
Tidy Randomly Generated Lognormal Distribution Tibble
Source:R/random-tidy-lognormal.R
tidy_lognormal.Rd
This function will generate n
random points from a lognormal
distribution with a user provided, .meanlog
, .sdlog
, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Arguments
- .n
The number of randomly generated points you want.
- .meanlog
Mean of the distribution on the log scale with default 0
- .sdlog
Standard deviation of the distribution on the log scale with default 1
- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying stats::rlnorm()
, and its underlying
p
, d
, and q
functions. For more information please see stats::rlnorm()
See also
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3669.htm
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_geometric()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Lognormal:
util_lognormal_param_estimate()
,
util_lognormal_stats_tbl()
Examples
tidy_lognormal()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 4.14 -1.74 0.000468 0.922 4.14
#> 2 1 2 0.387 -1.54 0.00141 0.171 0.387
#> 3 1 3 3.86 -1.33 0.00379 0.912 3.86
#> 4 1 4 3.34 -1.13 0.00917 0.886 3.34
#> 5 1 5 3.15 -0.924 0.0200 0.875 3.15
#> 6 1 6 2.10 -0.719 0.0393 0.771 2.10
#> 7 1 7 0.964 -0.515 0.0698 0.485 0.964
#> 8 1 8 1.86 -0.310 0.113 0.732 1.86
#> 9 1 9 0.677 -0.105 0.166 0.348 0.677
#> 10 1 10 0.734 0.0995 0.223 0.379 0.734
#> # ℹ 40 more rows