
Bolt 1.3

Reference Manual
http://bolt.x9c.fr

Copyright c© 2009-2012 Xavier Clerc – bolt@x9c.fr
Released under the LGPL v3

August 14, 2012

http://bolt.x9c.fr
mailto:bolt@x9c.fr

i

Contents

1 Overview 1

1.1 Purpose . 1

1.2 License . 1

1.3 Contributions . 1

2 Building Bolt 3

2.1 Step 0: dependencies . 3

2.2 Step 1: configuration . 3

2.3 Step 2: compilation . 3

2.4 Step 3: installation . 4

3 Concepts and terminology 5

3.1 Logger . 5

3.2 Event . 6

3.3 Level . 6

3.4 Filter . 6

3.5 Layout . 6

3.6 Output . 6

3.7 Event dispatch . 6

4 Using Bolt 9

4.1 Linking with the library . 9

4.2 Adding log statements . 9

4.2.1 Explicit logging . 9

4.2.2 Implicit logging . 10

4.3 Configuring log . 11

4.3.1 Predefined filters . 13

4.3.2 Predefined layouts . 15

4.3.3 Predefined outputs . 17

5 Reviewing generated log 19

6 Daikon support 21

6.1 Overview . 21

6.2 Configuration . 21

6.3 Instrumentation . 22

6.4 Review . 23

CONTENTS ii

7 Pajé support 25
7.1 Overview . 25
7.2 Configuration . 25
7.3 Instrumentation . 25
7.4 Review . 26

8 Complete example 29

9 Customizing Bolt 33
9.1 Defining a custom filter . 33
9.2 Defining a custom layout . 33
9.3 Defining a custom output . 34
9.4 Using custom elements . 34

1

Chapter 1

Overview

1.1 Purpose

Bolt is a logging tool for the OCaml language1. Its name stems from the following acronym:
Bolt is an Ocaml Logging Tool. It is inspired by and modeled after the Apache log4j utility2.
Bolt provides both a comprehensive library for log production, and a camlp4-based syntax
extension that allows to remove log directives. The latter is useful to be able to distribute an
executable that incurs no runtime penalty if logging is used only during development.

The importance of logging is frequently overlooked but (quite ironically), in the same time, the
most used debugging method is by far the print statement. Bolt aims at providing OCaml
developers with a framework that is comprehensive, yet easy to use. It also tries to leverage
the benefits of both compile-time and run-time configuration to produce a flexible library with
a manageable computational cost.

1.2 License

Bolt is distributed under the terms of the lgpl version 3. This licensing scheme allows to use
Bolt in any software, not contaminating code.

1.3 Contributions

In order to improve the project, I am primarily looking for testers and bug reporters. Pointing
errors in documentation and indicating where it should be enhanced is also very helpful.
Bugs and feature requests can be made at http://bugs.x9c.fr.
Other requests can be sent to bolt@x9c.fr.

1The official OCaml website can be reached at http://caml.inria.fr and contains the full development suite
(compilers, tools, virtual machine, etc.) as well as links to third-party contributions.

2http://logging.apache.org/log4j

http://bugs.x9c.fr
mailto:bolt@x9c.fr
http://caml.inria.fr
http://logging.apache.org/log4j

3

Chapter 2

Building Bolt

2.1 Step 0: dependencies

Before starting to build Bolt, one first has to check that dependencies are already installed. The
following elements are needed in order to build Bolt:

• OCaml, version 4.00.0;

• make, in its GNU Make 3.81 flavor;

• a classical Unix shell, such as bash;

• optionally: Findlib1, version 1.3.3.

2.2 Step 1: configuration

The configuration of Argot is done by executing ./configure. One can specify elements if they
are not correctly inferred by the configure script; the following switches are available:

• -ocaml-prefix to specify the prefix path to the OCaml installation (usually /usr/local);

• -ocamlfind to specify the path to the ocamlfind executable;

• -no-native-dynlink to disable the build of the native version, even if native dynamic
linking is available.

The Java2 version will be built only if the ocamljava3 compiler is present and located by the
makefile. The syntax extension will be compiled only to bytecode.

2.3 Step 2: compilation

The actual build of Bolt is launched by executing make all. When build is finished, it is possible
to run some simple tests by running make tests. Documentation can be generated by running
make doc.

1Findlib, a library manager for OCaml, is available at http://projects.camlcity.org/projects/findlib.

html.
2The official website for the Java Technology can be reached at http://java.sun.com.
3OCaml compiler generating Java bytecode, by the same author – http://www.ocamljava.org

http://projects.camlcity.org/projects/findlib.html
http://projects.camlcity.org/projects/findlib.html
http://java.sun.com
http://www.ocamljava.org

2. BUILDING BOLT 4

2.4 Step 3: installation

Bolt is installed by executing make install. According to local settings, it may be neces-
sary to acquire privileged accesses, running for example sudo make install. The actual in-
stallation directory depends on the use of ocamlfind: if present the files are placed inside
the Findlib hierarchy, otherwise they are placed in the directory ‘ocamlc -where‘/bolt (i. e.
$PREFIX/lib/ocaml/bolt).

5

Chapter 3

Concepts and terminology

3.1 Logger

The central concept of Bolt is the one of loggers. Loggers have names that are strings composed
of dot-separated components; they are thus akin to module names, and it is actually good
practice to use the logger M to log events of the module M. It is possible to register several
loggers with the same name; this feature is useful to record the events related to a given module
to several different destinations (using possibly different filters, layout, and outputs).

Loggers are also organized into a hierarchy (meaning that logger P is a parent of logger P.S).
When a log statement is executed, it is associated with a logger name. Figure 3.1 shows the
hierarchy of loggers for an application using the loggers whose name appears in black. The
loggers whose names appear in gray are implicitly added by Bolt in order to have a complete
tree of loggers: those actually used in the program are the leaves, and the root is the special ""
(i. e. empty name) logger. The arrows define the is-a-child-of relation.

"Library"

"Library.PartA.Module1"

"MainModule"

""

"ArgsModule"

"Library.PartA.Module2" "Library.PartB.Module"

"Library.PartA" "Library.PartB"

Figure 3.1: Example of a logger hierarchy.

3. CONCEPTS AND TERMINOLOGY 6

3.2 Event

Events are the entities built each time the running program executes a log statement. The event
carries all the information needed for efficient logging: message, location, time, logger name,
etc. Some information is explicitly provided by the user (e. g. message or properties), while
some information is implicitly computed by the runtime (e. g. time or process identifier).

3.3 Level

Level characterizes how critical an event is. Each logger has as associated level that indicates
which levels it is interested in. An event will be recorded iff its level is below the level of logger.
The levels are, in ascending order:

• FATAL for errors leading to program termination;

• ERROR for errors handled by the program;

• WARN for for hazardous circumstances;

• INFO for coarse-grained information;

• DEBUG for debug information;

• TRACE for fine-grained information.

3.4 Filter

A filter is basically a predicate over events, allowing to determine whether an event should
be recorded by a condition on any element of the events.Each logger has an associated filter,
ensuring that only the events satisfying the filter will be recorded.

3.5 Layout

Each logger has an associated layout that is responsible for the conversion of events into bare
string that can then be easily manipulated.

3.6 Output

Each logger has an associated output that defines where event are actually recorded. An output
is thus responsible for the storage of events, once they have been converted into string by a
layout. the most simple output is the file, and in this case, safety commands that two loggers
should not have the same destination.

3.7 Event dispatch

Every log event will be presented to all logger with that name, and to all loggers with a parent
name. Each logger will decide according to its level and filter if the event should actually
be recorded. Finally, all events are presented to all loggers having the special empty name
(corresponding to the string ""). The hierarchy of the loggers is a key feature that allows

7 Event dispatch

to easily enable or disable logging for large parts of an application. Figure 3.2 shows how a
message initially created for the Library.PartB.Module loggers is dispatched to all loggers
with parent names, including loggers that are not explicitly used in the application (those whose
name appears in gray). The dashed arrows show the order in which the event is presented to
the different loggers.

"Library"

"Library.PartA.Module1"

"MainModule"

""

"ArgsModule"

"Library.PartA.Module2" "Library.PartB.Module"

"Library.PartA" "Library.PartB"

event

Figure 3.2: Dispatch of an event generated for the “Library.PartB.Module” logger.

9

Chapter 4

Using Bolt

4.1 Linking with the library

Linking with Bolt is usually done by adding one of the following library to the linking command-
line:

• -I +bolt bolt.cma (for ocamlc compiler);

• -I +bolt bolt.cmxa (for ocamlopt compiler);

• -I +bolt bolt.cmja (for ocamljava compiler).

In order to use Bolt in multithread applications, it is necessary to also link with the BoltThread
module. This also implies to pass the -linkall option to the compiler.

4.2 Adding log statements

There are two ways to add a log statement: either by calling explicitly the Bolt.Logger.log

function, or by using the bolt pp.cmo camlp4 syntax extension. One is advised to use the latter
method: first, using the syntax extension is lightweight (elements such as line and column are
automatically computed); second, it allows to remove the log statements at compilation. Indeed,
it may be useful to have a development version packed with a lot of debug log statements and
a distributed version that suffers no runtime penalty related to logging. Moreover, only given
log statements may be removed, on a level basis.

4.2.1 Explicit logging

To log using the Bolt.Logger.log function, one has to call it with the following parameters
(cf. code sample 1):

• a string parameter giving the name of the logger to use;

• a Bolt.Level.t parameter giving the level of the event to log;

• an optional string parameter (named file) giving the file associated with the log event;

• an optional int parameter (named line) giving the line number associated with the log
event;

4. USING BOLT 10

• an optional int parameter (named column) giving the column number associated with the
log event;

• an optional (string * string) list parameter (named properties) giving the property
list associated with the log event;

• an optional exn option parameter (named error) giving the exception associated with
the log event;

• a string parameter giving the message associated with the log event.

Code sample 1 Explicit logging.

let () =

...

Bolt.Logger.log "mylogger" Bolt.Level.DEBUG "some debug info";

...

4.2.2 Implicit logging

To log using the syntax extension, one has to use the Bolt-introduced LOG expression. This is
done by passing the -pp ’camlp4o /path/to/bolt pp.cmo’ option to the OCaml compiler.
The new LOG expression can be used in an OCaml program wherever an expression of type
unit is waited. The bnf definition of this expression is as follows:

log expr ::= LOG (string | ident) arguments attributes LEVEL level

arguments ::= list of expressions | ε
attributes ::= attributes attribute | ε
attribute ::= NAME string | (PROPERTIES | WITH) expr | (EXCEPTION | EXN) expr

level ::= FATAL | ERROR | WARN | INFO | DEBUG | TRACE
The string following the LOG keyword is the message of the log event, it can be either a literal
string or an identifier whose type is string. This string can be followed by expressions; in this
case the string is interpreted as a printf format string, using the following expressions as
values for the % placeholders of the format string.

The attributes are optional, and have the following meaning:

• NAME defines the name of the logger to be used;

• PROPERTIES defines the properties associated with the log event (the expression should
have the type (string * string) list);

• EXCEPTION defines the exception associated with the log event (the expression should have
type exn).

Code sample 2 shows how the expression can be used. Compared to explicit logging through
the Bolt.Logger.log, when using the LOG expression file, line number, and column number
are determined automatically.

11 Configuring log

When no NAME attribute is provided, the logger name is computed from the source file name:
the .ml suffix is removed and the result is capitalized. More, the bolt pp.cmo syntax extension
accepts the following parameters:

• -logger <n> sets the logger name to n for all LOG expressions of the compiled file;

• -for-pack <P> sets the prefix to the logger names used throughout the compiled file to
“P.”.

Finally, the bolt pp.cmo syntax extension recognizes a third parameter -level <l> where l
should be either NONE or a level. If l is NONE, all LOG expressions will be removed from the
source file; otherwise, only the LOG expression with a level inferior or equal to the passed value
will be kept. This means that TRACE will keep all log statements, while ERROR will keep only
log statements with a level equal to either ERROR, or TRACE.

Code sample 2 Implicit logging.

let () =

...

LOG "some debug info" LEVEL DEBUG;

...

Note: when compiling in unsafe mode, the -unsafe switch should be passed to camlp4 instead
of the compiler. Indeed, as camlp4 is building a syntax tree that is passed to the compiler,
issuing the -unsafe switch to the compiler has no effect because it is too late: the code has
been built by camlp4 in safe mode. In such a case, the compiler warns the user with the follow-
ing message: Warning: option -unsafe used with a preprocessor returning a syntax

tree. The correct Bolt invocation is hence -pp ’camlp4o -unsafe /path/to/bolt pp.cmo’.

4.3 Configuring log

There are two ways to configure log, that is to register loggers that will handle the log events
produced by the application. The first way is to explicitly call Bolt.Logger.register while
the second one is to use a configuration file that will be interpreted by Bolt at runtime.

To register (i.e. to create) a logger using the Bolt.Logger.register function, one has to call
it with the following parameters:

• a string parameter giving the name of the logger;

• a Bolt.Level.t parameter giving the maximum level for events to be logged;

• a string parameter giving the filter of the logger;

• a string parameter giving the layout of the logger;

• a string parameter giving the output of the logger;

• a string * float option couple that gives the parameters used for output creation: the
first component is the name of the output while the second one is the optional rotate value
(the actual semantics of both component is dependent on the output actually used).

4. USING BOLT 12

To register a logger using a configuration file, one should set either the BOLT FILE or the
BOLT CONFIG environment variable to the path of the configuration file. BOLT FILE is to be used
when the file is written in the old configuration format, while BOLT CONFIG is to be used when
the file is written in the new configuration format. If the configuration file cannot be loaded,
an error message is written on the standard error unless the BOLT SILENT environment variable
is set to either “YES” or “ON” (defaulting to “OFF”, case being ignored).

The old format of the configuration file is as follows:

• the format is line-oriented;

• comments start with the ’#’ character and end at the end of the line;

• sections start with a line of the form [a.b.c], ”a.b.c” being the name of the section;

• a section ends when a new section starts;

• at the beginning of the file, the section named ”” is currently opened;

• section properties are defined by lines of the form ”key=value”;

• others lines should be empty (only populated with whitespaces and comments).

The new format of the configuration file is defined by the following grammar:

file ::= section list

section list ::= section list section | ε
section ::= logger string { property list } opt separator

opt separator ::= ; | ε
property list ::= property list property | ε
property ::= ident = property value opt separator

property value ::= ident | integer | string

In both format, each section defines a logger whose name is the section name. The following
properties are used to customize the logger:

• level defines the level of the logger;

• filter defines the filter of the logger;

• layout defines the layout of the logger;

• output defines the output of the logger;

• name is the first parameter passed to create the actual output;

• rotate is the second parameter passed to create the actual output;

• signal indicates a signal that will trigger a rotation (possible values are sighup, sigusr1,
and sigusr2).

13 Configuring log

The level can have one of the following values: TRACE, DEBUG, INFO, WARN, ERROR, FATAL. The
possible values for the other properties are discussed in the following sections.
Code sample 4 and ?? exemplify typical configuration files, respectively in old and new for-
mat. It defines three loggers (with names “”, “Pack.Main”, and “Pack.Aux”). When exe-
cuted, the application will produce three files “bymodule.result”, “bymodule1.result”, and
“bymodule2.result”: the first file will contain the log information for the whole applica-
tion while the other ones will contain respectively the log information associated with the
“Pack.Main” and “Pack.Aux” loggers.

Code sample 3 Example of configuration file (old format).

level=trace

filter=all

layout=simple

output=file

name=bymodule.result

[Pack.Main]

level=trace

filter=all

layout=simple

output=file

name=bymodule1.result

[Pack.Aux]

level=trace

filter=all

layout=simple

output=file

name=bymodule2.result

4.3.1 Predefined filters

The following filters are predefined:

• all keeps all events;

• none keeps no event;

• trace or below keeps events with level inferior or equal to TRACE;

• debug or below keeps events with level inferior or equal to DEBUG;

• info or below keeps events with level inferior or equal to INFO;

• warn or below keeps events with level inferior or equal to WARN;

• error or below keeps events with level inferior or equal to ERROR;

• fatal or below keeps events with level inferior or equal to FATAL;

4. USING BOLT 14

Code sample 4 Example of configuration file (new format).

logger "" {

level = trace;

filter = all;

layout = simple;

output = file;

name = "bymodule.result";

}

logger "Pack.Main" {

level = trace;

filter = all;

layout = simple;

output = file;

name = "bymodule1.result";

}

logger "Pack.Aux" {

level = trace;

filter = all;

layout = simple;

output = file;

name = "bymodule2.result";

}

15 Configuring log

• trace or above keeps events with level superior or equal to TRACE;

• debug or above keeps events with level superior or equal to DEBUG;

• info or above keeps events with level superior or equal to INFO;

• warn or above keeps events with level superior or equal to WARN;

• error or above keeps events with level superior or equal to ERROR;

• fatal or above keeps events with level superior or equal to FATAL;

• file defined keeps events with an actual filename;

• file undefined keeps events with no filename;

• line defined keeps events with a strictly positive line number;

• line undefined keeps events with a negative or null line number;

• column defined keeps events with a strictly positive column number;

• column undefined keeps events with a negative or null column number;

• message defined keeps events with a non-empty message;

• message undefined keeps events with an empty message;

• message paje keeps events whose message is the Pajé identifier;

• message not paje keeps events whose message is not the Pajé identifier;

• message daikon keeps events whose message is the Daikon identifier;

• message not daikon keeps events whose message is not the Daikon identifier;

• properties empty keeps events with an empty property list;

• properties not empty keeps events with an non-empty property list;

• exception some keeps events with an exception;

• exception none keeps events with no exception.

4.3.2 Predefined layouts

Bolt predefines the following non-configurable layouts:

• simple with format: LEVEL - MESSAGE;

• default with format: TIME [FILE LINE] LEVEL MESSAGE;

• paje, and paje noheader whose format is the Pajé trace format1 (the two format only
differ in that the latter one does not output definitions, which is useful when one wants to
merge several files) – see chapter 7 for more information;

1http://sourceforge.net/projects/paje/

http://sourceforge.net/projects/paje/

4. USING BOLT 16

• daikon decls, and daikon trace that respectively follow Daikon2 declaration (i.e. pro-
gram points, and associated variable types) and trace format (i.e. actual variable values
for the various program points visits) – see chapter 6 for more information;;

• html whose format is html, storing events into a table;

• xml, or log4j whose format is xml (compatible with log4j).

Pattern and comma-separated layouts
Two other layouts are predefined:

• pattern whose actual format is specified by defining a property named pattern

This property is a string that can contain $(x) elements where x is a key (defined below)
or $(x:n) where x is a key and n is a padding instruction (the absolute value of n is the
total width; the padding is left if n is negative, and right if n is positive)
it is also possible to specify through the pattern-header-file (respectively
pattern-footer-file) property the name of a file whose contents is used as the header
(respectively footer) that is written at start (respectively end) as well as at each rotation

• csv whose actual format is specified by properties named csv-separator and
csv-elements

csv-separator is the string to be used as the separator between values
csv-elements is a whitespace-separated list of the keys of the values to render

The following keys are available for use by the pattern and csv layouts:

• id event identifier;

• hostname host name of running program;

• process process identifier of running program (i.e. pid);

• thread thread identifier;

• sec seconds of event timestamp;

• min minutes of event timestamp;

• hour hour of event timestamp;

• mday day of month of event timestamp;

• month month of year of event timestamp;

• year year of event timestamp;

• wday day of week of event timestamp;

• time event timestamp;

• relative time elapsed between initialization and event creation;

• level event level;

2http://groups.csail.mit.edu/pag/daikon/

http://groups.csail.mit.edu/pag/daikon/

17 Configuring log

• logger event logger;

• origin first logger that received the event;

• file event file;

• filebase event file (without directory information);

• line event line;

• column event column;

• message event message;

• properties property list of event (formatted as [”[k1: v1; ...; kn: vn]”]);

• exception event exception;

• backtrace event exception backtrace.

4.3.3 Predefined outputs

There are three predefined outputs, namely void, growlnotify3, and file. The void output
discards all data. The file output writes data to a bare file, the name property (or the string

value when using Bolt.Logger.register) defines the path of the file to be used4, and the
rotate property (or the float option value when using Bolt.Logger.register) gives the
rates in seconds at which files will be rotated. It is also possible to use the signal property
(set to one one the following values: SIGHUP, SIGUSR1, SIGUSR2) in order to request rotation
upon signal reception.

When using rotation or several program instances in parallel, it is convenient for the name to
contain a piece of information ensuring that the file name will be unique; otherwise, the same file
will be written over and over again. In version 1.0, Bolt supported the % special character that
was substituted by a timestamp. Since version 1.1, Bolt additionally supports a more general
$(key) substitution mechanism with the following keys:

• time as a bare alternative to %;

• pid that designates the process identifier;

• hostname that designates the process hostname (useful when using a shared file system);

• var that designates any environment variable available from the process.

3Command-line utility associated with the Growl program available at http://growl.info/
4Two special filenames are recognized: <stdout> for standard output, and <stderr> for standard error.

http://growl.info/

19

Chapter 5

Reviewing generated log

Once the log information has been produced by the application, the developer and/or the user
will have to review it. Obviously, the review depends on the chosen layout. When the layout
is one among simple, default, or patter, review can easily be done using classical Unix
commands such as grep, cut, sed, etc. When the layout is csv, it can be equally convenient to
use either one of the aforementioned command-line tools, or any piece of software able to read
csv files such as a database, or a spreadsheet.

When the layout is html, the evident way to review log is to use a browser in order to have a
graphical rendering of the log event. Figure 5.1 shows a small log rendered as a webpage.

When the layout is xml, a dedicated tool such as a GUI can be helpful. For this reason, the XML
layout of Bolt produces log4j-compatible XML files allowing the use of the Apache Chainsaw
application1. Code sample 5 shows a xml file that could be used to wrap the XML data produced
by Bolt (in bolt.xml file) in such a way that Chainsaw can load it. This code sample is a
reproduction of the one provided in the Javadoc of the log4j org.apache.log4j.xml.XMLLayout
class2. Figure 5.2 shows a screenshot of Chainsaw.

1http://logging.apache.org/chainsaw/
2http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/xml/XMLLayout.html

Figure 5.1: Reviewing an html log file with a browser.

http://logging.apache.org/chainsaw/
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/xml/XMLLayout.html

5. REVIEWING GENERATED LOG 20

Code sample 5 Wrapping produced XML data into a Chainsaw-compatible XML.

<?xml version="1.0"?>

<!DOCTYPE log4j:eventSet SYSTEM "log4j.dtd" [<!ENTITY data SYSTEM "bolt.xml">]>

<log4j:eventSet version="1.2" xmlns:log4j="http://jakarta.apache.org/log4j/">

&data;

</log4j:eventSet>

Figure 5.2: Reviewing an xml log file with Chainsaw.

21

Chapter 6

Daikon support

6.1 Overview

Daikon1 is an invariant detector that detects likely invariants from execution traces. First,
programs are instrumented in order to produce traces containing the values of variables at
different points. Then, after (several) execution(s), Daikon processes the traces and outputs a
list of likely invariants. The invariants are qualified as likely because Daikon is only able to
assert that they hold for the given set of executions, but not for any execution.

6.2 Configuration

When using the Daikon tool, it is necessary to produce two elements: both the traces with
all recorded variable, and a definition of these variables. To this end, Bolt uses two different
layouts: daikon decls for variable declaration, and daikon dtrace for actual traces. Typically,
this leads to a configuration file akin to the one presented by code sample 6 (old configuration
format), or code sample 7 (new configuration format).

Code sample 6 Daikon configuration (old format).

[]

level=trace

filter=all

layout=daikon_decls

output=file

name=daikon.decls

[]

level=trace

filter=all

layout=daikon_dtrace

output=file

name=daikon.dtrace

1http://groups.csail.mit.edu/pag/daikon/

http://groups.csail.mit.edu/pag/daikon/

6. DAIKON SUPPORT 22

Code sample 7 Daikon configuration (new format).

logger "" {

level = trace;

filter = all;

layout = daikon_decls;

output = file;

name = "daikon.decls";

}

logger "" {

level = trace;

filter = all;

layout = daikon_dtrace;

output = file;

name = "daikon.dtrace";

}

6.3 Instrumentation

As previously said, the programs need to be instrumented in order to produce trace that will be
analyzed by Daikon after execution. Such instrumentation is done through logging statements
with the designated Daikon.t value as message, and properties are used to indicate which
variables should be recorded. This leads to log statements with one of the following form:

• LOG Daikon.t WITH Daikon.enter "fn" [variables]; to record the enter in a func-
tion whose name is fn with parameters variables;

• LOG Daikon.t WITH Daikon.exit "fn" variable [variables]; to record the enter in
a function whose name is fn with result variable and parameters variables;

• LOG Daikon.t WITH Daikon.point "pi" [variables]; to record the values variables
at any source point with identifier pi.

Note: the Daikon layouts ignore the EXCEPTION part of the log statements.

Values, independently of their kind (parameters, return values, bare variables) are encoded
using a variable-build function from the Daikon module. All these functions take as first param-
eter the name of the value (as a string), and as second parameter the value itself. As of version
1.3, they are:

• t for type t;

• t option for type t option;

• t list for type t list;

• t array for type t array;

23 Review

where t is one of bool, int, float, or string.

Code sample 8 shows a program that has been instrumented to record values at the start and
end of the f function with type int -> int.

Code sample 8 Daikon-instrumented program.

let f x =

LOG Daikon.t

WITH Daikon.enter "f" [Daikon.int "x" x] LEVEL TRACE;

let res = (x * x) mod 2 in

LOG Daikon.t

WITH Daikon.exit "f" (Daikon.int "res" res) [Daikon.int "x" x] LEVEL TRACE;

res

let () =

let l = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] in

let l = List.map f l in

List.iter (Printf.printf "%d\n") l

6.4 Review

Once the program has been run, files “daikon.decls” and “daikon.dtrace” have been gen-
erated and can be passed to Daikon for analysis. The result of the analysis is shown at code
sample 9. The last three lines are the invariants that have been detected, that are:

• the x parameter is not modified by the function;

• the result of the function is either 0, or 1;

• the result of the function is always below or equal to x.

Code sample 9 Result of Daikon analysis.

===

f:::ENTER

===

f:::EXIT1

"x" == orig("x")

"res" one of { 0, 1 }

"res" <= "x"

25

Chapter 7

Pajé support

7.1 Overview

Pajé1 is a metaformat, or self-describing format, that was designed to enable easy and
information-rich tracing of distributed systems. It defines several kinds of events that allow
to indicate: a discrete event, a state change, a communication start, a communication end, etc.

7.2 Configuration

When using the Pajé format, it is necessary to produce two elements: the actual definition of
events used through the traces, and the events occurring during a program run. Bolt automat-
ically generate the definitions of events, using the set of predefined event kind from the Pajé
format definition. This means that, in the current implementation, it is not possible to add
new kinds of events. Nevertheless, it is still possible to add new fields to predefined events.
Producing traces in the Pajé format is triggered by choosing the paje layout as shown by code
sample 10 (old configuration format), or code sample 11 (new configuration format).

Code sample 10 Pajé configuration (old format).

[]

level=trace

filter=all

layout=paje

output=file

name=paje.trace

7.3 Instrumentation

In order to produce a trace containing Pajé events, it is necessary to use logging statement with
the special Paje.t value as message, events kind and properties being passed as log properties.
The complete list of event kind can be consulted in the ocamldoc-generated documentation
for the Paje module, available in the ocamldoc directory after execution of make doc. Code

1See https://gforge.inria.fr/projects/paje/

https://gforge.inria.fr/projects/paje/

7. PAJÉ SUPPORT 26

Code sample 11 Pajé configuration (new format).

logger "" {

level = trace;

filter = all;

layout = paje;

output = file;

name = "paje.trace";

}

sample 12 shows three events: one recording a discrete phenomenon, and two indicating changes
of an element state.

Note: the Pajé layout ignores the EXCEPTION part of the log statements.

Code sample 12 Pajé example.

LOG Paje.t

PROPERTIES Paje.new_event ~typ:"mail" ~container:"cnt" ~value:msg []

LEVEL TRACE;

(...)

LOG Paje.t

PROPERTIES Paje.set_state ~typ:"state" ~container:"cnt" ~value:"computing" []

LEVEL TRACE;

(...)

LOG Paje.t

PROPERTIES Paje.set_state ~typ:"state" ~container:"cnt" ~value:"waiting" []

LEVEL TRACE;

7.4 Review

The traces using the Pajé format are not easily analyzed directly by a user. It is thus necessary to
use a dedicated tool such as the ViTE2 trace visualizer. ViTE will depicted states through colored
rectangle, discrete events through small discs, and communication events (named links in the
Pajé format) through arrows. This visual representation is a great help for the understanding
of a system with multiple communicating entities. Moreover, the ViTE tool is able to compute
statistics about states. Figure 7.1 shows a typical ViTe representation of log events.

2Available at http://vite.gforge.inria.fr

http://vite.gforge.inria.fr

Figure 7.1: Example of ViTE visualization.

29

Chapter 8

Complete example

Code sample 13 shows a short program using the implicit logging feature of Bolt. The program
can be compiled and executed by the Makefile shown by code sample 14. The compile target
underlines that compilation should be done through the Bolt preprocessor, and that link entails
references to the unix, and dynlink libraries (all of them being shipped with the standard
OCaml distribution).

Code sample 13 Source example.

let funct n =

LOG "funct(%d)" n LEVEL DEBUG;

for i = 1 to n do

print_endline "..."

done

let () =

LOG "application start" LEVEL TRACE;

funct 3;

funct 7;

LOG "application end" LEVEL TRACE

The targets run-old and run-new of the Makefile show that the environment variable
BOLT FILE or BOLT CONFIG should be set to the path of the configuration file defining the actual
runtime-configuration of logging. The related configuration files are respectively represented by
code samples 15 and 16. As a result of execution, a plain text file named log will be produced,
and can be viewed using the view target of the Makefile. Code sample 17 shows the contents
of the log file.

It is also possible to compile the source.ml file through the ocamlbuild tool. The most conve-
nient way is to first define a new bolt tag in a myocamlbuild.ml plugin. This tag will add the
necessary elements when compiling or linking a file using the Bolt features, as shown by code
sample 18.
Then, it is sufficient to use the newly introduced tag in the tags file to use bolt, as shown by
code sample 19.

8. COMPLETE EXAMPLE 30

Code sample 14 Makefile example.

DEPENDENCIES=unix.cma dynlink.cma

default: clean compile run-new view

clean:

rm -f *.cm* log bytecode

compile:

ocamlc -c -I +bolt bolt.cma \

-pp ’camlp4o path/to/bolt/bolt_pp.cmo’ source.ml

ocamlc -o bytecode -I +bolt $(DEPENDENCIES) bolt.cma source.cmo

run-old:

BOLT_FILE=config.old ./bytecode

run-new:

BOLT_CONFIG=config.new ./bytecode

view:

cat log

Code sample 15 Configuration file (old format).

level=trace

filter=all

layout=default

output=file

name=log

Code sample 16 Configuration file (new format).

logger "" {

level = trace;

filter = all;

layout = default;

output = file;

name = "log";

}

Code sample 17 Generated log.

2 [source.ml 8] TRACE - application start

4 [source.ml 2] DEBUG - funct(3)

4 [source.ml 2] DEBUG - funct(7)

4 [source.ml 11] TRACE - application end

31

Code sample 18 myocamlbuild.ml plugin file.

open Ocamlbuild_plugin

open Ocamlbuild_pack

let () =

dispatch begin function

| After_rules ->

flag ["bolt"; "pp"]

(S [A"camlp4o"; A"/path/to/bolt/bolt_pp.cmo"]);

flag ["bolt"; "compile"]

(S [A"-I"; A"/path/to/bolt"]);

flag ["bolt"; "link"; "byte"]

(S [A"-I"; A"/path/to/bolt"; A"bolt.cma"]);

flag ["bolt"; "link"; "native"]

(S [A"-I"; A"/path/to/bolt"; A"bolt.cmxa"]);

flag ["bolt"; "link"; "java"]

(S [A"-I"; A"/path/to/bolt"; A"bolt.cmja"])

| _ -> ()

end

Code sample 19 tags file.

<source.*>: use_unix, use_dynlink, bolt

33

Chapter 9

Customizing Bolt

It is possible to customize Bolt by defining new filters, layouts, and outputs. This is
easily done by using respectively the Bolt.Filter.register, Bolt.Layout.register, and
Bolt.Output.register functions. The following sections give examples of how this can be
done. More information about the actual types and functions can be found in the ocamldoc-
generated documentation (available in the ocamldoc directory, generation being triggered by
the make doc command).

9.1 Defining a custom filter

A filter is barely a function from Bolt.Event.t to bool. It is possible to write explicitly
the function, or to rely on predefined filters assembled through combinators provided by the
Bolt.Event module. Code sample 20 shows the definition of two filters: the first one is explicitly
coded and only keep events whose line number is even, while the second one is encoded through
combinators and keep events with neither exception nor property.

Code sample 20 Custom filters.

let () =

Bolt.Filter.register

"even_line"

(fun e -> (e.Bolt.Event.line mod 2) = 0)

let () =

Bolt.Filter.register

"no_exception_and_no_property"

(let open Bolt.Filter in

exception_none &&& properties_empty)

9.2 Defining a custom layout

A layout is a triple containing: an header (as a string list), a footer (as a string list),
and a rendering function (as a function from Bolt.Event.t to string). Code sample 21 shows

9. CUSTOMIZING BOLT 34

the definition of a layout with empty header and footer, and a rendering function based on
Printf.sprintf.

Code sample 21 Custom layout.

let () =

Bolt.Layout.register

"printf_layout"

([], (* header *)

[], (* footer *)

(fun e ->

Printf.sprintf "file \"%s\" says \"%s\" with level \"%s\" (line: %d)"

e.Bolt.Event.file

e.Bolt.Event.message

(Bolt.Level.to_string e.Bolt.Event.level)

e.Bolt.Event.line))

9.3 Defining a custom output

A layout is a function taking a string parameter, a Bolt.Output.rotation parameter, and a
Bolt.Layout.t parameter to build an Bolt.Output.impl object. The semantics of the string
parameter is to be defined by the output itself (for the file output, it is the filename of the
destination). The Bolt.Output.rotation parameters defines when a rotation should happen
(based on time and/or signal interception). Finally, the layout indicates header and footer to
write at each rotation.

The Bolt.Output.impl object to be built by a layout should define two methods:

• write : string -> unit that will be called to record string rendered through the lay-
out;

• close : unit that will be called at the end of the program in order to perform clean-up
operations.

Code sample 22 shows the definition of a layout using the mail system command to log elements.

9.4 Using custom elements

When custom elements have been registered using the previously mentioned functions, they can
be used from the configuration files or from the Bolt.Logger.register function. However, it
is necessary for the custom elements to be registered before any log event concerned with these
custom elements is built. Otherwise, elements won’t be found and Bolt will resort to default
values.

A good practice is to define the new filters, layouts, and outputs in modules that are not part
of the application. One should not forget to pass the -linkall switch to the compilers when

35 Using custom elements

Code sample 22 Custom output.

let () =

let send_mail _ _ _ =

object

method write msg =

try

let command = Printf.sprintf "mail -s %S dest@domain.com" msg in

ignore (Sys.command command)

with _ -> ()

method close = ()

end in

Bolt.Output.register "send_mail" send_mail

linking such modules. Another option is to avoid linking these modules with the application, and
to use the BOLT PLUGINS environment variable to load them. The BOLT PLUGINS environment
variable contains a comma-separated list of files that will be loaded through Dynlink.

	Overview
	Purpose
	License
	Contributions

	Building Bolt
	Step 0: dependencies
	Step 1: configuration
	Step 2: compilation
	Step 3: installation

	Concepts and terminology
	Logger
	Event
	Level
	Filter
	Layout
	Output
	Event dispatch

	Using Bolt
	Linking with the library
	Adding log statements
	Explicit logging
	Implicit logging

	Configuring log
	Predefined filters
	Predefined layouts
	Predefined outputs

	Reviewing generated log
	Daikon support
	Overview
	Configuration
	Instrumentation
	Review

	Pajé support
	Overview
	Configuration
	Instrumentation
	Review

	Complete example
	Customizing Bolt
	Defining a custom filter
	Defining a custom layout
	Defining a custom output
	Using custom elements

