

Multiresolution Adaptive Numerical
Scientific Simulation

Robert J. Harrison1, Joel Anderson1, Bryan Sundahl, Hideo Sekino1,
George I. Fann2, Gregory Beylkin4, Lucas Monzon3,
Edward Valeev4, Florian Bischoff5, Jakob Kottmann5

1Stony Brook University, Brookhaven National Laboratory
2Oak Ridge National Laboratory

3University of Colorado
4Virginia Tech

4Humboldt-Universität zu Berlin

robert.harrison@stonybrook.edu

Tools in the tool box: fast and
accurate computation

George I. Fann1, Diego Galindo1, Robert J. Harrison2,
Scott Thornton2, Joel Anderson2, Byran Sundahl2,

Judy Hill1, and Jun Jia1

1Oak Ridge National Laboratory
2Stony Brook University, Brookhaven National Laboratory

In collaboration with

Gregory Beylkin4, Lucas Monzon4, Hideo Sekino5
and Edward Valeev6

4University of Colorado
5Toyohashi Technical University, Japan

6Virginia Tech

robert.harrison@gmail.com

MADNESS 2009 4

Ariana Beste Hideo Sekino
Robert Harrison

Gregory Beylkin

Eduard Valeyev

Judy Hill
George Fann

Matt Reuter

Alvaro Vasquez

Scott Thornton

Rebecca
Hartman-Baker

Nicholas Vence
Takahiro Ii

Jeff Hammond

Nichols Romero

Jia, Kato, Niimura, Calvin, Pei, ...

Joel Anderson

Bryan Sundahl

Big picture
• Want robust algorithms that scale correctly with

system size and are easy to write
• Robust, accurate, fast computation

– Gaussian basis sets: high accuracy yields dense
matrices and linear dependence – O(N3)

– Plane waves: force pseudo-potentials – O(N3)
– O(N logmN logke) is possible with guaranteed e

• Semantic gap
– Why are our equations just O(100) lines but programs

O(1M) lines?
• Facile path from laptop to exaflop

“Fast” algorithms
• Fast in mathematical sense

– Optimal scaling of cost with accuracy & size
• Multigrid method – Brandt (1977)

– Iterative solution of differential equations
– Analyzes solution/error at different length scales

• Fast multipole method – Greengard, Rokhlin
(1987)
– Fast application of dense operators
– Exploits smoothness of operators

• Multiresolution analysis
– Exploits smoothness of operators and functions

What is MADNESS?
• A general purpose numerical environment for

reliable and fast scientific simulation
– Chemistry, nuclear physics, atomic physics, material

science, nanoscience, climate, fusion, ...
• Want robust and fast algorithms that scale

correctly with system size and are easy to write
• Semantic gap

– Why are equations O(100) lines but codes O(1M) ?
• Facile path from laptop to exaflop

https://github.com/m-a-d-n-e-s-s/madness Numerics
Parallel Runtime

Applications

Why MADNESS?
• Reduces S/W complexity

– MATLAB-like level of composition of scientific
problems with guaranteed speed and precision

– Programmer not responsible for managing
dependencies, scheduling, or placement

• Reduces numerical complexity
– Solution of integral not differential equations
– Framework makes latest techniques in applied math

and physics available to wide audience

E.g., with guaranteed precision of 1e-6 form a
numerical representation of a Gaussian in the

cube [-20,20]3, solve Poisson’s equation, and plot
the resulting potential

(all running in parallel with threads+MPI)

There are only two lines doing real work. First the Gaussian (g) is projected into
the adaptive basis to the default precision. Second, the Green’s function is applied.
The exact results are norm=1.0 and energy=0.3989422804.

output: norm of f 1.00000000e+00 energy 3.98920526e-01

Compose directly in terms of
functions and operators

This is a Latex rendering of a
program to solve the Hartree-Fock
equations for the helium atom

The compiler also outputs a C++
code that can be compiled without
modification and run in parallel

He atom
Hartree-Fock

The math behind the MADNESS

• Multiresolution

• Low-separation
rank

• Low-operator
rank

V 0⊂V 1⊂⋯⊂V n

V n=V 0+(V 1−V 0)+⋯+ (V n−V n−1)

f x1, , xn=∑
l=1

M

 l∏
i=1

d

f i
 l  xiO 

∥ f i
l ∥2=1  l0

A=∑
=1

r

u v
TO 

0 v
T v=u

T u= 

Why “think” multiresolution?
• It is everywhere in nature/chemistry/physics

– Core/valence; high/low frequency; short/long range;
smooth/non-smooth; atomic/nano/micro/macro scale

• Common to separate just two scales
– E.g., core orbital heavily contracted, valence flexible
– More efficient, compact, and numerically stable

• Multiresolution
– Recursively separates all length/time scales
– Computationally efficient and numerically stable
– Coarse-scale models that capture fine-scale detail

How to “think” multiresolution

• Consider a ladder of function spaces

– E.g., increasing quality atomic basis sets, or finer resolution
grids, …

• Telescoping series

– Instead of using the most accurate representation, use the
difference between successive approximations

– Representation on V0 small/dense; differences sparse
– Computationally efficient; possible insights

V n=V 0+(V 1−V 0)+(V 2−V 1)+⋯(V n−V n−1)

V 0⊂V 1⊂⋯⊂V n

Another Key Component

• Trade precision for speed – everywhere
– Don’t do anything exactly
– Perform everything to O()
– Require

• Robustness
• Speed, and
• Guaranteed, arbitrary, finite precision

Problem Setup
• In 1-D solve on [0,1]

• Tensor product in n-D

• Periodic and infinite domains also feasible

Scaling Function Basis - I
• Divide domain into 2n pieces

– Referred to as level n
– Adaptive sub-division – local refinement
– Non-uniform division possible (not yet done)
– lth sub-interval [l*2-n,(l+1)*2-n] l=0,…,n-1

n=0

n=1

n=2

l=0 l=1 l=2 l=3

Scaling Function Basis - II
• In each sub-interval define a polynomial basis

– Currently use the first k Legendre polynomials
– Other bases interesting (e.g, interpolating polynomials,

non-polynomial functions)
– Zero outside of the sub-interval

ϕi(x) = {√2 i+1 P i(2 x−1) 0
0≤x≤1 otherwise

ϕi l
n = 2n /2ϕi(2

n x−l)

Scaling Function Basis - III

i=0

i=2
i=3

i=1

φi1
2 (x) ,i=0,… , 3

Scaling Function Basis - IV
• Translation and

dilation

• Orthonormal

• Ladder of spaces

• Complete basis for L2 [0,1] in limit of either large
k or large n.

/ 2() 2 (2)n n n
il ix x l  

V 0⊂V 1⊂⋯⊂V n

∫
−∞

∞

ϕi l
n (x)ϕi ′ l ′

n (x)dx=δl l ′ δi i ′

Two-scale relationship

• V0  V1 – can represent coarse scale basis exactly
in the fine scale basis

• The filter coefficients (H) may be computed
analytically or numerically.

 

 

1
(0) (1)

0

1
(0) 1 (1) 1

2 2 1
0

() 2 (2) (2 1)

() () ()
il

k

i ij j ij j
j

k
n n n

ij j l ij j l
j

x h x h x

x h x h x

  

  






 




  

 





Expansion of a function
• Projection of a function into Vn

• Local error is O(f(k)()2-nk) – high-order convergence
• If a function is expanded in Vn, what is the error

from truncating to Vn-1?
• The error is contained in Wn-1=Vn- Vn-1

2 1 1

0 0
() ()

() ()

n k
n n n

il il
l i

n n
il il

f x s x

s dx f x x





 

 









Multiwavelet Basis - I
• An orthonormal basis to span
• Also demand

– Disjoint support (important!)
– Dilation/translation of wavelets at level 0

• Expand in Vn

1 1n n nW V V  

ψ i(x)=√2∑
j=0

k−1

(g i j
(0)ϕ j(2 x)+ g i j

(1)ϕ j (2 x−1))

ψ i l
n−1(x)=∑

j=0

k−1

(g i j
(0)ϕ j 2 l

n (2 x)+ g i j
(1)ϕ j 2 l+1

n (2 x−1))

Multiwavelet Basis - II
• Basis not yet completely specified

– Currently use Alpert’s basis (which imposes additional
constraints … more about this later)

• The coefficients (G) may be evaluated analytically
or numerically
– Numerical evaluation requires extended precision

arithmetic (e.g., 208 bits used for k=12).
• Constructive approach

– From scaling function make the wavelets
– Often the reverse (e.g., Daubechies wavelets)

-2
-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

0 0.25 0.5 0.75 1

Multiwavelet Basis - III

-3

-2

-1

0

1

2

3

0 0.25 0.5 0.75 1

-2

-1

0

1

2

3

4

0 0.25 0.5 0.75 1

-4
-3
-2
-1
0
1
2
3
4

0 0.25 0.5 0.75 1

i=0

i=3i=2

i=1

k=4

ψi(x) , i=0,… ,3

Multiwavelet Basis - IV
• Translation and

dilation

• Orthonormal

• Direct sum of
sub-spaces

• Complete basis for L2 [0,1] in limit of either large
k or large n.

/ 2() 2 (2)n n n
li ix x l  

V n=V 0+W 1+⋯+W n−1

∫
−∞

∞

ψ i l
n (x)ψ i ′ l ′

n ' (x)dx=δn n′ δl l ′ δi i ′

Multiwavelet Basis - V

• Vanishing moments
– Critically important property
– Since Wn is orthogonal to Vn the first k moments

of functions in Wn vanish, i.e.,

• In Alpert’s basis, additional moments of
some of the multiwavelet components also
vanish

∫ dx x i ψ i(x)=0 i=0,… , k−1

Some Consequences of
Vanishing Moments

• Compact representation of smooth functions
– Consider Taylor series … the first k terms vanish and

smooth implies higher order terms are small
• Compact representation of integral operators

– E.g., 1/|r-s|
– Consider double Taylor series or multipole expansion
– Interaction between wavelets decays as r-2k-1

• Derivatives at origin vanish in Fourier space
– Diminishes effect of singularities at that point

1 1n n nW V V  

Two-scale relationship - I

Orthonormal transformation – best possible numerical accuracy

(ϕ(x)
ψ (x))=√2 (H (0) H (1)

G(0) G(1))(ϕ(2 x)
ϕ(2 x−1))

Filter coefficients for k=1 (Haar)

Hence, coefficients of scaling functions and wavelets are
often referred to as sum and difference coefficients.

(H (0) H (1)

G (0) G(1))= 1
√2 (1 1

1 −1)
(s0

0

d 0
0)= 1

√2 (s0
1+s1

1

s0
1−s1

1)

Filter coefficients for k=4
 7.0711e-01 0.0000e+00 0.0000e+00 0.0000e+00 H0
-6.1237e-01 3.5355e-01 0.0000e+00 0.0000e+00
 0.0000e+00 -6.8465e-01 1.7678e-01 0.0000e+00
 2.3385e-01 4.0505e-01 -5.2291e-01 8.8388e-02

 7.0711e-01 0.0000e+00 0.0000e+00 0.0000e+00 H1
 6.1237e-01 3.5355e-01 0.0000e+00 0.0000e+00
 0.0000e+00 6.8465e-01 1.7678e-01 0.0000e+00
-2.3385e-01 4.0505e-01 5.2291e-01 8.8388e-02

 0.0000e+00 1.5339e-01 5.9409e-01 -3.5147e-01 G0
 1.5430e-01 2.6726e-01 1.7252e-01 -6.1237e-01
 0.0000e+00 8.7867e-02 3.4031e-01 6.1357e-01
 2.1565e-01 3.7351e-01 4.4362e-01 3.4233e-01
 0.0000e+00 -1.5339e-01 5.9409e-01 3.5147e-01 G1
-1.5430e-01 2.6726e-01 -1.7252e-01 -6.1237e-01
 0.0000e+00 -8.7867e-02 3.4031e-01 -6.1357e-01
-2.1565e-01 3.7351e-01 -4.4362e-01 3.4233e-01

The point being only that these are not mysterious or weird values.

Two-scale relationship II

• May be rewritten without approximation as

• Where

2 1 1

0 0
() ()

n k
n n n

il il
l i

f x s x
 

 



(si l
n−1

d i l
n−1)=(H (0) H (1)

G(0) G(1))(si 2 l
n

si 2 l+1
n)

f n(x)=∑
l=0

2 n−1

∑
i=0

k−1

(si l
n−1ϕi l

n−1(x)+d i l
n−1 ψ i l

n−1(x))

Compression of a function

• Recursively apply the two-scale relation
• The basis is the scaling functions at level 0 and the

multiwavelets at all levels

• Compression & reconstruction are O(NlogN)
operations

V n=V 0⊕W 0⊕W 1⊕⋯⊕W n−1

f n(x)=∑
i=0

k−1

si 0
0 ϕi 0

0 (x)+∑
n ′=0

n−1

∑
l=0

2n ′−1

∑
i=0

k−1

d i l
n ′ ψ i l

n ′ (x)

Two equivalent representations
• Scaling function basis (reconstructed)

• Multi-wavelet basis (compressed)

• Rapid compression/reconstruction
– Asymptotically faster than the FFT
– Use most appropriate basis for a given operation

2 1 1

0 0
() ()

n k
n n n

il il
l i

f x s x
 

 



f n(x)=∑
i=0

k−1

si 0
0 ϕi 0

0 (x)+∑
n ′=0

n−1

∑
l=0

2n ′−1

∑
i=0

k−1

d i l
n ′ ψ i l

n ′ (x)

A Third Equivalent
Representation

• The function tabulated at the Gauss-Legendre
quadrature points in each of the adaptively
refined boxes
– Enables rapid multiplication of functions and

application of local functions (e.g., Vxc)
– Diagonal transformation from interpolating

polynomials

Attributes of the multiwavelet basis
• Good stuff

– Disjoint support enables true local refinement
– Discontinuous polynomial basis can compactly

represent sharp features
– High-order convergence for smooth functions
– Interpolating basis enables many operators
– Computational kernels highly efficient

• Bad stuff
– Not strongly band limited
– High-order beneficial only when locally smooth

Truncation Error
• To satisfy the global error condition

• Truncate according to

• This is rather conservative – often use

22

nf f f 

/ 2
22

2n n
ld f

2

n
ld 

• Slice thru grid used to
represent the nuclear
potential for H2 using k=7 to
a precision of 10-5.

• Automatically adapts – it
does not know a priori where
the nuclei are.

• Nuclei at dyadic points on
level 5 – refinement stops at
level 8

• If were at non-dyadic points
refinement continues (to
level ??) but the precision is
still guaranteed.

• In future will unevenly
subdivide boxes to force
nuclei to dyadic points.

Summary so far
• Scaling functions

– Familiar orthormal basis, easy to evaluate, integrate, …
• Multi-resolution analysis

– Separates behavior between length scales
– Local truncation while preserving global error bound
– Vanishing moments

• Multi-wavelets
– High-order convergence with adaptive representation
– Disjoint support – efficient description of singularities if

located at faces/edges/corners (more efficient than smooth
wavelets since they do not have disjoint support)

• Fast compression and reconstruction
– Orthogonal transformations – numerically stable

• Good place to look at the (now ancient)
implementation notes
– Normalization, user/simulation cell, etc.
– Truncation modes
– Adaptive projection
– Addition
– Differentiation
– Multiplication with refinement

Compression of a Matrix

• Compression is just a linear transformation
– Apply separately to each dimension

– Result is said to be in “standard form”

W T AW

Extension to higher dimensions

• Scaling function basis is tensor product

• Wavelet basis – tensor product is one choice
– Standard form – compress each dimension just as

for a matrix
– But cannot refine strictly locally since length

scales are mixed between dimensions
• To refine locally need to refine all dimensions

simultaneously

ϕi l
n (x)ϕi ′ l ′

n (y)

Standard-Form basis in 2-D

0
0 ()y

0
0 ()y

1
0()y

1
1 ()y

2
0 ()y

2
1 ()y

2
2 ()y

2
3 ()y

0
0 ()x 0

0 ()x 1
0()x 1

1 ()x 2
1 ()x 2

2 ()x2
0 ()x 2

3 ()x

Tensor product
basis on level 3
(level 3 scaling

functions ==
level 2 wavelets)

Red indicates
the support of
the function

Adaptive refinement
separately in each
dimension … global
not local refinement

Locally-refined form of functions
• Construct local basis for Wn-1=Vn- Vn-1

n=0 n=1

V 0={ϕ(x)ϕ(y)}

V 1=√2 {ϕ(2 x)ϕ(2 y) , ϕ (2 x)ϕ(2 y−1) ,
ϕ(2 x−1)ϕ(2 y) , ϕ(2 x−1)ϕ(2 y−1)}

 ={ϕ(x)ϕ(y) , ϕ(x)ψ (y) , ψ(x)ϕ (y) , ψ(x)ψ (y)}
W 0=V 1−V 0

 ={ϕ(x)ψ(y) , ψ (x)ϕ(y) , ψ (x)ψ (y)}

Locally refined basis in 2-D
 0 0

0 0() ()x y 

 () (), () (), () () , 0,..,2 1n n n n n n n
l m l m l lx y x y x y l m       

Red indicates function support

0n 

0n 

1n 

2n 

Non-standard form of operators - I
• Standard form

– Matrix elements between different length scales
– Not very efficient on modern computers with deep

memory hierarchies
– Potentially O(Nlog N) non-zero terms
– Hard to calculate matrix elements, high-memory use

• Non-standard form
– No matrix elements between lengths scales
– O(N) terms
– Act on (modified) non-standard form of functions
– Easy to calculate matrix elements
– Translation invariant operators yield Topelitz matrices
– Derivation is instructive

Non-standard form of operators - II
• Pn an orthogonal projection into Vn

• Qn an orthogonal projection into Wn=Vn+1-Vn
Pn+ Qn= Pn+1

• Consider the projection of an operator T

T n=Pn T Pn

 =(Pn−1+Q n−1)T (Pn−1+Qn−1)
 =Pn−1T Pn−1+Qn−1T Q n−1+Q n−1T Pn−1+Pn−1 T Qn−1

 =T n−1+An−1+Bn−1+Cn−1

 =T 0+∑
n ′=0

n−1

(An ′+Bn ′+Cn ′)

NS Form of Operators III

• Matrix elements in the scaling function basis

• Matrix elements of the NS form

[r l l ′
n]i i ′=∫ dx ϕi l

n (x)T ϕi ′ l ′
n

(r l , l ′
n−1 γ l , l ′

n−1

β l ,l ′
n−1 α l ,l ′

n−1)=(H (0) H (1)

G (0) G(1))(r 2 l , 2 l ′
n r 2 l ,2 l ′+1

n

r 2 l+1,2 l ′
n r2 l+1,2 l ′+1

n)(H (0) H (1)

G(0) G(1))
T

Vanishing Moments
• Sparse integral operators

– If the derivatives decay rapidly (i.e., the kernel
becomes smoother at long range)

– See this by Taylor expansion (multipole series)
• Consider NS form of 3D Poisson kernel (1/r)

[Al l ′
n]i i ′=∫ d3 x d 3 y ψ l i

n (x) 1
|x− y|ψ l ′ i ′

n (y)=O (|l−l ′|−2 k−1)

[B l l ′
n]i i ′=∫ d 3 x d3 y ψ l i

n (x) 1
|x− y|

ϕl ′ i ′
n (y)=O (|l−l ′|− k−1)

[C l l ′
n]i i ′=∫ d 3 x d 3 yϕl i

n (x) 1
|x− y|

ψ l ′ i ′
n (y)=O (|l−l ′|−k−1)

Integral operators - I
• Consider T f (x)=pv∫ dy K (x− y) f (y)

[r l l ′
n]i i ′=∫ dx∫ dy K (x− y)ϕi l

n (x)ϕi ′ l
n (y)

 =2−n∫ dx∫ dy K (2−n(x− y+l−l ′))ϕi(x)ϕi ′(y)
 =2−n∫ dz K (2−n(z+ l−l ′))Φi i ′ (z)
Φ i i ′ (z)=∫ dx ϕi(x)ϕi ′(x−z)

 =∑
p=0

2k−1

(c i i ′ p
(-) ϕ p(z+1)+c i i ′ p

(+) ϕ p (z))

 [r l
n] p=2−n∫ dz K (2−n(z+ l))ϕ p(z)

Integral operators - II
• Matrix elements easy to evaluate from

compressed form of kernel K(x)
• Application in 1-d is fairly efficient

– O(k2) operations
• In 3-d seems to need O(Nboxk6) operations

– Prohibitively expensive
• More intelligent approach

– O(Nboxk4) operations for many “physical” kernels
– Even better is known to be possible

Relationship to the FMM
• Greengard, Rokhlin
• Separate the behavior on different length scales
• Exploit low-rank form of off-diagonal blocks
• Approaches each kernel as a special case
• Highly-optimized, but complex

– E.g., latest FMM uses seven different representations
• MRA approach is immediately general

– Simpler than FMM since don’t need to traverse
up/down tree

– Not as fast unless use kernel-specific separated forms
– Perhaps more straightforward to parallelize

Please forget about wavelets
• They are not central
• Wavelets are a convenient basis to span Vn-Vn-1 and

for understanding its properties
• But you don’t actually need to use them

– MADNESS does still compute wavelet coefficients, but
Beylkin’s new code does not

• Please remember this …
– Discontinuous spectral element with multi-resolution

and separated representations for fast computation with
guaranteed precision in many dimensions.

Summary so far

• Extension to many-dimensions
– Locally-refined basis for functions enables true

adaptive refinement
– Non-standard form for operators enables

practical application of operators
• Vanishing moments

– Turns smoothness into sparsity

Problem with Differential Form

• Consider application of the Laplacian to a
function with high-frequency numerical noise

• Consider 30 levels of adaptive refinement
(and don't forget discontinuities, polynomials)

• I.e., we just took numerical noise () and
amplified it to O(100)

∇2 (f (r)+ϵ e i k . r)=∇2 f (r)−k 2 ϵ e i k .r

∣k∣≈109 k 2≈1018

ϵ=10−16

Advantages of Integral Form
• Condition number of inverse Laplacian just as

bad (unbounded spectrum & zero eigenvalues)
– But for the inverse, large eigenvalues correspond to

the smooth and usually interesting bits

– So the inverse operator damps out the noise
• A key step in applying MADNESS to any

problem is rewriting differential equations in
integral form

∇−2 (f (r)+ϵe i k .r)=∇−2 f (r)−k−2ϵ e i k . r

Advantages of Integral Form

• E.g.,
– Often soluble without any preconditioning and often

without any iteration (as in this case)
– Can obtain higher accuracy
– In simple domains builds in correct asymptotics
– Potentially more computationally efficient

• Challenge and solution
– In most bases integral operator is dense
– Multiresolution analysis provides fast algorithms

with guaranteed precision

∇2 u (r)=−4 πρ (r) v.s. u (r)=∫G (r , r ')ρ (r ')d 3 r '

Electrostatics ∇ 2 u(r)=−4πρ(r)
u(r) = ∫G(r , r ')ρ(r ')d 3 r '+

∮∂Ω
[G (r , r ')∇ ' u (r ')−u(r ')∇ ' G(r , r ')] .dS

G(r , r ') = 1
4 π|r−r '|

Quantum mechanics (−1
2
∇ 2+V (r))ψ(r)=E ψ(r)

ψ(r)=−2 (∇ 2+2 E)−1V (r) ψ(r)

Time evolution L̂ u (r , t)+N (u , t)=du
dt

u(r , t)=e t L̂ u(r ,0)+∫
0

t

e(τ− t) L̂ N (u , τ)d τ

e t∇ 2

f (r)= (4 π t)−d /2∫ e
−
(r−r ')2

4 t f (r ')d d r '

Integral Operator Formulation
• Solving the integral equation

– Eliminates the derivative operator and related “issues”
– Converges as fixed point iteration with no preconditioner

 
 

 

 

21
2

12

2

2 2

2 *

* () () in 3D ; 2
4

k r s

V E

E V

G V

eG f r ds f s k E
r s



 

     

     

 

 


Such Green’s Functions (bound state Helmholtz, Poisson) can be rapidly
and accurately applied with a single, sparse matrix vector product.

61

Integral operators beyond 1D

• Consider a block of matrix elements in 3D

• In d dimensions seems to require
memory and operations just for this one block
– This is not practical

• If we can write in separated form

• Then, cost of application reduces to

– Or better by exploiting structure of matrices

(T∗ f)(x)=∫ d 3 y K (x− y) f (y)

r i i ' , j j ' ,k k '
n ,l− l '

O((2 k)2 d)

O(d (2 k)d+1)

r i i ′ , j j ′ , k k ′
n ,l− l′

=X i i′
n , l x−l x

′

Y j j′
n ,l y−l y

′

Z k k ′
n ,l z−l z

′

62

Low separation rank approximation of
functions

• For efficient approximation we want M to depend only
weakly upon dimension, domain and accuracy

• For many physically interesting kernels can construct
from analytic expressions
– Efficient expansions may not exist globally, in which

case would instead seek local approximations
• Or numerically compute approximations

f x1, , xn=∑
l=1

M

 l∏
i=1

d

f i
 l  xiO 

∥ f i
l ∥2=1  l0

63

Separated form for integral operators

• Approach
– Represent the kernel over a finite range as a sum of products

of 1-D operators (often, not always, Gaussian)

– Only need compute 1D transition matrices (X,Y,Z)
– SVD the 1-D operators (low rank away from singularity)
– Apply most efficient choice of low/full rank 1-D operator
– G. Beylkin, R. Cramer, G. Fann and R. J. Harrison, Multiresolution separated representations

of singular and weakly singular operators, Applied and Computational Harmonic Analysis,
23, (2007) 235-253

– G. Fann, G. Beylkin, R. Harrison and K. Jordan, Singular operators in multiwavelet bases,
IBM Journal of Research and Development 48 (2) (2004) 161-171.

r i i ' , j j ' , k k '
n ,l−l'

=∑
μ=0

M

X i i '
n ,l x−l x

'

Y j j '
n , l y−l y

'

Z k k '
n , lz− lz

'

+O (ϵ)

(T∗ f)(x)=∫ d 3 y K (x− y) f (y)

Quadratures for separated
representations

 Seeking representation of form
 f (r)=∑

j
cμ e−t j r

2

 If the function is homogeneous of degree k
 f (λ r)=λk f (r)
Then both c e− t r 2

 and λ k ce−t λ2 r 2

should occur,
suggesting the expansion is of the form
 f (r)=c∑

j
α j k e−t α2 j r2

At this point I immediately thought "thanks James"
because he taught me a related techique in quadrature.

James N. Lyness, ANL/MCS

65

Accurate Quadratures

• Trapezoidal quadrature
– Geometric precision for

periodic functions with
sufficient smoothness

• Beylkin & Monzon
– Further reductions

• Reuse and caching
The kernel for x=1e-4,1e-3,1e-2,1e-,1e0.

The curve for x=1e-4 is the rightmost

e−μ r

r
= 2

√π∫
0

∞

e− x2 t 2−μ2 /4 t 2

dt

= 2
√π ∫

−∞

∞

e−x2 e2 s−μ2 e−2 s /4+ s ds

= ∑
μ

cμ e tμ x 2

+ O (ϵ(m))

66

Sample fit for 1/x – relative error

x−1=
2
√π ∫−∞

∞

e−r 2 e2 s+ s

f (x)=∑
i=0

160

c i e
−ti r

2

c i=
2 h esi

√π
t i=e2 si

s i=−40+h i h=75/160

67

Construction via Laplace Transform

• To compute a Gaussian representation of given
F(r2), substitute s=r2 and invert for f(t)

• E.g.,
– need inverse transform of
– A standard transform is

– Substituting s=r2 and z=t2

we obtain a familiar identity

ℒ(f (t))(s)=F (s)=∫
0

∞

e− s t f (t) dt ℒ−1(F (s))(t)= f (t)= 1
2 π i

lim
T →∞

∫
γ−i T

γ+i T

es t F (s)ds

F (r 2)=1/∣r∣=1 /√r 2 F (s)=1/√ s
√π
√s

=∫
0

∞ e−s t

√t
dt

1
r
=

2
√π∫

0

∞

e−r 2 z 2

dz

Approximation error
• Trefethen and Weideman, “The Exponentially

Convergent Trapezoidal Rule,”
SIAM Review 56, p385 2014

I=∫
−∞

+∞

ω(x)dx I h=h ∑
k=−∞

k=+∞

ω(k h)

Approximation error 1/r

1
r=∫−∞

+∞ 2
√π exp(−r2 exp(2 s)+s)ds

∫
−∞

+∞

|ω(x+ib)|ds= 1
r √cos(2b)

|I−I h|≤
2 exp (−2πa /h)

√cos(2b)
minimized by a=1

2
arctan(2 π/h)

ϵ(h)=|I−I h|≤
1
r √ 8 π

h
exp (−(π2−h)

2h
)

h≈ π2

log (16π)−2 log(ϵ)+1

Approximation error 1/r

• Error is relative
• epsilon=1e-8 → h=0.236

Approximation error exp(-t r)/r

exp(−t r)
r

=∫
−∞

+∞ 2
√π exp(−r 2exp (2 s)− t

2

4
exp(−2 s)+s)ds

∫
−∞

+∞

|ω(x+i b)|ds= exp(−t r cos (2b))
r √cos (2b)

|I−I h|≤
2exp (−2πa /h)

√cos(2b)
For small h t r (i.e., near singularity) also minimized by

a=1
2

arctan(2π/h)

ϵ(h)=|I−I h|≤
1
r √ 8π

h
exp(−h

2t r+π3−hπ
2hπ

)

Approximation error exp(-t r)/r

For large h t r (i.e., in exponential decay) minimized by
a= π
h(2 t r+1)

ϵ(h)=|I−I h|≤
2 exp (−t r cos (2 π/(h(2 t r+1))))

r (√(cos (2 π/(h(2mu r+1))))exp(2 π2/(h2(2mu r+1))))

Approximation error – exp(-tr)/r
exp(-2r)

|exp(-2r) - r*fit(r)|

r*ε(h,r)

74

Non-linear approximation – incl.
optimal Gaussian expansions

• G. Beylkin and T.S. Haut, Nonlinear
approximations for electronic structure calculations,
 Proceedings of the Royal Society A, 469, (2013)
20130231

• G. Beylkin and L. Monzon, Approximation by
exponential sums revisited, Applied and
Computational Harmonic Analysis, 28, (2010)
131--149

• G. Beylkin and L. Monzon, On approximation of
functions by exponential sums, Applied and
Computational Harmonic Analysis, 19 (2005) 17-
48

75

Norm of NS-form of convolution
with Gaussian

‖0 C
B A‖F for kernel K (x)= aπ e

−10000 r 2

 for translation l=0 ,… ,10

Rule of thumb k=2− log10ϵ Very low rank for l>0

k=6 k=8

l l

76

Linear many-body expansions

• G. Beylkin, M. J. Mohlenkamp and F. Perez,
Approximating a Wavefunction as an
Unconstrained Sum of Slater Determinants,
Journal of Mathematical Physics, 49, (2008)

• G. Beylkin, M. J. Mohlenkamp and F. Perez,
Preliminary results on approximating a
wavefunction as an unconstrained sum of
Slater determinants, Proc. Appl. Math.
Mech., 7, (2007)

Separated form of reciprocal

• Quadrature:

Hard to control error over desired range

• Approximation

Better control and more general kernels
• Beylkin, Hackbush (/www.mis.mpg.de/scicomp/EXP_SUM)

1
x
=∫

0

∞

exp (−t x)dt=∑
μ=1

M

ωi exp (−x tμ)

1
x
=∑

μ=1

M

ωi exp(−x tμ)+O (ϵ) x∈[a , b]

Computational kernels

• Discontinuous spectral element
– In each “box” a tensor product of coefficients
– Most operations are small matrix-multiplication

– Typical matrix dimensions are 2 to 30
– E.g., (20,400)T * (20,20)

r i ' j ' k '=∑
i j k

si j k c i i ' c j j ' c k k '=∑
k (∑j (∑i

si j k c i i ')c j j ')ck k '

⇒ r=((sT c)T c)T c

5/28/23 Robert J. Harrison, UT/ORNL 79

Comparison with MKL, Goto,
ATLAS on Intel Xeon 5355

for (20,400)T*(20,n).

2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

mtxmq
mkl
goto
atlas

n

flo
ps

/c
yc

le

Cray XT5 single core FLOPs/cycle

(nj, ni)T*(nj,nk)
ni nj nk MTXMQ ACML
400 2 20 2.55 0.95
400 4 20 2.62 1.50
400 6 20 2.60 1.79
400 8 20 2.56 2.02
400 10 20 2.58 2.12
400 12 20 2.64 2.27
400 14 20 2.90 2.35
400 16 20 2.80 2.46
400 18 20 2.74 2.49
400 20 20 2.89 2.58

nested transform (nj, ni)T*(nj,nk)
ni nj nk MTXMQ ACML
4 2 2 0.10 0.07
16 4 4 1.04 0.51
36 6 6 1.74 0.99
64 8 8 2.33 1.56
100 10 10 2.61 1.80
144 12 12 2.69 2.12
196 14 14 2.94 2.17
256 16 16 2.97 2.41
324 18 18 2.93 2.38
400 20 20 3.03 2.49
484 22 22 3.01 2.52
576 24 24 3.09 2.73
676 26 26 3.02 2.73
784 28 28 2.87 2.87
900 30 30 2.88 2.81L2 cache is 512Kb = 2*32^3 doubles

- hence good multi-core scaling
- nested transform scales linearly to all cores

IBM BGQ Team• ANL
– Alvaro Vasquez, Jeff Hammond, Nichols Romero

• OSU
– Kevin Stocks

• SBU
– Robert Harrison, Scott Thornton

• VT
– Ed Valeev, Justus Calvin

• Toyohashi
– Hideo Sekino, Yukina Yokoi

• ORNL
– George Fann

Early Science Project Activities
• We are testing a new linear-response module to

solve TDDFT equations.
• Molecular properties (dipole polarizabilities, NMR

chemical shifting, etc.)
• Support for well known hard pseudopotentials (i.e.

Krack, Goedecker,etc.)
• Speedup of Hartree-Fock exchange evaluations via

screening parameters.
• Implementation of new DFT functionals.
• Improving parallel scalability for current

supercomputer architectures.

MtXM performance on BGQ

0 10 20 30 40 50 60
1

10

100

(n,n)*(n,n) small matrix multiply various thread coun ts

1
2
4
8
16
32
64

n

gf
lo

p/
s

0 5 10 15 20 25 30
0.1

1

10

100

transform(n,n,n) various thread counts

1
2
4
8
16
32
64

n

gf
lo

p/
s

Kevin Stocks OSU

64 threads, best performance is
139.7 GFLOPS (trans(400,20,20))
 * Theoretical peak is 204.8
 * Linpack is approx. 166.3
(scaling top500 results to one node)

Benefit of tuned mTxm
in BG/P Performance

Ti
m

e
/s

N CPUs

Molecular system with 13 heavy atoms, DFT, k=8, one iteration
Strong scaling

Preliminary scaling w.r.t # threads

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

(H2O)20 %efficiency versus threads

#thread

%
ef

fic
ie

nc
y

128 nodes
Clearly a problem in task queue … it was designed for Cray XT5

Different memory architecture, max of 11 worker threads
Tests with Intel TBB suggest it is vastly more scalable

Current molecular capabilities
• Hartree-Fock and DFT (LDA, GGA, Hybrid)

– Energies
– Derivatives
– Frequencies (Bischoff)
– Linear response (excited states, dynamic polarizability)
– Essentially complete basis – no problems with gauge

and Hellmann-Feynman theorem applies directly
(with a little care

• In progress
– Quadratic response (Sundahl)

• Raman, hyper-Raman, excited state forces
– Relativistic Hamiltonians (Anderson)

Molecular Electronic Structure
Energy and
gradients

ECPs coming
(Sekino, Kato)

Response
properties
(Vasquez and
Sekino)

Still not as
functional as
previous
Python version

Spin density
of solvated
electron

Path to linear scaling HF & DFT

• Need speed and precision
– Absolute error cost
– Relative error cost

• Coulomb potential
• HF potential
• Orbital update
• Orthogonalization and or diagonalization
• Linear response properties

O  N ln N / 
O  N ln 1/ 

HF Exchange (T. Yanai)

• HF or exact exchange
– Features in the most successful XC functionals

– Invariant to unitary rotation of occupied states with
same occupation number

– Localize the orbitals – only O(1) products but
potential is still global

– Compute potential only where orbital non-zero
• Cost to apply to all orbitals circa O(N)

K f  x= ∑
i

occupied

nii x ∫ dy
i y f  y 
∣x− y∣

Orbital update

• Directly solve for localized orbitals that span
space of occupied eigenfunctions
– Rigorous error control from MRA refinement
– Never construct the eigenfunctions
– Update only diagonal multipliers

• Off diagonal from localization process

i x =− T−
−1Vi− ∑

j

occupied

 jx  j i

Inner products

• The most expensive term for plane wave codes
leading to cost O(N2 M)

• Much less expensive in MRA basis

– Orthogonal basis from local adaptive refinement
implies zero/reduced work if

• Functions do not overlap
• Functions locally live at different length scales

〈 f x ∣g  x〉=s f
0 0 . s g

0 0∑
n=0
∑
l=0

2n−1

d f
n l . d g

n l

Comparing MRA and Gaussian basis results
Emily Gentles (U. Ark), Colin Bunner (U. MN),

Joel Anderson, Bryan Sundahl

 2739: 3 ethanol + ozone -->
 6 methanol_radical 20.0409 kcal/mol
 2748: 2 ethanol_radical + hydrogen_peroxide -->
 4 methanol_radical 17.8414 kcal/mol
 2759: 2 ethyl_radical + hydrogen_peroxide -->
 4 methanol_radical 17.8414 kcal/mol
 4004: 3 methanol + acetate_anion -->
 5 methanol_radical 16.662 kcal/mol
 4008: 3 methanol_radical + propene -->
 3 ethanol_radical 16.837 kcal/mol
 4009: 3 methanol_radical + propene -->
 3 ethyl_radical 16.837 kcal/mol
 4014: 5 methanol_radical + cyclopentane -->
 5 ethanol_radical 27.890 kcal/mol
 4015: 5 methanol_radical + cyclopentane -->
 5 ethyl_radical 27.890 kcal/mol
 4726: 5 sulfur_diatomic + 2 sulfur_hexafluoride -->
 12 monosulfur_monofluoride -16.883 kcal/mol

Water clusters
• Classical STP MD simulation

with cube of 213 waters
– Smaller spherical clusters cut

from interior

n=144 n=213

n=70

Scaling – LDA (H2O)n

n Total V*psi Apply
G

Tmat Vmat Ortho
g

Localiz
e

Deriv

70 256 2.0 8.7 7.8 0.3 0.7 2.7 1.9

144 744 4.2 20.9 49.2 0.9 2.9 11.9 5.5

213 1537 7.3 30.8 79.4 2.2 5.7 26.2 8.8

α 1.9 1.4 1.0 1.2 2.3 1.7 2.0 1.2

t (n)=anα α fitted to points n=144,213

Times in seconds running on 120 nodes, dual socket Intel Haswell, 2GHz, Infiniband FDR 40Gbit
Total is full time for convergence+derivatives; component times from last full iteration

TDDFT and CIS
T. Yanai with N.C. Handy

• Solve directly for the orbital response

– Neglect y for CIS or Tamm-Dancoff

H2 HOMO and CIS excited states

106

14.5014.4414.1012.5012.4010.87k=7, r< 3*10-4HCTH(AC)

12.2311.3610.9511.1210.5210.18d-aug-cc-pVQZ

15.1414.8912.4212.2810.7610.19aug-cc-pVQZ

16.3015.8512.7112.7410.7910.19aug-cc-pVTZHCTH

14.5314.4514.1112.3512.2610.53k=7, r< 3*10-4LSDA(AC)

11.9811.1910.7210.9410.319.93d-aug-cc-pVQZ

15.2214.8512.1012.0710.619.95aug-cc-pVQZ

16.3715.7612.4012.4610.659.94aug-cc-pVTZLSDA

14.6614.4814.1112.2611.954909.55176k=9, r< 3*10-6

14.6614.4814.1112.2611.954919.55178k=7, r< 3*10-4

14.8114.4914.1512.2611.9599.5523d-aug-cc-pVQZ

16.7916.3214.2912.5911.9619.5529aug-cc-pVQZ

17.7416.9814.3612.8111.9589.5520aug-cc-pVTZHF

3g23g23u
3u13g13u

H2 low-lying triplet excitation energies in eV

107

108C2H4 excitation energies with asymptotically corrected potentials

109

110

Mean abs. error of Gaussian results relative to MRA
 augmented 6-31g* 0.14 eV
 augmented TZ2P 0.05 eV
 augmented TZ2P 0.01 eV (valence only)

Nuclear physics
J. Pei, G.I. Fann, Y. Ou,
W. Nazarewicz
UT/ORNL

● DOE UNDEF
● Nuclei & neutron matter
● ASLDA
● Hartree-Fock Bogliobulov
● Spinors
● Gamov states

Imaginary part of the seventh eigen function
two-well Wood-Saxon potential

Nuclear physics
J. Pei, G.I. Fann, W. Thornton
W. Nazarewicz
UT/ORNL

● DOE UNDEF
● Nuclei & neutron matter
● ASLDA
● Hartree-Fock Bogliobulov
● Spinors
● Gamov states

Solid-state electronic structure
• Thornton, Eguiluz and

Harrison (UT/ORNL)
– NSF OCI-0904972:

Computational chemistry and
physics beyond the petascale

• Full band structure with
LDA and HF for periodic
systems

• In development: hybrid
functionals, response
theory, post-DFT methods
such as GW and model
many-body Hamiltonians
via Wannier functions

Coulomb potential isosurface in LiF

Lattice sums
(Thornton, Beylkin, Harrison)

• Reduce range of integral to unit cell

• Expand kernel in Gaussians
• Diffuse components

– Trapezoidal rule on lattice points exact to machine
precision for sufficiently diffuse Gaussians

– Hence replace with constant (G=0)
• Real space sum out to

– Fast since is 1D due to separated representation

∫K  r−s∑
R

f  sRds=∫
f  s ∑

R
K  r−sRds

n=6.1 /12.2

0.25
e− x2

Lattice sum of Gaussians

s x ,=  ∑n=−∞
∞

e− x−n 2

s x ,=1O 10−16 0.25

Lattice sums - II
• Fine scale structure inside any box, or molecule inside

large box
– Cost of periodic same as free space inside volume
– Additional cost just at coarse scale and cell faces

• Non-orthogonal axes increases rank of expansion
• HF exchange with/without screening

– Similar, but with additional phase factor
– Presently implementing approach of Spencer

(PRB 77, 193110, 2008)
– Periodic code presently not solving for localized

orbitals

Periodic Kohn Sham

• Solve for Bloch states

• Kohn Sham equations

ψnk (r)=e
ik .runk (r) with un k (r)=unk (r+R)

(− 1
2 (∇+ i k)2+V)unk=ϵnkunk

un k=−(−1
2 ∇

2−ϵ)
−1

(V + k
2

2 −i k .∇)unk
unk=−(−1

2 (∇+ ik)2−ϵ)
−1

V unk

The latter form of the integral equation converges most robustly

Early Results

Thornton, William Scott, “Electronic Excitations in YTiO3 using TDDFT and electronic structure
using a multiresolution framework,” PhD diss., University of Tennessee, 2011.
http://trace.tennessee.edu/utk_graddiss/1134

Time evolution
Vence, Harrison, Krstic, Jia, Fann (UT/ORNL)

• Multiwavelet basis not optimal
– Not strongly band limited; explicit methods unstable

* DG introduces flux limiters, we use filters
• Semi-group approach

– Split into linear and non-linear parts

• Trotter-Suzuki methods
– Time-ordered exponentials
– Chin-Chen gradient correction (JCP 114, 7338, 2001)

u̇ x , t  = L uN u , t 

u x , t  = e Lt u x , 0∫
0

t

e L t− N u , d 

eAB=e A/2 eB eA /2

O ∥[[A , B] , A]∥

123

Exponential propagator
• Imaginary time Schrodinger equation

– Propagator is just the heat kernel

– Wrap in solver to accelerate convergence

(−1
2
∇ 2+V (x))ψ (x , t)=ψ̇ (x , t)

ψ (x , t)≃e∇ 2 t /4 e−V t e∇ 2 t /4 ψ (x ,0)

e∇ 2 t /2 f (x)= 1
√2π t ∫−∞

∞

e
−
(x− y)2

2 t f (y)dy

lim
t→∞

ψ (x , t)=ψ0(x)

Exponential propagator

• Free-particle propagator in real time

 x , t =ei ∇ 2 t /2 x , 0= 1
 2 i t ∫−∞

∞

e
−
 x− y2

2i t  y ,0dy

125

Exponential propagator

• Combine with projector onto band limit

G 0k , t , c =e
−i k 2 t

2 1k /c 30 −1

h=
c

t crit=
2 h2



t=tcrit

t=10*tcrit

G0 (x ,t , c)

Time
dependent
electronic
structure

Vence,
Krstic,

Harrison
UT/ORNL

H2
+ molecule

in laser field
(fixed nuclei)

Dynamics of H2
+ in laser

• 4D – 3 electronic + internuclear coordinate
– First simulation with quantum nuclei and

non-collinear field (field below is transverse)
El

ec
tro

ni
c

di
po

le
 a

.u
.

Time a.u.

R a.u.

-2.017

-2.032

Field

Interior boundary conditions I

• Prototype equation

• Diffuse boundary approximation

∇2 u (x)= f (x) x∈ΩD

u(x)=d (x) x∈∂ΩD

∇2 u (x)−α(ϵ) S ϵ (u (x)−d (x))= f (x) x∈Ω⊃ΩD

ϵ width of diffuse layer
lim
ϵ→0+

uϵ=u

S ϵ(x)=1
ϵ√ 2π

exp (−s (x)2

2ϵ2)
s (x) signed minimum distance from surface

M. Reuter, J. Hill and R.J. Harrison, “Solving PDEs in Irregular Geometries with Multiresolution Methods I:
Embedded Dirichlet Boundary Conditions,” Computer Physics Communications, 183,1-7 (2012)

Interior boundary conditions II

• Recast as integral equation
– Solved using GMRES

• Analysis of simple test cases and numerical
tests suggest best choice is
– Global first order convergence
– (suggestions in older literature sub-optimal)

uϵ(x)=∫Ω
d 3 x ' G (x , x ') [α(ϵ)S ϵ(x ') (d (x ')−uϵ(x '))−C ϵ(x ') f (x ')]

C ϵ(x)=1
2 [1−erf (s (x)

ϵ √2)] characteristic function ∣∇C∣=S

Nanoscale photonics
(Reuter, Northwestern; Hill, Harrison ORNL)

Diffuse domain approximation for interior boundary value problem; long-wavelength Maxwell equations;
Poisson equation; Micron-scale Au tip 2 nm above Si surface with H2 molecule in gap – 107 difference between
shortest and longest length scales.

Dielectric media (J. Fosso Tande)

• For implicit solvation want to solve Posson
equation in presence of dielectric medium
– Also want Poisson-Boltzmann

• Dielectric defined via characteristic function

∇ . (ϵ∇ u)=−4 πρ

∇2 u=−4π
ϵ ρ−∇ ϵ

ϵ .∇ u

ϵ(r)=ϵ0 C (r)+ϵ1 (1−C (r)) or ϵ(r)=ϵ1 exp (C (r) log
ϵ0
ϵ1)

C (r)={1 inside
0 outside

V=∫C (r)dV A=∫∣∇C∣dV

Effective surface
charge

Use smooth approximation
switching over finite distance

(Gygi and later Skylaris
define via level set)

Dielectric media in external
electric field

(Neuman boundary conditions)
• Provided GF have only free space or periodic

Dirichlet boundary conditions
– Replace Neuman conditions by separately

treating asymptotic form

v (x)=u(x)−E . r u (r→∞)=0
∇ . (ϵ∇ v)=−4 π v

⇒ ∇ 2 u=−4 π
ϵ ρ+ ∇ ϵ

ϵ . (E−∇ u)

Total electric field

E = external field

Electron correlation (6D)
• All defects in mean-field model are ascribed to

electron correlation
• Singularities in Hamiltonian imply for a two-electron atom

• Include the inter-electron distance in the wavefunction
– E.g., Hylleraas 1938 wavefunction for He

– Potentially very accurate, but not systematically improvable, and (until
recently) not computationally feasible for many-electron systems

• Configuration interaction expansion – slowly convergent

r1

r2

r12

  r1, r2, r1 2=11
2 r12⋯ as r1 20

  r1, r2, r1 2=exp −r1r21a r1 2⋯

  r1, r2,=∑
i

c i∣1
 i r12

i  r2∣

x

y

 |x-y|

 |x-y| x-y

 |x-y|

 y-x

 |x-y|

 |x-y|

 |x-y|

 |x-y|

 y-x

 x-y

 y-x

 x-y

In 3D, ideally must
be one box removed
from the diagonal

Diagonal box has
full rank

Boxes touching
diagonal (face, edge,
or corner) have
increasingly low rank

Away from diagonal
r = O(-log )

r = separation rank

∣x− y∣=∑
=1

r

f  x g   y 
Partitioned SVD representation

Preliminary results
 for He atom
(Yanai, 2005)

Variational E E residual

HF -2.861 61

Iter. 0 -2.871 08 0.414 73

1 -2.894 92 -0.023 84 0.017 28

2 -2.900 43 -0.005 51 0.007 94

3 -2.902 18 -0.001 75 0.003 84

4 -2.902 88 -0.000 70 0.002 02

5 -2.903 20 -0.000 32 0.001 25

6 -2.903 39 -0.000 20 0.000 91

… … … …

12 -2.903 73 -0.000 04 0.000 36

13 -2.903 73 +0.000 004 0.000 32

14 -2.903 77 -0.000 04 0.000 28

Computational details:

- 5-th order multiwavelets
- Wavelet threshold: 210-5

- SVD threshold: 210-6

- Exponential correlation factor

exact -2.903 724 (E(HF)=-2.861 68)
Hylleraas (6 terms) -2.903 24
Löwdin and Redei -2.895 4
cc-pV6Z -2.903 48 (FCI) (E(HF)= -2.861 67)

Perturbative wavefunction:

 - Maximum refinement: n=4

- Memory: 132M in full partitioned
SVD form

 ~10GB without SVD
 Energy is variational
 (small non-variational

 is just truncation err)

Local separated approximations

• Density matrix
– Local rank corresponds to number of products of

localized occupied orbitals with significant
variation in that volume

– Conventional concept: local natural orbitals
• Pair correlated wave function

– Away from diagonal, local rank corresponds to
number of products of localized low-lying
virtual orbitals with significant variation

– Conventional concept: pair natural orbitals

Computing in separated
representations

• Operating on or combing tensors inflates the
rank – must eventually reduce closer to optimal

• Pair wave function separated by particles
– Just 2 directions
– Rank-revealing Gram-Schmidt, or reconstruct+SVD

• For many dimensions no ideal solution
– Alternating least squares, other (Beylkin)

f j1,… , jd
=∑

l=1

M

σl∏
i=1

d

[f i
(l)] ji

+O(ϵ)

Douglas Kroll Hess 2nd order
• Some

definitions
E0(p)=√ p2 c2+m2 c4

A(p)=√ E0(p)+mc2

2 E0(p)

P̄ (p)= c
E0(p)+mc2

P (p)= P̄ (p) p
E1=A (V +P .V P) A

Douglas Kroll Hess 2nd order

The DKH2 one-electron Hamiltonian is

where W1 is the solution to

H DKH2=E0−m c2+E1+
1
2 (W 1 . O1+O1 . W 1)

W 1 E 0+E0 W 1=O 1

O 1=A[P ,V]A

Douglas Kroll Hess 2nd order

The momentum space kernels are

and

noting that in these expressions all entities are
not operators (i.e., are just numbers or vectors
of numbers).

O1(p , p ')=A(p)(P (p)−P (p ')) A(p ')V ext (p− p ')

W 1(p , p ')=
A(p) (P (p)−P (p ')) A(p ')V ext (p− p ')

E0(p)+E 0(p ')

Need for separable kernels

The kernel of W1 is not easily transformed back into
real space since p and p' are coupled through both the
denominator and potential.

However, a separated representation of the
denominator that can be analytically back transformed
will solve the problem.

Hence, also need separable real space kernels for
A(p), exp(-a E0(p)), and Pbar(p)

Separated form of reciprocal

• Quadrature:
Hard to control error
over desired range

• Approximation

Better control and more general kernels
• Beylkin, Hackbush (/www.mis.mpg.de/scicomp/EXP_SUM)

1
x
=∫

0

∞

exp (−t x)dt=∑
μ=1

M

ωi exp (−x tμ)

1
x
=∑

μ=1

M

ωi exp(−x tμ)+O (ϵ) x∈[a , b]

Asymptotic properties

Operator Small p Large p

E0(p) m c2+
p2

2 m
+O (p4) p c+m2 c3

2 p
+O (p−3)

A(p) 1− p2

8m2 c2+O(p4)
1
√2

+
m c

p 2√2
+O (p−2)

P̄ (p) 1
2 mc

− p2

8 m3 c3+O (p4) 1
p
−m c

p2 +O (p−3)

Functional forms

Approach 1 – Brute force for initial test

• Weighted least squares fit to Gaussians in
Fourier space
– Weight function p^2
– Weight accurate reproduction of value and first four

derivatives at p=0, and to bias towards +ve coeffs

Error in 60-term T̄=
E0 (p)−mc2

p2/2 m

Approach 2 – Construct highly accurate
Gaussian approximations

• Subtract off asymptotic
decay to very high precision

• Fit smooth localized remainder to very high precision
using previous brute force approach

r−n= 2−n

Γ (n/2)∫0
∞

e
−

r 2

4 t t−1−n /2 dt

At least 17 significant figures for p in [0,1e10] and
an absolute error of 1e-24 or better across all space

Pbar in real space

0.0507/r^2
Pbar(r)

Highly singular kernels require careful application
 – cannot truncate large exponents

Approach 3: Analytic transform

• Analytic real space representations that
produce accurate Gaussian approximations
(most are not closed form)

Pbar agrees to at least double precision arithmetic with both approaches

Example

•

Example (cont)

•

Example (cont.)

•

Operator Momentum Space Representation Real Space Representation [2]

Initial test with RK approximation

Wullen, Chem. Phys. 356 (2009) 199

60 term approximation to Tbar

DK1 also done

Multiresolution Solution of
the Dirac Equation

Joel Anderson, Robert Harrison,
Bryan Sundahl, Scott Thornton

The Schrödinger Equation
•

The Dirac Equation

•

Dirac Green’s Function
•

[4] Blackledge,J. On the Dirac Scattering Problem. Mathematica Aeterna,
vol: 3, (7)

Initial Dirac results – Hyrdogenic atoms

High-level composition
• Close to the physics

operatorT op = CoulombOperator(k, rlo, thresh);
functionT rho = psi*psi;
double twoe = inner(apply(op,rho),rho);
double pe = 2.0*inner(Vnuc*psi,psi);
double ke = 0.0;
for (int axis=0; axis<3; axis++) {
 functionT dpsi = diff(psi,axis);
 ke += inner(dpsi,dpsi);
}
double energy = ke + pe + twoe;

E=〈∣−1
2 ∇

2V∣〉∫ 2x  1
∣x− y∣

2 y dx dy

H atom
Energy

H atom actual source
Let
 Omega = [-20, 20]^3
 r = x -> sqrt(x_0^2 + x_1^2 + x_2^2)
 g = x -> exp(-r(x))
 v = x -> -r(x)^-1
In
 psi = F g
 nu = F v
 S = < psi | psi >
 V = < psi | nu * psi >
 T = 1/2 * sum_i=0^2 < del_i psi | del_i psi >
 print S, V, T, (T + V)/S
End

He atom
Hylleraas

2-term
6D

Compose directly in terms of
functions and operators

This is a Latex rendering of a
program to solve the Hartree-Fock
equations for the helium atom

The compiler also output a C++
code that can be compiled without
modification and run in parallel

He atom
Hartree-Fock

High-level composition

• Express ALLALL available parallelism without
burdening programmer
– Internally, MADNESS is looking after data and

placement and scheduling of operations on
individual functions

– Programmer must express parallelism over multiple
functions and operators

• But is not responsible for scheduling or placement
• However, efficiency often demands that the programmer

provide info about where data should be located

Current Issues
• Load balancing

• Currently a heuristic not a performance model
• Work stealing prototype not in production code

• Too much parallelism!
• Memory usage; need more than simple throttle

• Manual closures/continuations
• Enables us to stay with standard C++
• User-space threading helps but need S2S tools

• I/O
• HDF5 seems right choice but it’s so complicated!

• Sequential kernels
• Compiler generated code too slow by ~3x

MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks optional target for intranode runtime

Runtime Objectives
● Scalability to 1+M processors ASAP

● Runtime responsible for
● scheduling and placement,
● managing dependencies & hiding latency

● Compatible with existing models (MPI, GA)

● Borrow successful concepts from Cilk,
Charm++, Python, HPCS languages

Why a new runtime?
• MADNESS computation is irregular & dynamic

– 1000s of dynamically-refined meshes changing
frequently & independently (to guarantee precision)

• Because we wanted to make MADNESS itself
easier to write not just the applications using it
– We explored implementations with MPI, Global Arrays,

and Charm++ and all were inadequate

• MADNESS is helping drive
– One-sided operations in MPI-3, DOE projects in fault

tolerance, ...

Key runtime elements
• Futures for hiding latency and automating

dependency management
• Global names and name spaces
• Non-process centric computing

– One-sided messaging between objects
– Retain place=process for MPI/GA legacy

compatibility
• Dynamic load balancing

– Data redistribution, work stealing,
randomization

172

Runtime layers
• Remote method invocation (RMI)
• Shared thread pool to execute ready tasks
• Futures for hiding latency and automating

dependency management
• World – parallel execution environment

– Wraps MPI communicator
– Independent task queue for each world
– Asynchronous global ops
– Active messages

• Global names (WorldObject)
– With APIs to send messages/tasks between nodes

• Global name spaces (WorldContainer)

Multi-threaded architecture

RMI Server
(MPI or portals)

Incoming active
messages

Task dequeue

Incoming active
messages

Application
logical main

thread

Outgoing active messages

Work stealingMust augment with cache-aware
algorithms and scheduling

174

RMI
• Not exposed to users
• Handler routines have this type
typedef void (*rmi_handlerT)
 (void* buf, size_t nbyte);

• Send an asynchronous message
RMI::Request
 RMI::isend(const void* buf, size_t nbyte,
 int dest, rmi_handlerT func,
 unsigned int attr=0)

• Can probe/wait for completion

Active message interface
Class AmArg {
public:
 unsigned char* buf() const;
 ProcessID get_src() const;
 World* get_world() const;
 Archive& operator&(const T& t) const;
 Archive& operator&(T& t) const;
};
typedef void (*am_handlerT) (const AmArg&);

void send(ProcessID dest, am_handlerT op,
 const AmArg* arg, int attr);

176

Tasks
• Basic API takes pointer to object derived from
class TaskInterface {
public:
 virtual void run();
}

• User implements run function and adds task to
queue (that takes ownership of ptr) using
– Can add priority
world.taskq.add(pointer_to_task)

Futures
● Result of an

asynchronous
computation
– Cilk, Java, HPCLs,

C++0x

● Hide latency due
to communication
or computation

●

● Management of
dependencies
– Via callbacks

int f(int arg);
ProcessId me, p;

Future<int> r0=task(p, f, 0);
Future<int> r1=task(me, f, r0);

// Work until need result

cout << r0 << r1 << endl;

Process “me” spawns a new task in process “p”
to execute f(0) with the result eventually returned
as the value of future r0. This is used as the argument
of a second task whose execution is deferred until
its argument is assigned. Tasks and futures can
register multiple local or remote callbacks to
express complex and dynamic dependencies.

Virtualization of data and tasks
Future:
 MPI rank
 probe()
 set()
 get()

Future Compress(tree):
Future left = Compress(tree.left)
Future right = Compress(tree.right)
return Task(Op, left, right)

Compress(tree)
Wait for all tasks to complete

Task:
 Input parameters
 Output parameters
 probe()
 run()
 get()

Benefits: Communication latency & transfer time largely hidden
 Much simpler composition than explicit message passing
 Positions code to use “intelligent” runtimes with work stealing
 Positions code for efficient use of multi-core chips
 Locality-aware and/or graph-based scheduling

Global Names
● Objects with global

names with different
state in each process
– C.f. shared[threads]

in UPC; co-Array

● Non-collective
constructor;
deferred destructor
– Eliminates synchronization

class A : public WorldObject<A>
{

int f(int);
};
ProcessID p;
A a;
Future<int> b =

a.task(p,&A::f,0);
A task is sent to the instance of a in process p.
If this has not yet been constructed the message
is stored in a pending queue. Destruction of a
global object is deferred until the next user
synchronization point.

Global Namespaces
● Specialize global names

to containers
– Hash table, arrays, ...

● Replace global pointer
(process+local pointer)
with more powerful
concept

●

● User definable map from
keys to “owner” process

class Index; // Hashable
class Value {

double f(int);
};

WorldContainer<Index,Value> c;
Index i,j; Value v;
c.insert(i,v);
Future<double> r =

c.task(j,&Value::f,666);

Namespaces are a large part of the elegance of Python and success of Charm++ (chares+arrays)

A container is created mapping indices
to values.

A value is inserted into the container.

A task is spawned in the process owning
key j to invoke c[j].f(666).

5/28/23 Robert J. Harrison, UT/ORNL Joint I
nsititute of Computational Science

181

#define WORLD_INSTANTIATE_STATIC_TEMPLATES
#include <world/world.h>
using namespace madness;
class Foo : public WorldObject<Foo> {
 const int bar;
public:
 Foo(World& world, int bar) : WorldObject<Foo>(world), bar(bar)

{process_pending();}

 int get() const {return bar;}
};
int main(int argc, char** argv) {
 MPI::Init(argc, argv);
 madness::World world(MPI::COMM_WORLD);
 Foo a(world,world.rank()), b(world,world.rank()*10)
 for (ProcessID p=0; p<world.size(); p++) {
 Future<int> futa = a.send(p,&Foo::get);
 Future<int> futb = b.send(p,&Foo::get);
 // Could work here until the results are available
 MADNESS_ASSERT(futa.get() == p);
 MADNESS_ASSERT(futb.get() == p*10);
 }
 world.gop.fence();
 if (world.rank() == 0) print("OK!");
 MPI::Finalize();
} Figure 1: Simple client-server program implemented using WorldObject.

#define WORLD_INSTANTIATE_STATIC_TEMPLATES
#include <world/world.h>

using namespace std;
using namespace madness;

class Array : public WorldObject<Array> {
 vector<double> v;
public:
 /// Make block distributed array with size elements
 Array(World& world, size_t size)
 : WorldObject<Array>(world), v((size-1)/world.size()+1)
 {
 process_pending();
 };

 /// Return the process in which element i resides
 ProcessID owner(size_t i) const {return i/v.size();};

 Future<double> read(size_t i) const {
 if (owner(i) == world.rank())
 return Future<double>(v[i-world.rank()*v.size()]);
 else
 return send(owner(i), &Array::read, i);
 };

 Void write(size_t i, double value) {
 if (owner(i) == world.rank())
 v[i-world.rank()*v.size()] = value;
 else
 send(owner(i), &Array::write, i, value);
 return None;
 };
};

int main(int argc, char** argv) {
 initialize(argc, argv);
 madness::World world(MPI::COMM_WORLD);

 Array a(world, 10000), b(world, 10000);

 // Without regard to locality, initialize a and b
 for (int i=world.rank(); i<10000; i+=world.size()) {
 a.write(i, 10.0*i);
 b.write(i, 7.0*i);
 }
 world.gop.fence();

 // All processes verify 100 random values from each array
 for (int j=0; j<100; j++) {
 size_t i = world.rand()%10000;
 Future<double> vala = a.read(i);
 Future<double> valb = b.read(i);
 // Could do work here until results are available
 MADNESS_ASSERT(vala.get() == 10.0*i);
 MADNESS_ASSERT(valb.get() == 7.0*i);
 }
 world.gop.fence();

 if (world.rank() == 0) print("OK!");
 finalize();
}

Complete example program illustrating the implementation and use of a crude,
block-distributed array upon the functionality of WorldObject.

Serialization

• Convert an object (and containers thereof) into
a serial stream of bytes
– Conceptually based on Boost serialization
– Symmetric & operator for input/outut
– ar & x & y & z;
– Asymmetric operators also (<<, >>)

• Fundamental types and containers
• User types provide supported through both

intrusive and non-intrusive methods
• Used to send objects between processes, to disk

Example symmetric seralization
 class A {
 float a;
 public:
 A(float a = 0.0) : a(a) {}
 template <class Archive>
 inline void serialize(Archive& ar) {ar & a;}
 };
 A a(99.0), b;
 BinaryFstreamOutputArchive oar(ofile);
 oar & a; // saves a to file
 ...
 BinaryFstreamInputArchive iar(ifile);
 iar & b; // loads b from file

185

C++ templates automate
many things

• Wrapping calls to functions or lambdas or
object member functions inside a task

• Managing dependencies by connecting futures
and tasks through the dependency interface
(callbacks)

• Assisting programmers to avoid explicit use of
futures as arguments to functions

• (de)Serializing arguments to remote tasks
• Templates don’t add additional runtime

overhead (compile time)

Abstraction Overheads
• If you are careful you win

– Increased performance and productivity
– This is the lesson of Global Arrays, Charm++, …

• Creating, executing, reaping a local, null task – 350ns (100K
tasks, 3GHz Core2, Pathscale 3.0, -Ofast) dominated by
new/delete

• Chain of 100K dependent tasks with the result of a task as the
unevaluated argument of the previous task
– ~1 us per task

• Creating a remote task adds overhead of inter-process
communication which is on the scale of 5us (Cray XT).
– Aggregation can reduce this.

• Switching between user-space threads <20ns

187

Success with tasks

• Can readily compose parallel versions of
many complex and irregular algorithms

• Can obtain good performance
– On multi-threaded CPUs
– With attention to details
– Especially effective for irregular work loads and

complex, even dynamic, dependencies

188

Problems with tasks without both
compiler+intelligent runtime

• Manual continuation passing - everywhere code may block need to
partition into separate tasks (zillions of them!)

• Rigid decisions made about granularity and decomposition
• Hard to automatically aggregate many small tasks
• Can make portability from CPU to GPU worse
• Resource management – bounding buffers and not

drowning/starving in parallelism: partially manage with task
generators, data flow, task priorities

• Efficient execution challenging esp. use of memory hierarchy,
scheduling of critical path

• Makes easy things harder (e.g., parallel for)
• Task specification often distant from task use - very

effective for code obfuscation – partially fixed in modern C++
• Interoperability with just about everything else is painful

189

Some issues
• Excessive global barriers

– Termination detection for global algorithms on distributed mutable data structures

• Messy, nearly redundant code expressing variants of algorithms on
multiple trees

– Need some templates / code generation

• Need efficient and easy way to aggregate data/work to exploit
GPGPUs

• Efficient kernels for GPGPUs (single SM)
– Non-square matrices, shortish loops – performance problem

• Switching between single-/multi-thread tasks
• Efficient multi-threaded code for thread units sharing L1

(e.g., BGQ, Xeon Phi)
• Multiple interoperable DSLs embedded in or generating general

purpose language
• Need kitchen sink environment – full interoperability between

runtimes, data structures, external I/O libraries, etc.

Summary
• MADNESS is a general purpose framework

for scientific simulation
– Conceived for the petascale to exascale era

– Increases HPC productivity by reducing many
sources of complexity

– Deploys advanced math, numerics, and C/S

http://code.google.com/p/m-a-d-n-e-s-s

191

Summary
● MADNESS

– High-level composition – functions and operators
– Fast computation with guaranteed precision
– Separated representations of operators (and functions)

● DFT code nearing production quality
− GGAs, hybrid, TDDFT, derivatives, pseudopotentials

● Efficient execution on parallel computers
− Cray XE, IBM BGQ, multithreading

● High-productivity parallel programming framework
http://code.google.com/p/m-a-d-n-e-s-s

192

Summary
● Exascale programming models

– Resilience, Power, Performance, Productivity
– Productivity is arguably the most important
– Enable innovation and discovery at scale

• MADNESS and NWChem
– Frameworks – places for disciplines to meet to leverage

investments and expertise
– Face different challenges in moving forward

• Data and computation are inseparable challenges

193

Summary
● We need radical changes in how we compose

scientific S/W
− Complexity at limits of cost and human ability
− Need extensible tools/languages with support for code

transformation not just translation
● Students need to be prepared for computing and

data in 2020+ not as it was in 2000 and before
− Pervasive, massive parallelism
− Bandwidth limited computation and analysis
− An intrinsically multidisciplinary activity

194

Summary
● MADNESS

– High-level composition – functions and operators
– Fast computation with guaranteed precision
– Separated representations of operators (and functions)

● DFT code nearing production quality
− GGAs, hybrid, TDDFT, derivatives, pseudopotentials

● Efficient execution on parallel computers
− Cray XE, IBM BGQ, multithreading

● High-productivity parallel programming framework

Funding
• NSF ACI-1450344
• DOE: SciDAC, Office of Science divisions of Advanced

Scientific Computing Research and Basic Energy
Science, under contract DE-AC05-00OR22725 with Oak
Ridge National Laboratory, in part using the National
Center for Computational Sciences.

• DARPA HPCS2: HPCS programming language
evaluation

• NSF CHE-0625598: Cyber-infrastructure and Research
Facilities: Chemical Computations on Future High-end
Computers

• NSF CNS-0509410: CAS-AES: An integrated framework
for compile-time/run-time support for multi-scale
applications on high-end systems

• NSF OCI-0904972: Computational Chemistry and
Physics Beyond the Petascale

References
B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi, “Adaptive Solution of Partial Differential Equations in Multiwavelet Bases,”

Journal of Computational Physics, v. 182, pp. 149-190, 2002

G.I. Fann, G. Beylkin, R.J. Harrison and K.E. Jordan, “Singular operators in multiwavelet bases,” IBM J. Res. Dev., 48 (2004)
161.

R.J. Harrison, G.I. Fann, T. Yanai, Z. Gan and G. Beylkin, “Multiresolution quantum chemistry: basic theory and initial
applications,” J. Chem. Phys., 121 (2004) 11587.

T. Yanai, G.I. Fann, Z. Gan, R.J. Harrison, G. Beylkin, “Multiresolution quantum chemistry in multiwavelet bases: Analytic
derivatives for Hartree-Fock and density functional theory,” J. Chem. Phys., 121 (2004) 2866.

T. Yanai, R.J. Harrison and N.C. Handy, “Multiresolution quantum chemistry in multiwavelet bases: time-dependent density
functional theory with asymptotically corrected potentials in local density and generalized gradient approximations,” Mol.
Phys., 103 (2004) 403.

R. Harrison, G. Fann, Z. Gan, T. Yanai, S. Sugiki, A. Beste, and G. Beylkin, “Multiresolution computational chemistry,” J.
Physics, Conference Series, 16, 243-246, 2005.

T. Yanai, R.J. Harrison, G.I. Fann and G. Beylkin, “Multi-resolution quantum chemistry: linear response for excited states,” J.
Chem. Phys., submitted for publication, 2005.

G. Beylkin, R. Cramer, G. Fann and R. J. Harrison, “Multiresolution separated representations of singular and weakly singular
operators,” Applied and Computational Harmonic Analysis, 23 (2007) 235-253

H. Sekino, Y. Maeda, T. Yanai, and R.J. Harrison, “Basis set limit Hartree-Fock and density functional theory response property
evaluation by multiresolution multiwavelet basis,” J. Chem. Phys,129(3):034111 , 2008

G.I. Fann, J.C. Pei, R.J. Harrison ,J. Jia, J.C. Hill, M.J. Ou, W. Nazarewicz, W.A. Shelton and N. Schunck., “Fast multiresolution
methods for density functional theory in nuclear physics,” Journal of Physics, 180, 012080, 2009   

M. Reuter, J. Hill and R.J. Harrison, “Solving PDEs in Irregular Geometries with Multiresolution Methods I: Embedded Dirichlet
Boundary Conditions,” Computer Physics Communications, submitted March 2010

5/28/23 Robert J. Harrison, UT/ORNL 197

Molecular orbitals of water

-20.44

-1.31

-0.67

-0.53

-0.48

Iso-surfaces are 3-d contour plots – they show the surface
upon which the function has a particular value

Water has 10 electrons (8 from oxygen, 1 from each
hydrogen).

It is closed-shell, so it has 5 molecular orbitals each occupied
with two electrons.

2-d contour plot

H

O

The energy of each orbital in atomic units

5/28/23 Robert J. Harrison, UT/ORNL 198

Linear Combination of Atomic Orbitals
(LCAO)

• Molecules are composed of (weakly) perturbed atoms
– Use finite set of atomic wave functions as the basis
– Hydrogen-like wave functions are exponentials

• E.g., hydrogen molecule (H2)

• Smooth function of
molecular geometry

• MOs: cusp at nucleus
with exponential decay

1 () e

() e e

r

r a r b

s r

r



   



 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

5/28/23 Robert J. Harrison, UT/ORNL 199

LCAO with Gaussian Functions
• Cannot compute integrals over exponential orbitals
• Boys (1950) noted that Gaussians are feasible

– 6D integral reduced to 1D integrals which are tabulated once
and stored (related to error function)

• Gaussian functions form a complete basis
– With enough terms any radial function can be

approximated to any precision using a linear
combination of Gaussian functions

f  r =∑
i=1

N

ci e
−ai r

2

O 

5/28/23 Robert J. Harrison, UT/ORNL 200

LCAO
• A fantastic success, but …
• Basis functions have extended support

– causes great inefficiency in high accuracy calculations (functions
on different centers overlap)

– origin of non-physical density matrix
• Basis set superposition error (BSSE)

– incomplete basis on each center leads to over-binding as atoms are
brought together

• Linear dependence problems
– accurate calculations require balanced approach to a complete

basis on every atom
– molecular basis can have severe linear dependence

• Must extrapolate to complete basis limit
– unsatisfactory and not feasible for large systems

ϕ i(r)=2 (∇ 2+ 2E)−1
V̂ (r)ϕ i (r)

Chemistry: coupled non-linear
Schrodinger equations

Nanoscience: electrostatics
with 7 decades of length scale
u (r)=∫G(r , r ')ρ(r ')d 3 r '+

∮∂Ω [G(r , r ')∇ ' u(r ')−
u(r ')∇ ' G(r , r ')] . dS

Solid state: band structure
including lattice sums

f nk (r)=∑
R
∫ e−μ∣r−r ' −R∣

∣r−r '−R∣
un k (r ')d 3 r '

MADNESS deploys advanced math and C/S to enable robust
solution of diverse physical problems on the largest
supercomputers with a very high level of composition

Multiresolution analysisSeparated representations
Adaptive discontinuous
spectral element

V n=V 0+ (V 1−V 0)+⋯+ (V n−V n−1)f (x1,… , xn)=∑
l=1

M

σl∏
i=1

d

f i
(l)(xi)+ O(ϵ)

f (x)=cos (x2)∗exp (−(x−1)2/2) −3≤x≤3

3,2

2,32,22,12,0
1,11,0

0,0

3,3 3,4 3,5 3,6 3,7

Example tree in Haar basis
Haar basis is a piecewise constant (like a histogram)
• Not useful for real calculations but easy to visualize and of fundamental importance

Adaptive local refinement until local error measure is satisfied
• Smaller boxes where rate of change is high and value not negligible

Conventional adaptive mesh corresponds to boxes

Construct tree connecting fine-scale to coarser-scale boxes

Boxes labeled with level (n=0,1,...) and translation (l=0,1,...,2n-1)

Tree in reconstructed form. Scaling function (sum)
coefficients at leaf nodes. Interior nodes empty.

Tree in compressed form. Wavelet (difference)
coefficients at interior nodes, with scaling functions
coefficients also at root. Leaf nodes empty.

Compression algorithm. Starting from leaf nodes, scaling function
(sum) coefficients are passed to parent. Parent “filters” the
childrens' coefficients to produce sum and wavelet (difference)
coefficients at that level, then passes sum coefficients to its parent.

Reconstruction is simply the reverse processes.

To produce the non-standard form the compression algorithm is
run but scaling function coefficients are retained at the leaf and
interior nodes.

Reconstructed

Compressed
Empty
Sum
coefficients

Difference
coefficients
Sum and difference
coefficients

Addition is (most straightforwardly) performed in the compressed
form. Coefficients are simply added with missing nodes being
treated as if zero.

Empty

Sum
coefficients

Difference
coefficients
Sum and difference
coefficients

+

∂ f
∂ x

Differentiation (for simplicity here using central differences and Dirichlet boundary
conditions) is applied in the scaling function basis. To compute the derivative of the function
in the box corresponding to a leaf node, we require the coefficients from the neighboring
boxes at the same level.
• If the neighboring leaf nodes exist, all is easy.
• If it exists at a higher level,we can make the coefficients by recurring down from the parent
 using the two-scale relation.
• If the neighbor exists at a finer scale, we must recur down until both neighbors are at the
 same level.

Hence, phrased as parallel computation on all leaf nodes , differentiation must search for
neighbors in the tree at the same and higher levels, and may initiate computation at lower
levels. It can also be phrased as a recursive descent of the tree, which can have advantages in
reducing the amount of probes up the tree for parents of neighbors (esp. in higher dimensions).

∫K (x− y) f (y) dy

Convolution The first step is to compress into non-standard form with scaling function and
wavelet coefficients at each interior node. Then, we can independently compute the
contribution of each box (node) to the result at the same level of the tree. Depending upon
dimensionality, accuracy, and the kernel (K), we usually only need to compute the
contributions of a box to itself and its immediate neighbors. The support (i.e., level of
refinement) of the result is very dependent on the kernel. Here we consider convolution
with a Gaussian (Green's function for the heat equation) which is a smoothing operator.
After the computation is complete, we must sum down the tree to recover the standard form.

Hence, phrased as computation on all the nodes in non-standard form, convolution requires
compression and reconstruction, and during the computation communicates across the tree at
the same level to add results into neighboring boxes and up to connect new nodes to parents.

1.0

2e-5 1e-2 0.3 1e-2 2e-5 0.00.0

