Skip to contents

Example

This is a basic example which shows you how easy it is to generate data with TidyDensity:

library(TidyDensity)
library(dplyr)
library(ggplot2)

tidy_normal()
#> # A tibble: 50 × 7
#>    sim_number     x       y    dx       dy     p       q
#>    <fct>      <int>   <dbl> <dbl>    <dbl> <dbl>   <dbl>
#>  1 1              1 -0.465  -2.75 0.000449 0.321 -0.465 
#>  2 1              2  0.0208 -2.63 0.00124  0.508  0.0208
#>  3 1              3 -0.463  -2.51 0.00303  0.322 -0.463 
#>  4 1              4 -0.581  -2.38 0.00657  0.281 -0.581 
#>  5 1              5 -0.347  -2.26 0.0127   0.364 -0.347 
#>  6 1              6  2.19   -2.14 0.0219   0.986  2.19  
#>  7 1              7 -0.255  -2.02 0.0342   0.399 -0.255 
#>  8 1              8 -0.0367 -1.90 0.0489   0.485 -0.0367
#>  9 1              9 -0.567  -1.77 0.0652   0.285 -0.567 
#> 10 1             10 -0.882  -1.65 0.0834   0.189 -0.882 
#> # ℹ 40 more rows

An example plot of the tidy_normal data.

tn <- tidy_normal(.n = 100, .num_sims = 6)

tidy_autoplot(tn, .plot_type = "density")

tidy_autoplot(tn, .plot_type = "quantile")

tidy_autoplot(tn, .plot_type = "probability")

tidy_autoplot(tn, .plot_type = "qq")

We can also take a look at the plots when the number of simulations is greater than nine. This will automatically turn off the legend as it will become too noisy.

tn <- tidy_normal(.n = 100, .num_sims = 20)

tidy_autoplot(tn, .plot_type = "density")

tidy_autoplot(tn, .plot_type = "quantile")

tidy_autoplot(tn, .plot_type = "probability")

tidy_autoplot(tn, .plot_type = "qq")