
MADNESS Implementation Notes

Last Modification: 12/14/2009

This file is part of MADNESS.

Copyright (C) 2007, 2010 Oak Ridge National Laboratory

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

For more information please contact:

Robert J. Harrison
Oak Ridge National Laboratory
One Bethel Valley Road
P.O. Box 2008, MS-6367
Oak Ridge, TN 37831

email: harrisonrj@ornl.gov
tel: 865-241-3937
fax: 865-572-0680

Table of Contents

i

Chapter 1

Implementation Notes

This document provides reference information concerning the mathematics, nu-
merics, algorithms, and design of the multiresolution capabilities of MADNESS.
The information herein will be useful to both users of MADNESS and imple-
menters of new capabilities within MADNESS.

1.1 ABGV

And references therein: that from which (nearly) all else follows.

B. Alpert, G. Beylkin, D. Gines, L. Vozovoi, Adaptive Solution of Partial Dif-
ferential Equations in Multiwavelet Bases, Journal of Computational Physics
182, 149-190 (2002).

1.2 Legendre scaling functions and multiwavelets

1.2.1 Scaling functions

The mother Legendre scaling functions i = 0, . . . , k − 1 in 1D are defined as

ϕ(x) =

{√
2i+ 1P (2x− 1) 0 ≤ x ≤ 1

0 otherwise
(1.1)

These are orthonormal on [0, 1]. The scaling functions scaled to level n = 0, 1, . . .
and translated to box l = 0, . . . , 2n − 1 span the space V k

n and are defined by

1

http://math.nist.gov/~BAlpert/mwpde.pdf
http://math.nist.gov/~BAlpert/mwpde.pdf

ϕnil(x) = 2n/2ϕi(2
nx− 1) (1.2)

These are orthonormal on [2−nl, 2−n(l+1)]. The scaling functions by construc-
tion satisfy the following properties:

• In the limit of either large k or large n the closure of V k
n is a complete

basis for L2[0, 1].

• Containment forming a ladder of spaces V k
0 ⊂ V k

1 ⊂ V k
2 ⊂ · · · .

• Translation and dilation, c.f., (2).

• Orthonormality within a scale
∫∞
−∞ ϕnil(x)ϕ

n
jm(x)dx = δijδlm.

The two-scale relationship describes how to expand exactly a polynomial at level
n in terms of the polynomials at level n+1.

ϕi(x) =
√
2
∑k−1

j=0

(
h
(0)
ij ϕj(2x) + h

(1)
ij ϕj(2x− 1)

)
ϕnil(x) =

∑k−1
j=0

(
h
(0)
ij ϕ

n+1
j2l (x) + h

(1)
ij ϕ

n+1
j2l+1(x)

) (1.3)

The coefficientsH(0) andH(1) are straightforwardly computed by left projection
of the first equation in (3) with the fine-scale polynomials.

1.2.2 Telescoping series

The main point of multiresolution analysis is to separate the behavior of func-
tions and operators at different length scales. Central to this is the telescoping
series which exactly represents the basis at level n (the finest scale) in terms of
the basis at level zero (the coarsest scale) plus corrections at successively finer
scales.

V k
n = V k

0 +
(
V k
1 − V k

0

)
+ · · ·+

(
V k
n − V k

n−1

)
(1.4)

If function is sufficiently smooth in some region of space to be represented at
the desired precision at some level, then the differences at finer scales will be
negligibly small.

1.2.3 Multi-wavelets

The space of wavelets at level n W k
n is defined as the orthogonal complement

of the scaling functions (polynomials) at level n+1 to those at level n. I.e.,

V k
n+1 = V k

n ⊕W k
n . Thus, by definition the functions inW k

n are orthogonal to the
functions in V k

n . The wavelets at level n are constructed by expanding them
in the polynomials at level n+1

ψi(x) =
√
2
∑k−1

j=0

(
g
(0)
ij ϕj(2x) + g

(1)
ij ϕj(2x− 1)

)
ψn
il(x) =

∑k−1
j=0

(
g
(0)
ij ϕ

n+1
j2l (x) + g

(1)
ij ϕ

n+1
j2l+1(x)

) (1.5)

The coefficients G(0) and G(1) are formed by orthogonalizing the wavelets to
the polynomials at level n. This determines the wavelets to within a unitary
transformation and we follow the additional choices in Alpert’s papers/thesis.

The wavelets have these properties

• Decomposition of V k
n

V k
n = V k

0 ⊕W k
0 ⊕W k

1 ⊕ · · · ⊕W k
n−1 (1.6)

• Translation and dilation ψn
il(x) = 2n/2ψi(2

nx− l)

• Orthnormality within and between scales

∫∞
−∞ ψn

il(x)ψ
n′

i′l′(x)dx = δnn′δii′δll′∫∞
−∞ ψn

il(x)ϕ
n′

i′l′(x)dx = δii′δll′
(1.7)

1.2.4 Function approximation in the scaling function ba-
sis

A function f(x) may be approximated by expansion in the orthonormal scaling
function basis at level n with the coefficients obtained by simple projection

fn(x) =
∑2n−1

l=0

∑k=1
i=0 s

n
ilϕ

n
il(x)

snil =
∫∞
−∞ f(x)ϕnil(x)dx

(1.8)

The two scale relationships embodied in (3) and (5) may be combined to write
the following matrix equation that relates the scaling function basis at one scale
with the scaling function and wavelet basis at the next coarsest scale.

(
ϕ(x)
ψ(x)

)
=

√
2

(
H(0) H(1)

G(0) G(1)

)(
ϕ(2x)
ϕ(2x− 1)

)
(
ϕnl (x)
ψn
l (x)

)
=

(
H(0) H(1)

G(0) G(1)

)(
ϕn+1
2l (x)
ϕn+1
2l+1(x)

) (1.9)

Since the transformation is unitary, we also have

(
ϕ(2x)

ϕ(2x− 1)

)
=

√
2

(
H(0) H(1)

G(0) G(1)

)T (
ϕ(x)
ψ(x)

)
(
ϕn+1
2l (x)

ψn+1
2l+1(x)

)
=

(
H(0) H(1)

G(0) G(1)

)T (
ϕnl (x)
ψn
l (x)

) (1.10)

In table ?? are the filter coefficients for k=4, the only point being that these
are plain-old-numbers and not anything mysterious.

Table 1.1: Multi-wavelet filter coefficients for Legendre polynomials, k = 4.

H(0) H(1)

7.0711e-01 0.0000e+00 0.0000e+00 0.0000e+00 7.0711e-01 0.0000e+00 0.0000e+00 0.0000e+00
-6.1237e-01 3.5355e-01 0.0000e+00 0.0000e+00 6.1237e-01 3.5355e-01 0.0000e+00 0.0000e+00
0.0000e+00 -6.8465e-01 1.7678e-01 0.0000e+00 0.0000e+00 6.8465e-01 1.7678e-01 0.0000e+00
2.3385e-01 4.0505e-01 -5.2291e-01 8.8388e-02 -2.3385e-01 4.0505e-01 5.2291e-01 8.8388e-02

G(0) G(1)

0.0000e+00 1.5339e-01 5.9409e-01 -3.5147e-01 0.0000e+00 -1.5339e-01 5.9409e-01 3.5147e-01
1.5430e-01 2.6726e-01 1.7252e-01 -6.1237e-01 -1.5430e-01 2.6726e-01 -1.7252e-01 -6.1237e-01
0.0000e+00 8.7867e-02 3.4031e-01 6.1357e-01 0.0000e+00 -8.7867e-02 3.4031e-01 -6.1357e-01
2.1565e-01 3.7351e-01 4.4362e-01 3.4233e-01 -2.1565e-01 3.7351e-01 -4.4362e-01 3.4233e-01

1.2.5 Wavelet transform

The transformation in (10) expands polynomials on level n in terms of polyno-
mials and wavelets on level n-1. It may be inserted into the function approx-
imation (8) that is in terms of polynomials at level n. This yields an exactly
equivalent approximation in terms of polynomials and wavelets on level n-1. (I
have omitted the multiwavelet index for clarity.).

fn(x) =
∑2n−1

l=0 snl ϕ
n
l (x)

=
∑2n−1−1

l=0

(
sn2l
sn2l+1

)T (
ϕn2l(x)
ϕn2l+1(x)

)
=

∑2n−1−1
l=0

((
H(0) H(1)

G(0) G(1)

)(
sn2l
sn2l+1

))T (
ϕn−1
l (x)
ψn−1
l (x)

)
=

∑2n−1−1
l=0

(
sn−1
l (x)
dn−1
l

)T (
ϕn−1
l (x)
ψn−1
l (x)

)
(1.11)

The sum and difference (scaling function and wavelet) coefficients at level n-1
are therefore given by this transformation

(
sn−1
l (x)
dn−1
l (x)

)
=

(
H(0) H(1)

G(0) G(1)

)(
sn2l
sn2l+1

)
(1.12)

The transformation may be recursively applied to obtain the following repre-
sentation of a function in the wavelet basis c.f. (6) with direct analogy to the
telescoping series (4).

fn(x) =

k−1∑
i=0

s0i0ϕ
0
i0(x) +

∑
n=0,...

2n−1∑
l=0

k−1∑
i

dnilψ
n
il(x) (1.13)

The wavelet transformation (13) is unitary and is therefore a very stable nu-
merical operation.

1.2.6 Properties of the scaling functions

Symmetry

ϕi(x) = (−1)iϕi(1− x) (1.14)

Derivatives

1

2
√
2i+ 1

d

dx
ϕi(x) =

√
2i− 1ϕi−1(x) +

1

2
√
2i− 5

d

dx
ϕi−2(x) (1.15)

Values at end points

ϕi(0) = (−1)i
√
2i+ 1

ϕi(1) =
√
2i+ 1

dϕi

dx (0) = (−1)ii(i+ 1)
√
2i+ 1

dϕi

dx (1) = i(i+ 1)
√
2i+ 1

(1.16)

1.3 User and simulation coordinates

Internal to the MADNESS implementation, all computations occur in the unit
volume in d dimensions [0, 1]d. The unit cube is referred to as simulation
coordinates. However, the user operates in coordinates that in each dimension
q = 0, . . . , d − 1 may have different upper and lower bounds [loq, hiq] that
represents a diagonal linear transformation between the user and simulation
coordinates.

xuserq (xsimq) = (hiq − loq)x
sim
q + loq

xsimq (xuserq) =
xuser
q −loq

hiq−loq

(1.17)

This is a convenience motivated by the number of errors due to users neglecting
the factors arising from mapping the user space volume onto the unit cube.
More general linear and non-linear transformations must presently be handled
by the user.

To clarify further the expected behavior and how/when this mapping of co-
ordinates is performed: All coordinates, values, norms, thresholds, integrals,
operators, etc., provided by/to the user are in user coordinates. The advantage
of this is that the user does not have to worry about mapping the physical sim-
ulation space. E.g., if a user computes the norm of a function what is returned
is precisely the value

|f |22 =

∫ hi

lo

|f(xuser)|2 dxuser (1.18)

Similarly, when a user truncates a function with a norm-wise error ϵ this should
be the error in the above norm, and coefficients should be discarded so as to
maintain this accuracy independent of the user volume. All sum and difference
coefficients, quadrature points and weights, operators, etc. are internally main-
tained in simulation coordinates. The advantage of this is that the operators
can all be consistently formulated just once and we only have to worry about
conversions at the user/application interface.

1.3.1 Normalization of scaling functions in the user coor-
dinates

The scaling functions as written in equation (2) are normalized in simulation co-
ordinates. Normalizing the functions in user coordinates requires an additional
factor of V −1/2 where V is the user volume (which is just hi-lo in 1D).

∫ hi

lo

(
V −1/2ϕnil(x

sim(xuser))
)2
dxuser = V −1

∫ hi

lo
ϕnil(x

sim(xuser))2dxuser = 1
(1.19)

1.4 Function approximation

The function is approximated as follows

fn(xuser) = V −1/2
∑
il

snilϕ
n
il(x

sim(xuser)) (1.20)

Note that we have expanded the function in terms of basis functions normalized
in the user coordinates. This has several benefits, and in particular eliminates
most logic about coordinate conversion factors in truncation thresholds, norms,
etc.

1.4.1 Evaluation

Evaluation proceeds by mapping the user coordinates into simulation coordi-
nates, recurring down the tree to find the appropriate box of coefficients, evalu-
ating the polynomials, contracting with the coefficients, and scaling by V −1/2.

1.4.2 Projection into the scaling function basis

The user provides a function/functor that given a point in user coordinates
returns the value. Gauss-Legendre quadrature of the same or higher order as
the polynomial is used to evaluate the integral

snil = V −1/2
∫ hi

lo
f(xuser)ϕnil(x

sim(xuser))dxuser

= V 1/2
∫ 1

0
f(xuser (xsim))ϕnil(x

sim)dx sim

= 2dn/2V 1/2
∫ (l+1)2−n

l2−n f(xuser (xsim))ϕi(2
nxsim − l)dx sim

= 2−dn/2V 1/2
∫ 1

0
f(xuser (2−n(x+ l)))ϕi(x)dx

≃ 2−dn/2V 1/2
∑npt

µ=0 ωµf(x
user (2−n(xµ + l)))ϕi(xµ)

(1.21)

xµ and ωµ are the points and weights for the Gauss-Legendre rule of order npt
over [0, 1].

The above can be regarded as an invertible linear transformation between the
scaling function coefficients and the approximate function values at the quadra-
ture points (µ = 0, . . . , npt).

snil = 2−dn/2V 1/2
∑

µ fµϕ̄µi
fµ = 2dn/2V −1/2

∑
i ϕµis

n
il

(1.22)

where

fµ = f(xuser (2−n(xµ + l)))
ϕµi = ϕi(xµ)
ϕ̄µi = ϕi(xµ)ωµ∑

µ ϕµiϕ̄µi = δij

(1.23)

The last line merely restates the orthonormality of the scaling function basis
that in the discrete Gauss-Legendre quadrature is exact for the scaling function
basis with the choice of the quadrature order npt ≥ k.

1.4.3 Truncation criteria

Discarding small difference coefficients while maintaining precision is central
to speed and drives the adaptive refinement. Different truncation criteria are
useful in different contexts.

Mode 0 - the default

This truncation is appropriate for most calculations and in particular those
that have functions with deep levels of refinement (such as around nuclei in all-
electron electronic structure calculations). Difference coefficients of leaf nodes
are neglected according to

∥dnl ∥2 =

√∑
i

|dnil|
2 ≤ ϵ (1.24)

Mode 1

This mode is appropriate when seeking to maintain an accurate representation
of both the function and its derivative. Difference coefficients of leaf nodes are
neglected according to

∥dnl ∥2 ≤ ϵmin(1, L2−n) (1.25)

where L is the minimum width of any dimension of the user coordinate volume.

The form for the threshold is motivated by re-expressing the expansion (20) in
terms of the mother scaling function and then differentiating (crudely, neglecting
continuity with neighboring cells).

fn(xuser) = V −1/22n/2
∑

il s
n
ilϕi(2

nxsim(xuser)− l)
d

dxuser f
n(xuser) ≃ V −1/223n/2(hi − lo)−1

∑
il s

n
ilϕ

′
i(2

nxsim(xuser)− l)
(1.26)

Thus, we see that the scale dependent part of the derivative is an extra factor of
2n arising from differentiating the scaling function. We must include the factor
hi-lo in order to make the threshold volume independent. Finally, we use the

minimum to ensure that the threshold (25) is everywhere at least as tight as
(24).

Mode 2

This is appropriate only for smooth functions with a nearly uniform level of
refinement in the entire volume. Difference coefficients are neglected according
to

∥dnl ∥2 ≤ ϵ2−nd/2 (1.27)

This is the truncation scheme described in ABGV. If this truncation mode
discards all difference coefficients at level n it preserves a strong bound on the
error between the representations at levels n and n – 1.

∥∥fn − fn−1
∥∥2
2
=

2n−1∑
l=0

∥dnl ∥
2
2 ≤

2n−1∑
l=0

ϵ22−nd = ϵ2 (1.28)

However, for non-smooth functions beyond two dimensions this conservative
threshold can lead to excessive (even uncontrolled) refinement and is usually
not recommended.

1.4.4 Adaptive refinement

After projection has been performed in boxes 2l and 2l+1 at level n, the scaling
function coefficients may be filtered using to produce the wavelet coefficients
in box l at level n-1. If the desired truncation criterion (section ??) is not
satisfied, the process is repeated in the child boxes 4l, 4l+1, 4l+2, 4l+3 at level
n+1. Otherwise, the computed coefficients are inserted at level n.

1.5 Unary operations

1.5.1 Function norm

Due to the chosen normalization of the scaling function coefficients in (20) both
the scaling function and wavelet bases are orthonormal in user-space coordi-
nates, thus

∥fn∥22 =
∥∥s00∥∥22 +∑n−1

m=0

∑2m−1
l=0 ∥dml ∥22

=
∑2n−1

l=0 ∥snl ∥
2
2

(1.29)

1.5.2 Squaring

This is a special case of multiplication; please look below.

1.5.3 General unary operation

In-place, point-wise application of a user-provided function (q) to a MRA func-
tion (f), i.e., q (f (x)). After optional auto-refinement, the function f (x) is
transformed to the quadrature mesh and the function q (f (x)) computed at
each point. The values are then transformed back to the scaling function
basis. The criterion for auto-refinement is presently the same as used for
squaring, but it would be straightforward to make this user-defined.

Need to add discussion of error analysis that can ultimately be used to drive
rigorous auto-refinement.

1.5.4 Differentiation

ABGV provides a detailed description of the weak formulation of the differen-
tiation operator with inclusion of boundary conditions. There is also a Maple
worksheet that works this out in gory detail. We presently only provide a cen-
tral difference with either periodic or zero-value Dirichlet boundary conditions
though we can very easily add more general forms. With a constant level of
refinement differentiation takes this block-tri-diagonal form

til = L
∑
j

r
(+)
ij sjl−1 + r

(0)
ij sjl + r

(-)
ij sjl+1 (1.30)

where L is the size of the dimension being differentiated. The diagonal block of
the operator is full rank whereas the off-diagonal blocks are rank one.

The problems arise from adaptive refinement. We need all three blocks at the
lowest common level. The algorithm starts from leaf nodes in the source tree
trying to compute the corresponding node in the output. We probe for nodes to
the left and right in the direction of differentiation (and enforcing the boundary
conditions). There are three possibilities

• Present without coefficients – i.e., the neighbor is more deeply refined. In
this instance we loop through children of the target (central) node and
invoke the differentiation operation on them, passing any coefficients that
we have already found (which must include the central node and the other
neighbor due to the nature of the adaptive refinement).

• Present with coefficients – be happy.

• Not present – i.e., the neighbor is less deeply refined. The search for the
neighbor recurs up the tree to find the parent that does have coefficients.

Once all three sets of coefficients have been located we will be at the level
corresponding to the most deeply refined block. For the other blocks we may
have coefficients corresponding to parents in the tree. Thus, we need to project
scaling coefficients directly from node n, l to a child node n′, l′ with n′ ≥ n and
2n

′−nl ≤ l′ < 2n
′−n(l + 1). Equation (44) tells us how to compute the function

value at the quadrature points on the lowest level and we can project onto the
lower level basis using (22). Together, these yield

sn
′

il′ = 2d(n−n′)/2
∑
µ

ϕ̄µi
∑
j

ϕn−n′,l,l′

µj snjl (1.31)

which is most efficiently executed with the summations performed in the order
written.

Recurring down is also a little tricky. We always have at least the coefficients
for the central box with translation l. This yields children 2l and 2l+1 which
are automatically left/right neighbors of each other.

1.5.5 Band-limited, free-particle propagator

The unfiltered real-space kernel of the free-particle propagator for the Schrödinger
equation is

G0(x, t) =
1√
2πit

e−
x2

2it (1.32)

For large x this becomes highly oscillatory and impractical to apply exactly.
However, when applied to a function that is known to be band limited we can
neglect components in G0 outside the band limit which causes it to decay. Fur-
thermore, combining application of the propagator with application of a filter
enables us to knowingly control high-frequency numerical noise introduced by
truncation of the basis (essential for fast computation) and the high-frequencies
inherent in the multiwavelet basis (due both to their polynomial form and dis-
continuous support).

Explicitly, consider the representation of the propagator in Fourier space

Ĝ0(k, t) = e−i k2t
2 (1.33)

We multiply this by a filter F (k/c) that smoothly switches near k = c from
unity to zero. The best form of this filter is still under investigation, but we
presently use a 30th-order Butterworth filter.

F (k) =
(
1 + k30

)−1
(1.34)

For k ≪ 1 this deviates from unity by about −k30. This implies that if frequen-
cies up to a band limit ctarget are desired to be accurate to a precision ϵ after N
applications of the operator, then we should choose the actual band limit in the
filter such that N(ctarget/c)

30 ≤ ϵ or c ≥ ctarget(N/ϵ)
1/30. For a precision of

10-3 in the highest frequency (lower frequencies will much more accurate) after
105 steps we would choose c ≥ 1.85ctarget . Similarly, for k ≫ 1 the filter F (k)
differs from zero by circa k−30 and therefore we must include in the internal
numerical approximation of the operator frequencies about 2x greater than c
(more precisely, 2.15x for a precision 1e-10 and 2.5x for a precision of 1e-12).

Specifically, we compute the filtered real-space propagator by numerical quadra-
ture of the Fourier expansion of the filtered kernel. The quadrature is performed
over [−ctop , ctop] where ctop = 2.15 ∗ c. The wave length associated with a fre-
quency k is λ = 2π/k and therefore limiting to frequencies less than c implies a
smallest grid of h = π/c. This is oversampled by circa 10x to permit subsequent
valuation using cubic interpolation. Finally, the real space kernel is computed
by inverse discrete Fourier transform and then cubic interpolation.

Fast and accurate application of this operator is still being investigated. We
can apply it either in real space directly to the scaling function coefficients or in
wavelet space using non-standard form. Presently, the real-space form is both
faster and more accurate.

1.5.6 Integral convolutions

This is described in gory detail in ABGV and the first multi-resolution qchem
paper but eventually all of that should be reproduced here. For now, we simply
take care of the mapping from the user to simulation coordinates and other stuff
differing from the initial approach.

We start from a separated representation of the kernel K(x) in user coordinates
that is valid over the volume for xuserlo ≤ |xuser | ≤ L

√
(d) to a relative precision

ϵuser (except where the value is exponentially small)

K(xuser) =

M∑
µ=1

d∏
i=1

T
(µ)
i (xuseri) +O(ϵuser) (1.35)

Since the error in the approximate is relative it is the same in both user and
simulation coordinates.

The most common case is that the kernel is isotropic (K(x) = K(|x|)) and

therefore the separated terms do not depend upon direction, i.e., T
(µ)
i = T (µ)

(if it is desired to keep the terms real it may be necessary to treat a negative
sign separately). In a cubic box the transformation to simulation coordinates
is the same in each dimension and therefore we only need to compute and
store each operator once for each dimension. However, in non-cubic boxes the
transformation to simulation coordinates is different in each direction making it
necessary to compute and store each operator in each direction. Doing this will
permit us to treat non-isotropic operators in the same framework, the extreme
example of which is a convolution that acts only in one dimension. Presently,
this is not supported but it is a straightforward modification.

Focusing now on just one term and direction, the central quantity is the tran-
sition matrix element that is needed in user coordinates but must be computed
in simulation coordinates

[rnll′]ii′ = L−1
∫ ∫

T user (xuser − yuser)ϕnil(x
sim(xuser))ϕni′l′(y

sim(yuser))dxuserdyuser

= L
∫ ∫

T user (L(xsim − ysim))ϕnil(x
sim)ϕni′l′(y

sim)dx simdysim

(1.36)
where L is the width of the dimension. This enables the identification

T sim(xsim) = LT user (Lxsim) (1.37)

Internally, the code computes transition matrix elements for T sim in simulation
coordinates. If the operator is represented as a sum of Gaussian functions
cuser exp(−αuser (xuser)2) then the corresponding form in simulation coordinates
will be csim = Lcuser and αsim = L2αuser .

1.5.7 Application of the non-standard form

Two things complicate the application of the NS-form operator. The first is
specific to the separated representation – we only have this for the actual op-
erator (T) not for the NS-form which is Tn+1 − Tn. Thus at each level we
actually apply to the sum and difference coefficients Tn+1 and subtract off the
result of applying Tn to just the sum coefficients. Note that screening must
be performed using the norm of Tn − Tn−1 since it is sparse. Beyond 1D this
approach is a negligible computational overhead and the only real concern is
possible loss of precision since we are subtracting two large numbers to obtain a
small difference. My current opinion is that there is no effective loss of precision
since reconstructing the result will produce values of similar magnitude. This is
I think a correct argument for the leaf nodes, but the interior nodes might have
larger values and hence we could lose relevant digits.

The second issue is what to do about scaling function coefficients at the leaf
nodes. Regarding the operator as a matrix being applied to a vector of scaling
function coefficients, then the operator is exactly applied by operation upon the
sum and difference coefficients at the next level, therefore there is no need to
apply the operator to the leaf nodes (this was my initial thinking). However, as
pointed out by Beylkin, the operator itself can introduce finer-scale detail which
means that we must consider application at the lowest level where the difference
coefficients are zero since the operator can introduce difference coefficients at
that level.

1.5.8 Screening

To screen effectively we need to estimate the norm of the blocks of the non-
standard operator and also each term in its separated expansion. We could
estimate the largest eigenvalue by using a power method and this is imple-
mented in the code for verification, however, it is too expensive to use routinely,
especially for each term in a large separated representation (we would spend
more time computing the operator than applying it). Thus, we need a more
efficient scheme.

Each term in the separated expansion is applied as

RxRy · · · − TxTy · · · (1.38)

where R is the full non-standard form of the operator in a given direction which
takes on the form

R =

(
T B
C A

)
(1.39)

and T is the block of R that connects sum-coefficients with sum-coefficients. We
could compute the Frobenius norm of the operator in (38) simply as

√
∥Rx∥2F ∥Ry∥2F · · · − ∥Tx∥2F ∥Ty∥2F · · ·

but unfortunately this loses too much precision. Instead, an excellent estimate
is provided by

√√√√(d∏
i=1

∥Ri∥2F

)(
d∑

i=1

∥Ri − Ti∥2F
∥Ri∥2F

)
(1.40)

which seems in practice to be an effective upper bound that is made tight (within
a factor less than two at least for the Coulomb kernel) by replacing the sum
with the maximum term in the sum.

1.5.9 Automatic refinement (aka widening the support)

Same as for multiplication ... need explain why this is good.

1.6 Binary operations

1.6.1 Inner product of two functions

This is conceptually similar to the norm, but since the two functions may have
different levels of refinement we can only compute the inner product in the
wavelet basis.

∫
f(x)*g(x)dx = s0f0

dagger
.s0g0 +

n−1∑
m=0

2m−1∑
l=0

dmfl
dagger .dmgl (1.41)

1.6.2 Function addition and subtraction

The most general form is the bilinear operation GAXPY (generalized form of
SAXPY) h(x) = αf(x)+βg(x) that is implemented in both in-place (h the same
as f) and out-of-place versions. The operation is implemented in the wavelet
basis in which the operation can be applied directly to the coefficients regardless
of different levels of adaptive refinement (missing coefficients are treated as zero).

Need a discussion on screening – basically if the functions have the same pro-
cessor map and this operation is followed by a truncation before doing anything
expensive, explicit screening does not seem too critical. The need for trunca-
tion could be reduced by testing on the size of one of the products (e.g., in a
Gramm-Schmidt we know that one of the terms is usually small).

1.6.3 Point-wise multiplication

This is performed starting from the scaling function basis. Superficially, we
transform each function to values at the quadrature points, multiply the values,
and transform back. However, there are three complicating issues.

First, the product cannot be exactly represented in the polynomial basis. The
product of two polynomials of order k-1 produces a polynomial of order 2k-2.
Beylkin makes a nice analogy to the product of two functions sampled on a grid –
the product can be exactly formed on a grid with double the resolution. While
this is not exact for polynomials it does reduce the error by a factor of 2−k, where

k is the order of the wavelet. Therefore, we provide the option to automatically
refine and form the product at a lower level. This is done by estimating the
norm of the part of the product that cannot be exactly represented as follows

pnl =

√∑⌊(k−1)/2⌋
i=0 ∥snil∥

2

qnl =
√∑k−1

i=⌊(k−1)/2⌋+1 ∥snil∥
2

ϵ(fg)nl ≃ p(f)nl q(g)
n
l + q(f)nl p(g)

n
l + q(f)nl q(g)

n
l

(1.42)

Second, the functions may have different levels of adaptive refinement. The two
options are to compute the function with coefficients at a coarser-scale directly
on the grid required for the finer-scale function, or to refine the function down to
same level, which is what we previously choose to do. However, this will leave
the tree with scaling function coefficients at multiple levels that must be cleaned
up after the operation. Since it essential (for efficient parallel computation) to
perform multiple operations at a time on a function, having it in an inconsistent
state makes things complicated. If all we wanted to do were perform other
multiplication operations, there would be no problem; however this seems to be
an unnecessary restriction on the user. It is also faster (2-fold?) to perform
the direct evaluation so this is what we choose to do.

Third, the above does not use sparsity or smoothness in the functions and does
not compute the result to a finite precision. For instance, if two functions do
not overlap their product is zero but the above algorithm will compute at the
finest level of the two functions doing a lot of work to evaluate small numbers
that will be discarded upon truncation. Eliminating this overhead is crucial
for reduced scaling in electronic structure calculations. At some scale we can
write each function (f and g) in a volume in terms of its usual scaling function
approximation at that level (s) and the correction/differences (d) from all finer
scales. The error in the product of two such functions is then

ϵ(fg) ≃ ∥sf∥ . ∥dg∥+ ∥df∥ . ∥sf∥+ ∥df∥ . ∥dg∥ (1.43)

with a hopefully obvious abuse of notation. Note again that while the scaling
function coefficients are as used everywhere else in this document, the difference
function (d) in (43) is the sum of corrections at all finer scales. Thus, by
computing the scaling function coefficients at all levels of the tree and summing
the norm of the differences up the tree we can compute with controlled precision
at coarser levels of the tree. The sum of the norm of differences can also be
computed by summing the norm of the scaling function coefficients from the
finest level and subtracting the local value.

If many products are being formed, the overheads (compute and memory) of
forming the non-standard form are acceptable, but it is desirable to have a less

expensive approach when computing just a few products. The above exploits
both locality and smoothness in each function. The main reduction in cost in
the electronic structure algorithms will come from locality (finite domain for
each orbital with exponential decay outside) and with that in mind we can
bound the entire product in some volume using ∥fg∥ ≤ ∥f∥ . ∥g∥. We can
compute the norm of each function in each volume by summing the norm of the
scaling function coefficients up the tree, which is inexpensive but does require
some communication and an implied global synchronization. If in some box the
product is predicted to be negligible we can immediately set it to zero, otherwise
we must recur down. Since we are not exploiting smoothness, if a product must
be formed it will be formed on the finest level.

Thus, we will eventually have three algorithms for point-wise multiplication.
Which ones to do first? We answer this question by asking, “what products
will the DFT and HF codes be performing?”

• Square each orbital to make the density.

• Multiply the potential against each orbital.

• HF exchange needs each orbital times every other orbital.

The first critical one is potential times orbital. The potential has global extent
but the orbitals are localized and we want the cost of each product to be O(1)
not O(V) (V, the volume). Similarly, we must reduce the cost of the O(N2)
products in HF exchange to O(N). Therefore, we first did the exact algorithm
and will very shortly do one that exploits locality.

Evaluating the function at the quadrature points

In (22) is described how to transform between function values and scaling coef-
ficients on the same level. However, for multiplication we will need to evaluate
the polynomials at a higher level in a box at a finer level. This is not mathemat-
ically challenging but there are enough indices involved that care is necessary.
Let (n, l) be the parent box and (n′, l′) be one of its children, and let xµ be a
Gauss-Legendre quadrature point in [0,1]. We want to evaluate

fµ = V −1/2
∑

i s
n
ilϕ

n
il

(
2−n′

(xµ + l′)
)

= V −1/22dn/2
∑

i s
n
ilϕi

(
2n−n′

(xµ + l′)− l
)

= V −1/22dn/2
∑

i s
n
ilϕ

n−n′,l,l′

µi

(1.44)

that has the same form as before but now we must use a different transformation
for each dimension due to the dependence on the child box coordinates.

1.7 Error estimation

To estimate the error in the numerical representation relative to some known
analytic form, i.e.,

ϵ = ∥f − fn∥ (1.45)

we first ensure we are in the scaling function basis and then in each box with
coefficients compute the contribution to ϵ using a quadrature rule with one more
point than that used in the initial function projection. The reason for this is
that if fn resulted from the initial projection then it is exactly represented at
the quadrature points and will appear, incorrectly, to have zero error if sampled
there. One more point permits the next two powers in the local polynomial
expansion to be sampled and also ensures that all of the new sampling points
interleave the original points near the center of the box.

1.8 Data structures

The d-dimension function is represented as a 2d-tree. Nodes in the tree are
labeled by an instance of Key<d> that wraps the tuple (n,l) where n is the
level and l is a d -vector representing the translation. Nodes are represented by
instances of FunctionNode<T,d> that presently contains the coefficients and
an indicator if this node has children. Nodes without children are sometimes
referred to as leaves. Nodes, indexed by keys, are stored in a distributed hash
table that is an instance of WorldContainer<Key<d>,FunctionNode<T,d>>.
This container uses a two-level hash to first map a key to the processes (referred
to as the owner) in which the data resides, and then into a local instance of either
a GNU hash map or a TR1 unordered map. Since it is always possible to
compute the key of a parent, child, or neighbor we never actually store (global)
pointers to parents or children. Indeed, a major point of the MADNESS
runtime environment is to replace the cumbersome partitioned global address
space (global pointer = process id + local pointer) with multiple global name
spaces. Each new container provides a new name space. Using names
rather than pointers permits the application to be written using domain-specific
concepts rather a rigid linear model of memory. Folks familiar with Python will
immediately appreciate the value of name spaces.

Data common to all instances of a function of a given dimension (d) and data
type (T, e.g., float, double, float complex, double complex) are gathered to-
gether into FunctionCommonData<T,d> of which one instance is generated per
wavelet order (k). An instance of the common data is shared read-only be-
tween all instances of functions of that data type, dimension and wavelet order.
Presently there are some mutable scratch arrays in the common data but these

will be eliminated when we introduce multi-threading. In addition to reducing
the memory footprint of the code, sharing the common data greatly speeds the
instantiation of new functions which is replicated on every processor.

In order to facilitate shallow copy/assignment semantics and to make empty
functions inexpensive to instantiate, a multi-resolution function, which is an
instance of Function<T,d> contains only a shared pointer to the actual im-
plementation which is an instance of FunctionImpl<T,d>. Un-initialized
functions (obtained from the default constructor) contain a zero pointer. Only
a non-default constructor or assignment actually instantiate the implementa-
tion. The main function class forwards nearly all methods to the underlying
implementation. The implementation primarily contains a reference to the
common data, the distributed container storing the tree, little bits of other
state (e.g., a flag indicating the compression status) and a bunch of methods.

Default values for all functions of a given dimension are stored in an instance of
FunctionDefaults<d>. These may be modified to change the default values for
subsequently created functions. Functions have many options and parameters
and thus we need an easy way to specify options and selectively override defaults.
Since C++ does not provide named arguments (i.e., arguments with defaults
that may be specified in any order rather than relying on position to identify
an argument) we adopt the named-parameter idiom. The main constructor
for Function<T,d> takes an instance of FunctionFactory<T,d> as its sole
argument. The methods of FunctionFactory<T,d> enable setting of options
and parameters and each returns a reference to the object to permit chaining of
methods. A current problem with FunctionDefaults is that it is static data
shared between all parallel worlds (MPI sub-communicators). At some point
we may need to tie this to the world instance.

Pretty much all memory is reference counted using Boost-like shared pointers.
An instance of SharedPointer<T>, which wraps a pointer of type T*, is (al-
most) always used to wrap memory obtained from the C++ new operator. The
exceptions are where management of the memory is immediately given to a low-
level interface. Shared-pointers may be safely copied and used with no fear of
using a stale pointer. When the last copy of a shared pointer is destroyed the
underlying pointer is freed. With this mode of memory management there is
never any need to use the C++ delete operator and most classes do not even
need a destructor.

Tensors ...

STOPPED MOST CLEANUP AND WRITING HERE ... more to follow ...
sigh

1.8.1 Maintaining consistent state of the 2d-tree

The function implementation provides a method verify tree() that attempts
to check connectivity and consistency of the compression state, presence of
coefficients, child flags, etc, as described below.

A node in the tree is labeled by the key/tuple (n,l) and presently stores the
coefficients, if any, and a flag indicating if the node has children. In 1D, the
keys of children are readily computed as (n+1,2l) and (n+1,2l+1). In many
dimensions it is most convenient to use the KeyChildIterator class. The
presence of coefficients is presently determined by looking at the size of the
tensor storing the coefficients; size zero means no coefficients.

In the reconstructed form (scaling function basis), a tree has coefficients (a kd

tensor) only at the lowest level. All interior nodes will have no coefficients
and will have children. All leaf nodes will have coefficients and will not have
children.

In the compressed form (wavelet basis), a tree has coefficients (a (2k)d tensor)
at all levels. The scaling function block of the coefficients is zero except at level
zero. Logically, this tree is one level shallower than the reconstructed tree since
the scaling function coefficients at the leaves are represented by the difference
coefficients on the next coarsest level. However, to simplify the logic in compress
and reconstruct and to maintain consistency with the non-standard compressed
form (see below), we do not delete the leaf nodes from the reconstructed tree.
Thus, the compressed tree has the same set of nodes as the reconstructed tree
with all interior nodes having coefficients and children, and all leaf nodes having
no coefficients and no children.

In the non-standard compressed form (redundant basis), we keep the scaling
function coefficients at all levels and the wavelet coefficients for all interior nodes.
Thus, the compressed tree has the same set of nodes as for the other two forms
but with all nodes having coefficients (a (2k)d tensor for interior nodes and a
kd tensor for leaf nodes) and with only leaf nodes having no children.

To keep complexity to a minimum we don’t want to introduce special states of
the tree or of nodes, thus all operations must by their completion restore the
tree to a standard state.

Truncation is applied to a tree in compressed form and discards small coefficients
that are logically leaf nodes. Logically, because in the stored tree we still have
the empty nodes that used to hold the scaling coefficients. For a node to be
eligible for truncation it must have only empty children. Thus, truncation
proceeds as follows. We initially recur down the tree and for each node spawn
a task that takes as arguments futures indicating if each of its children have
coefficients. Leaf nodes, by definition, have no children and no coefficients
and immediately return their status. Once a task has all information about the

children it can execute. If any children have coefficients a node cannot truncate
and can immediately return its status. Otherwise, it must test the size of its
own coefficients. If it decides to truncate, it must clear its own coefficients,
delete all of its children, and set its has children flag to false. Finally, it
can return its own status.

Adding (subtracting) two functions is performed in the wavelet basis. If
the trees have the same support (level of refinement) we only have to add the
coefficients. If the trees differ, then in addition to adding the coefficients we
must also maintain the has children flag of the new tree to produce the union
of the two input trees. To permit functions with different processor maps to
be added efficiently, we loop over local data in one function and send them to
nodes of the other for addition. Sending a message to a non-existent node
causes it to be created.

1.9 Returning new functions – selection of de-
fault parameters

When returning a new function there is the question of what parameters (thresh-
olds, distribution, etc.) should be used. There needs to a convention that is
consistent with users’ intuition as well as mechanisms for forcing different out-
comes. We choose to not use FunctionDefaults. I.e., FunctionDefaults
is only used when the user invokes the Function constructor to fill unspecified
elements of FunctionFactory.

1.9.1 Unary operations (e.g., scaling, squaring, copying,
type conversion)

The result copies all appropriate state from the input.

1.9.2 Binary operations (e.g., addition, multiplication)

Writing the binary operation as a C++ method invocation f.op(g) there is
a natural asymmetry that for consistency with a unary operation leads to our
choice to copy all appropriate state from the leftmost function, i.e., that which
method is being invoked.

1.9.3 Ternary and higher operations

There are no C++ operators of this form and therefore these will always be of
the form f.op(g,h)and we make the same choice as made for binary operations.

1.9.4 C++ operator overloading and order of evaluation

The main issue with the above convention is clarifying how C++ maps state-
ments with overloaded operators1 into method/function invocations which in-
cludes understanding the order of evaluation2. Overloading does not change
the precedence or associativity of an operator3.

Noting * is of higher precedence than + and both are left-to-right associative,

• f*g+h becomes (f*g)+h becomes (f.mul(g)).add(h) and thus the result
has the same parameters as f.

• h+f*g becomes h+(f*g) becomes h.add(f.mul(g)) and thus the result
has the same parameters as h.

• f*g*h has undefined order of evaluation since the two operators have
equal precedence, but the compiler is not free to assume that multipli-
cation is commutative and hence the result is either f.mul(g.mul(h)) or
f.mul(g).mul(h) which will both inherit the parameters of f.

In summary, the result always has the parameters of the leftmost function in
any expression. For greatest clarity, introduce parentheses or invoke the actual
methods/functions rather than relying upon operator overloading.

1.9.5 Overriding above behaviors

Operations that produce results dependent upon thresholds, etc., must pro-
vide additional interfaces that permit specification of all controlling parameters
which will be used in the operation and preserved in the result. For all other
operations, it suffices to make thresholds, etc., settable after the completion of
an operation.

1 http://www.difranco.net/cop2334/Outlines/ch18.htm
2 http://msdn2.microsoft.com/en-us/library/yck2zaey(vs.80).aspx
3 http://www.difranco.net/cop2334/cpp op prec.htm

1.10 External storage

I/O remains a huge problem on massively parallel computers and should almost
never be used except for checkpoint/restart. Several constraints must be borne
in mind. First, we must avoid creating many files since parallel file systems are
easily over-whelmed if a few thousand processes simultaneously try to create a
few tens of files each. Second, I/O should be performed in large transactions
with a tunable number of readers/writers in order to obtain the best band-
width. Third, we need random access to data so purely serial solutions are not
acceptable. Finally, the external data representation should ideally be open and
readily accessed by other codes.

For the purposes of I/O, we distinguish two types of objects. First, objects that
will be written by a single process with no involvement from other processes.
Typically this would be just by the master process and the objects would be
small enough to fit into the memory of a single processor. Second, large objects
that will be transferred to/from disk in a collective manner with all processes
in the world logically participating. Random read and write access must be
feasible for both types of objects.

1.11 Viewing and editing this document

Under Linux ensure you have the Microsoft true-type fonts installed – they are
free. Under Ubuntu install package msttcorefonts. Without these the default
Linux fonts will cause pagination and other problems, at least with the title
pages.

Other than resorting to Latex it does not seem possible to put documents under
version control and have the changes merged automatically. Subversion recog-
nizes OpenOffice files as being of mime-type octet-stream and thus treats them
as binary, meaning that it does not attempt to merge changing. You must use
the OpenOffice compare-and-merge facility to manually merge changes yourself.

