
Tidy Randomly Generated Exponential Distribution Tibble
Source:R/random-tidy-exponential.R
tidy_exponential.Rd
This function will generate n
random points from a exponential
distribution with a user provided, .rate
, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Arguments
- .n
The number of randomly generated points you want.
- .rate
A vector of rates
- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying stats::rexp()
, and its underlying
p
, d
, and q
functions. For more information please see stats::rexp()
See also
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_geometric()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Exponential:
tidy_inverse_exponential()
,
util_exponential_param_estimate()
,
util_exponential_stats_tbl()
Examples
tidy_exponential()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 1.29 -0.796 0.000736 0.724 1.29
#> 2 1 2 0.996 -0.669 0.00315 0.631 0.996
#> 3 1 3 0.503 -0.543 0.0111 0.395 0.503
#> 4 1 4 0.853 -0.416 0.0322 0.574 0.853
#> 5 1 5 0.690 -0.290 0.0773 0.499 0.690
#> 6 1 6 2.19 -0.163 0.155 0.888 2.19
#> 7 1 7 0.601 -0.0369 0.262 0.452 0.601
#> 8 1 8 1.52 0.0896 0.380 0.781 1.52
#> 9 1 9 0.986 0.216 0.480 0.627 0.986
#> 10 1 10 0.999 0.343 0.544 0.632 0.999
#> # ℹ 40 more rows