();
void F();

B.13Avoiding type name confusion
Different languages use different names to identify the fundamental managed
types, so in a multi-language environment, designers must take care to avoid
language-specific terminology. This section describes a set of rules that help
avoid type name confusion.

 Do use semantically interesting names rather than type names.

 In the rare case that a parameter has no semantic meaning beyond its
type, use a generic name. For example, a class that supports writing a
variety of data types into a stream might have:

void Write(double value);
void Write(float value);
void Write(long value);
void Write(int value);
void Write(short value);

rather than a language-specific alternative such as:
void Write(double doubleValue);
void Write(float floatValue);
void Write(long longValue);

C# Coding Style Guide and Naming Guidelines Page: 17

C# Coding Style Guide and Naming Guidelines

void Write(int intValue);
void Write(short shortValue);

 In the extremely rare case that it is necessary to have a uniquely named
method for each fundamental data type, do use the following universal
type names: Sbyte, Byte, Int16, UInt16, Int32, UInt32, Int64, UInt64, Single,
Double, Boolean, Char, String, and Object. For example, a class that
supports reading a variety of data types from a stream might have:

Double ReadDouble();
float ReadSingle();
long ReadIn64();
int ReadInt32();
short ReadInt16();

rather than a language-specific alternative such as:
double ReadDouble();
float ReadFloat();
long ReadLong();
int ReadInt();
short ReadShort();

B.14GUI Controls prefixes

Prefix Object Type
cbo ComboBox
chk CheckBox
btn Button
clst CheckedListBox
con Connection
ctl Control
com Command
dta DataAdapter
dtr DataReader
dts DataSet
dtv DataView
dir Directory List Box
dlg Common dialog Control
drv DriveList Box
edt EditBox (TextBox with Multiline =

true)
frm Form
grb GroupBox
grd Grid/DataGrid
grc Column
grh Header
hsb Horizontal ScrollBar
hpl HyperLink Label
iml ImageList
lbl Label
lin Line
lst ListBox
mnu Menu
pan Panel
pic PictureBox
pro ProgressBar
prj ProjectHook

C# Coding Style Guide and Naming Guidelines Page: 18

C# Coding Style Guide and Naming Guidelines

sep Separator
shp Shape
spn Spinner
tab TabControl
pag TabPage
txt TextBox
tmr Timer
tbl ToolBar
trb TrackBar
trv TreeView
vsb Vertical ScrollBar

C# Coding Style Guide and Naming Guidelines Page: 19

C# Coding Style Guide and Naming Guidelines

C. Document License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of
the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be

C# Coding Style Guide and Naming Guidelines Page: 20

C# Coding Style Guide and Naming Guidelines

distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such
manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The "Cover Texts" are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged to thwart or

C# Coding Style Guide and Naming Guidelines Page: 21

C# Coding Style Guide and Naming Guidelines

discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of
the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such
a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies to

C# Coding Style Guide and Naming Guidelines Page: 22

C# Coding Style Guide and Naming Guidelines

the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-
using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition
to the public.

C# Coding Style Guide and Naming Guidelines Page: 23

C# Coding Style Guide and Naming Guidelines

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the
Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

 A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if
the original publisher of that version gives permission.

 B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

 C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

 D. Preserve all the copyright notices of the Document.

 E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

 F. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified Version
under the terms of this License, in the form shown in the
Addendum below.

C# Coding Style Guide and Naming Guidelines Page: 24

C# Coding Style Guide and Naming Guidelines

 G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

 H. Include an unaltered copy of this License.

 I. Preserve the section Entitled "History", Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

 J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

 K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

 L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

 M. Delete any section Entitled "Endorsements". Such a section may
not be included in the Modified Version.

 N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

 O. Preserve any Warranty Disclaimers.

C# Coding Style Guide and Naming Guidelines Page: 25

C# Coding Style Guide and Naming Guidelines

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various parties--for
example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of
that section if known, or else a unique number. Make the same

C# Coding Style Guide and Naming Guidelines Page: 26

C# Coding Style Guide and Naming Guidelines

adjustment to the section titles in the list of Invariant Sections in the
license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in
the various original documents, forming one section Entitled "History";
likewise combine any sections Entitled "Acknowledgements", and any
sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a copy of
this License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the
compilation's users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one half of the entire
aggregate, the Document's Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

C# Coding Style Guide and Naming Guidelines Page: 27

C# Coding Style Guide and Naming Guidelines

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warrany Disclaimers, provided that
you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or
any later version" applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you

C# Coding Style Guide and Naming Guidelines Page: 28

C# Coding Style Guide and Naming Guidelines

may choose any version ever published (not as a draft) by the Free
Software Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License, to permit
their use in free software.

C# Coding Style Guide and Naming Guidelines Page: 29

